Kyle Wong
2025
Investigating the Transferability of Code Repair for Low-Resource Programming Languages
Kyle Wong
|
Alfonso Amayuelas
|
Liangming Pan
|
William Yang Wang
Findings of the Association for Computational Linguistics: NAACL 2025
Large language models (LLMs) have shown remarkable performance on code generation tasks. A recent use case is iterative code repair, where an LLM fixes an incorrect program by rationalizing about errors and generating new code. Recent works augment the code repair process by integrating modern techniques such as chain-of-thought reasoning or distillation, but only study their benefits on high-resource languages like Python, and ignore low-resource languages like Perl. To address this gap of knowledge, we investigate the benefits of distilling code repair for both high and low resource languages to determine if the techniques that are effective in a high resource setting are also applicable in a low resource setting. Our evaluation shows that distilling the ability to repair code has language dependent benefits. To explain this behavior, we perform a further analysis and find that contrary to preexisting beliefs, the correlation between reasoning ability and code correction ability is weak. We hypothesize this weak correlation is magnified in low-resource settings where base models lack deep knowledge of a programming language, leading to wavering benefits of code repair.
2024
Knowledge of Knowledge: Exploring Known-Unknowns Uncertainty with Large Language Models
Alfonso Amayuelas
|
Kyle Wong
|
Liangming Pan
|
Wenhu Chen
|
William Yang Wang
Findings of the Association for Computational Linguistics: ACL 2024
This paper investigates the capabilities of Large Language Models (LLMs) in understanding their knowledge and uncertainty over questions. Specifically, we focus on addressing known-unknown questions, characterized by high uncertainty due to the absence of definitive answers. To facilitate our study, we collect a new dataset with Known-Unknown Questions (KUQ) and establish a categorization framework to clarify the origins of uncertainty in such queries. Subsequently, we examine the performance of open-source LLMs, fine-tuned using this dataset, in distinguishing between known and unknown queries within open-ended question-answering scenarios. The fine-tuned models demonstrated a significant improvement, achieving a considerable increase in F1-score relative to their pre-fine-tuning state. Through a comprehensive analysis, we reveal insights into the models’ improved uncertainty articulation and their consequent efficacy in multi-agent debates. These findings help us understand how LLMs can be trained to identify and express uncertainty, improving our knowledge of how they understand and express complex or unclear information.