Emre Kazim


2025

pdf bib
SAGED: A Holistic Bias-Benchmarking Pipeline for Language Models with Customisable Fairness Calibration
Xin Guan | Nate Demchak | Saloni Gupta | Ze Wang | Ediz Ertekin Jr. | Adriano Koshiyama | Emre Kazim | Zekun Wu
Proceedings of the 31st International Conference on Computational Linguistics

The development of unbiased large language models is widely recognized as crucial, yet existing benchmarks fall short in detecting biases due to limited scope, contamination, and lack of a fairness baseline. SAGED(bias) is the first holistic benchmarking pipeline to address these problems. The pipeline encompasses five core stages: scraping materials, assembling benchmarks, generating responses, extracting numeric features, and diagnosing with disparity metrics. SAGED includes metrics for max disparity, such as impact ratio, and bias concentration, such as Max Z-scores. Noticing that metric tool bias and contextual bias in prompts can distort evaluation, SAGED implements counterfactual branching and baseline calibration for mitigation. For demonstration, we use SAGED on G20 Countries with popular 8b-level models including Gemma2, Llama3.1, Mistral, and Qwen2. With sentiment analysis, we find that while Mistral and Qwen2 show lower max disparity and higher bias concentration than Gemma2 and Llama3.1, all models are notably biased against countries like Russia and (except for Qwen2) China. With further experiments to have models role-playing U.S. presidents, we see bias amplifies and shifts in heterogeneous directions. Moreover, we see Qwen2 and Mistral not engage in role-playing, while Llama3.1 and Gemma2 role-play Trump notably more intensively than Biden and Harris, indicating role-playing performance bias in these models.

pdf bib
From Text to Emoji: How PEFT-Driven Personality Manipulation Unleashes the Emoji Potential in LLMs
Navya Jain | Zekun Wu | Cristian Enrique Munoz Villalobos | Airlie Hilliard | Xin Guan | Adriano Koshiyama | Emre Kazim | Philip Colin Treleaven
Findings of the Association for Computational Linguistics: NAACL 2025

The manipulation of the personality traits of large language models (LLMs) has emerged as a key area of research. Methods like prompt-based In-Context Knowledge Editing (IKE) and gradient-based Model Editor Networks (MEND) have been explored but show irregularity and variability; IKE depends on the prompt, leading to variability and sensitivity, while MEND yields inconsistent and gibberish outputs. To address this, we employed Opinion QA Based Parameter-Efficient Fine-Tuning (PEFT), specifically Quantized Low-Rank Adaptation (QLoRA), to manipulate the Big Five personality traits: Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism. After PEFT, models such as Mistral-7B-Instruct and LLaMA-2-7B-chat showed a latent behaviour by generating emojis for certain traits, despite no emojis being present in the PEFT data. For instance, LLaMA-2-7B-chat generated emojis in 99.5% of extraversion-related test instances, while Mistral-7B-Instruct did so in 92.5% of openness-related test instances. ICL Explainability analysis indicated that the LLMs used emojis intentionally to express these traits. Mechanistic Interpretability analysis showed that this latent behaviour of LLMs could be traced to specific neurons that became activated or amplified after PEFT. This paper provides a number of novel contributions. First, introducing an Opinion QA dataset for PEFT-driven personality manipulation; second, developing metric models to benchmark LLM personality traits; third, demonstrating PEFT’s superiority over IKE in personality manipulation; and finally, analysing and validating emoji usage through explainability methods such as Mechanistic Interpretability and In-context learning Explainability methods.