The rise of large language models (LLMs) has created a need for advanced benchmarking systems beyond traditional setups. To this end, we introduce QUENCH, a novel text-based English Quizzing Benchmark manually curated and transcribed from YouTube quiz videos. QUENCH possesses masked entities and rationales for the LLMs to predict via generation. At the intersection of world knowledge, geographical context, and common sense reasoning, QUENCH helps assess world knowledge and deduction capabilities of LLMs via a zero-shot, open-domain quizzing setup. We perform an extensive evaluation on 7 LLMs and 4 metrics, investigating the influence of model size, prompting style, geographical context, and gold-labeled rationale generation. The benchmarking concludes with an error analysis of various types of generative errors to which the LLMs are prone.
We propose selective debiasing – an inference-time safety mechanism designed to enhance the overall model quality in terms of prediction performance and fairness, especially in scenarios where retraining the model is impractical. The method draws inspiration from selective classification, where at inference time, predictions with low quality, as indicated by their uncertainty scores, are discarded. In our approach, we identify the potentially biased model predictions and, instead of discarding them, we remove bias from these predictions using LEACE – a post-processing debiasing method. To select problematic predictions, we propose a bias quantification approach based on KL divergence, which achieves better results than standard uncertainty quantification methods. Experiments on text classification datasets with encoder-based classification models demonstrate that selective debiasing helps to reduce the performance gap between post-processing methods and debiasing techniques from the at-training and pre-processing categories.
Employing language models to generate explanations for an incoming implicit hate post is an active area of research. The explanation is intended to make explicit the underlying stereotype and aid content moderators. The training often combines top-k relevant knowledge graph (KG) tuples to provide world knowledge and improve performance on standard metrics. Interestingly, our study presents conflicting evidence for the role of the quality of KG tuples in generating implicit explanations. Consequently, simpler models incorporating external toxicity signals outperform KG-infused models. Compared to the KG-based setup, we observe a comparable performance for SBIC (LatentHatred) datasets with a performance variation of +0.44 (+0.49), +1.83 (-1.56), and -4.59 (+0.77) in BLEU, ROUGE-L, and BERTScore. Further human evaluation and error analysis reveal that our proposed setup produces more precise explanations than zero-shot GPT-3.5, highlighting the intricate nature of the task.