This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Large Language Models infuse newfound vigor into the advancement of the medical domain, yet the scarcity of data poses a significant bottleneck hindering community progress. In this paper, we release the largest ever medical Question Answering (QA) dataset with 26 Million QA pairs named Huatuo-26M. We benchmark many existing approaches in our dataset in terms of both retrieval and generation. We also experimentally show the benefit of the proposed dataset in many aspects: (i) it serves as a fine-tuning data for training medical Large Language Models (LLMs); (ii) it works as an external knowledge source for retrieval-augmented generation (RAG); (iii) it demonstrates transferability by enhancing zero-shot performance on other QA datasets; and (iv) it aids in training biomedical model as a pre-training corpus. Our empirical findings substantiate the dataset’s utility in these domains, thereby confirming its significance as a resource in the medical QA landscape.
Multimodal large language models (MLLMs) have broadened the scope of AI applications. Existing automatic evaluation methodologies for MLLMs are mainly limited in evaluating objective queries without considering real-world user experiences, inadequately addressing the nuances of creative and associative multimodal tasks. However, the open-ended and subjective nature of such tasks poses a significant challenge to the evaluation methodology, where it is difficult to define the ground-truth answers for them. To this end, in our paper, we propose a new evaluation paradigm for MLLMs, which is evaluating MLLMs with per-sample criteria using potent MLLM as the judge. To validate the feasibility and effectiveness of this paradigm, we design a benchmark, dubbed MLLM-Bench, by curating the evaluation samples across six comprehensive cognitive levels. We benchmark 26 popular MLLMs in a pairwise-comparison fashion, showing diverse performance across models. Moreover, the validity of our benchmark manifests itself in reaching 88.02% agreement with human evaluation. We contend that the proposed paradigm explores the potential of MLLMs as effective evaluation tools with the help of per-sample criteria.
Unsupervised cross-lingual transfer involves transferring knowledge between languages without explicit supervision. Although numerous studies have been conducted to improve performance in such tasks by focusing on cross-lingual knowledge, particularly lexical and syntactic knowledge, current approaches are limited as they only incorporate syntactic or lexical information. Since each type of information offers unique advantages and no previous attempts have combined both, we attempt to explore the potential of this approach. In this paper, we present a novel framework called “Lexicon-Syntax Enhanced Multilingual BERT” that combines both lexical and syntactic knowledge. Specifically, we use Multilingual BERT (mBERT) as the base model and employ two techniques to enhance its learning capabilities. The code-switching technique is used to implicitly teach the model lexical alignment information, while a syntactic-based graph attention network is designed to help the model encode syntactic structure. To integrate both types of knowledge, we input code-switched sequences into both the syntactic module and the mBERT base model simultaneously. Our extensive experimental results demonstrate this framework can consistently outperform all baselines of zero-shot cross-lingual transfer, with the gains of 1.0 3.7 points on text classification, named entity recognition (ner), and semantic parsing tasks.
Large Language Models (LLMs) provide a possibility to make a great breakthrough in medicine. The establishment of a standardized medical benchmark becomes a fundamental cornerstone to measure progression. However, medical environments in different regions have their local characteristics, e.g., the ubiquity and significance of traditional Chinese medicine within China. Therefore, merely translating English-based medical evaluation may result in contextual incongruities to a local region. To solve the issue, we propose a localized medical benchmark called CMB, a Comprehensive Medical Benchmark in Chinese, designed and rooted entirely within the native Chinese linguistic and cultural framework. While traditional Chinese medicine is integral to this evaluation, it does not constitute its entirety. Using this benchmark, we have evaluated several prominent large-scale LLMs, including ChatGPT, GPT-4, dedicated Chinese LLMs, and LLMs specialized in the medical domain. We hope this benchmark provide first-hand experience in existing LLMs for medicine and also facilitate the widespread adoption and enhancement of medical LLMs within China. Our data and code are publicly available at https://github.com/FreedomIntelligence/CMB.
This paper is devoted to the development of a localized Large Language Model (LLM) specifically for Arabic, a language imbued with unique cultural characteristics inadequately addressed by current mainstream models. Significant concerns emerge when addressing cultural sensitivity and local values. To address this, the paper proposes a comprehensive solution that includes further pre-training with Arabic texts, Supervised Fine-Tuning (SFT) utilizing native Arabic instructions, and GPT-4 responses in Arabic, alongside Reinforcement Learning with AI Feedback (RLAIF) employing a reward model attuned to local culture and values. The goal is to cultivate culturally cognizant and value-aligned Arabic LLMs capable of accommodating the diverse, application-specific needs of Arabic-speaking communities. Comprehensive evaluations reveal that the resulting model, dubbed ‘AceGPT’, sets the state-of-the-art standard for open Arabic LLMs across various benchmarks. Codes, data, and models are in https://github.com/FreedomIntelligence/AceGPT.
Language is the principal tool for human communication, in which humor is one of the most attractive parts. Producing natural language like humans using computers, a.k.a, Natural Language Generation (NLG), has been widely used for dialogue systems, chatbots, machine translation, as well as computer-aid creation e.g., idea generations, scriptwriting. However, the humor aspect of natural language is relatively under-investigated, especially in the age of pre-trained language models. In this work, we aim to preliminarily test *whether NLG can generate humor as humans do*. We build a largest dataset consisting of numerous **C**hinese **C**omical **C**rosstalk scripts (called **C**3 in short), which is for a popular Chinese performing art called ‘Xiangsheng’ or ‘相声’ since 1800s.We benchmark various generation approaches including training-from-scratch Seq2seq, fine-tuned middle-scale PLMs, and large-scale PLMs (with and without fine-tuning). Moreover, we also conduct a human assessment, showing that 1) *large-scale pretraining largely improves crosstalk generation quality*; and 2) *even the scripts generated from the best PLM is far from what we expect*. We conclude humor generation could be largely improved using large-scaled PLMs, but it is still in its infancy. The data and benchmarking code are publicly available in [https://github.com/anonNo2/crosstalk-generation](https://github.com/anonNo2/crosstalk-generation).
In this paper, we present HuatuoGPT, a Large Language Model (LLM) for medical consultation. The core recipe of HuatuoGPT is to leverage both distilled data from **ChatGPT** and real-world data from **doctors** in the supervised fine-tuning stage. This is not only because purely using **ChatGPT**-distilled data might cause ‘model collapse’, but also because real-world data from **doctors** would be complementary to **ChatGPT**-distilled data. The responses from ChatGPT are usually detailed, well-presented, fluent, and instruction-followed, but it cannot perform like a doctor in many aspects, e.g. for interactive diagnosis. Therefore, the extra doctors’ data could tame a distilled language model to perform like doctors. To synergize the strengths of both data sources, we introduce RLMF (Reinforcement Learning from Mixed Feedback) where a reward model is trained to align the language model with the merits that both sources (ChatGPT and doctors) bring. Experimental results (in GPT-4 evaluation, human evaluation, and medical benchmark datasets) demonstrate that HuatuoGPT achieves state-of-the-art results in performing medical consultation among open-source LLMs. It is worth noting that by using additional real-world data and RLMF, the distilled language model (i.e., HuatuoGPT) outperforms its teacher model (i.e., ChatGPT) in most cases.
Pre-trained language models (e.g., BERT) have achieved significant success in various natural language processing (NLP) tasks. However, high storage and computational costs obstruct pre-trained language models to be effectively deployed on resource-constrained devices. In this paper, we propose a novel BERT distillation method based on many-to-many layer mapping, which allows each intermediate student layer to learn from any intermediate teacher layers. In this way, our model can learn from different teacher layers adaptively for different NLP tasks. In addition, we leverage Earth Mover’s Distance (EMD) to compute the minimum cumulative cost that must be paid to transform knowledge from teacher network to student network. EMD enables effective matching for the many-to-many layer mapping. Furthermore, we propose a cost attention mechanism to learn the layer weights used in EMD automatically, which is supposed to further improve the model’s performance and accelerate convergence time. Extensive experiments on GLUE benchmark demonstrate that our model achieves competitive performance compared to strong competitors in terms of both accuracy and model compression