Ivory Yang


2025

pdf bib
Advancing Uto-Aztecan Language Technologies: A Case Study on the Endangered Comanche Language
Jesus Alvarez C | Daua Karajeanes | Ashley Prado | John Ruttan | Ivory Yang | Sean O’brien | Vasu Sharma | Kevin Zhu
Proceedings of the Fifth Workshop on NLP for Indigenous Languages of the Americas (AmericasNLP)

The digital exclusion of endangered languages remains a critical challenge in NLP, limiting both linguistic research and revitalization efforts. This study introduces the first computational investigation of Comanche, an Uto-Aztecan language on the verge of extinction, demonstrating how minimal-cost, community-informed NLP interventions can support language preservation. We present a manually curated dataset of 412 phrases, a synthetic data generation pipeline, and an empirical evaluation of GPT-4o and GPT-4o-mini for language identification. Our experiments reveal that while LLMs struggle with Comanche in zero-shot settings, few-shot prompting significantly improves performance, achieving near-perfect accuracy with just five examples. Our findings highlight the potential of targeted NLP methodologies in low-resource contexts and emphasize that visibility is the first step toward inclusion. By establishing a foundation for Comanche in NLP, we advocate for computational approaches that prioritize accessibility, cultural sensitivity, and community engagement.

pdf bib
NüshuRescue: Reviving the Endangered Nüshu Language with AI
Ivory Yang | Weicheng Ma | Soroush Vosoughi
Proceedings of the 31st International Conference on Computational Linguistics

The preservation and revitalization of endangered and extinct languages is a meaningful endeavor, conserving cultural heritage while enriching fields like linguistics and anthropology. However, these languages are typically low-resource, making their reconstruction labor-intensive and costly. This challenge is exemplified by Nüshu, a rare script historically used by Yao women in China for self-expression within a patriarchal society. To address this challenge, we introduce NüshuRescue, an AI-driven framework designed to train large language models (LLMs) on endangered languages with minimal data. NüshuRescue automates evaluation and expands target corpora to accelerate linguistic revitalization. As a foundational component, we developed NCGold, a 500-sentence Nüshu-Chinese parallel corpus, the first publicly available dataset of its kind. Leveraging GPT-4-Turbo, with no prior exposure to Nüshu and only 35 short examples from NCGold, NüshuRescue achieved 48.69% translation accuracy on 50 withheld sentences and generated NCSilver, a set of 98 newly translated modern Chinese sentences of varying lengths. In addition, we developed FastText-based and Seq2Seq models to further support research on Nüshu. NüshuRescue provides a versatile and scalable tool for the revitalization of endangered languages, minimizing the need for extensive human input. All datasets and code have been made publicly available at https://github.com/ivoryayang/NushuRescue.

pdf bib
Communication Makes Perfect: Persuasion Dataset Construction via Multi-LLM Communication
Weicheng Ma | Hefan Zhang | Ivory Yang | Shiyu Ji | Joice Chen | Farnoosh Hashemi | Shubham Mohole | Ethan Gearey | Michael Macy | Saeed Hassanpour | Soroush Vosoughi
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large Language Models (LLMs) have shown proficiency in generating persuasive dialogue, yet concerns about the fluency and sophistication of their outputs persist. This paper presents a multi-LLM communication framework designed to enhance the generation of persuasive data automatically. This framework facilitates the efficient production of high-quality, diverse linguistic content with minimal human oversight. Through extensive evaluations, we demonstrate that the generated data excels in naturalness, linguistic diversity, and the strategic use of persuasion, even in complex scenarios involving social taboos. The framework also proves adept at generalizing across novel contexts. Our results highlight the framework’s potential to significantly advance research in both computational and social science domains concerning persuasive communication.

pdf bib
Is It Navajo? Accurate Language Detection for Endangered Athabaskan Languages
Ivory Yang | Weicheng Ma | Chunhui Zhang | Soroush Vosoughi
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)

Endangered languages, such as Navajo—the most widely spoken Native American language—are significantly underrepresented in contemporary language technologies, exacerbating the challenges of their preservation and revitalization. This study evaluates Google’s Language Identification (LangID) tool, which does not currently support any Native American languages. To address this, we introduce a random forest classifier trained on Navajo and twenty erroneously suggested languages by LangID. Despite its simplicity, the classifier achieves near-perfect accuracy (97-100%). Additionally, the model demonstrates robustness across other Athabaskan languages—a family of Native American languages spoken primarily in Alaska, the Pacific Northwest, and parts of the Southwestern United States—suggesting its potential for broader application. Our findings underscore the pressing need for NLP systems that prioritize linguistic diversity and adaptability over centralized, one-size-fits-all solutions, especially in supporting underrepresented languages in a multicultural world. This work directly contributes to ongoing efforts to address cultural biases in language models and advocates for the development of culturally localized NLP tools that serve diverse linguistic communities.

pdf bib
What is it? Towards a Generalizable Native American Language Identification System
Ivory Yang | Weicheng Ma | Carlos Guerrero Alvarez | William Dinauer | Soroush Vosoughi
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 4: Student Research Workshop)

This paper presents a research thesis proposal to develop a generalizable Native American language identification system. Despite their cultural and historical significance, Native American languages remain entirely unsupported by major commercial language identification systems. This omission not only underscores the systemic neglect of endangered languages in technological development, but also highlights the urgent need for dedicated, community-driven solutions. We propose a two-pronged approach: (1) systematically curating linguistic resources across all Native American languages for robust training, and (2) tailored data augmentation to generate synthetic yet linguistically coherent training samples. As proof of concept, we extend an existing rudimentary Athabaskan language classifier by integrating Plains Apache, an extinct Southern Athabaskan language, as an additional language class. We also adapt a data generation framework for low-resource languages to create synthetic Plains Apache data, highlighting the potential of data augmentation. This proposal advocates for a community-driven, technological approach to supporting Native American languages.

2024

pdf bib
MentalManip: A Dataset For Fine-grained Analysis of Mental Manipulation in Conversations
Yuxin Wang | Ivory Yang | Saeed Hassanpour | Soroush Vosoughi
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Mental manipulation, a significant form of abuse in interpersonal conversations, presents a challenge to identify due to its context-dependent and often subtle nature. The detection of manipulative language is essential for protecting potential victims, yet the field of Natural Language Processing (NLP) currently faces a scarcity of resources and research on this topic. Our study addresses this gap by introducing a new dataset, named MentalManip, which consists of 4,000 annotated fictional dialogues. This dataset enables a comprehensive analysis of mental manipulation, pinpointing both the techniques utilized for manipulation and the vulnerabilities targeted in victims. Our research further explores the effectiveness of leading-edge models in recognizing manipulative dialogue and its components through a series of experiments with various configurations. The results demonstrate that these models inadequately identify and categorize manipulative content. Attempts to improve their performance by fine-tuning with existing datasets on mental health and toxicity have not overcome these limitations. We anticipate that MentalManip will stimulate further research, leading to progress in both understanding and mitigating the impact of mental manipulation in conversations.