Marc Tessier


2025

pdf bib
Supporting SENĆOŦEN Language Documentation Efforts with Automatic Speech Recognition
Mengzhe Geng | Patrick Littell | Aidan Pine | Penáć Penáć | Marc Tessier | Roland Kuhn
Proceedings of the Eight Workshop on the Use of Computational Methods in the Study of Endangered Languages

The SENCOTEN language, spoken on the Saanich peninsula of southern Vancouver Island, is in the midst of vigorous language revitalization efforts to turn the tide of language loss as a result of colonial language policies. To support these on-the-ground efforts, the community is turning to digital technology. Automatic Speech Recognition (ASR) technology holds great promise for accelerating language documentation and the creation of educational resources. However, developing ASR systems for SENCOTEN is challenging due to limited data and significant vocabulary variation from its polysynthetic structure and stress-driven metathesis. To address these challenges, we propose an ASR-driven documentation pipeline that leverages augmented speech data from a text-to-speech (TTS) system and cross-lingual transfer learning with Speech Foundation Models (SFMs). An n-gram language model is also incorporated via shallow fusion or n-best restoring to maximize the use of available data. Experiments on the SENCOTEN dataset show aword error rate (WER) of 19.34% and a character error rate (CER) of 5.09% on the test set with a 57.02% out-of-vocabulary (OOV) rate. After filtering minor cedilla-related errors,WER improves to 14.32% (26.48% on unseen words) and CER to 3.45%, demonstrating the potential of our ASR-driven pipeline to support SENCOTEN language documentation.

2023

pdf bib
ReadAlong Studio Web Interface for Digital Interactive Storytelling
Aidan Pine | David Huggins-Daines | Eric Joanis | Patrick Littell | Marc Tessier | Delasie Torkornoo | Rebecca Knowles | Roland Kuhn | Delaney Lothian
Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2023)

We develop an interactive web-based user interface for performing textspeech alignment and creating digital interactive “read-along audio books that highlight words as they are spoken and allow users to replay individual words when clicked. We build on an existing Python library for zero-shot multilingual textspeech alignment (Littell et al., 2022), extend it by exposing its functionality through a RESTful API, and rewrite the underlying speech recognition engine to run in the browser. The ReadAlong Studio Web App is open-source, user-friendly, prioritizes privacy and data sovereignty, allows for a variety of standard export formats, and is designed to work for the majority of the world’s languages.

pdf bib
Terminology in Neural Machine Translation: A Case Study of the Canadian Hansard
Rebecca Knowles | Samuel Larkin | Marc Tessier | Michel Simard
Proceedings of the 24th Annual Conference of the European Association for Machine Translation

Incorporating terminology into a neural machine translation (NMT) system is a feature of interest for many users of machine translation. In this case study of English-French Canadian Parliamentary text, we examine the performance of standard NMT systems at handling terminology and consider the tradeoffs between potential performance improvements and the efforts required to maintain terminological resources specifically for NMT.

2022

pdf bib
ReadAlong Studio: Practical Zero-Shot Text-Speech Alignment for Indigenous Language Audiobooks
Patrick Littell | Eric Joanis | Aidan Pine | Marc Tessier | David Huggins Daines | Delasie Torkornoo
Proceedings of the 1st Annual Meeting of the ELRA/ISCA Special Interest Group on Under-Resourced Languages

While the alignment of audio recordings and text (often termed “forced alignment”) is often treated as a solved problem, in practice the process of adapting an alignment system to a new, under-resourced language comes with significant challenges, requiring experience and expertise that many outside of the speech community lack. This puts otherwise “solvable” problems, like the alignment of Indigenous language audiobooks, out of reach for many real-world Indigenous language organizations. In this paper, we detail ReadAlong Studio, a suite of tools for creating and visualizing aligned audiobooks, including educational features like time-aligned highlighting, playing single words in isolation, and variable-speed playback. It is intended to be accessible to creators without an extensive background in speech or NLP, by automating or making optional many of the specialist steps in an alignment pipeline. It is well documented at a beginner-technologist level, has already been adapted to 30 languages, and can work out-of-the-box on many more languages without adaptation.