Guangyao Dou
2025
Avoiding Copyright Infringement via Large Language Model Unlearning
Guangyao Dou
|
Zheyuan Liu
|
Qing Lyu
|
Kaize Ding
|
Eric Wong
Findings of the Association for Computational Linguistics: NAACL 2025
Pre-trained Large Language Models (LLMs) have demonstrated remarkable capabilities but also pose risks by learning and generating copyrighted material, leading to significant legal and ethical concerns. In real-world scenarios, model owners need to continuously address copyright infringement as new requests for content removal emerge at different time points. This leads to the need for sequential unlearning, where copyrighted content is removed sequentially as new requests arise. Despite its practical relevance, sequential unlearning in the context of copyright infringement has not been rigorously explored in existing literature. To address this gap, we propose Stable Sequential Unlearning (SSU), a novel framework designed to unlearn copyrighted content from LLMs over multiple time steps. Our approach works by identifying and removing specific weight updates in the model’s parameters that correspond to copyrighted content. We improve unlearning efficacy by introducing random labeling loss and ensuring the model retains its general-purpose knowledge by adjusting targeted parameters. Experimental results show that SSU achieves an effective trade-off between unlearning efficacy and general-purpose language abilities, outperforming existing baselines.
Protecting Privacy in Multimodal Large Language Models with MLLMU-Bench
Zheyuan Liu
|
Guangyao Dou
|
Mengzhao Jia
|
Zhaoxuan Tan
|
Qingkai Zeng
|
Yongle Yuan
|
Meng Jiang
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Generative models such as Large Language Models (LLM) and Multimodal Large Language models (MLLMs) trained on massive web corpora can memorize and disclose individuals’ confidential and private data, raising legal and ethical concerns. While many previous works have addressed this issue in LLM via machine unlearning, it remains largely unexplored for MLLMs. To tackle this challenge, we introduce Multimodal Large Language Model Unlearning Benchmark (MLLMU-Bench), a novel benchmark aimed at advancing the understanding of multimodal machine unlearning. MLLMU-Bench consists of 500 fictitious profiles and 153 profiles for public celebrities, each profile feature over 14 customized question-answer pairs, evaluated from both multimodal (image+text) and unimodal (text) perspectives. The benchmark is divided into four sets to assess unlearning algorithms in terms of efficacy, generalizability, and model utility. Finally, we provide baseline results using existing generative model unlearning algorithms. Surprisingly, our experiments show that unimodal unlearning algorithms excel in generation tasks, while multimodal unlearning approaches perform better in classification with multimodal inputs.
2024
Towards Safer Large Language Models through Machine Unlearning
Zheyuan Liu
|
Guangyao Dou
|
Zhaoxuan Tan
|
Yijun Tian
|
Meng Jiang
Findings of the Association for Computational Linguistics: ACL 2024
The rapid advancement of Large Language Models (LLMs) has demonstrated their vast potential across various domains, attributed to their extensive pretraining knowledge and exceptional generalizability. However, LLMs often encounter challenges in generating harmful content when faced with problematic prompts. To address this problem, existing work attempted to implement a gradient ascent based approach to prevent LLMs from producing harmful output. While these methods can be effective, they frequently impact the model utility in responding to normal prompts. To address this gap, we introduce Selective Knowledge negation Unlearning (SKU), a novel unlearning framework for LLMs, designed to eliminate harmful knowledge while preserving utility on normal prompts. Specifically, SKU is consisted of two stages: harmful knowledge acquisition stage and knowledge negation stage. The first stage aims to identify and acquire harmful knowledge within the model, whereas the second is dedicated to remove this knowledge. SKU selectively isolates and removes harmful knowledge in model parameters, ensuring the model’s performance remains robust on normal prompts. Our experiments conducted across various LLM architectures demonstrate that SKU identifies a good balance point between removing harmful information and preserving utility.
Search
Fix data
Co-authors
- Zheyuan Liu 3
- Meng Jiang 2
- Zhaoxuan Tan 2
- Kaize Ding 1
- Mengzhao Jia 1
- show all...