Christopher A. Choquette-Choo


2025

pdf bib
Measuring memorization in language models via probabilistic extraction
Jamie Hayes | Marika Swanberg | Harsh Chaudhari | Itay Yona | Ilia Shumailov | Milad Nasr | Christopher A. Choquette-Choo | Katherine Lee | A. Feder Cooper
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large language models (LLMs) are susceptible to memorizing training data, raising concerns about the potential extraction of sensitive information at generation time. Discoverable extraction is the most common method for measuring this issue: split a training example into a prefix and suffix, then prompt the LLM with the prefix, and deem the example extractable if the LLM generates the matching suffix using greedy sampling. This definition yields a yes-or-no determination of whether extraction was successful with respect to a single query. Though efficient to compute, we show that this definition is unreliable because it does not account for non-determinism present in more realistic (non-greedy) sampling schemes, for which LLMs produce a range of outputs for the same prompt. We introduce probabilistic discoverable extraction, which, without additional cost, relaxes discoverable extraction by considering multiple queries to quantify the probability of extracting a target sequence. We evaluate our probabilistic measure across different models, sampling schemes, and training-data repetitions, and find that this measure provides more nuanced information about extraction risk compared to traditional discoverable extraction.

2024

pdf bib
User Inference Attacks on Large Language Models
Nikhil Kandpal | Krishna Pillutla | Alina Oprea | Peter Kairouz | Christopher A. Choquette-Choo | Zheng Xu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Text written by humans makes up the vast majority of the data used to pre-train and fine-tune large language models (LLMs). Many sources of this data—like code, forum posts, personal websites, and books—are easily attributed to one or a few “users”. In this paper, we ask if it is possible to infer if any of a _user’s_ data was used to train an LLM. Not only would this constitute a breach of privacy, but it would also enable users to detect when their data was used for training. We develop the first effective attacks for _user inference_—at times, with near-perfect success—against LLMs. Our attacks are easy to employ, requiring only black-box access to an LLM and a few samples from the user, which _need not be the ones that were trained on_. We find, both theoretically and empirically, that certain properties make users more susceptible to user inference: being an outlier, having highly correlated examples, and contributing a larger fraction of data. Based on these findings, we identify several methods for mitigating user inference including training with example-level differential privacy, removing within-user duplicate examples, and reducing a user’s contribution to the training data. Though these provide partial mitigation, our work highlights the need to develop methods to fully protect LLMs from user inference.