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A new approach for fine-tuning sentence transformers for intent

classification and out-of-scope detection tasks
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Conclusion

What is Out-Of-Scope(OOS) rejection and why is difficult?

• Task of rejecting input samples outside of a set of limited domains

• Important in virtual assistant systems to handle unsupported 

queries or commands

• OOS has a very wide scope and cannot be efficiently represented in 

the training
Related Work

• Generate sentence embeddings using pretrained transformers 

• Classify sample IS/OOS using parametric/non-parametric methods

• Fine-tuning encoder based on cross-entropy loss provides more 

suitable embeddings to distinguish intent classes

• However, fine-tuning without regularization makes forget some of 

the task-agnostic knowledge, leads to worse OOS detection

• Zhou et al adds a secondary loss function based on contrastive loss 

to increase intent class distance

Create embeddings that lead to same intent classification accuracy 

while projecting all in-domain samples to a small neighborhood:

Our approach reduces the dispersion of the in-scope intent classes by 

regularizing fine-tuning with reconstruction loss obtained using an 

autoencoder.

• Start with pretrained transformer bert-base-uncased

• Add softmax layer with max pooling for classification

• Add secondary head with autoencoder layers

• Fine-tune model on in-scope data using joint loss:

 α * CE loss + (1-α) * MSE Loss

• Both heads as well as softmox layer removed after fine-tuning

• Embedding sq is used for both intent classification and OOS detection

• Each in-scope intent Gaussian is represented by a centroid μj.

• For each query embedding sq, we calculate Mahalanobis distance:

 𝑑𝑗 𝑠
𝑞 = 𝑠𝑞 − μ𝑗

𝑇
Σ−1 𝑠𝑞 − μ𝑗

• Pick minimum distance over all candidate centroids and assign intent

• If distance above certain global threshold τ, reject as OOS

• Reduced dispersion of in scope embeddings

• Similar classification accuracy compared to cross-entropy baseline

• Improved OOS detection across datasets

• The trace of global covariance matrix from training embeddings was calculated to 

measure dispersion

•  Area Under the Precision-Recall curve (AUPR) used as primary metric

• Suitable for imbalanced queries

(high proportion in scope samples,

 positive class)
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