Charlie Cowen-Breen
2025
An Annotated Dataset of Errors in Premodern Greek and Baselines for Detecting Them
Creston Brooks
|
Johannes Haubold
|
Charlie Cowen-Breen
|
Jay White
|
Desmond DeVaul
|
Frederick Riemenschneider
|
Karthik R Narasimhan
|
Barbara Graziosi
Findings of the Association for Computational Linguistics: NAACL 2025
As premodern texts are passed down over centuries, errors inevitably accrue. These errors can be challenging to identify, as some have survived undetected for so long precisely because they are so elusive. While prior work has evaluated error detection methods on artificially-generated errors, we introduce the first dataset of real errors in premodern Greek, enabling the evaluation of error detection methods on errors that genuinely accumulated at some stage in the centuries-long copying process. To create this dataset, we use metrics derived from BERT conditionals to sample 1,000 words more likely to contain errors, which are then annotated and labeled by a domain expert as errors or not. We then propose and evaluate new error detection methods and find that our discriminator-based detector outperforms all other methods, improving the true positive rate for classifying real errors by 5%. We additionally observe that scribal errors are more difficult to detect than print or digitization errors. Our dataset enables the evaluation of error detection methods on real errors in premodern texts for the first time, providing a benchmark for developing more effective error detection algorithms to assist scholars in restoring premodern works.
2023
Logion: Machine-Learning Based Detection and Correction of Textual Errors in Greek Philology
Charlie Cowen-Breen
|
Creston Brooks
|
Barbara Graziosi
|
Johannes Haubold
Proceedings of the Ancient Language Processing Workshop
We present statistical and machine-learning based techniques for detecting and correcting errors in text and apply them to the challenge of textual corruption in Greek philology. Most ancient Greek texts reach us through a long process of copying, in relay, from earlier manuscripts (now lost). In this process of textual transmission, copying errors tend to accrue. After training a BERT model on the largest premodern Greek dataset used for this purpose to date, we identify and correct previously undetected errors made by scribes in the process of textual transmission, in what is, to our knowledge, the first successful identification of such errors via machine learning. The premodern Greek BERT model we train is available for use at https://huggingface.co/cabrooks/LOGION-base.
Search
Fix data
Co-authors
- Creston Brooks 2
- Barbara Graziosi 2
- Johannes Haubold 2
- Desmond DeVaul 1
- Karthik R Narasimhan 1
- show all...