

Building an Efficient Multilingual Non-Profit IR System for the Islamic Domain Leveraging Multiprocessing Design in Rust

@EMNLP 2024 Industry Track
Vera Pavlova and Mohammed Makhlouf
rttl labs
rttl.ai

Motivation:

Setting:

- Non-profit
- Multilingual
- Domain-specific

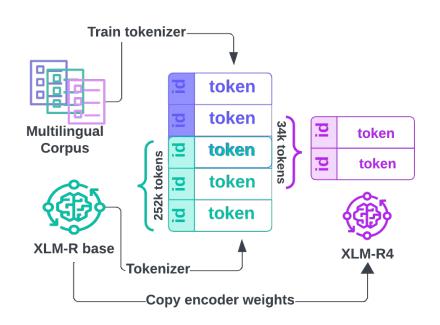
Challenges:

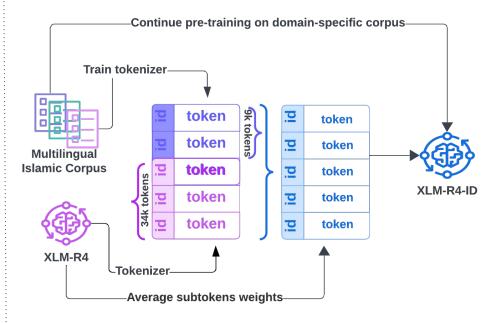
- Resource-constrained devices and limited budget
- → Heavyweight MLLM
- → Domain-specific data is more scarce in different languages

Solutions:

- ✓ CPU-based semantic search leveraging multiprocessing capabilities of Rust language
- ✓ Language reduction
- ✓ Continued pre-training with domain-specific vocabulary

Language Reduction and Domain Adaptation:





Domain adaptation of Language models: Gururangan et al. (2020), Beltagy et al. (2019), Lee et al. (2019)

Model Performance and Model Size comparison:

Model	EN		AR		RU		UR	
Wiodel	Recall@100	MRR@10	Recall@100	MRR@10	Recall@100	MRR@10	Recall@100	MRR@10
XLM-R _{Base} (en)	18.7	34	2.94	6.94	17.9	31.8	20.4	33.7
XLM-R _{Base} (ar)	17.8	32.9	5.3	6.3	20	30.1	20.7	33.9
XLM-R4-ID (en)	27.2	43.8	28.6	45.5	24.5	34.7	26.8	40
XLM-R4-ID (ar)	27.8	45.5	29.3	45.5	24.1	37.5	27.3	41.5
ST/multilingual-mpnet-base-v2	21.6	34.3	4.8	5.2	17.2	22.4	13.5	19.1
ST/all-mpnet-base-v2	25	40.9	_	_	-	-	-	-

Table 3: Performance on in-domain IR dataset for four languages. The best scores are in bold, and color codes correspond to different languages.

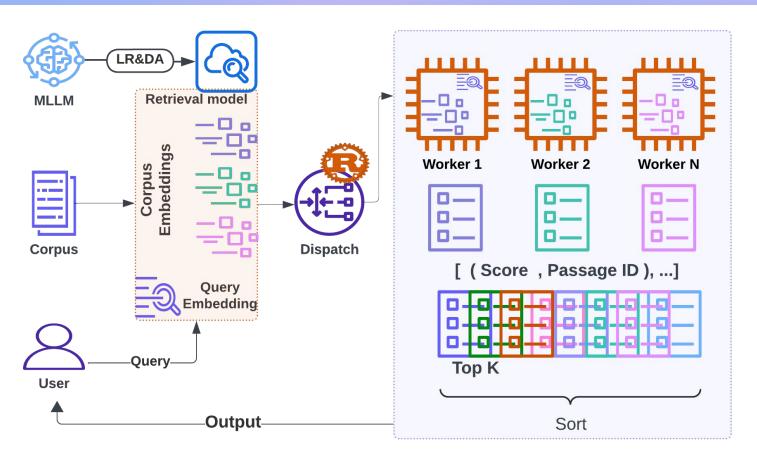
Model	en	ru	ar	ur	
XLM-R _{Base}	84.19	75.59	71.66	65.27	
XLM-R4	83.21	72.75	70.48	64.95	
mBERT	82.1	68.4	64.5	57	
mBERT 15lang	82.2	68.7	64.9	57.1	
DistillmBERT	78.5	63.9	58.6	53.3	

Table 1: Results on cross-lingual transfer for four languages of the XNLI dataset. XLM- R_{Base} and XLM-R4 results are averaged over five different seeds.

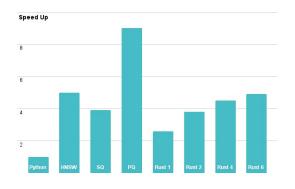
Model	Size	#params	EM
mBERT	714 MB	178 M	92 M
XLM-R _{Base}	1.1 GB	278 M	192 M
XLM-R4	481 MB	119 M	33M

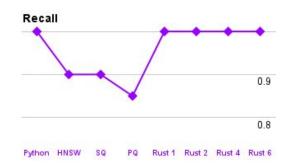
Table 2: Comparison of models' size

CPU-based Semantic Search with Multiprocessing Capabilities of Rust language:



Comparison of SUTs:





SUT	Python	HNSW	SQ	PQ	Rust	Rust	Rust	Rust
	(e.s.)		(e.s.)	(e.s.)	1 w. (e.s.)	2 w. (e.s.)	4 w. (e.s.)	6 w. (e.s.)
Speedup	1x	5x	3.9x	9x	2.6x	3.8x	4.5x	4.9x
Recall	100%	90%	90%	85%	100%	100%	100%	100%

Table 4: Comparisons of SUTs for the speedup of retrieval against baseline and percentage of baseline Recall (e.s stands for exact search and w. for worker).