Odellia Boni


2025

pdf bib
InspectorRAGet: An Introspection Platform for RAG Evaluation
Kshitij P Fadnis | Siva Sankalp Patel | Odellia Boni | Yannis Katsis | Sara Rosenthal | Benjamin Sznajder | Marina Danilevsky
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (System Demonstrations)

Large Language Models (LLM) have become a popular approach for implementing Retrieval Augmented Generation (RAG) systems, and a significant amount of effort has been spent on building good models and metrics. In spite of increased recognition of the need for rigorous evaluation of RAG systems, few tools exist that go beyond the creation of model output and automatic calculation. We present InspectorRAGet, an introspection platform for performing a comprehensive analysis of the quality of RAG system output. InspectorRAGet allows the user to analyze aggregate and instance-level performance of RAG systems, using both human and algorithmicmetrics as well as annotator quality. InspectorRAGet is suitable for multiple use cases and is available publicly to the community.A live instance of the platform is available at https://ibm.biz/InspectorRAGet

2019

pdf bib
A Summarization System for Scientific Documents
Shai Erera | Michal Shmueli-Scheuer | Guy Feigenblat | Ora Peled Nakash | Odellia Boni | Haggai Roitman | Doron Cohen | Bar Weiner | Yosi Mass | Or Rivlin | Guy Lev | Achiya Jerbi | Jonathan Herzig | Yufang Hou | Charles Jochim | Martin Gleize | Francesca Bonin | Francesca Bonin | David Konopnicki
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations

We present a novel system providing summaries for Computer Science publications. Through a qualitative user study, we identified the most valuable scenarios for discovery, exploration and understanding of scientific documents. Based on these findings, we built a system that retrieves and summarizes scientific documents for a given information need, either in form of a free-text query or by choosing categorized values such as scientific tasks, datasets and more. Our system ingested 270,000 papers, and its summarization module aims to generate concise yet detailed summaries. We validated our approach with human experts.