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A Gated Recurrent Units

Similar to the LSTM unit, the GRU (Cho et al.,
2014) has gating units that modulate the flow of
information inside the unit, however, without us-
ing a separate memory cell. Specifically, the GRU
has two gates: the reset gate r; and the update gate
2. The hidden units h; are updated as follows:

re=0(W,zy + Uhi_1 +b,), (1)
zg=0(W.x; + U.hy_1 +0b,), 2)
h; = tanh(Wp,x; + Up(r: © hy_1) + by),
(3)
hy=(1—2)®hi_+20h, (4)

where o(-) denotes the logistic sigmoid function,
and © represents the element-wise multiply oper-
ator. Wy, 5y are encoding weights, and Uy, 1
are recurrent weights. by, . 5y are bias terms.

B Model Details
B.1 Standard Language Modeling

For an input sequence X = {x1,...,zp}, where
x, is the input data vector at time ¢, we define an
output sequence Y = {yi,...,yr} with y, =
Tepp fort =1,...,T — 1. 1 and yr are always
set to a special START and END token, respec-
tively. The probability p(Y|X) is defined as

T T

p(Y[X) = [[p(wilz<) = [ p(wilhe) . (5)

t=1 t=1

At each time t, there is a decoding function
p(ytlhy) = softmax(Vhy) to compute the dis-
tribution over words, where V are the decoding
weights. The hidden states are recursively updated
by hy = H(hi—1,x;), where H is a nonlinear
function such as the LSTM or GRU defined above.

*Equal contribution. TCorresponding author.

B.2 Image Captioning

Image caption generation is considered as a con-
ditional language modeling problem, where image
features are first extracted by residual network (He
et al., 2016) as a preprocessing step, and then fed
into the RNN to generate the caption. Denote z as
the image feature vector, using the same notation
as in standard language modeling, the probablity
p(Y|X, z) is defined as

T T

p(Y|X, z) = [ [ p(yilm<s, 2) = [ [ p(wilhe) -
t=1 t=1

The only difference with a standard language
model is that at the first time step, we use the im-
age feature vector z to update hy = H(ho, x1, 2).
hg is set to a zero vector. The hidden states at
other time steps are recursively updated by h; =
H(hi—1,x), as in standard language modeling.
Note that the image feature vector z is only used
to generate the first word, which works better in
practice than when being used at each time step of
the RNN (Vinyals et al., 2015).

C SGLD Algorithm

We list the SGLD algorithm below for clarity.

Algorithm 1: SGLD

Input: Learning rate schedule {n;} 1 ;.
Initialize: 6; ~ N(0,1) ;
fort=1,2,...,T do

%Estimate gradient from minibatch Sy
fo=VU(6);
% Parameter update
& ~ N(0,n.I);
01 00+ Lfit &
end




D Experimental Setup

For RNN training, orthogonal initialization is em-
ployed on all recurrent matrices (Saxe et al.,
2014). Non-recurrent weights are initialized from
a uniform distribution in [—0.01,0.01]. All the
bias terms are initialized to zero. It is observed that
setting a high initial forget gate bias for LSTMs
can give slightly better results (Le et al., 2015).
Hence, the initial forget gate bias is set to 3
throughout the experiments. Word vectors are ini-
tialized with the publicly available word2vec vec-
tors (Mikolov et al., 2013). These vectors have
dimensionality 300 and were trained using a con-
tinuous bag-of-words architecture . Words not
present in the set of pre-trained words are initial-
ized at random. Gradients are clipped if the norm
of the parameter vector exceeds 5 (Sutskever et al.,
2014).

The hyperparameters for the algorithm include
stepsize, minibatch size, thinning interval, num-
ber of burn-in epochs and variance of the Gaus-
sian priors. We explain some hyperparameters that
are unique in pSGLD as follows. RMSprop em-
ploys the same hyperparameter setting as pSGLD.
Throughout the experiments, the dropout rate is
set to 0.5.

Variance of Gaussian Prior The prior distribu-
tions on the weights of RNNs are Gaussian, with
mean 0 and variance o2. The variance of this
Gaussian distribution determines the prior belief
of how strongly these weights should concentrate
on 0. A larger variance in the prior leads to a wider
range of weight choices, thus higher uncertainty.

We set o2 to 1 throughout the experiments.

Burn-in To obtain a good initialization for pa-
rameter samples from regions of higher probabil-
ity, we dispose of samples at the beginning of
an MCMC run, prior to collection, this is called
“burn-in”.

Thinning Due to the fact of high autocorrela-
tion time between samples in SG-MCMC meth-
ods, we suggest to thin the Markov chain which
leaves fewer, less correlated samples. As with con-
ventional MCMC, these thinned samples have a
lower autocorrelation time and can help maintain
a higher effective sample size while reducing the
computational burden.

E Details of Classification Datasets

We test SG-MCMC methods on various bench-
mark datasets for sentence classification. Sum-
mary statistics of the datasets are in Table 1. For
datasets without a standard validation set, we ran-
domly select 10% of the training data as the vali-
dation set.

e TREC: This task involves classifying a ques-
tion into 6 types (Li and Roth, 2002).

e MR: Movie reviews with one sentence per re-
view. Classification involves predicting posi-
tive/negative reviews (Pang and Lee, 2005).

o SUBJ: Subjectivity dataset where the task is
to classify a sentence as being subjective or
objective (Pang and Lee, 2004).

e CR: Customer reviews of various products.
This task is to predict positive/negative re-
views (Hu and Liu, 2004).

e MPQA: Opinion polarity detection subtask
of the MPQA dataset (Wiebe et al., 2005).

Table 1: Summary statistics for the datasets after
tokenization. c¢: number of target classes. [: aver-
age sentence length. N: dataset size. |V'|: vocabu-
lary size. T'est: Test set size (CV means there was
no standard train/test split and thus 10-fold cross
validation was used.)

Data c N V| Test

TREC |6 10 5952 9764 500

MR 2 20 10662 18765 CV

SUBJ |2 23 10000 21322 CV

CR 2 19 3775 5339 Ccv

MPQA |2 3 10606 6246 CvV
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