This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Computational mental health research develops models to predict and understand psychological phenomena, but often relies on inappropriate measures of psychopathology constructs, undermining validity. We identify three key issues: (1) reliance on unvalidated measures (e.g., self-declared diagnosis) over validated ones (e.g., diagnosis by clinician); (2) treating mental health constructs as categorical rather than dimensional; and (3) focusing on disorder-specific constructs instead of transdiagnostic ones. We outline the benefits of using validated, dimensional, and transdiagnostic measures and offer practical recommendations for practitioners. Using valid measures that reflect the nature and structure of psychopathology is essential for computational mental health research.
Word similarity has many applications to social science and cultural analytics tasks like measuring meaning change over time and making sense of contested terms. Yet traditional similarity methods based on cosine similarity between word embeddings cannot capture the context-dependent, asymmetrical, polysemous nature of semantic similarity. We propose a new measure of similarity, Word Confusion, that reframes semantic similarity in terms of feature-based classification confusion. Word Confusion is inspired by Tversky (1977)’s suggestion that similarity features be chosen dynamically. Here we train a classifier to map contextual embeddings to word identities and use the classifier confusion (the probability of choosing a confounding word c instead of the correct target word t) as a measure of the similarity of c and t. The set of potential confounding words acts as the chosen features. Our method is comparable to cosine similarity in matching human similarity judgments across several datasets (MEN, WirdSim353, and SimLex), and can measure similarity using predetermined features of interest. We demonstrate our model’s ability to make use of dynamic features by applying it to test a hypothesis about changes in the 18th C. meaning of the French word “révolution” from popular to state action during the French Revolution. We hope this reimagining of semantic similarity will inspire the development of new tools that better capture the multi-faceted and dynamic nature of language, advancing the fields of computational social science and cultural analytics and beyond.
Analogy is one of the core capacities of human cognition; when faced with new situations, we often transfer prior experience from other domains. Most work on computational analogy relies heavily on complex, manually crafted input. In this work, we relax the input requirements, requiring only names of entities to be mapped. We automatically extract commonsense representations and use them to identify a mapping between the entities. Unlike previous works, our framework can handle partial analogies and suggest new entities to be added. Moreover, our method’s output is easily interpretable, allowing for users to understand why a specific mapping was chosen. Experiments show that our model correctly maps 81.2% of classical 2x2 analogy problems (guess level=50%). On larger problems, it achieves 77.8% accuracy (mean guess level=13.1%). In another experiment, we show our algorithm outperforms human performance, and the automatic suggestions of new entities resemble those suggested by humans. We hope this work will advance computational analogy by paving the way to more flexible, realistic input requirements, with broader applicability.
Concepts play a pivotal role in various human cognitive functions, including learning, reasoning and communication. However, there is very little work on endowing machines with the ability to form and reason with concepts. In particular, state-of-the-art large language models (LLMs) work at the level of tokens, not concepts. In this work, we analyze how well contemporary LLMs capture human concepts and their structure. We then discuss ways to develop concept-aware LLMs, taking place at different stages of the pipeline. We sketch a method for pretraining LLMs using concepts, and also explore the simpler approach that uses the output of existing LLMs. Despite its simplicity, our proof-of-concept is shown to better match human intuition, as well as improve the robustness of predictions. These preliminary results underscore the promise of concept-aware LLMs.
Humor is an important social phenomenon, serving complex social and psychological functions. However, despite being studied for millennia humor is computationally not well understood, often considered an AI-complete problem. In this work, we introduce a novel setting in humor mining: automatically detecting funny and unusual scientific papers. We are inspired by the Ig Nobel prize, a satirical prize awarded annually to celebrate funny scientific achievements (example past winner: “Are cows more likely to lie down the longer they stand?”). This challenging task has unique characteristics that make it particularly suitable for automatic learning. We construct a dataset containing thousands of funny papers and use it to learn classifiers, combining findings from psychology and linguistics with recent advances in NLP. We use our models to identify potentially funny papers in a large dataset of over 630,000 articles. The results demonstrate the potential of our methods, and more broadly the utility of integrating state-of-the-art NLP methods with insights from more traditional disciplines
While natural language understanding (NLU) is advancing rapidly, today’s technology differs from human-like language understanding in fundamental ways, notably in its inferior efficiency, interpretability, and generalization. This work proposes an approach to representation and learning based on the tenets of embodied cognitive linguistics (ECL). According to ECL, natural language is inherently executable (like programming languages), driven by mental simulation and metaphoric mappings over hierarchical compositions of structures and schemata learned through embodied interaction. This position paper argues that the use of grounding by metaphoric reasoning and simulation will greatly benefit NLU systems, and proposes a system architecture along with a roadmap towards realizing this vision.