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Abstract

Multigram language model has become important in Speech Recognition, Natural Language
Processing and Information Retrieval. An essential task in multigram language model is to
establish a set of significant multigram compounds. In Yamamotto and Church (2001), an
O(NlogN) time complexity method based on Generalised Suffix Array (GSA) has been found,
which computes the #f (term frequency) and df (document frequency) over O(N) classes of
substrings. The ¢fand df form the essential statistics on which the metrics, such as MI (Mutual
Information) and RIDF (Residual Inverse Document Frequency)!, are based for multigram
compound discovery. In this paper, it is shown that two related data structures to GSA,
Generalised Suffix Tree (GST) and Generalised Directed Acyclic Word Graph (GDAWG) can
afford even more efficient methods of multigram compound discovery than GSA. Namely, O(N)
algorithms for computing #fand df have been found in GST and GDAWG. These data structures
also exhibit a series of related, and desirable properties, including an O(N) time complexity
algorithm to classify O(N¥) substrings into O(N) classes. An experiment based on 6 million bytes
of text demonstrates that our theoretical analysis is consistent with the empirical results that can
be observed.

1 Introduction

Multigram language model has become important in Speech Recognition (SR), Natural Language
Processing (NLP) and Information Retrieval (IR) as demonstrated in Siu and Osterndorf (2000), Peng
and Schuurmans (2002), and Chien (1999). It has also been used in evaluating NLP applications such as
automatic Machine Translation and Text Summarization (Panineni, etc., 2002; Lin and Hovy, 2003).

For a corpus of length N, the computing cost of a naive algorithm for the frequencies over all
substrings is at least O(N°). In Yamamoto and Church (2001), an efficient method is given for
computing the term frequency (#f) and document frequency (df), as well as the Mutual Information (MI)
and Residual Inverse Document Frequency (RIDF), for all substrings based on Generalized Suffix Array
(GSA). The method groups all N(N+1)/2 substrings into up to 2N-1 equivalence classes, and in this way,
the computation is reduced to a manageable computation over these classes, that is, O(NlogN) time and
O(N) space.

It is natural to compare Generalised Suffix Tree (GST) and Generalised DAWG (GDAWG) with
GSA since they all can be viewed as compact representations of suffix tries. Moreover, the construction
complexities of GST and GDAWG are O(N), while that of GSA is O(NlogN). This raises the question:

1 MI and RIDF by Yamamoto and Church (2001) are given below:
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Where x and z are tokens, Y and x¥z are ngrams (sequences of tokens).
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Are GST and GDAWG the same or more efficient data structures than GSA for multigram compound
Discovery?

In Crochemore and Rytter (1994), a set of properties has been identified such that a data structure D

is said to be good if:

(Property A) D has linear size.

(Property B) D can be constructed in linear time.

(Property C) D allows computing FACTORIN(x, text) in O(|x|) time.
Although the above properties are desired for multigram compound discovery, additional properties are
required to provide a more precise assessment. Two important basic statistics: #f and df are important.
The frequency of a substring in a collection of strings is called the term frequency (or i), and that of a
substring occurred among different strings in the collection is called the document frequency (or df).

In this paper, the following properties are identified, in addition to Properties A — C, to assess D: let
N be the size of a set of strings TEXT:

(Property D) D allows #f (term frequency) and df (document frequency) to be computed in
O(N) time.

(Property E) D allows classifying O(V) multigrams into O(N) classes with the same tf in
O(N) time.

(Property F) D allows, Residual Inverse Document Frequency (RIDF) and Mutual
Information (MI) to be computed in O(N) time.

It is self-evident that Property D is a desirable property. Property E reduces the lower bound of
Mutual Information computation from O(N’) to O(N). Property F represents the ultimate potential for an
efficient multigram term discovery algorithm. It is also noted that Properties D, E and F, represent an
increasingly tighter criteria; that is, if the earlier, less stringent property is not satisfied, it is impossible
for the latter, more stringent property to be satisfied.

This paper proposes two new multigram term discovery algorithms based on GST and GDAWG and
proves that they fulfil Property A-E, while the GSA-based method does not satisfy any of the above
desirable properties except Property A.

2 Multigram Compound Discovery Methods Based on Generalized Suffix Tree

The fact that Suffix Tree has linear size and can be constructed in linear time is well documented in the
literature (Ukkonen, 1995). It is also known that FACTORIN(x, text) can be computed in O(|x|) time.
The algorithm is simply to traverse the Suffix Tree from the root by consuming the string x character by
character. If the traversal can be completed for the entire string, then the answer to FACTORIN(x, text) is
yes; otherwise, the answer is no. The time taken to decide FACTORIN(x, text) is thus, O(x]). A
A GST is an extension to Suffix Tree over the a set of strings, text;, i = 1, n. For the convenience of
the discussion, it is assumed that these fext; are sorted in alphabetic order. In the following algorithm, we
adopt the notion of (Ukonnen, 1995) and describe the algorithm to construct the Generalised Stuffix
Tree (GST).
GST Construction <« procedure(text,, ..., text,) {
Construct the Generalised Suffix Tree of text; , GST (text;);
For i<2...ndo
insert (text, GST (text,, ..., text)); }

insert « function (text;, GST (text,, ..., text.))) {
given text,;=t; t ... #
(s1, k;) < findPrefix (text;, GST (text,, ..., text;p));
se—s; ke—ktl;i kg
While ¢ !=# do
i—i+l,
(s, k) < update (s, (k, D);
(s, k) < canonize ((s, (&, 9)); }
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Where findPrefix will traverse the longest possible prefix of text; contained in GST(text,, ..., text; ;)
and return the canonical reference pair (s;, k;) for that prefix; procedures update and canonize are the
same as those defined in (Ukonnen, 1995).

The Generalised Suffix Tree as constructed above retains all of the above properties, namely
properties A, B, and C. This can be observed quite clearly by the fact that GST is but a union of all the
automatas that individually satisfy properties A, B and C.

The GST for two alphabetically sorted strings (1) “cacacao” and (2) “cacao” is demonstrated in the
following Figure 2.1.

ca Internal/Branching Node
s

L72.5

—

0 ‘ R 1422

L1 Leave Node
t
‘ 1.3;2.1

Figure 2.1: A GST for strings: (1) “cacacao” (2) “cacao,” GST(“cacacao”, “cacac”).
Each suffix is associated with a occurrence pair x.y. Fore example, the occurrence pair
of “cacacao” is 1.1.

Assuming background understanding of a tree data structure, a few relevant concepts of Generalized
Suffix Tree (GST) are recalled in Figure 2.1: the “root node,” denoted as root, is colored in gray. The
white nodes are the “internal,” or “branching,” nodes; s is one such node in Figure 2.1. The leaf nodes
are demonstrated as the black nodes, of which ¢ is an instance.

A GST tree can also be viewed as an automata where the nodes are the states and the “labelled”
edges the acceptable input strings. In the following, when the properties are discussed in the , the duality
is assumed between a node/state, n, of a tree and a string/prefix / that satisfy n = (root, [). For example,
instead of saying ¢ is reachable from s, one may say “acao” is reachable from s since ¢ = (root, “acao”).

As demonstrated in Figure 2.1, each suffix suffix; is associated with an occurrence pair x.y, where x,
called the x dimension of the occurrence pair, which is the alphabetic order of the string fext; of which
suffix is a suffix; and y, called the y dimension of the occurrence pair, is the starting position of suffix; in
text;. In Figure 2.1, the suffix “acao” that terminates at a leaf node # has two occurrence pairs 1.4 and 2.2,
which specify that “acao” starts at the 4™ and 2™ positions of the 1% and 2™ strings of the GST(“cacacao,
“cacao”), respectively.

In some cases, a branching node can also be a leaf node. For example, in a GST that contains one
string “caca”, the node v = (root, “ca™) is both an internal node as well as a leaf node, indexed at 1.3.

2.1 Term frequency (tf) and document frequency (df) of a domination range class

We further define suffix index of a suffix as its order in a alphabetically sorted sequence of the suffixes
of all the strings in the GST. As demonstrated in Figure 2.2, the suffix “acacao” has the order index of 1

Lt N1Y

as it is the 1% suffix among all suffixes in the GST(“cacacao”, “cacao™).
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Lemma 1a: The ¢ and df of a suffix, which terminates at a leaf node, of a GST are equal to the numbers
of the suffix’s occurrence pairs and the distinct x-dimension integers of its occurrence pairs,
respectively.

The proof of lemma is self-evident. For example, the suffix “acao” has a #fof 2 and df of 2, since the
suffix has 2 occurrence pairs — 1.4 and 2.2, and 2 distinct x-dimension integers of the set of occurrence
pairs, namely 1 and 2, respectively.

suffix  suffices
index
I acacao tf;df of “aca”
2 acao string 2 = “cacao” (and “ac”) is 3;2
3 ao : — _., 2
string 1 = “cacacao
4 cacacao —
5 cacao
3 o Root Node
(77 edge <w, v>
1725 - " Lower node

@ ad 22]

14,22
6 ’ @ .1 2
4 1.1
15,5} ‘ 1321
5

Figure 2.2: The seven distinct suffixes of GST(“cacacao”, “cacao”) form a suffix index. A
left-open edge <w, v] of the GST has a upper node w and lower node v. The substring “aca”
that terminates in <w, v] has a #fdf counts of 3;2, whose occurrences are underlined in each
of the strings in the GST. The domination range of each of the node is demonstrated in the
pair [x,y]. Particularly, v has a domination range of [1,2] and w, [1,3]

Lemma 1b: Given the set of occurrence pairs associated with the suffixes that are reachable from an
(internal) node v, the ¢ and df of the substring that terminates at v are equal to the rank of the set of
occurrence pairs and the distinct x-dimension integers of the set.

Proof: The substring / that terminates at an internal node is a prefix of all the suffixes m; that are
reachable from the node; that is, each m; = I .n; Recall that #f of m;is equal to the frequency of m; in the
GST. Since each occurrence of m; will imply an occurrence of , #{I), is equal to summation of #{m) for
all i, that is equal to the rank of the set of occurrence pairs of all m;. Similarly, one can arrive that for

dfl).
We define an left-open edge, <w,v] of a GST as the edge that contains nodes between the upper node

(w) and lower node (v) of an edge, it is left-open because it does not include the upper node w, while it
does contain the lower node v.
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Lemma 1c: Each substring that terminates in a node between a left-open edge <w, v] has the same #'and

df.

Proof: Recall the property of a suffix tree: all substrings that terminate in an left-open edge of a GST,
except the lower node, terminate at an implicit node, which does not branch. Thus, the suffixes reachable
from these nodes are the same as the lower node. By Lemma 1b, it can be concluded that the #fand df of
the substrings, which terminate in the implicit nodes, are the same as those of the substring that
terminates at the lower node.

As demonstrated in Figure 2.2, the substring “ac” terminates at an internal node (coloured grey).
Given that the #f;df of “aca,” the lower node of the edge <w, v>, is 3;2, the #f;df of “ac,” is 3;2 as well. In
fact, since “ac” is a prefix of “aca,” it can be shown in each of the underlined occurrences of “aca,” there
is an occurrence of “ac,” which in consistent with Lemma 1c¢.

domination longest frequency other prefixes in
range substring count (tf;df) class
<11I> acacao 1;1 acaca,acac

~iew s

<3.3> ao 2;2 -

<1,3> a 5;2 -

<4.4> cacaocao 11 cacaca,cacac
<5.5> cacao 2;2 -

<4,5> caca 3;2 cac

<6,6> cao 2;2 -

<4,6> ca 5,2 c

<7,7> o 2;2 -

Figure 2.3. The 11 domination ranges, of left-open edges of GST(“cacacao”, “cacao”).
The highlighted <1,2> domination range has the #/,df counts of 3;2.

The domination range of a left-open edge in a GST is defined as a pair of suffix indices, [x, y], where
x is the minimum suffix index of those suffixes that the lower node of the left-open edge dominates,
while y is the maximum. For example, in Figure 2.3, it is demonstrated the domination range of the node
v is [1,2], this is because the subtree dominated by v has two leaf nodes whose suffix indices are 1 and 2,
respectively. It is noted that left-open edges associated with all leaf nodes has a trivial domination range
where the two suffix indices in the domination range are the same, such as [1,1], [2,2], ..., and [7,7].
Each domination range also has a representative, which is the longest substring that terminates at the
lower node of the edge. These are demonstrated in Figure 2.3.

Theorem 1: The classes of distinct domination ranges of a GST form a partition of all substrings of the
GST, where each substring in a domination range class has the same #fand df.

Proof: Proof of the latter part of Theorem 1 follows from Lemma 1c; the former part follows from the
fact that all substrings terminate in one and only one left-open edge that defines one domination range.

Corollary 1: There are O(N) of distinct domination ranges of a GST and it takes O(N) time to classify
all of the substrings according to its domination range.

Proof: The fact that there are O(N) number of left-open edges in a GST proves the first part of
Corollary 1. The second part follows by the fact that there exists O(N) algorithms to construct the GST
and once the construction of a GST is finished the edge and the partition based on domination range is
completed at the same with the edges constructed.
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The discussion in section 2.1 explain Property E can be achieved by defining domination range which
classify the substrings in a GST into O(N) classes in O(N) time.

2.2  Algorithm for counting ¢f and df

The counting of # and dfis performed at the end of each insertion step of a string zex#; in constructing
GST(text,, text, ..., text,). It performs a bottom-up traversal of the boundary path, the path followed by
the suffix links starting at the longest suffix of text;. It also keeps a stack, storing the parents of leaf
nodes in the boundary path and for checking which category the nodes of concern belong to: among pure
leaf nodes, pure internal nodes or leaf-cum-internal nodes.

update_t£f_df « procedure (GST(text;) {
For node; < node,, node,..., node,.; along the suffix; of text;, do {
while node; « pop_stack (j), do {
if node; is a leaf_cum_internal node, do
tf(node;) « tf(node;) + 1 + delta_tf(node;); df(node;) ++;
delta_tf(parent(node))) < delta_tf(parent(node;)) +1;
df(parent(node;)) ++;
push_stack (parent(node;), depth(parent(node;)));
if node; is an pure_internal, do
tnode;) — tf(node)) + delta_tf(node)); df(node;) ++;
delta_tf(parent(node;)) < delta_tf(parent(node;));
df(parent(node;)) ++;
push_stack(parent(node), j);
node;is apure_leaf node, do
fnode;) < tfnode;) + 1; dfinode;) «df(node;) + 1,
delta_tf(parent(node;)) ++; df(parent(node;)) ++;
push_stack (parent(rnode;), depth(parent(node,))); }

internal_or_leaf <« function(node, node;) {
if node;—node; do
return pure_internal;
else
return leaf_cum_internal; }

The above algorithm can be completed in O(N) + O(sizeof(stack)) time. Since the sizeof(stack) is
proportional to the number of internal nodes of a Suffix Tree, it is known to be O(V). Thus the above
algorithm to update ¢ and df will take O(N) time altogether.

23  Computation of MI and RIDF for multigram compound discovery

The proof of Property F for GST is achieved by considering the following formulae: given a substring w
= xyz, where x, xy, xyz are the longest substrings in their respective classes:

lzgwl
M(W)=10gz% RlDF(w)s—log‘#—l()w)-+log(l~e D

The above formulae can be computed in constant time, since each of the #’s involved in the formula
can be accessed from root by traversing one of the substrings: w, y, xy and yz. Since there are O(N)
classes of a substring like w, the computation of MI and RIDF is achieved in O(N) time. This concludes
the description of a proof to Property E.
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3 Multigram Compound Discovery Methods Based on Generalized Directed Acyclic Word Graph
—>

_Primary transition edge

Secondary transition edge
Suffix pointer

Figure 3.1: GDAWG for strings "cacao" and “cacacao’.

Figure 3.1 shows the GDAWG constructed using the strings “cacao” and “cacacao”. In this Section
3.1, we provide a detailed analysis of the algorithm that constructs a GDAWG using a set of input strings
S. In Section 3.2, we describe how we calculate term (¢f) and document frequencies (df) in linear time.
Term frequency is the number of times where a substring occurs in a corpus. Document frequency is the
number of unique strings where a substring occurs. They are required in multigram compound
discovery. However, in order to obtain a frequency counting algorithm that runs in linear time, we
update the ¢#f'and dfin each state as the GDAWG is being constructed. This update is based on recurring
prefixes of substrings in S. In addition, we store the last string identity (SID) in each state to denote the
last string with which the state’s df is updated. This is to aid the computation of df’s. We show the steps
for these updating in Section 3.1, together with the algorithm for constructing GDAWG.

3.1 Algorithm for Constructing GDAWG

We describe the differences between our algorithm and Algorithm A of Blumer et al. (1985) in the
following sub-sections.

3.1.1 Resetting Current Sink to Source

The current sink is reset to be the source of the GDAWG when a new string in S is about to be processed.
The new builddawg algorithm that takes S = {sy, sy, 52,..., Sp.1} as input is presented below.
builddawg ¢« functions(S){
Create a state named source and let currentsink be source.
for sj < S, S1, S290++5 Sy dO
Let currentsink be source;
For each symbol a of s; do currentsink < update(currentsink, a);
Return source.}
Figure 3.2 (a) to (b) gives a snapshot of resetting the currentsink to source.

3.1.2 Check for Existing Outgoing Edge and Update Frequencies

Assume the symbol currently being scanned is a. We need to check the current sink whether there is
already an outgoing edge labelled a before we create a state named new-sink. If an outgoing edge
labelled a has been created previously in the current sink, further processing would depend on whether
the edge is a secondary edge. In this case, the next state where this edge leads to must be split using the
same splitting function presented in Algorithm A of Blumer et al. (1985).

If an outgoing edge labelled a has been created previously in the current sink and it is a primary
edge, assume s’ is the next state of the primary edge, we increase ¢ of s’ by 1. This implies that the
current symbol has contributed one more # count to the strings represented by s’. For the df count in 5,
we increase it by 1 and update the SID of s’ to j. However, we do this only if SID of s’ is less than j. This
is because that the current string contributes to one more df count to those strings represented by s’.
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Recall that in the builddawg function, j is the index of the current string being processed. After this,
assume w is the prefix of s; processed thus far, we loop through the states containing the successively
shorter suffixes of w to increase the df’s by 1 and update the SID’s to j. This loop terminated when we
find a state with SID equals to j. The above processes can be seen in Figure 3.2 (b) to (c). Figure 3.2 (b)
shows the GDAWG after “cacao’ has been scanned. Figure 3.2 (c) shows the GDAWG after “caca” has
been added. Notice that #f’s of states 1 to 4 has been increased by 1 in Figure 3.2 (c). Their df’s are also
increased by 1 since their SID’s are all less than j = 1, which represents the second string. After that,
their SID’s are updated to be the current value j.

currentsink
source

7 /,
/7 /
/ / ! F; H \
; i i vy
/ i i \
[ fa Nk A\
. oL A\
\ Voo Lo
\ VAL AN b
., AN 1 \ ‘t \
H N, H \ [}
H s ‘ [} 1
i i [}
} b o
/ i | / P
/ i H ! i
; i b i P
i H i ] i
{ HE H ' i
[ i I
ik | b P
currentsin b \ furrgntsink
[ % ! [
! ) tf=1,df=1 I
SID=1 i/
/ i/
/ ,H' /

e,

.,

~~

cao, a0, 0}
tf=0,df=0,SID=(

(b)GDAWG,,,, (c)GDAWG,,,,

Figure 3.2: Process of constructing the GDAWG that represent all substrings in S = {cacao, caca}.

If an outgoing edge labelled a has not been created previously, we follow the steps in the update
function of Algorithm A (Blumer et al., 1985). After that, we initialize the ¢/ and SID of the newly
created newsink to 0 and j respectively. In addition, we increase the #f of the suffix state by 1 if the suffix
state is not the source, and the edge that is followed to reach the suffix state is primary, and there are
currently two suffix pointers pointing to it, one of which is added recently. As mentioned in the
beginning of this paragraph, the initial # count is implicitly represented in each state during the state
creation. This implicit count can be stored in the ¢f of the state either now or during the final update of
#f’s. We choose to make it explicit now so that for states with more than one child states, we simply sum
up the #f’s of the children plus any additional #f counts contributed by recurring strings during the final
update of ¢’s. This process is shown in Figure 3.3. Note that # of state 1 has been increased by one.
Following that, we set the SID of the suffix state to j if the SID of the suffix state is less than j. This
implies that the df count represented in newsink will contribute to one df count to the suffix state through
the suffix pointer (Figure 3.3 — state 5 will contribute one df count to state 1 during our algorithm
presented in Section 3.2). If the SID of the suffix state is j, and there are currently more than one suffix
pointers pointing to it, we decrease df of the suffix state by one. This implies that the df contributed by s;
has already been taken cared of by the other suffix pointer. This is shown in Error! Reference source
not found. (a) to (b). Note that SID of source in (a) is j = 0. In (b), df of source is decreased by one

because there are two suffix pointers that contribute to the df count of s;. One from state 1 and the other
one from state 2.
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The update algorithm that takes currentsink and a as inputs is presented below.

tf=0,df=1

(a)GDAWG,, (b)GDAWG,,
b

(a)GDAWG,, (a)GDAWG,,
b ba

Figure 3.3: Process of scanning ‘a’ after {aab, b}. In Figure 3.4: Process of adding s,=“b” to GDAWG,,;
state 1, ffis increased by 1 and SID is set to 1.

update « function(currentsink, a){
Let newsink be the state pointed to by an existing a-labelled outgoing edge of currentsink.
if newsink is defined, do
if the existing a-labelled outgoing edge of currentsink is a secondary edge, do
newsink « split(currentsink, newsink);
else (the existing a-labelled outgoing edge of currentsink is a primary edge)
#uminl: «~ #;lmdnk + 1;
lfsmummk <.i, do df;mvsink = dfmdnk + 1; SIDlmvshk (—'j;
Let currentstate be the state pointed to by the suffix pointer of newsink.
while SID ;yrentstare < J, dO
U currentstate = Ufeurrenssiate + 15 SID currentstate =j,
Let currentstate be the state pointed to by the suffix pointer of currentstate.
else
(As what is done in Algorithm A of Blumer et al. (1985) except the following.)
Ynewsink <= 0; SIDpysins < j (from sp);
When the currentstate has a primary outgoing edge labelled @ while traversing the
successively shorter suffixes, set edgetype to true;
if suffixstate is not source and edgetype is t rue, and there are currently 2 suffix pointers
pointing to it, do Hfugssae < Hruprestae + 1;
if SID g gicstare <Jj, 40 SIDgygiestare < J;
else if there are more than 1 suffix pointers pointing at the suffixstate, do
Reduce dfsugicsae by 1;
Return newsink;}

3.1.3 Update Document Frequencies during a Split

As in update function, we need to update the frequencies during a split operation. After the split
operation as presented in Algorithm A of Blumer et al. (1985) is performed, we increase df of suffix state
of new child state by one and set its SID to j if the SID is less than j, i.e.,
Let suffixstate be the suffix state of the newchildstate.
if SID g gaestare <Jj, do
Af sufpicstate = Af cugixstae + 1;
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SIDppicsiase < J;
During a split operation, the suffix pointer pointing from child state to the suffix state is changed so that
it points from new child state to the same suffix state. Thus, the above update signifies that the strings
represented by the new child state contribute to one more df count to the suffix state. This is shown in
Figure 3.4. Note that SIDs is 0 in (). So, dfsource is increased by 1 and SIDspur. is set to j = 1.

In addition, the new child state will be the suffix state of the child state. Thus, we increase the df
count at the new child state by one if the SID of the child state is less than j. This implies that, in addition
to the df count contributed by the child state, the current string s; contributes to one df count at the new
child state too, i.e.,

if SID pitastate <j’ do df hildstate =~ df pildstate T 1;
SID pevchitastate < J

This is shown in Figure 3.4 (b). Note that state 4 is the new suffix state of state 2 and dfgy.q is

increased by one from the initial value of zero.

3.1.4 Combinatorial Analysis of the Algorithm for Constructing GDAWG

The extra for loop in our builddawg function is simply used to loop through all the strings in S.
Thus, it does not create more complexity to the original DAWG construction algorithm. The only extra
loop is in our update function. It is used to update the SID’s of the successive suffix states of newsink
and increase their df’s by following the suffix link that begins from the newsink.

Our corpus for multigram compound discovery contains 146,844 strings and 5,863,591 symbols.
The minimum, average and maximum string lengths are 3, 39.93 and 138 symbols respectively. Due to
this, we think the extra loop will not increase the complexity of the algorithm. This is supported by our
experiment results where the shortest, average and longest suffix link following during the GDAWG
construction are 0, 5.39 and 24 respectively. In addition, the time grows linearly with our corpus size.

Thus, our algorithm to construct a GDAWG based on S is online in linear space and time, and the
resulting GDAWG allows the computation of FACTORIN(x, TEXT) in O(}x]) time.

3.2 Final Update of Term and Document Frequencies

After the processing described in Section 3.1, #’s in the GDAWG represent the counts contributed by
the recurring prefixes in the corpus and non-unique first symbols; and df’s represent the offsets that
should be added to the number suffix pointers pointing to it in order to compute the correct final df’s. To
compute the final #fand df’s, we do a depth-first traversal on the GDAWG. During the traversal, # and df
at the leave nodes are increased by one in order to count the initial occurrence of the strings implicitly
represented by these leave nodes. For non-leave nodes, the final ¢ and df are simply the addition of the
original counts and the ¢fand df contributed by the child states. In addition, for states with only one child,
we need to increase its 7 count by one in order to take care of the initial string occurrence that causes the
creation of the state.
The updateFreq function that takes in the source of the GDAWG is presented below.
updateFreq ¢« function(source of GDAWG){
if the state is a leave node, do

Increase #f of the state by 1;

Increase df of the state by 1;

Return #;

else (the state is not a leave node)
for each child of state, do
tf < tf + updateFreq(child);
df « df + 1,
if the state has only one child state, do #f < &+ 1;
Return #f}}
As shown above, the algorithm to perform the final update of #fand df’s is linear.
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3.3 Multigram Compound Discovery Based on GDAWG

As in DAWG, each state in the resulted GDAWG represents a class of substrings that are
end-equivalent. Since the number of resulted states is linear, i.e., N = |[TEXT| (Blumer et al., 1985), there
are at most 2V-1 classes of substrings in GDAWG. Since the GDAWG construction algorithm is linear,
the number of classes represented by GDAWG and the time to find the classes is linear. (In the
following, we use class and state interchangeably.) Thus, the two parameters used in our multigram
compound discovery, i.e., MI and RIDF (as shown in Section 2.3) for the longest substring in each class,
can be computed in linear time.

Here, yz represents the longest suffix of w. It’s either in the same class as w or in the class pointed to
by the suffix pointer of the class containing w. “xy” can be accessed by keeping a parent pointer during
the traversal of GDAWG. Thus, all required parameters for the above formula can be accessed in
constant time. We just need to traverse the entire GDAWG to compute the MI and RIDF of the longest
substring in each class.

4 Multigram Compound Discovery Methods based on Generalized Suffix Array

Suffix Array (SA) is an array of all N suffixes of a given corpus, sorted alphabetically. It was introduced
as a new and conceptually simple data structure for online string searching by Manber and Myers
(1990). SA allows computing the membership function, FACTORIN(x, text) in O(|x|+log|text|) time. SA
can be constructed in O(NlogN) time2. These results hold for GSA. The major advantage of GSA over
GST is space. The space requirements for GST grow with the alphabet size |2]: O(NV|3]) space. The
dependency on alphabet size could be a serious issue for many cases, e.g., some Asia languages, such as
Chinese, have a relatively large alphabet of more than 6,000 characters. So the advantages of Suffix
Arrays over Suffix Trees becomes much significant for larger alphabets.

Detailed techniques of using GSA to compute #f and df for all substrings in a corpus were given in
Yamamoto and Church (2001). The main idea is to group all N(N+1)/2 substrings into a manageable
number, i.e. up to 2N-1, of equivalence classes, and the substrings in a class all share the same #f and df.
In this way, the computation over substrings is reduced to a manageable computation over classes, that
is, O(NlogN) time and O(N) space. This implies Property D and E do not hold for GSA.

In Yamamoto and Church (2001), MI and RIDF were computed for the longest substring in each
non-trivial class (up to N-I). The time required is O(NlogN) as each of the terms in the formula will
require O(logN) time to access. This means GSA does not have Property F either.

5 Experiment Result

——GST
—&— GDAWG
i GSA

Relative Time

10 : » S AL

A

1 2 3 4 5 6 7 8 9 10

Dataset Size(500K Bytes)

Figure 5.1: GST/GDAWG/GST

2 Manber and Myers (1990) also gave a augmented algorithm that, regardless of the alphabet size, constructs Suffix Array in O(N) expected
time, albeit with lesser space efficiency. It also reported that Suffix Armrays use three to five times less space than Suffix Trees even in the case
of relatively small alphabet size (|2]=96) in practice.
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To evaluate the performance in a real world application, we run our algorithms together with the one
based on GSA over our Philippine address dataset, which consists of 6 million bytes data and 146,844
address records and has a small alphabet set (< 128) and record size (< 1K bytes). Figure 5.1 shows the
experiment result measured by Relative Time, which takes the processing time over unit test data (S00K
Bytes) as the time unit. Obviously, the time cost of our algorithms grow in linear with the data size, that
is, in O(N), which coincides with the theoretical analysis in Section 2 and 3.

6 Conclusion

This paper discusses the multigram compound discovery methods based on GST, GDAWG and GSA. A
set of properties (A to F) is defined to access the efficiency of the algorithms.
This paper proposes two new algorithms based on GST and GDAWG, and proves that they are able to
fulfil Property A to F (detailed comparisons with GSA are shown in Table 6.1). Thus, they are efficient
algorithms for multigram compound discovery.

An experiment based 6 million bytes of text demonstrate that our theoretical analysis is consistent
with the empirical results.

Property A Property B Property C Property D Property E Property E
Sizeof D | Timerequired | FACTORIN tfand df Classification | MI & RIDF
to construct D | (x, [TEXT)) into N classes

GST O(N) o) o(x o) O(N) O(N)

GDAWG ON) O(N) O(lx O(N) O(N) ON)
GSA O(N) O(NlogN) O(lx|+logN) O(NlogN) O(NlogN) O(NlogN)

Table 6.1: GST/GDAWG/GSA(Given the size of the set of strings |TEXT] is N)
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