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Analysis Questionnaire

What is the goal of the study? 
Pedagogical / Debugging / Debiasing / ...
Understanding model structure / model decisions / data / ...

How do you quantify an outcome?

Who is your user or target group?
ML or NLP Expert/ Domain Expert / Student / Lay User of the System ...

How much domain/ model knowledge do they have?



End-to-End Learning
● The predominant approach in NLP these days is end-to-end learning
● Learn a model f : x → y, which maps input x to output y



End-to-End Learning
● For example, in machine translation we map a source sentence to a target 

sentence, via a deep neural network:



A Historical Perspective
● Compare this with a traditional statistical approach to MT, based on multiple 

modules and features:



End-to-End Learning
● The predominant approach in NLP these days is end-to-end learning, where 

all parts of the model are trained on the same task:



How can we open the black box?
● Given f : x → y, we want to ask some questions about f

○ What is its internal structure?
○ How does it behave on different data?
○ Why does it make certain decisions?
○ When does it succeed/fail?
○ ... 



Why should we care?
● Much deep learning research:

○ Trial-and-error, shot in the dark
○ Better understanding → better systems
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Why should we care?
● Much deep learning research:

○ Trial-and-error, shot in the dark
○ Better understanding → better systems

● Accountability, trust, and bias in machine learning
○ “Right to explanation”, EU regulation
○ Life threatening situations: healthcare, autonomous cars
○ Better understanding → more accountable systems

● Neural networks aid the scientific study of language (Linzen 2019) 
○ Models of human language acquisition
○ Models of human language processing
○ Better understanding → more interpretable models



Outline
● Structural analyses
● Behavioral analyses
● Interactive visualizations
● Other methods
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Structural Analyses
● Let f : x → y be a model mapping an input x to an output y

○ f might be a complicated neural network with many layers or other components
○ For example, fl(x) might be the output of the network at the l-th layer

● Some questions we might want to ask:
○ What is the role of different components of f? 
○ What kind of information do different components capture? 
○ More specifically: Does components A know something about property B?
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● Let f : x → y be a model mapping an input x to an output y

○ f might be a complicated neural network with many layers or other components
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Structural Analyses
● Let f : x → y be a model mapping an input x to an output y

○ f might be a complicated neural network with many layers or other components
○ For example, fl(x) might be the output of the network at the l-th layer

● Analysis via a probing classifier
○ Assume a corpus of inputs x with linguistic annotations z
○ Generate representations of x from some part of the model f, for example representations fl(x)

at a certain layer
○ Train another classifier g : fl(x) → z that maps the representations fl(x) to the property z
○ Evaluate the accuracy of g as a proxy to the quality of representations fl(x) w.r.t property z



Structural Analyses

● Let f : x → y be a model mapping an input x to an output y
○ f might be a complicated neural network with many layers or other components
○ For example, fl(x) might be the output of the network at the l-th layer

● Analysis via a probing classifier
○ Assume a corpus of inputs x with linguistic annotations z
○ Generate representations of x from some part of the model f, for example representations fl(x)

at a certain layer
○ Train another classifier g : fl(x) → z that maps the representations fl(x) to the property z
○ Evaluate the accuracy of g as a proxy to the quality of representations fl(x) w.r.t property z

● In information theoretic terms:
○ Set h = f(x) and recall that I(h; z) = H(z) - H(z | h)
○ Then the probing classifier minimizes H(z | h), or maximizes I(h, z)



Milestones (partial list) 

f x y g z

Köhn 2015 Word embedding Word Word Linear POS, morphology

Ettinger et al. 2016 Sentence 
embedding

Word, 
sentence

Word, 
sentence

Linear Semantic roles, 
scope

Shi et al. 2016 RNN MT Word, 
sentence

Word, 
sentence

Linear / tree 
decoder

Syntactic features, 
tree

Adi et al. 2017
Conneau et al. 2018

Sentence 
embedding

sentence sentence Linear, MLP surface, syntax, 
semantics

Hupkes et al. 2018 RNN, treeRNN five plus 
free

eight Linear Position, 
cumulative value

Hewitt+Manning 2019 ELMo, BERT Sentence Sentence Linear Ful tree 



Example Results
● Numerous papers using this methodology to study:

○ Linguistic phenomena (z): phonology, morphology, syntax, semantics
○ Network components (f): word embeddings, sentence embeddings, hidden states, attention 

weights, etc.

● We’ll show example results on machine translation
● Much more related work reviewed in our survey (Belinkov and Glass 2019)



Example: Machine Translation
● Setup

○ f : an RNN encoder-decoder MT model
○ x and y are source and target sentences (lists of words)
○ g: a non-linear classifier (MLP with one hidden layer)
○ z: linguistic properties of words in x or y
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Example: Machine Translation
● Setup

○ f : an RNN encoder-decoder MT model
○ x and y are source and target sentences (lists of words)
○ g: a non-linear classifier (MLP with one hidden layer)
○ z: linguistic properties of words in x or y

● Morphology: 
○ A challenge for machine translation, previously solved with feature-rich approaches. 
○ Do neural networks acquire morphological knowledge? 

● Experiment
○ Take fl(x), an RNN hidden state at layer l
○ Predict z, a morphological tag (verb-past-singular-feminine, noun-plural, etc.)
○ Compare accuracy at different layers l



Example: Machine Translation



Machine Translation: Morphology

● Lower is better
● But deeper models translate better → what’s going on in top layers?



Example: Machine Translation
● Setup

○ f : an RNN encoder-decoder MT model
○ x and y are source and target sentences (lists of words)
○ g: a non-linear classifier (MLP with one hidden layer)
○ z: linguistic properties of words in x or y

● Syntax: 
○ A challenge for machine translation, previously solved with hierarchical approaches. 
○ Do neural networks acquire syntactic knowledge? 

● Experiment
○ Take [fl(xi) ; fl(xi)], RNN hidden states of words xi and xj, at layer l
○ Predict z, a dependency label (subject, object, etc.)
○ Compare accuracy at different layers l



Machine Translation: Syntactic Relations

● Higher is better



Machine Translation: Semantic Relations

● Higher is better



Hierarchies



Hierarchies



Probing Classifiers: Limitations
● Recall the setup:

○ Original model f : x → y
○ Probing classifier g : f(x) → z
○ g maximizes the mutual information between the representation f(x) and property z



Probing Classifiers: Limitations
● Recall the setup:

○ Original model f : x → y
○ Probing classifier g : f(x) → z
○ g maximizes the mutual information between the representation f(x) and property z

● Suppose we get an accuracy, what should we compare it to?
○ Many studies focus on relative performance (say, comparing different layers)
○ But it may be desirable to compare to external numbers
○ Baselines: Often, compare to using static word embeddings (Belinkov et al. 2017) or random 

features (Zhang and Bowman 2018)
■ This tells us that a representation is non-trivial

○ Skylines: Sometimes, report the state-of-the-art on the task, or train a full-fledged model
■ This can tell us how much is missing from the representation



Probing Classifiers: Limitations

● Recall the setup:
○ Original model f : x → y
○ Probing classifier g : f(x) → z
○ g maximizes the mutual information between the representation f(x) and property z

● Suppose we get an accuracy, what should we compare it to?
○ Hewitt and Liang (2019) define control tasks: tasks that only g can learn, not f

■ Specifically, assign a random label to each word type
○ A “good” probe should be selective: high linguistic task accuracy, low control task accuracy
○ Example

■ Linear vs. MLP
■ Accuracy vs. selectivity
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Probing Classifiers: Limitations

● Recall the setup:

○ Original model f : x → y
○ Probing classifier g : f(x) → z
○ g maximizes the mutual information between the representation f(x) and property z

● What is g? What is the relation between the probe g and the model f?
○ Common wisdom: use a linear classifier to focus on the representation and not the probe

○ Anecdotal evidence: non-linear classifiers achieve better probing accuracy, but do not change 

the qualitative patterns (Conneau et al. 2018, Belinkov 2018)
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will maximize the mutual information I(h; z), where f(x)=h
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○ Does this make the probing endeavor obsolete?



Probing Classifiers: Limitations

● Recall the setup:
○ Original model f : x → y
○ Probing classifier g : f(x) → z
○ g maximizes the mutual information between the representation f(x) and property z

● What is g? What is the relation between the probe g and the model f?
○ Pimentel et al. (2020) argue that we should always choose the most complex probe g, since it 

will maximize the mutual information I(h; z), where f(x)=h
○ They also show that I(x; z) = I(h; z) (under mild assumptions)

■ Thus the representation f(x):=h contains the same amount of information about z as x
○ Does this make the probing endeavor obsolete?
○ Not necessarily: 

■ We would still like to know how good a representation is in practice
■ We can still ask relative questions about ease of extraction of information



Probing Classifiers: Limitations
● Recall the setup:

○ Original model f : x → y
○ Probing classifier g : f(x) → z
○ g maximizes the mutual information between the representation f(x) and property z

● What is g? What is the relation between the probe g and the model f?
○ Voita and Titov (2020) measure both probe complexity and probe quality 
○ Instead of measuring accuracy, estimate the minimum description length: how many bits are 

required to transmit z knowing f(x), plus the cost of transmitting g
○ Variational code: incorporate cost of transmitting g
○ Online code: incrementally train g on more data



Probing Classifiers: Limitations
● Recall the setup:

○ Original model f : x → y
○ Probing classifier g : f(x) → z
○ g maximizes the mutual information between the representation f(x) and property z

● What is g? What is the relation between the probe g and the model f?
○ Voita and Titov (2020) measure both probe complexity and probe quality 
○ Instead of measuring accuracy, estimate the minimum description length: how many bits are 

required to transmit z knowing f(x), plus the cost of transmitting g
○ Variational code: incorporate cost of transmitting g
○ Online code: incrementally train g on more data
○ Example

■ Layer 0 control: control accuracy is high (96.3)
but at the expense of codelength (267) 
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Probing Classifiers: Limitations

● Recall the setup:
○ Original model f : x → y
○ Probing classifier g : f(x) → z
○ g maximizes the mutual information between the representation f(x) and property z

● Correlation vs. causation
○ The probing classifier setup only measures correlation between representation f(x) and 

property z
○ It is not directly linked to the behavior of the model f on the task it was trained on, that is, 

predicting y
○ Some work found negative/lack of correlation between probe and task quality 

(Vanmassenhove et al. 2017, Cífka and Bojar 2018)
○ An alternative direction: intervene in the model representations to discover causal effects on 

prediction (Giulianelli et al. 2018, Bau et al. 2019, Vig et al., in progress)



Outline
● Structural analyses
● Behavioral analyses
● Interactive visualizations
● Other methods



Behavioral Analyses
● Usually, we measure the average-case performance of f : x → y on a test set 

{x,y}, drawn uniformly at random from some text corpus
● However, this can reward models for performing well on common 

phenomena, and hide the fact that they perform poorly on “the tail”
● Challenge sets, a.k.a test suites aim to cover diverse phenomena

○ Systematicity 
○ Exhaustivity 
○ Control over data
○ Inclusion of negative data

● Thus they facilitate fine-grained analysis of model performance
● And they have a long history in NLP evaluation (Lehmann et al. 1996, Cooper 

et al. 1996, …)



Behavioral Analyses
● Key idea: Design experiments that allow us to make inferences about the 

model’s representation based on the model’s behavior. 

Brett knew what many 
waiters find

✔

Brett knew that many 
waiters find.

✖
Warstadt et al. (2020)



Behavioral Analyses
● Benefits:

○ Avoid “squinting at the data”. Objective criteria for what counts as “representing” a thing
○ Theory agnostic. No constraints on how you represent it (symbolic, neural, feature-

engineered)
○ Interfaces well with linguistics and other fields. “We are all responsible for the same data”.
○ Practical--not whether the model represents a feature, but whether it uses it in the right way

● Limitations
○ What’s to blame, the model or the data? How do we know what generalizations are “fair”?
○ Only tells us that a model did/didn’t solve a task; few insights into how the model solved the 

task, or why it failed to
○ Hard to design tightly controlled stimuli, probing sets themselves can have artifacts
○ Risk of overfitting to the challenge sets



● See our survey for a categorization of many studies
○ Tasks 

■ Especially machine translation and natural language inference
○ Linguistic phenomena

■ Morphology, syntax, lexical semantics, predicate-argument structure
○ Languages

■ Mostly focusing on English, some artificial languages, not much work on other languages
○ Scale

■ Ranging from hundreds to many thousands
○ Construction method

■ Either manual or programmatic

Behavioral Analyses



Tasks used as probing tasks
● Ideally, simple task interfaces which can support lots of model types
● Ideally, minimal need for training/finetuning on top of model being “probed”



Task Example Typical Use Strengths Limitations E.g.

LM [Might 
add 
generation 
here, too]

The boy by the boats 
[is/*are] smiling.

Syntactic 
phenomena

No additional training 
on top of pretrained 
LM

Often uses ppl, so best 
for left-to-right language 
models. Harder to use 
for newer variants.

Linzen et 
al. (2016)

Acceptability The boy by the boats 
[is/*are] smiling.

Syntactic and 
semantic 
phenomena

More flexible than LM 
across architectures; 
well studied in ling.

Usually requires 
additional training on top 
of LM. 

Warstadt et 
al. (2020)

NLI The boy is smiling. -> The 
boy [is/*is not] happy.

Semantics/pragm
atics/world 
knowledge 

Flexible, easy to 
“recast” many tasks to 
NLI; long history

Often awkward 
sentences/confounds; 
low human agreement

White et al. 
(2017)

QA Semantics/pragm
atics/world 
knowledge 

Can be more natural 
than NLI; incorporates 
more context

Requires custom system 
architecture (e.g. reading 
documents)

MT The repeated calls from his 
mother
should have alerted us.
Les appels rep´ et´ es de 
sa m ´ ere devraient `
nous avoir alertes.

Multilingual 
morpho-/lexico-
/syntax 

Only way of 
specifically probing 
cross-lingual systems

Often relies on manual 
eval (though recent 
approaches use 
probabilities similar to in 
LM tasks)

Isabelle et 
al. (2017)



● Tightly Controlled
○ Minimal Pairs/Counterfactuals
○ Pros: Few confounds, more easy to attribute difference to the phenomena itself
○ Cons: Can be hard to generate; may not exist in a way that is natural
○ Good for phoneman that manifest neatly in the grammar (syntactic agreement, studying 

gender bias), but less so for complex phenomena (common sense/world knowledge) 

Experimental Designs

Subj.-Verb Agree.: Marvin and Linzen (2018)

Veridicality: White et al. (2018)
Someone {knew, didn’t know} that a particular thing happened.
Someone {was, wasn’t} told that a particular thing happened.

Did that thing happen?

Gender Bias: Rudinger et al. (2018)



● Loosely Controlled 
○ Average over sets with vs. without property of interest
○ Pros: Can consist of naturalistic data; can generate larger test sets
○ Cons: Contain artifacts, harder to attribute differences to target phenomena

Experimental Designs

GLUE Diagnostic Set: Wang et al. (2019)

Diverse Natural Language Inference Corpus (DNC): Poliak et al. (2018)

FraCas: Cooper et al. (1996)



● Adversarial Examples

○ Design data sets (usually using minimal pairs or “perturbations”) that specifically emphasize a 

model’s weaknesses

○ Pros: Provides practical analysis of model failures; can be used as training to improve model

○ Cons: Sets age quickly and are model/data specific; “whack-a-mole” style progress

Experimental Designs

Adversarial NLI: Nie et al. (2019)Jia and Liang (2017)



● Sources of Data
○ Sentences drawn from existing corpora 
○ Sentences drawn from existing benchmark sets/test suites
○ Templates
○ Manual Generation

● Example/Label Generation
○ Labels are given by-definition (e.g. if using templates or manual generation)
○ Automatically manipulate sentences and assume heuristic labels (+/- human filtering)
○ Purely automatic (e.g. adversarial)
○ Purely manual labeling (e.g. human generated examples)

Construction Methods



Construction Methods
● Method: Entirely Manual
● Examples: Build-It-Break-It, Adversarial NLI



Construction Methods
● Method: Semi-Automatic + Crowdsourcing
● Examples: Poliak et al. (2018), Kim et al. (2019)



Construction Methods
● Method: Templates
● Examples: Ettinger et al. (2018), McCoy et al. (2019)



Construction Methods
● Method: Entirely Automatic
● Examples: Ebrahimi et al. (2018), Wallace et al. (2019)



Challenge Sets: Limitations
● Availability

○ Limited coverage of tasks and languages
○ Need to expand beyond English and to 

more NLP tasks



Challenge Sets: Limitations
● Availability

○ Limited coverage of tasks and languages
○ Need to expand beyond English and to 

more NLP tasks
● Methodology

○ What does failure on a challenge set tell us?
○ Who is to blame, the model or its training data? 
○ Lie et al. (2019) fine-tune a model on a few 

challenge set examples and re-evaluate
○ Rozen et al. (2019) diversify both the 

training and test data
○ Geiger et al. (2019) propose method for 

determining whether a generalization task is “fair”



Outline
● Structural analyses
● Behavioral analyses
● Interactive visualizations
● Other methods



How many circles to you see?



Visualization can help you understand larger patterns



BUT… Visualization can lie. It was actually 17 !



Interaction and Visualization

1) Theory (Why, What)
2) Practice (How, Who)

a) Attn=Explanation? Useful to look at either way
b) Toolbox (Collaborators / Your own?)
c) Practical Attn Vis Example: (1) agree on an API, (2) Code Server/Model, (3) Code 

Client/Frontend
3) Broader Perspective

a) Reusable Vis: exBERT module (can we combine with mini vis? Install or so?)
b) Automation through frameworks: Captum / AllenAI Interpret / LIT?
c) Tighter integration with models? CSI



Why?

Interactive methods help: 

- To generate hypotheses around model behavior or a dataset
- Reduce the exploration space when it is too large for brute-force methods
- Asking counterfactual “what if” question to the model and data

Interactive methods can:

- Enable the application of methods to real-world problems
- Lower the entry barrier through effective teaching
- Give visibility and feedback for new methods

Recent Tools: 

iNNvestigate Captum AllenNLP Interpret exBert



“A key element of the visualization approach is its ability to generate 
trust in the user. Unlike pure machine learning techniques, in a data 
visualization the user “sees” the data and information as a part of the 
analysis. 

When the visualization is interactive, the user will be part of the loop and 
involved in driving the visualization. In such a context, the development 
of a mental model goes hand in hand with the visualization.“

[Endert et al., 2018]



[Lu et al., 2017]



Formulate Hypothesis
Groups of hidden states learn to capture 
linguistic properties

Refine/Reject Hypothesis
The opening and closing of a parenthesis 
captured within a certain hidden state

Compare models and datasets
Allow early generalization of insights

More accessible through 
“playing” with a model

Much faster with interactive tools

The design of the infrastructure of a 
VA tool can* be easily extensible to 
new models

The tasks of a visual tool



Understand - Diagnose - Refine

Visual analytics in deep learning: An interrogative survey for 

the next frontiers. 

[Hohman et al. ‘18]

Architect - Trainer - End-User

User+Task Analysis does not just apply to vis!

LSTMVis: A Tool for Visual Analysis of Hidden State 

Dynamics in Recurrent Neural Networks

[Strobelt, Gehrmann, et al. ‘16]

Towards better analysis of machine learning models: A 

visual analytics perspective. 

[Liu et al.‘17]



Task

Interactive
Observation

Passive 
Observation

Understanding 
Model Structure

Understanding 
Model Decisions

User

Model 
Involvement

Trainer

Architect

End-User

Visual Interaction with Deep Learning Models 
through Collaborative Semantic Inference.
[Gehrmann, Strobelt, et al.’19] 



Examples: Passive Observation



Examples: Interactive Observation



UX of Interaction (reading list)

Guidelines for Human-AI Interaction 
[Amershi et al. ‘19]



Does the research process differ?

Low Fidelity Prototypes

Goal-driven rapid iteration

Tons and tons of pilot studies

Baseline Models

Dev-set driven hyperparameter exploration

Tons and tons of automatic evaluation

Note - Slide may contain cynical views on model development

Vis/Interaction ML



A. Karpathy, J. Johnson, and F. F. Li, “Visualizing and 
Understanding Recurrent Networks,”  ICLR 2016 
Workshop









Low Fidelity Prototypes    Goal-driven rapid iteration       Tons and tons of pilot studies

[Strobelt, Gehrmann et al. ‘16]



You have a cheap selection interface, now what?



[Strobelt, Gehrmann et al. ‘18]







[TODO: add overview of approaches here: Gradient-based, Influence Functions, 
challenge set reference for later, Statistics over entire corpus (kclark, iftenney), 
Train additional model]



Practical Attention Vis Example



Challenges compared to s2s attention

Filtering: We now have 100+ heads
Aggregation: How do we show multiple? 
Key/Value/Query: What do we do with that? 



checkout github: http://bit.ly/SIDN-AttnVis
git clone https://github.com/SIDN-IAP/attnvis.git
cd attnvis

install dependencies:
conda env create -f environment.yml

get server to start without errors
conda activate attnvis
python server.py

The 1-day JS Prototype



Agree on an API between backend and visualization

{
“tokens”: List[unicode string],
“Attention”: List[List[List[float32]]]

}

Token

Layer

Head

Note: this API does not support batching! 





api.py

!



api.py



api.py





server.py



server.py





client/index.html



client/index.html



1) .selectAll Select all .btn elements 
[btn1, btn2, …]

2) .data Set their data to the index value
[(btn1, 0), (btn2, 1), …]

3) .join create/delete elements to match data
[(btn1, 0), (btn2, 1), …]

4) .classed Conditionally set classes
5) .text Set their text to the index
6) .on Set their onClick handler

https://www.d3indepth.com/datajoins/



1) .selectAll Select all .btn elements 
[btn1, btn2, …]

2) .classed Conditionally set classes



Define a linear color scale variable 

1) .selectAll Get all attention head elements
2) .data Filter attn values to those of the 

selected token and bind to head elements 
3) .join Create/delete elements to match 

number of attention links
4) .attr Make sure all divs (even the just 

created one’s) have the correct class
5) .classed highlight the selected token
6) .style Set the color to the color scale value





Call for Reproducibility and Public Adoption:
open source with documentation



exBERT visualization component
[placeholder]



Broader Perspective / Current Opportunities
[TODO: add reading list items in categories]



Opportunity: Mixed-Initiative Guidance
Towards better analysis of machine learning models: A visual analytics perspective. 
[Liu et al. ‘17]

Broader Perspective / Current Opportunities

Opportunity: Tighter integration of model + interface 
development
Placeholder
[Placeholder ‘20]



Allow reasonable and interpretable 
modifications of your model input 
and internals during inference 
mode to help with understanding 
and debugging.

Test Alternative Decisions or WHAT IF Mode



Interactive Collaboration



Interactive Visualization Questionnaire

What is the goal of the tool? 
Pedagogical / Debugging / Debiasing / ...
Understanding model structure / model decisions / data / ...

How do you quantify an outcome?

Who is your user?
ML or NLP Expert/ Domain Expert / Student / ...

How much domain/ model knowledge do they have?

The answers will inform the following implementation questions:
Does the tool require interaction with the model? With the data? 

Can you change the model structure or model decisions?



Outline
● Structural analyses
● Behavioral analyses
● Interactive visualizations
● Other methods



Other Topics
● Adversarial examples

○ Can point to model weaknesses
○ Challenges with text input (and output) 

■ How to calculate gradients
■ How to measure similarity to real examples

○ Survey papers: Belinkov and Glass 2019, Wang et al. 2019, Zhang et al. 2019
● Generating explanations

○ Annotated explanations
○ Rationales: erasure-based, latent variables

● Formal languages as models of language
○ For example: can LSTMs learn context-free languages? 
○ Long line of research starting in the 1980s



References and Resources 
● Another upcoming tutorial (online):

○ Wallace, Gardner, and Singh, EMNLP 2020 tutorial on Interpreting Predictions of NLP Models



Conclusion


