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Statement of User Need

 There is a need for to enable signers to seamlessly communicate with non-

signers.

 In day-to-day life, people do not have dedicated interpreters who are with 

them on a 24 X 7 basis.

 Obtaining an interpreter requires prior arrangements & advanced planning, 

sometimes weeks in advance.

 Ad-hoc meetings come up, and the chance to participate is lost if an 

interpreter can’t be found. 
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Current Situation

Some of the Problems…

 People you run 

into say, “Text 

ya later,” and 

never do…

Some of the Consequences…

 Inability to 

truly connect

 You feel you 

can’t express 

yourself writing 

in English as well 

as you can in ASL
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Solving the Challenge

 Develop a tool to allow an ASL signer and 

a speaker of English to communicate with each other…

 Face-to-Face

Naturally

Anytime

Anywhere
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Our Solution

To develop wearable devices that will facilitate 

interactions between signers and non-signers

 This family of solutions is called DragonFly

 We envision DragonFly running on different types of wearables
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Why?

To help bridge the current communication 
barrier…

With DragonFly, a person who uses ASL and 
someone who does not know ASL can express 
themselves completely to one another. 

The opportunity DragonFly creates is the 
ability to unlock the potential of every person 
to fully contribute to the mission. 
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Technical Approach
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Technical Challenges

Sign/Signer Variability
Signal Complexity

Data Availability

Head/Face Gesture

Handshape

Hand Orientation

Hand Placement

Hand Motion

e.g. observation angle • Limited availability of well annotated ASL<->English content 

for development and evaluation (e.g. ASLLVD)

• Technical challenges remain for exploiting loosely annotated 

content (e.g. ASL w/ closed captioning)

Session Variability

Sensor Variability

ASL: American Sign Language

ASLLVD: American Sign Language Video DatasetProceedings of AMTA 2016, vol. 2: MT Users' Track Austin, Oct 28 - Nov 1, 2016 | p. 583



System Overview
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Sign Language to Speech

Signal  
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Sign Language to Speech

Signal  Acquisition

Translation

Speech Synthesis

Region Detection and 
Tracking

Static/Dynamic 
Analysis

Sign Classification

• Signer Isolation

• Feature Localization

• Face and Hands

• Whole Body

• Motion Tracking
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Sign Language to Speech

Signal  Acquisition

Translation

Speech Synthesis

Region Detection and 
Tracking

Static/Dynamic 
Analysis

Sign Classification

• Classify Individual Hand 

Gestures

• Evaluate Facial Cues

• Performed on single frame or short series of video

• Typically adopt image machine learning methods.
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Sign Language to Speech

Signal  Acquisition

Translation

Speech Synthesis

Region Detection and 
Tracking

Static/Dynamic 
Analysis

Sign Classification

• Given gesture sequences, we want to identify discrete signs

• Guided by a lexicon (e.g. signing dictionary)

• Typically involves dynamic machine learning methods    • Typically involves dynamic machine learning methods    

• Markov Modeling

• Typically involves dynamic machine learning methods    

• Markov Modeling

• Neural Networks 

• Typically involves dynamic machine learning methods    

• Markov Modeling

• Neural Networks

• Sequential Pattern Boosting 
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Sign Language to Speech

Signal  Acquisition

Translation

Speech Synthesis

Region Detection and 
Tracking

Static/Dynamic 
Analysis

Sign Classification

Translation: 

• Convert recognized signing sequences into an English 

sentences.

• Example of Machine Translation (MT) Problem

• ASL is not structured like English and is more like Japanese, 

in that it is a Topic-Comment language. It must be ordered 

correctly before it is converted to speech, so that it 

conforms to English syntax and is readily understood by an 

English speaker.

• Requires sizable database of parallel ASL-English data 

e.g. Television Corpus of Closed-Caption + ASL  

Speech Synthesis
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Speech to Sign Language

Signing Synthesis

Translation

Speech-to-Text 
Conversion

Signal Acquisition

Translation

• Inverse operation of the MT problem

• English sentences converted into sequences of manual 

and non-manual gestures

Signal Acquisition

Speech-to-Text 
Conversion

Translation
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Next Steps
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Isolated Signs

Goals:

• Proof-of-Concept System

• Recognize a set of ~50 isolated signs

• Laptop-based, not necessarily real time

• Obtain feedback from users 
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Project Status

 We have initiated  an extensive literature search to leverage best practices 

and relevant research done to date.

 We are compiling data, annotation, algorithmic, and system requirements

 Identified and aggregating annotated ASL datasets

 ASLLVD RVL-SLLL Gallaudet

 Identified relevant CNN models for feature extraction

 VGG and DeepHand models

 We have begun work on a prototype for ASL recognition capabilities.
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Questions?
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Thank You!

Contact Info:

po17b@icloud.com

nmalyska@ll.mit.edu
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