Ilker Yildirim


2025

pdf bib
L3GO: Language Agents with Chain-of-3D-Thoughts for Generating Unconventional Objects
Yutaro Yamada | Khyathi Chandu | Bill Yuchen Lin | Jack Hessel | Ilker Yildirim | Yejin Choi
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (System Demonstrations)

Diffusion-based image generation models such as DALL-E 3 and Stable Diffusion-XL demonstrate remarkable capabilities in generating images with realistic and unique compositions. Yet, these models are not robust in precisely reasoning about physical and spatial configurations of objects, especially when instructed with unconventional, thereby out-of-distribution descriptions, such as “a chair with five legs”. In this paper, we propose a language agent with chain-of-3D-thoughts (L3GO), an inference-time approach that can reason about part-based 3D construction of unconventional objects that current data-driven diffusion models struggle with. More concretely, we use large language models as agents to compose a desired object via trial-and-error within the 3D simulation environment. To facilitate our investigation, we develop a new benchmark, Unconventionally Feasible Objects (UFO), as well as SimpleBlenv, a wrapper environment built on top of Blender where language agents can build and compose atomic building blocks via API calls. Human and automatic GPT-4V evaluations show that our approach surpasses the standard GPT-4 and other language agents (e.g., ReAct and Reflexion) for 3D mesh generation on ShapeNet. Moreover, when tested on our UFO benchmark, our approach outperforms other state-of-the-art text-to-2D image and text-to-3D models based on human evaluation.

2023

pdf bib
When are Lemons Purple? The Concept Association Bias of Vision-Language Models
Yingtian Tang | Yutaro Yamada | Yoyo Zhang | Ilker Yildirim
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Large-scale vision-language models such as CLIP have shown impressive performance on zero-shot image classification and image-to-text retrieval. However, such performance does not realize in tasks that require a finer-grained correspondence between vision and language, such as Visual Question Answering (VQA). We investigate why this is the case, and report an interesting phenomenon of vision-language models, which we call the Concept Association Bias (CAB), as a potential cause of the difficulty of applying these models to VQA and similar tasks. We find that models with CAB tend to treat input as a bag of concepts and attempt to fill in the other missing concept crossmodally, leading to an unexpected zero-shot prediction. We demonstrate CAB by showing that CLIP’s zero-shot classification performance greatly suffers when there is a strong concept association between an object (e.g. eggplant) and an attribute (e.g. color purple). We also show that the strength of CAB predicts the performance on VQA. We observe that CAB is prevalent in vision-language models trained with contrastive losses, even when autoregressive losses are jointly employed. However, a model that solely relies on autoregressive loss seems to exhibit minimal or no signs of CAB.