2025
pdf
bib
abs
DSRAG: A Double-Stream Retrieval-Augmented Generation Framework for Countless Intent Detection
Pei Guo
|
Enjie Liu
|
Ruichao Zhong
|
Mochi Gao
|
Yunzhi Tan
|
Bo Hu
|
Zang Li
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: Industry Track)
Current intent detection work experiments with minor intent categories. However, in real-world scenarios of data analysis dialogue systems, intents are composed of combinations of numerous metrics and dimensions, resulting in countless intents and posing challenges for the language model. The retrieval-augmented generation (RAG) method efficiently retrieves key intents. However, the single retrieval route sometimes fails to recall target intents and causes incorrect results. To alleviate the above challenges, we introduce the DSRAG framework combining query-to-query (Q2Q) and query-to-metadata (Q2M) double-stream RAG approaches. Specifically, we build a repository of query statements for Q2Q using the query templates with the key intents. When a user’s query comes, it rapidly matches repository statements. Once the relevant query is retrieved, the results can be quickly returned. In contrast, Q2M retrieves the relevant intents from the metadata and utilizes large language models to choose the answer. Experimental results show that DSRAG achieves significant improvements compared with merely using prompt engineering and a single retrieval route.
2024
pdf
bib
abs
Efficient Domain Adaptation for Non-Autoregressive Machine Translation
WangJie You
|
Pei Guo
|
Juntao Li
|
Kehai Chen
|
Min Zhang
Findings of the Association for Computational Linguistics: ACL 2024
Domain adaptation remains a challenge in the realm of Neural Machine Translation (NMT), even in the era of large language models (LLMs). Existing non-parametric approaches like nearest neighbor machine translation have made small Autoregressive Translation (AT) models achieve efficient domain generalization and adaptation without updating parameters, but leaving the Non-Autoregressive Translation (NAT) counterparts under-explored. To fill this blank, we introduce Bi-kNN, an innovative and efficient domain adaptation approach for NAT models that tailors a k-nearest-neighbor algorithm for NAT. Specifically, we introduce an effective datastore construction and correlated updating strategies to conform the parallel nature of NAT. Additionally, we train a meta-network that seamlessly integrates the NN distribution with the NMT distribution robustly during the iterative decoding process of NAT. Our experimental results across four benchmark datasets demonstrate that our Bi-kNN not only achieves significant improvements over the Base-NAT model (7.8 BLEU on average) but also exhibits enhanced efficiency.
pdf
bib
abs
Exploring Reversal Mathematical Reasoning Ability for Large Language Models
Pei Guo
|
WangJie You
|
Juntao Li
|
Yan Bowen
|
Min Zhang
Findings of the Association for Computational Linguistics: ACL 2024
Large language models (LLMs) have presented remarkable capabilities in the wide range of natural language understanding and reasoning tasks. Despite their success, a few works indicate that LLMs suffer from the “reversal curse”, in which LLMs can’t employ the inverted structure “B is A” when they are trained based on “A is B”. To explore the effect of the “reversal curse” for LLMs on complex mathematical reasoning tasks, we present two reversal datasets upon GSM8K and MathQA and verify that LLMs also struggle to solve reversal mathematical problems. We analyze the potential reason and attribute it to the insufficient modeling of the relationship between reasoning steps caused by the left-to-right objective. Consequently, based on the characteristics of multi-step reasoning, we design a novel training method to improve the general and reversal reasoning abilities. Finally, we conduct experiments on four mathematical datasets, and the results demonstrate that our method significantly improves the general reasoning capacities and alleviates the reversal problem. Our datasets and codes are available at https: //github.com/AllForward/ReversalMath.
2023
pdf
bib
abs
Isotropy-Enhanced Conditional Masked Language Models
Pei Guo
|
Yisheng Xiao
|
Juntao Li
|
Yixin Ji
|
Min Zhang
Findings of the Association for Computational Linguistics: EMNLP 2023
Non-autoregressive models have been widely used for various text generation tasks to accelerate the inference process but at the cost of generation quality to some extent. To achieve a good balance between inference speedup and generation quality, iterative NAR models like CMLM and Disco are proposed. Researchers have made much follow-up progress based on them, and some recent iterative models can achieve very promising performance while maintaining significant speedup. In this paper, we give more insights into iterative NAR models by exploring the anisotropic problem, i.e., the representations of distinct predicted target tokens are similar and indiscriminative. Upon the confirmation of the anisotropic problem in iterative NAR models, we first analyze the effectiveness of the contrastive learning method and further propose the Look Neighbors strategy to enhance the learning of token representations during training. Experiments on 4 WMT datasets show that our methods consistently improve the performance as well as alleviate the anisotropic problem of the conditional masked language model, even outperforming the current SoTA result on WMT14 EN → DE.