2025
pdf
bib
abs
Semantic Consistency-Based Uncertainty Quantification for Factuality in Radiology Report Generation
Chenyu Wang
|
Weichao Zhou
|
Shantanu Ghosh
|
Kayhan Batmanghelich
|
Wenchao Li
Findings of the Association for Computational Linguistics: NAACL 2025
Radiology report generation (RRG) has shown great potential in assisting radiologists by automating the labor-intensive task of report writing. While recent advancements have improved the quality and coherence of generated reports, ensuring their factual correctness remains a critical challenge. Although generative medical Vision Large Language Models (VLLMs) have been proposed to address this issue, these models are prone to hallucinations and can produce inaccurate diagnostic information. To address these concerns, we introduce a novel Semantic Consistency-Based Uncertainty Quantification framework that provides both report-level and sentence-level uncertainties. Unlike existing approaches, our method does not require modifications to the underlying model or access to its inner state, such as output token logits, thus serving as a plug-and-play module that can be seamlessly integrated with state-of-the-art models. Extensive experiments demonstrate the efficacy of our method in detecting hallucinations and enhancing the factual accuracy of automatically generated radiology reports. By abstaining from high-uncertainty reports, our approach improves factuality scores by 10%, achieved by rejecting 20% of reports on the MIMIC-CXR dataset. Furthermore, sentence-level uncertainty flags the lowest-precision sentence in each report with an 82.9% success rate. Our implementation is open-source and available at https://github.com/BU-DEPEND-Lab/SCUQ-RRG.
2023
pdf
bib
abs
From Characters to Words: Hierarchical Pre-trained Language Model for Open-vocabulary Language Understanding
Li Sun
|
Florian Luisier
|
Kayhan Batmanghelich
|
Dinei Florencio
|
Cha Zhang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Current state-of-the-art models for natural language understanding require a preprocessing step to convert raw text into discrete tokens. This process known as tokenization relies on a pre-built vocabulary of words or sub-word morphemes. This fixed vocabulary limits the model’s robustness to spelling errors and its capacity to adapt to new domains. In this work, we introduce a novel open-vocabulary language model that adopts a hierarchical two-level approach: one at the word level and another at the sequence level. Concretely, we design an intra-word module that uses a shallow Transformer architecture to learn word representations from their characters, and a deep inter-word Transformer module that contextualizes each word representation by attending to the entire word sequence. Our model thus directly operates on character sequences with explicit awareness of word boundaries, but without biased sub-word or word-level vocabulary. Experiments on various downstream tasks show that our method outperforms strong baselines. We also demonstrate that our hierarchical model is robust to textual corruption and domain shift.
2016
pdf
bib
Nonparametric Spherical Topic Modeling with Word Embeddings
Kayhan Batmanghelich
|
Ardavan Saeedi
|
Karthik Narasimhan
|
Sam Gershman
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)