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Statement of User Need

» There is a need for to enable signers to seamlessly communicate with non-
signers.

» In day-to-day life, people do not have dedicated interpreters who are with
them on a 24 X 7 basis.

» Obtaining an interpreter requires prior arrangements & advanced planning,
sometimes weeks in advance.

» Ad-hoc meetings come up, and the chance to participate is lost if an
interpreter can’t be found.
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Current Situation

Some of the Consequences...
Some of the Problems... —

» Inability to
truly connect

» People you run
into say, “Text
ya later,” and
never do...

! |
L » You feel you

can’t express
yourself writing
in English as well
as you can in ASL
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Solving the Challenge

» Develop a tool to allow an ASL signer and
a speaker of English to communicate with each other...

» Face-to-Face
» Naturally
» Anytime

» Anywhere




Our Solution

» To develop wearable devices that will facilitate
interactions between signers and non-signers

» This family of solutions is called DragonFly

» We envision DragonFly running on different types of wearables




Why?

» To help bridge the current communication
barrier...

» With DragonFly, a person who uses ASL and
someone who does not know ASL can express
themselves completely to one another.

» The opportunity DragonFly creates is the
ability to unlock the potential of every person
to fully contribute to the mission.




Technical Approach




Technical Challenges

Signal Complexity

Sign/Signer Variability

Head/Face Gesture I

Handshape I

|:> Hand Orientation I

Hand Placement I

Hand Motion

Sensor Variability

Session Variability Data Availability

e.g. observation angle  Limited availability of well annotated ASL<->English content
P ‘ for development and evaluation (e.g. ASLLVD)

» Technical challenges remain for exploiting loosely annotated

content (e.g. ASL w/ closed captioning)

ASL: American Sign Language
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System Overview
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Sign Language to Speech
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Sign Language to Speech
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Signer Isolation

Feature Localization
Face and Hands
Whole Body

Motion Tracking




Sign Language to Speech
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Classify Individual Hand
Gestures

finger23- fist flat pinch12 pinch12open pinchall
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Evaluate Facial Cues

Performed on single frame or short series of video
Typically adopt image machine learning methods.
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Sign Language to Speech

/ \ » Given gesture sequences, we want to identify discrete signs

* Guided by a lexicon (e.g. signing dictionary)
» Typically involves dynamic machine learning methods
o * Markov Modeling
* Neural Networks
« Sequential Pattern Boosting
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Sign Language to Speech
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Translation:

« Convert recognized signing sequences into an English
sentences.

« Example of Machine Translation (MT) Problem

» ASL is not structured like English and is more like Japanese,
in that it is a Topic-Comment language. It must be ordered
correctly before it is converted to speech, so that it
conforms to English syntax and is readily understood by an
English speaker.

» Requires sizable database of parallel ASL-English data

e.g. Television Corpus of Closed-Caption + ASL
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Speech to Sign Language

Translation

Inverse operation of the MT problem
English sentences converted into sequences of manual
and non-manual gestures
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Next Steps
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Project Status

» We have initiated an extensive literature search to leverage best practices
and relevant research done to date.

» We are compiling data, annotation, algorithmic, and system requirements

» lIdentified and aggregating annotated ASL datasets
» ASLLVD RVL-SLLL Gallaudet
» Identified relevant CNN models for feature extraction

» VGG and DeepHand models
» We have begun work on a prototype for ASL recognition capabilities.

Proceedings of AMTA 2016, vol. 2: MT Users' Track



Questions?

A RN




Thank You!

Contact Info:
po1/b®icloud.com
nmalyska®@ll.mit.edu




