Chirag Agarwal


2025

pdf bib
Towards Operationalizing Right to Data Protection
Abhinav Java | Simra Shahid | Chirag Agarwal
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

The widespread practice of indiscriminate data scraping to fine-tune language models (LMs) raises significant legal and ethical concerns, particularly regarding compliance with data protection laws such as the General Data Protection Regulation (GDPR). This practice often results in the unauthorized use of personal information, prompting growing debate within the academic and regulatory communities. Recent works have introduced the concept of generating unlearnable datasets (by adding imperceptible noise to the clean data), such that the underlying model achieves lower loss during training but fails to generalize to the unseen test setting. Though somewhat effective, these approaches are predominantly designed for images and are limited by several practical constraints like requiring knowledge of the target model. To this end, we introduce **RegText**, a framework that injects imperceptible spurious correlations into natural language datasets, effectively rendering them unlearnable without affecting semantic content. We demonstrate RegText’s utility through rigorous empirical analysis of small and large LMs. Notably, RegText can restrict newer models like GPT-4o and Llama from learning on our generated data, resulting in a drop in their test accuracy compared to their zero-shot performance and paving the way for generating unlearnable text to protect public data.

pdf bib
Analyzing Memorization in Large Language Models through the Lens of Model Attribution
Tarun Ram Menta | Susmit Agrawal | Chirag Agarwal
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large Language Models (LLMs) are prevalent in modern applications but often memorize training data, leading to privacy breaches and copyright issues. Existing research has mainly focused on post-hoc analyses—such as extracting memorized content or developing memorization metrics—without exploring the underlying architectural factors that contribute to memorization. In this work, we investigate memorization from an architectural lens by analyzing how attention modules at different layers impact its memorization and generalization performance. Using attribution techniques, we systematically intervene in the LLM’s architecture by bypassing attention modules at specific blocks while keeping other components like layer normalization and MLP transformations intact. We provide theorems analyzing our intervention mechanism from a mathematical view, bounding the difference in layer outputs with and without our attributions. Our theoretical and empirical analyses reveal that attention modules in deeper transformer blocks are primarily responsible for memorization, whereas earlier blocks are crucial for the model’s generalization and reasoning capabilities. We validate our findings through comprehensive experiments on different LLM families (Pythia and GPT-Neo) and five benchmark datasets. Our insights offer a practical approach to mitigate memorization in LLMs while preserving their performance, contributing to safer and more ethical deployment in real-world applications.

pdf bib
On the Impact of Fine-Tuning on Chain-of-Thought Reasoning
Elita Lobo | Chirag Agarwal | Himabindu Lakkaraju
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large language models have emerged as powerful tools for general intelligence, showcasing advanced natural language processing capabilities that find applications across diverse domains. Despite their impressive performance, recent studies have highlighted the potential for significant enhancements in LLMs’ task-specific performance through fine-tuning strategies like Reinforcement Learning with Human Feedback (RLHF), supervised fine-tuning (SFT), and Quantized Low-Rank Adapters (Q-LoRA) method. However, previous works have shown that while fine-tuning offers significant performance gains, it also leads to challenges such as catastrophic forgetting and privacy and safety risks. To this end, there has been little to no work in *understanding the impact of fine-tuning on the reasoning capabilities of LLMs*. Our research investigates the effect of fine-tuning on the reasoning abilities of LLMs, addressing critical questions regarding the impact of task-specific fine-tuning on overall reasoning capabilities, the influence of fine-tuning on Chain-of-Thought (CoT) reasoning performance, and the implications for the faithfulness of CoT reasonings. By exploring these dimensions, our study shows the impact of fine-tuning on LLM reasoning capabilities, where the faithfulness of CoT reasoning, on average across four datasets, decreases, highlighting potential shifts in internal mechanisms of the LLMs resulting from fine-tuning processes.