2025
pdf
bib
abs
Overview of the Shared Task on Multimodal Hate Speech Detection in Dravidian languages: DravidianLangTech@NAACL 2025
Jyothish Lal G
|
Premjith B
|
Bharathi Raja Chakravarthi
|
Saranya Rajiakodi
|
Bharathi B
|
Rajeswari Natarajan
|
Ratnavel Rajalakshmi
Proceedings of the Fifth Workshop on Speech, Vision, and Language Technologies for Dravidian Languages
The detection of hate speech in social media platforms is very crucial these days. This is due to its adverse impact on mental health, social harmony, and online safety. This paper presents the overview of the shared task on Multimodal Hate Speech Detection in Dravidian Languages organized as part of DravidianLangTech@NAACL 2025. The task emphasizes detecting hate speech in social media content that combines speech and text. Here, we focus on three low-resource Dravidian languages: Malayalam, Tamil, and Telugu. Participants were required to classify hate speech in three sub-tasks, each corresponding to one of these languages. The dataset was curated by collecting speech and corresponding text from YouTube videos. Various machine learning and deep learning-based models, including transformer-based architectures and multimodal frameworks, were employed by the participants. The submissions were evaluated using the macro F1 score. Experimental results underline the potential of multimodal approaches in advancing hate speech detection for low-resource languages. Team SSNTrio achieved the highest F1 score in Malayalam and Tamil of 0.7511 and 0.7332, respectively. Team lowes scored the best F1 score of 0.3817 in the Telugu sub-task.
2023
pdf
bib
abs
Findings of the Shared Task on Multimodal Abusive Language Detection and Sentiment Analysis in Tamil and Malayalam
Premjith B
|
Jyothish Lal G
|
Sowmya V
|
Bharathi Raja Chakravarthi
|
Rajeswari Natarajan
|
Nandhini K
|
Abirami Murugappan
|
Bharathi B
|
Kaushik M
|
Prasanth Sn
|
Aswin Raj R
|
Vijai Simmon S
Proceedings of the Third Workshop on Speech and Language Technologies for Dravidian Languages
This paper summarizes the shared task on multimodal abusive language detection and sentiment analysis in Dravidian languages as part of the third Workshop on Speech and Language Technologies for Dravidian Languages at RANLP 2023. This shared task provides a platform for researchers worldwide to submit their models on two crucial social media data analysis problems in Dravidian languages - abusive language detection and sentiment analysis. Abusive language detection identifies social media content with abusive information, whereas sentiment analysis refers to the problem of determining the sentiments expressed in a text. This task aims to build models for detecting abusive content and analyzing fine-grained sentiment from multimodal data in Tamil and Malayalam. The multimodal data consists of three modalities - video, audio and text. The datasets for both tasks were prepared by collecting videos from YouTube. Sixty teams participated in both tasks. However, only two teams submitted their results. The submissions were evaluated using macro F1-score.