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Improving the efficiency of inference in Large Language Models
(LLMs) is a critical area of research. Post-training Quantization
(PTQ) is a popular technique, but it often faces challenges at low-
bit levels, particularly in downstream tasks. Quantization-aware
Training (QAT) can alleviate this problem, but it requires
significantly more computational resources. To tackle this, we
introduced Weight-Decomposed Low-Rank Quantization-Aware
Training (DL-QAT), which merges the advantages of QAT while
training only less than 1% of the total parameters. Specifically, we
introduce a group-specific quantization magnitude to adjust the
overall scale of each quantization group. Within each quantization
group, we use LORA matrices to update the weight size and
direction in the quantization space. We validated the effectiveness
of our method on the LLaMA and LLaMA2 model families. The
results show significant improvements over our baseline method
across different quantization granularities. For instance, for
LLaMA-7B, our approach outperforms the previous state-of-the-art
method by 4.2% in MMLU on 3-bit LLaMA-7B model.
Additionally, our quantization results on pre-trained models also
surpass previous QAT methods, demonstrating the superior
performance and efficiency of our approach.

In large language models (LLMs), LoRA (Low-Rank Adaptation)
refines the model by introducing two low-rank matrices A and B.
The weight matrix W can be presented as:

W =W, + aBA
where W, represents the pretrained weight matrix that remains
frozen during training, and « is a scaling factor that adjusts the
influence of the low-rank adaptation.
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For a given bit level n, the asymmetric weight quantization and
dequantization processes can be described by a specific formula:

W —b
W= clip([—s }, =21 2n-1 )

Wy=s*W+b
where W represents the quantized value. The scale s determines the
step size between quantization levels, and b is the offset applied to
the weight before scaling.
In DL-QAT, rather than updating the weight matrix W directly, the
updates are applied to the LORA matrices A and B. As a result, the
quantization and de-quantization formula is modified accordingly:

— W, + aBA — b
W = clip([—o . },—zn—l,zn—l —1)

W, =s= w’' +b
We separate the joint training of LORA and quantization into two
parts: (1) group-specific magnitude training; (2) weight fine-tuning
in the pre-defined quantization space. The quantization process is
thus reformulated as follows:

Wy = m =Wy
m* (Wp + aBA),

=m=*(s* (WOTEBA) + b)
Here, m represents a newly introduced hyper-parameter denoting
the group-specific magnitude.
During the initial training phase, the scale factors s and the biases b
are trained to ensure that the quantization updates commence from
a well-established quantization space. Then adjust the magnitude
term m to set the scale for each quantization group. At last the A
and B matrices are fine-tuned, permitting updates to the quantized
weights within the established quantization space.

024.
 Bwerimems |

. MMLU Common Sense Zero-Shot
LLaMA  Method  Bits  cyt 5hot ARC.C ARC_E BoolQ HellaSwag OBQA PIQA Winogrande Avg
. 6 320 346 382 63 729 563 84 72 671 583
QA-LoRA* 4 379 38.5 44.0 71.6 75.9 57.1 30.8 78.9 67.2 60.8
- Ours 4 405 399 450 755 798 579 362 789 02 634
QALoRA® 3 322 329 4l7 716 769 546 W0 776 59 593
Ous 3 364 339 410 734 782 553 32 782 675 6Ll
- 16 40.7 455 399 69.3 711 56.7 318 783 67.1 592
QAToRA® 4 425 448 427 719 76 %69 326 M2 w3 613
. Ous 4 446 450 472 TI8 193 8.1 356 TS 685 636
QA-LoRA* 3 379 379 38.1 66.6 75.0 540 320 76.0 66.5 583
Ous 3 405 394 412 744 780 S4T 32 TIS 688 609

Table 1: Results of weight-only group-wise quantization with group_size=128 on
LLaMA-7B and LLaMA2-7B.

Wikitext2 Common Sense Zero-Shot
LLaMA  Method — W-A-KV © 0 V" ARC_C ARC_E BoolQ HellaSwag PIQA Winogrande Avg
- 16-16-16  5.68 48.0 730 768 76.1 79.3 70.0 705
QA-LoRA* 31616 6.5 384 515 643 645 737 60.9 589
1-7B Ours 3-16-16 9.2 40.1 618 712 67.2 759 64.0 63.4
QA-LoRA*  4-16-16 T 24 580 737 705 713 66.1 647
LLM-QAT  4-16-16 - 45.0 700 755 74.0 78.3 69.0 68.6
Ours 416-16 6.7 414 68.5 785 74.4 78.1 68.5 68.7
SmoothQuant  4-8-8 E a3 674 710 678 776 66.0 652
LLM-QAT 4.8 - 456 702 746 735 775 67.7 682
Ours 4-3-8 6.7 46.2 713 781 73.6 78.5 68.4 69.4
- 161616 500 526 745 781 792 0.0 736 730
1-13B SmoothQuant  4-8-8 - 33 674 125 743 771 69.5 674
LLM-QAT 4.8 - 51.9 736 715 73.6 79.1 70.6 716
Ours 438 5.9 488 748 805 77.1 80.4 703 720
- 161616 547 %3 A6 717 76.0 791 69.1 705
QA-LoRA* _ 3-16-16 37 363 Bz 703 563 744 639 399
2-7B Ours 3-16-16 9.4 35.9 589  7L1 63.6 74.8 60.2 63.7
QA-LoRA*  4-16-16 95 a3 5501 688 719 773 682 638
Ours 416-16 63 4.6 70 785 74.6 78.2 63.8 69.3
3-13B - 161616 4.88 9.0 774 806 794 80.5 722 732
Ours 138 5.63 96 755 819 78.1 80.1 703 726

Table 2: Results of channel-wise quantization on LLaMA-7B/13B models.

Trainable Params (M)

LLaMA Quant config GPU Memory (G) Training speed (s/iter)

s,b m,A, B
Weight-only, g128 50 71 325 3.33
7B Weight-only, per-channel 1 41 31.8 3.24
Quant W/A/KV, per-channel 1 41 33.1 3.91
Weight-only, g128 99 162 60.4 6.26
13B Weight-only, per-channel 2 65 58.7 6.09
Quant W/A/KYV, per-channel 2 65 628 7.04

Table 3: Training parameter count, GPU memory usage, and training speed for LLaMA-
7B/13B under different quantization configurations with a per-GPU batch size of 16. The
experiments were conducted on an AMD MI1250 with 64GB of GPU memory.
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