Hongbin Na


2025

pdf bib
From Posts to Timelines: Modeling Mental Health Dynamics from Social Media Timelines with Hybrid LLMs
Zimu Wang | Hongbin Na | Rena Gao | Jiayuan Ma | Yining Hua | Ling Chen | Wei Wang
Proceedings of the 10th Workshop on Computational Linguistics and Clinical Psychology (CLPsych 2025)

Social media data is recognized for its usefulness in the early detection of mental disorders; however, there is a lack of research focused on modeling individuals’ longitudinal mental health dynamics. Moreover, fine-tuning large language models (LLMs) on large-scale, annotated datasets presents challenges due to privacy concerns and the difficulties on data collection and annotation. In this paper, we propose a novel approach for modeling mental health dynamics using hybrid LLMs, where we first apply both classification-based and generation-based models to identify adaptive and maladaptive evidence from individual posts. This evidence is then used to predict well-being scores and generate post-level and timeline-level summaries. Experimental results on the CLPsych 2025 shared task demonstrate the effectiveness of our method, with the generative-based model showing a marked advantage in evidence identification.

pdf bib
Detecting Conversational Mental Manipulation with Intent-Aware Prompting
Jiayuan Ma | Hongbin Na | Zimu Wang | Yining Hua | Yue Liu | Wei Wang | Ling Chen
Proceedings of the 31st International Conference on Computational Linguistics

Mental manipulation severely undermines mental wellness by covertly and negatively distorting decision-making. While there is an increasing interest in mental health care within the natural language processing community, progress in tackling manipulation remains limited due to the complexity of detecting subtle, covert tactics in conversations. In this paper, we propose Intent-Aware Prompting (IAP), a novel approach for detecting mental manipulations using large language models (LLMs), providing a deeper understanding of manipulative tactics by capturing the underlying intents of participants. Experimental results on the MentalManip dataset demonstrate superior effectiveness of IAP against other advanced prompting strategies. Notably, our approach substantially reduces false negatives, helping detect more instances of mental manipulation with minimal misjudgment of positive cases. The code of this paper is available at https://github.com/Anton-Jiayuan-MA/Manip-IAP.

pdf bib
Hazards in Daily Life? Enabling Robots to Proactively Detect and Resolve Anomalies
Zirui Song | Guangxian Ouyang | Meng Fang | Hongbin Na | Zijing Shi | Zhenhao Chen | Fu Yujie | Zeyu Zhang | Shiyu Jiang | Miao Fang | Ling Chen | Xiuying Chen
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Existing household robots have made significant progress in performing routine tasks, such as cleaning floors or delivering objects. However, a key limitation of these robots is their inability to recognize potential problems or dangers in home environments. For example, a child may pick up and ingest medication that has fallen on the floor, posing a serious risk. We argue that household robots should proactively detect such hazards or anomalies within the home, and propose the task of anomaly scenario generation. To accomplish this task, we leverage foundational models instead of relying on manually labeled data to build simulated environments. Specifically, we introduce a multi-agent brainstorming approach, where agents collaborate and generate diverse scenarios covering household hazards, hygiene management, and child safety. These textual task descriptions are then integrated with designed 3D assets to simulate realistic environments. Within these constructed environments, our LLM-based robotic agent learns the necessary skills to proactively discover and handle the proposed anomalies through task decomposition, optimal learning approach selection. We demonstrate that our generated environment outperforms others in terms of task description and scene diversity, ultimately enabling robotic agents to better address potential household hazards.

2024

pdf bib
CBT-LLM: A Chinese Large Language Model for Cognitive Behavioral Therapy-based Mental Health Question Answering
Hongbin Na
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

The recent advancements in artificial intelligence highlight the potential of language models in psychological health support. While models trained on data from mental health service platform have achieved preliminary success, challenges persist in areas such as data scarcity, quality, and ensuring a solid foundation in psychological techniques. To address these challenges, this study introduces a novel approach to enhance the precision and efficacy of psychological support through large language models. Specifically, we design a specific prompt derived from principles of Cognitive Behavioral Therapy (CBT) and have generated the CBT QA dataset, specifically for Chinese psychological health Q&A based on CBT structured intervention strategies. Unlike previous methods, our dataset emphasizes professional and structured response. Utilizing this dataset, we fine-tuned the large language model, giving birth to CBT-LLM, the large-scale language model specifically designed for Cognitive Behavioral Therapy techniques. Empirical evaluations demonstrate that CBT-LLM excels in generating structured, professional, and highly relevant responses in psychological health support tasks, showcasing its practicality and quality. The model is available on Hugging Face: https://huggingface.co/Hongbin37/CBT-LLM.