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Abstract

This paper proposes a novel multilin-
gual multistage fine-tuning approach for
low-resource neural machine translation
(NMT), taking a challenging Japanese–
Russian pair for benchmarking. Al-
though there are many solutions for low-
resource scenarios, such as multilingual
NMT and back-translation, we have em-
pirically confirmed their limited success
when restricted to in-domain data. We
therefore propose to exploit out-of-domain
data through transfer learning, by us-
ing it to first train a multilingual NMT
model followed by multistage fine-tuning
on in-domain parallel and back-translated
pseudo-parallel data. Our approach, which
combines domain adaptation, multilin-
gualism, and back-translation, helps im-
prove the translation quality by more than
3.7 BLEU points, over a strong baseline,
for this extremely low-resource scenario.

1 Introduction

Neural machine translation (NMT) (Cho et al.,
2014; Sutskever et al., 2014; Bahdanau et al.,
2015) has enabled end-to-end training of a trans-
lation system without needing to deal with word
alignments, translation rules, and complicated de-
coding algorithms, which are the characteristics of
phrase-based statistical machine translation (PB-
SMT) (Koehn et al., 2007). Although NMT can
be significantly better than PBSMT in resource-
rich scenarios, PBSMT performs better in low-
resource scenarios (Koehn and Knowles, 2017).
c© 2019 The authors. This article is licensed under a Creative
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Only by exploiting cross-lingual transfer learn-
ing techniques (Firat et al., 2016; Zoph et al.,
2016; Kocmi and Bojar, 2018), can the NMT per-
formance approach PBSMT performance in low-
resource scenarios.

However, such methods usually require an NMT
model trained on a resource-rich language pair
like French↔English (parent), which is to be
fine-tuned for a low-resource language pair like
Uzbek↔English (child). On the other hand, multi-
lingual approaches (Johnson et al., 2017) propose
to train a single model to translate multiple lan-
guage pairs. However, these approaches are effec-
tive only when the parent target or source language
is relatively resource-rich like English (En). Fur-
thermore, the parents and children models should
be trained on similar domains; otherwise, one has
to take into account an additional problem of do-
main adaptation (Chu et al., 2017).

In this paper, we work on a linguisti-
cally distant and thus challenging language pair
Japanese↔Russian (Ja↔Ru) which has only 12k
lines of news domain parallel corpus and hence is
extremely resource-poor. Furthermore, the amount
of indirect in-domain parallel corpora, i.e., Ja↔En
and Ru↔En, are also small. As we demonstrate in
Section 4, this severely limits the performance of
prominent low-resource techniques, such as mul-
tilingual modeling, back-translation, and pivot-
based PBSMT. To remedy this, we propose a novel
multistage fine-tuning method for NMT that com-
bines multilingual modeling (Johnson et al., 2017)
and domain adaptation (Chu et al., 2017).

We have addressed two important research ques-
tions (RQs) in the context of extremely low-
resource machine translation (MT) and our explo-
rations have derived rational contributions (CTs)
as follows:
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RQ1. What kind of translation quality can we ob-
tain in an extremely low-resource scenario?

CT1. We have made extensive comparisons with
multiple architectures and MT paradigms to
show how difficult the problem is. We have
also explored the utility of back-translation
and show that it is ineffective given the poor
performance of base MT systems used to gen-
erate pseudo-parallel data. Our systematic
exploration shows that multilingualism is ex-
tremely useful for in-domain translation with
very limited corpora (see Section 4). This
type of exhaustive exploration has been miss-
ing from most existing works.

RQ2. What are the effective ways to exploit out-
of-domain data for extremely low-resource
in-domain translation?

CT2. Our proposal is to first train a multilin-
gual NMT model on out-of-domain Ja↔En
and Ru↔En data, then fine-tune it on in-
domain Ja↔En and Ru↔En data, and fur-
ther fine-tune it on Ja↔Ru data (see Sec-
tion 5). We show that this stage-wise fine-
tuning is crucial for high-quality translation.
We then show that the improved NMT mod-
els lead to pseudo-parallel data of better qual-
ity. This data can then be used to improve the
performance even further thereby enabling
the generation of better pseudo-parallel data.
By iteratively generating pseudo-parallel data
and fine-tuning the model on said data,
we can achieve the best performance for
Japanese↔Russian translation.

To the best of our knowledge, we are the first
to perform such an extensive evaluation of ex-
tremely low-resource MT problem and propose a
novel multilingual multistage fine-tuning approach
involving multilingual modeling and domain adap-
tation to address it.

2 Our Japanese–Russian Setting

In this paper, we deal with Ja↔Ru news trans-
lation. This language pair is very challenging
because the languages involved have completely
different writing system, phonology, morphology,
grammar, and syntax. Among various domains,
we experimented with translations in the news do-
main, considering the importance of sharing news
between different language speakers. Moreover,
news domain is one of the most challenging tasks,

Ru Ja En #sent.
Usage

test development
X X X 913 600 313
X X 173 - 173

X X 276 - 276
X X 0 - -
X 4 - -

X 287 - -
X 1 - -

Total 1,654 - -

Table 1: Manually aligned News Commentary data.

due to large presence of out-of-vocabulary (OOV)
tokens and long sentences.1 To establish and eval-
uate existing methods, we also involved English as
the third language. As direct parallel corpora are
scarce, involving a language such as English for
pivoting is quite common (Utiyama and Isahara,
2007).

There has been no clean held-out parallel data
for Ja↔Ru and Ja↔En news translation. There-
fore, we manually compiled development and test
sets using News Commentary data2 as a source.
Since the given Ja↔Ru and Ja↔En data share
many lines in the Japanese side, we first compiled
tri-text data. Then, from each line, correspond-
ing parts across languages were manually identi-
fied, and unaligned parts were split off into a new
line. Note that we have never merged two or more
lines. As a result, we obtained 1,654 lines of data
comprising trilingual, bilingual, and monolingual
segments (mainly sentences) as summarized in Ta-
ble 1. Finally, for the sake of comparability, we
randomly chose 600 trilingual sentences to create
a test set, and concatenated the rest of them and
bilingual sentences to form development sets.

Our manually aligned development and test sets
are publicly available.3

3 Related Work

Koehn and Knowles (2017) showed that NMT is
unable to handle low-resource language pairs as
opposed to PBSMT. Transfer learning approaches
(Firat et al., 2016; Zoph et al., 2016; Kocmi and
Bojar, 2018) work well when a large helping par-
allel corpus is available. This restricts one of the
source or the target languages to be English which,
in our case, is not possible. Approaches involving
bi-directional NMT modeling is shown to drasti-

1News domain translation is also the most competitive tasks
in WMT indicating its importance.
2http://opus.nlpl.eu/News-Commentary-v11.
php
3https://github.com/aizhanti/JaRuNC
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cally improve low-resource translation (Niu et al.,
2018). However, like most other, this work focuses
on translation from and into English.

Remaining options include (a) unsupervised MT
(Artetxe et al., 2018; Lample et al., 2018; Marie
and Fujita, 2018), (b) parallel sentence mining
from non-parallel or comparable corpora (Utiyama
and Isahara, 2003; Tillmann and Xu, 2009), (c)
generating pseudo-parallel data (Sennrich et al.,
2016), and (d) MT based on pivot languages
(Utiyama and Isahara, 2007). The linguistic dis-
tance between Japanese and Russian makes it ex-
tremely difficult to learn bilingual knowledge, such
as bilingual lexicons and bilingual word embed-
dings. Unsupervised MT is thus not promising
yet, due to its heavy reliance on accurate bilingual
word embeddings. Neither does parallel sentence
mining, due to the difficulty of obtaining accu-
rate bilingual lexicons. Pseudo-parallel data can be
used to augment existing parallel corpora for train-
ing, and previous work has reported that such data
generated by so-called back-translation can sub-
stantially improve the quality of NMT. However,
this approach requires base MT systems that can
generate somewhat accurate translations. It is thus
infeasible in our scenario, because we can obtain
only a weak system which is the consequence of
an extremely low-resource situation. MT based on
pivot languages requires large in-domain parallel
corpora involving the pivot languages. This tech-
nique is thus infeasible, because the in-domain par-
allel corpora for Ja↔En and Ru↔En pairs are also
extremely limited, whereas there are large parallel
corpora in other domains. Section 4 empirically
confirms the limit of these existing approaches.

Fortunately, there are two useful transfer learn-
ing solutions using NMT: (e) multilingual model-
ing to incorporate multiple language pairs into a
single model (Johnson et al., 2017) and (f) domain
adaptation to incorporate out-of-domain data (Chu
et al., 2017). In this paper, we explore a novel
method involving step-wise fine-tuning to combine
these two methods. By improving the translation
quality in this way, we can also increase the like-
lihood of pseudo-parallel data being useful to fur-
ther improve translation quality.

4 Limit of Using only In-domain Data

This section answers our first research question,
[RQ1], about the translation quality that we can
achieve using existing methods and in-domain par-

Lang.pair Partition #sent. #tokens #types

Ja↔Ru
train 12,356 341k / 229k 22k / 42k

development 486 16k / 11k 2.9k / 4.3k
test 600 22k / 15k 3.5k / 5.6k

Ja↔En
train 47,082 1.27M / 1.01M 48k / 55k

development 589 21k / 16k 3.5k / 3.8k
test 600 22k / 17k 3.5k / 3.8k

Ru↔En
train 82,072 1.61M / 1.83M 144k / 74k

development 313 7.8k / 8.4k 3.2k / 2.3k
test 600 15k / 17k 5.6k / 3.8k

Table 2: Statistics on our in-domain parallel data.

allel and monolingual data. We then use the
strongest model to conduct experiments on gener-
ating and utilizing back-translated pseudo-parallel
data for augmenting NMT. Our intention is to em-
pirically identify the most effective practices as
well as recognize the limitations of relying only
on in-domain parallel corpora.

4.1 Data

To train MT systems among the three languages,
i.e., Japanese, Russian, and English, we used all
the parallel data provided by Global Voices,4 more
specifically those available at OPUS.5 Table 2
summarizes the size of train/development/test
splits used in our experiments. The number of par-
allel sentences for Ja↔Ru is 12k, for Ja↔En is
47k, and for Ru↔En is 82k. Note that the three
corpora are not mutually exclusive: 9k out of 12k
sentences in the Ja↔Ru corpus were also included
in the other two parallel corpora, associated with
identical English translations. This puts a limit on
the positive impact that the helping corpora can
have on the translation quality.

Even when one focuses on low-resource lan-
guage pairs, we often have access to larger quan-
tities of in-domain monolingual data of each lan-
guage. Such monolingual data are useful to im-
prove quality of MT, for example, as the source of
pseudo-parallel data for augmenting training data
for NMT (Sennrich et al., 2016) and as the train-
ing data for large and smoothed language mod-
els for PBSMT (Koehn and Knowles, 2017). Ta-
ble 3 summarizes the statistics on our monolingual
corpora for several domains including the news
domain. Note that we removed from the Global
Voices monolingual corpora those sentences that
are already present in the parallel corpus.

4https://globalvoices.org/
5http://opus.nlpl.eu/GlobalVoices-v2015.
php
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Corpus Ja Ru En
Global Voices5 26k 24k 842k
Wikinews6 37k 243k -
News Crawl7 - 72M 194M
Yomiuri (2007–2011)8 19M - -
IWSLT9 411k 64k 66k
Tatoeba10 5k 58k 208k

Table 3: Number of lines in our monolingual data. Whereas
the first four are from the news corpora (in-domain), the last
two, i.e., “IWSLT” and “Tatoeba,” are from other domains.

We tokenized English and Russian sentences us-
ing tokenizer.perl of Moses (Koehn et al., 2007).11

To tokenize Japanese sentences, we used MeCab12

with the IPA dictionary. After tokenization, we
eliminated duplicated sentence pairs and sentences
with more than 100 tokens for all the languages.

4.2 MT Methods Examined

We began with evaluating standard MT paradigms,
i.e., PBSMT (Koehn et al., 2007) and NMT
(Sutskever et al., 2014). As for PBSMT, we
also examined two advanced methods: pivot-based
translation relying on a helping language (Utiyama
and Isahara, 2007) and induction of phrase tables
from monolingual data (Marie and Fujita, 2018).

As for NMT, we compared two types of
encoder-decoder architectures: attentional RNN-
based model (RNMT) (Bahdanau et al., 2015) and
the Transformer model (Vaswani et al., 2017). In
addition to standard uni-directional modeling, to
cope with the low-resource problem, we examined
two multi-directional models: bi-directional model
(Niu et al., 2018) and multi-to-multi (M2M) model
(Johnson et al., 2017).

After identifying the best model, we also exam-
ined the usefulness of a data augmentation method
based on back-translation (Sennrich et al., 2016).

PBSMT Systems

First, we built a PBSMT system for each of
the six translation directions. We obtained phrase

6https://dumps.wikimedia.org/
backup-index.html (20180501)
7http://www.statmt.org/wmt18/
translation-task.html
8https://www.yomiuri.co.jp/database/
glossary/
9http://www.cs.jhu.edu/˜kevinduh/a/
multitarget-tedtalks/
10http://opus.nlpl.eu/Tatoeba-v2.php
11https://github.com/moses-smt/
mosesdecoder
12http://taku910.github.io/mecab, version
0.996.

tables from parallel corpus using SyMGIZA++13

with the grow-diag-final heuristics for word
alignment, and Moses for phrase pair extraction.
Then, we trained a bi-directional MSD (mono-
tone, swap, and discontinuous) lexicalized reorder-
ing model. We also trained three 5-gram language
models, using KenLM14 on the following monolin-
gual data: (1) the target side of the parallel data, (2)
the concatenation of (1) and the monolingual data
from Global Voices, and (3) the concatenation of
(1) and all monolingual data in the news domain in
Table 3.

Subsequently, using English as the pivot lan-
guage, we examined the following three types of
pivot-based PBSMT systems (Utiyama and Isa-
hara, 2007; Cohn and Lapata, 2007) for each of
Ja→Ru and Ru→Ja.

Cascade: 2-step decoding using the source-to-
English and English-to-target systems.

Synthesize: Obtain a new phrase table from syn-
thetic parallel data generated by translating
English side of the target–English training
parallel data to the source language with the
English-to-source system.

Triangulate: Compile a new phrase table com-
bining those for the source-to-English and
English-to-target systems.

Among these three, triangulation is the most com-
putationally expensive method. Although we had
filtered the component phrase tables using the sta-
tistical significance pruning method (Johnson et
al., 2007), triangulation can generate an enormous
number of phrase pairs. To reduce the computa-
tional cost during decoding and the negative ef-
fects of potentially noisy phrase pairs, we retained
for each source phrase s only the k-best transla-
tions t according to the forward translation proba-
bility φ(t|s) calculated from the conditional prob-
abilities in the component models as defined in
Utiyama and Isahara (2007). For each of the re-
tained phrase pairs, we also calculated the back-
ward translation probability, φ(s|t), and lexical
translation probabilities, φlex (t|s) and φlex (s|t), in
the same manner as φ(t|s).

We also investigated the utility of recent ad-
vances in unsupervised MT. Even though we be-
gan with a publicly available implementation of

13https://github.com/emjotde/symgiza-pp
14https://github.com/kpu/kenlm
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ID System
Parallel data Total size of Vocabulary

Ja↔Ru Ja↔En Ru↔En training data size

(a1), (b1)
Ja→Ru or Ru→Ja 12k - - 12k 16k
Ja→En or En→Ja - 47k - 47k 16k
Ru→En or En→Ru - - 82k 82k 16k

(a2), (b2)
Ja→Ru and Ru→Ja 12k - - 24k 16k
Ja→En and En→Ja - 47k - 94k 16k
Ru→En and En→Ru - - 82k 164k 16k

(a3), (b3) M2M systems 12k→82k 47k→82k 82k 492k 32k

Table 4: Configuration of uni-, bi-directional, and M2M NMT baseline systems. Arrows in “Parallel data” columns indicate
the over-sampling of the parallel data to match the size of the largest parallel data.

unsupervised PBSMT (Lample et al., 2018),15 it
crashed due to unknown reasons. We therefore fol-
lowed another method described in Marie and Fu-
jita (2018). Instead of short n-grams (Artetxe et
al., 2018; Lample et al., 2018), we collected a set
of phrases in Japanese and Russian from respec-
tive monolingual data using the word2phrase
algorithm (Mikolov et al., 2013),16 as in Marie
and Fujita (2018). To reduce the complexity, we
used randomly selected 10M monolingual sen-
tences, and 300k most frequent phrases made of
words among the 300k most frequent words. For
each source phrase s, we selected 300-best tar-
get phrases t according to the translation prob-
ability as in Lample et al. (2018): p(t|s) =

exp(β cos(emb(t),emb(s))∑
t′ exp(β cos(emb(t′),emb(s)) , where emb(·) stands

for a bilingual embedding of a given phrase, ob-
tained through averaging bilingual embeddings of
constituent words learned from the two mono-
lingual data using fastText17 and vecmap.18

For each of the retained phrase pair, p(s|t) was
computed analogously. We also computed lexical
translation probabilities relying on those learned
from the given small parallel corpus.

Up to four phrase tables were jointly ex-
ploited by the multiple decoding path ability of
Moses. Weights for the features were tuned us-
ing KB-MIRA (Cherry and Foster, 2012) on the
development set; we took the best weights after 15
iterations. Two hyper-parameters, namely, k for
the number of pivot-based phrase pairs per source
phrase and d for distortion limit, were determined
by a grid search on k ∈ {10, 20, 40, 60, 80, 100}
and d ∈ {8, 10, 12, 14, 16, 18, 20}. In contrast, we
used predetermined hyper-parameters for phrase
table induction from monolingual data, following

15https://github.com/facebookresearch/
UnsupervisedMT
16https://code.google.com/archive/p/
word2vec/
17https://fasttext.cc/
18https://github.com/artetxem/vecmap

the convention: 200 for the dimension of word and
phrase embeddings and β = 30.

NMT Systems

We used the open-source implementation of
the RNMT and the Transformer models in
tensor2tensor.19 A uni-directional model for
each of the six translation directions was trained on
the corresponding parallel corpus. Bi-directional
and M2M models were realized by adding an ar-
tificial token that specifies the target language to
the beginning of each source sentence and shuf-
fling the entire training data (Johnson et al., 2017).

Table 4 contains some specific hyper-
parameters20 for our baseline NMT models.
The hyper-parameters not mentioned in this table
used the default values in tensor2tensor.
For M2M systems, we over-sampled Ja→Ru and
Ja→En training data so that their sizes match the
largest Ru→En data. To reduce the number of
unknown words, we used tensor2tensor’s
internal sub-word segmentation mechanism.
Since we work in a low-resource setting, we used
shared sub-word vocabularies of size 16k for the
uni- and bi-directional models and 32k for the
M2M models. The number of training iterations
was determined by early-stopping: we evaluated
our models on the development set every 1,000
updates, and stopped training if BLEU score
for the development set was not improved for
10,000 updates (10 check-points). Note that the
development set was created by concatenating
those for the individual translation directions
without any over-sampling.

Having trained the models, we averaged the last
10 check-points and decoded the test sets with a
beam size of 4 and a length penalty which was

19https://github.com/tensorflow/
tensor2tensor, version 1.6.6.
20We compared two mini-batch sizes, 1024 and 6144 tokens,
and found that 6144 and 1024 worked better for RNMT and
Transformer, respectively.
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ID System Ja→Ru Ru→Ja Ja→En En→Ja Ru→En En→Ru
(a1) Uni-directional RNMT 0.58 1.86 2.41 7.83 18.42 13.64
(a2) Bi-directional RNMT 0.65 1.61 6.18 8.81 19.60 15.11
(a3) M2M RNMT 1.51 4.29 5.15 7.55 14.24 10.86
(b1) Uni-directional Transformer 0.70 1.96 4.36 7.97 20.70 16.24
(b2) Bi-directional Transformer 0.19 0.87 6.48 10.63 22.25 16.03
(b3) M2M Transformer 3.72 8.35 10.24 12.43 22.10 16.92
(c1) Uni-directional supervised PBSMT 2.02 4.45 8.19 10.27 22.37 16.52

Table 5: BLEU scores of baseline systems. Bold indicates the best BLEU score for each translation direction.

tuned by a linear search on the BLEU score for
the development set.

Similarly to PBSMT, we also evaluated “Cas-
cade” and “Synthesize” methods with uni-
directional NMT models.

4.3 Results

We evaluated MT models using case-sensitive and
tokenized BLEU (Papineni et al., 2002) on test
sets, using Moses’s multi-bleu.perl. Statistical
significance (p < 0.05) on the difference of
BLEU scores was tested by Moses’s bootstrap-
hypothesis-difference-significance.pl.

Tables 5 and 6 show BLEU scores of all the
models, except the NMT systems augmented with
back-translations. Whereas some models achieved
reasonable BLEU scores for Ja↔En and Ru↔En
translation, all the results for Ja↔Ru, which is our
main concern, were abysmal.

Among the NMT models, Transformer models
(b∗) were proven to be better than RNMT models
(a∗). RNMT models could not even outperform the
uni-directional PBSMT models (c1). M2M mod-
els (a3) and (b3) outperformed their corresponding
uni- and bi-directional models in most cases. It is
worth noting that in this extremely low-resource
scenario, BLEU scores of the M2M RNMT model
for the largest language pair, i.e., Ru↔En, were
lower than those of the uni- and bi-directional
RNMT models as in Johnson et al. (2017). In con-
trast, with the M2M Transformer model, Ru↔En
also benefited from multilingualism.

Standard PBSMT models (c1) achieved higher
BLEU scores than uni-directional NMT mod-
els (a1) and (b1), as reported by Koehn and
Knowles (2017), whereas they underperform the
M2M Transformer NMT model (b3). As shown
in Table 6, pivot-based PBSMT systems always
achieved higher BLEU scores than (c1). The
best model with three phrase tables, labeled “Syn-
thesize / Triangulate / Gold,” brought visible
BLEU gains with substantial reduction of OOV
tokens (3047→1180 for Ja→Ru, 4463→1812 for

System Ja→Ru Ru→Ja
PBSMT: Cascade 3.65 7.62
PBSMT: Synthesize 3.37 6.72
PBSMT: Synthesize / Gold 2.94 6.95
PBSMT: Synthesize + Gold 3.07 6.62
PBSMT: Triangulate 3.75 7.02
PBSMT: Triangulate / Gold 3.93 7.02
PBSMT: Synthesize / Triangulate / Gold 4.02 7.07
PBSMT: Induced 0.37 0.65
PBSMT: Induced / Synthesize / Triangulate / Gold 2.85 6.86
RNMT: Cascade 1.19 6.73
RNMT: Synthesize 1.82 3.02
RNMT: Synthesize + Gold 1.62 3.24
Transformer NMT: Cascade 2.41 6.84
Transformer NMT: Synthesize 1.78 5.43
Transformer NMT: Synthesize + Gold 2.13 5.06

Table 6: BLEU scores of pivot-based systems. “Gold” refers
to the phrase table trained on the parallel data. Bold indicates
the BLEU score higher than the best one in Table 5. “/” in-
dicates the use of separately trained multiple phrase tables,
whereas so does “+” training on the mixture of parallel data.

Ru→Ja). However, further extension with phrase
tables induced from monolingual data did not push
the limit, despite their high coverage; only 336 and
677 OOV tokens were left for the two translation
directions, respectively. This is due to the poor
quality of the bilingual word embeddings used to
extract the phrase table, as envisaged in Section 3.

None of pivot-based approaches with uni-
directional NMT models could even remotely rival
the M2M Transformer NMT model (b3).

4.4 Augmentation with Back-translation

Given that the M2M Transformer NMT model (b3)
achieved best results for most of the translation di-
rections and competitive results for the rest, we
further explored it through back-translation.

We examined the utility of pseudo-parallel data
for all the six translation directions, unlike the
work of Lakew et al. (2017) and Lakew et al.
(2018), which concentrate only on the zero-shot
language pair, and the work of Niu et al. (2018),
which compares only uni- or bi-directional mod-
els. We investigated whether each translation di-
rection in M2M models will benefit from pseudo-
parallel data and if so, what kind of improvement
takes place.

Proceedings of MT Summit XVII, volume 1 Dublin, Aug. 19-23, 2019 | p. 133



ID System
Parallel data Total size of

Pseudo Ja↔Ru Ja↔En Ru↔En training data

#1–#10

Ja∗→Ru and/or Ru∗→Ja 12k→82k 12k→82k 47k→82k×2 82k×2 984k
Ja∗→En and/or En∗→Ja 47k→82k 12k→82k×2 47k→82k 82k×2 984k
Ru∗→En and/or En∗→Ru 82k 12k→82k×2 47k→82k×2 82k 984k
All All of the above 12k→82k 47k→82k 82k 984k

Table 7: Over-sampling criteria for pseudo-parallel data generated by back-translation.

ID
Pseudo-parallel data involved BLEU score

Ja∗→Ru Ru∗→Ja Ja∗→En En∗→Ja Ru∗→En En∗→Ru Ja→Ru Ru→Ja Ja→En En→Ja Ru→En En→Ru
(b3) - - - - - - 3.72 8.35 10.24 12.43 22.10 16.92
#1 X - - - - - •4.59 8.63 10.64 12.94 22.21 17.30
#2 - X - - - - 3.74 •8.85 10.13 13.05 22.48 17.20
#3 X X - - - - •4.56 •9.09 10.57 •13.23 22.48 •17.89
#4 - - X - - - 3.71 8.05 •11.00 12.66 22.17 16.76
#5 - - - X - - 3.62 8.10 9.92 •14.06 21.66 16.68
#6 - - X X - - 3.61 7.94 •11.51 •14.38 22.22 16.80
#7 - - - - X - 3.80 8.37 10.67 13.00 22.51 •17.73
#8 - - - - - X 3.77 8.04 10.52 12.43 •22.85 17.13
#9 - - - - X X 3.37 8.03 10.19 12.79 22.77 17.26
#10 X X X X X X •4.43 •9.38 •12.06 •14.43 •23.09 17.30

Table 8: BLEU scores of M2M Transformer NMT systems trained on the mixture of given parallel corpus and pseudo-parallel
data generated by back-translation using (b3). Six “X∗→Y” columns show whether the pseudo-parallel data for each translation
direction is involved. Bold indicates the scores higher than (b3) and “•” indicates statistical significance of the improvement.

First, we selected sentences to be back-
translated from in-domain monolingual data (Ta-
ble 3), relying on the score proposed by Moore and
Lewis (2010) via the following procedure.

1. For each language, train two 4-gram language
models, using KenLM: an in-domain one on
all the Global Voices data, i.e., both parallel
and monolingual data, and a general-domain
one on the concatenation of Global Voices,
IWSLT, and Tatoeba data.

2. For each language, discard sentences contain-
ing OOVs according to the in-domain lan-
guage model.

3. For each translation direction, select the T -
best monolingual sentences in the news do-
main, according to the difference between
cross-entropy scores given by the in-domain
and general-domain language models.

Whereas Niu et al. (2018) exploited monolin-
gual data much larger than parallel data, we main-
tained a 1:1 ratio between them (Johnson et al.,
2017), setting T to the number of lines of paral-
lel data of given language pair.

Selected monolingual sentences were then
translated using the M2M Transformer NMT
model (b3) to compose pseudo-parallel data. Then,
the pseudo-parallel data were enlarged by over-
sampling as summarized in Table 7. Finally, new
NMT models were trained on the concatenation of
the original parallel and pseudo-parallel data from

scratch in the same manner as the previous NMT
models with the same hyper-parameters.

Table 8 shows the BLEU scores achieved
by several reasonable combinations of six-way
pseudo-parallel data. We observed that the use of
all six-way pseudo-parallel data (#10) significantly
improved the base model for all the translation di-
rections, except En→Ru. A translation direction
often benefited when the pseudo-parallel data for
that specific direction was used.

4.5 Summary

We have evaluated an extensive variation of MT
models21 that rely only on in-domain parallel and
monolingual data. However, the resulting BLEU
scores for Ja→Ru and Ru→Ja tasks do not exceed
10 BLEU points, implying the inherent limitation
of the in-domain data as well as the difficulty of
these translation directions.

5 Exploiting Large Out-of-Domain Data
Involving a Helping Language

The limitation of relying only on in-domain data
demonstrated in Section 4 motivates us to explore

21Other conceivable options include transfer learning using
parallel data between English and one of Japanese and Rus-
sian as either source or target language, such as pre-training
an En→Ru model and fine-tuning it for Ja→Ru. Our M2M
models conceptually subsume them, even though they do not
explicitly divide the two steps during training. On the other
hand, our method proposed in Section 5 explicitly conducts
transfer learning for domain adaptation followed by addi-
tional transfer learning across different languages.
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Domain \ language pair Direct One-side shared
in-domain A, X B, X

out-of-domain C, × D, X

Table 9: Classification of parallel data.

other types of parallel data. As raised in our sec-
ond research question, [RQ2], we considered the
effective ways to exploit out-of-domain data.

According to language pair and domain, parallel
data can be classified into four categories in Ta-
ble 9. Among all the categories, out-of-domain
data for the language pair of interest have been ex-
ploited in the domain adaptation scenarios (C→A)
(Chu et al., 2017). However, for Ja↔Ru, no
out-of-domain data is available. To exploit out-
of-domain parallel data for Ja↔En and Ru↔En
pairs instead, we propose a multistage fine-tuning
method, which combines two types of transfer
learning, i.e., domain adaptation for Ja↔En and
Ru↔En (D→B) and multilingual transfer (B→A),
relying on the M2M model examined in Section 4.
We also examined the utility of fine-tuning for iter-
atively generating and using pseudo-parallel data.

5.1 Multistage Fine-tuning

Simply using NMT systems trained on out-of-
domain data for in-domain translation is known
to perform badly. In order to effectively use
large-scale out-of-domain data for our extremely
low-resource task, we propose to perform domain
adaptation through either (a) conventional fine-
tuning, where an NMT system trained on out-of-
domain data is fine-tuned only on in-domain data,
or (b) mixed fine-tuning (Chu et al., 2017), where
pre-trained out-of-domain NMT system is fine-
tuned using a mixture of in-domain and out-of-
domain data. The same options are available for
transferring from Ja↔En and Ru↔En to Ja↔Ru.

We inevitably involve two types of transfer
learning, i.e., domain adaptation for Ja↔En and
Ru↔En and multilingual transfer for Ja↔Ru pair.
Among several conceivable options for managing
these two problems, we examined the following
multistage fine-tuning.

Stage 0. Out-of-domain pre-training: Pre-train
a multilingual model only on the Ja↔En
and Ru↔En out-of-domain parallel data
(I), where the vocabulary of the model is
determined on the basis of the in-domain
parallel data in the same manner as the M2M
NMT models examined in Section 4.

Lang.pair Corpus #sent. #tokens #types
Ja↔En ASPEC 1,500,000 42.3M / 34.6M 234k / 1.02M

Ru↔En
UN 2,647,243 90.5M / 92.8M 757k / 593k

Yandex 320,325 8.51M / 9.26M 617k / 407k

Table 10: Statistics on our out-of-domain parallel data.

Stage 1. Fine-tuning for domain adaptation:
Fine-tune the pre-trained model (I) on the
in-domain Ja↔En and Ru↔En parallel
data (fine-tuning, II) or on the mixture of
in-domain and out-of-domain Ja↔En and
Ru↔En parallel data (mixed fine-tuning, III).

Stage 2. Fine-tuning for Ja↔Ru pair: Further
fine-tune the models (each of II and III) for
Ja↔Ru on in-domain parallel data for this
language pair only (fine-tuning, IV and VI)
or on all the in-domain parallel data (mixed
fine-tuning, V and VII).

We chose this way due to the following two rea-
sons. First, we need to take a balance between sev-
eral different parallel corpora sizes. The other rea-
son is division of labor; we assume that solving
each sub-problem one by one should enable grad-
ual shift of parameters.

5.2 Data Selection

As an additional large-scale out-of-domain paral-
lel data for Ja↔En, we used the cleanest 1.5M
sentences from the Asian Scientific Paper Excerpt
Corpus (ASPEC) (Nakazawa et al., 2016).22 As
for Ru↔En, we used the UN and Yandex cor-
pora released for the WMT 2018 News Transla-
tion Task.23 We retained Ru↔En sentence pairs
that contain at least one OOV token in both sides,
according to the in-domain language model trained
in Section 4.4. Table 10 summarizes the statistics
on the remaining out-of-domain parallel data.

5.3 Results

Table 11 shows the results of our multistage fine-
tuning, where the IDs of each row refer to those
described in Section 5.1. First of all, the final mod-
els of our multistage fine-tuning, i.e., V and VII,
achieved significantly higher BLEU scores than
(b3) in Table 5, a weak baseline without using any
monolingual data, and #10 in Table 8, a strong
baseline established with monolingual data.

22http://lotus.kuee.kyoto-u.ac.jp/ASPEC/
23http://www.statmt.org/wmt18/
translation-task.html
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ID Initialized
Out-of-domain data In-domain data BLEU score
Ja↔En Ru↔En Ja↔Ru Ja↔En Ru↔En Ja→Ru Ru→Ja Ja→En En→Ja Ru→En En→Ru

(b3) - - - X X X 3.72 8.35 10.24 12.43 22.10 16.92
I - X X - - - 0.00 0.15 4.59 4.15 •25.22 •20.37
II I - - - X X 0.20 0.70 •14.10 •17.80 •28.23 •24.35
III I X X - X X 0.23 1.07 •13.31 •17.74 •28.73 •25.22
IV II - - X - - •5.44 •10.67 0.12 3.97 0.11 3.66
V II - - X X X •6.90 •11.99 •14.34 •16.93 •27.50 •23.17
VI III - - X - - •5.91 •10.83 0.26 2.18 0.18 1.10
VII III - - X X X •7.49 •12.10 •14.63 •17.51 •28.51 •24.60
I’ - X X X X X •5.31 •10.73 •14.41 •16.34 •27.46 •23.21
II’ I - - X X X •6.30 •11.64 •14.29 •16.83 •27.53 •23.00
III’ I X X X X X •7.53 •12.33 •14.19 •16.77 •27.94 •23.97

Table 11: BLEU scores obtained through multistage fine-tuning. “Initialized” column indicates the model used for initializing
parameters that are fine-tuned on the data indicated by X. Bold indicates the best BLEU score for each translation direction.
“•” indicates statistical significance of the improvement over (b3).

The performance of the initial model (I) depends
on the language pair. For Ja↔Ru pair, it can-
not achieve minimum level of quality since the
model has never seen parallel data for this pair.
The performance on Ja↔En pair was much lower
than the two baseline models, reflecting the cru-
cial mismatch between training and testing do-
mains. In contrast, Ru↔En pair benefited the most
and achieved surprisingly high BLEU scores. The
reason might be due to the proximity of out-of-
domain training data and in-domain test data.

The first fine-tuning stage significantly pushed
up the translation quality for Ja↔En and Ru↔En
pairs, in both cases with fine-tuning (II) and mixed
fine-tuning (III). At this stage, both models per-
formed only poorly for Ja↔Ru pair as they have
not yet seen Ja↔Ru parallel data. Either model
had a consistent advantage to the other.

When these models were further fine-tuned only
on the in-domain Ja↔Ru parallel data (IV and VI),
we obtained translations of better quality than the
two baselines for Ja↔Ru pair. However, as a re-
sult of complete ignorance of Ja↔En and Ru↔En
pairs, the models only produced translations of
poor quality for these language pairs. In contrast,
mixed fine-tuning for the second fine-tuning stage
(V and VII) resulted in consistently better mod-
els than conventional fine-tuning (IV and VI), ir-
respective of the choice at the first stage, thanks
to the gradual shift of parameters realized by in-
domain Ja↔En and Ru↔En parallel data. Un-
fortunately, the translation quality for Ja↔En and
Ru↔En pairs sometimes degraded from II and III.
Nevertheless, the BLEU scores still retain the large
margin against two baselines.

The last three rows in Table 11 present BLEU
scores obtained by the methods with fewer fine-
tuning steps. The most naive model I’, trained

on the balanced mixture of whole five types of
corpora from scratch, and the model II’, obtained
through a single-step conventional fine-tuning of
I on all the in-domain data, achieved only BLEU
scores consistently worse than VII. In contrast,
when we merged our two fine-tuning steps into a
single mixed fine-tuning on I, we obtained a model
III’ which is better for the Ja↔Ru pair than VII.
Nevertheless, they are still comparable to those of
VII and the BLEU scores for the other two lan-
guage pairs are much lower than VII. As such, we
conclude that our multistage fine-tuning leads to a
more robust in-domain multilingual model.

5.4 Further Augmentation with
Back-translation

Having obtained a better model, we examined
again the utility of back-translation. More pre-
cisely, we investigated (a) whether the pseudo-
parallel data generated by an improved NMT
model leads to a further improvement, and (b)
whether one more stage of fine-tuning on the mix-
ture of original parallel and pseudo-parallel data
will result in a model better than training a new
model from scratch as examined in Section 4.4.

Given an NMT model, we first generated six-
way pseudo-parallel data by translating monolin-
gual data. For the sake of comparability, we used
the identical monolingual sentences sampled in
Section 4.4. Then, we further fine-tuned the given
model on the mixture of the generated pseudo-
parallel data and the original parallel data, fol-
lowing the same over-sampling procedure in Sec-
tion 4.4. We repeated these steps five times.

Table 12 shows the results. “new #10” in the
second row indicates an M2M Transformer model
trained from scratch on the mixture of six-way
pseudo-parallel data generated by VII and the orig-
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No Initialized BT
BLEU score

Ja→Ru Ru→Ja Ja→En En→Ja Ru→En En→Ru
#10 - (b3) 4.43 9.38 12.06 14.43 23.09 17.30

new #10 - VII •6.55 •11.36 •13.77 •15.59 •24.91 •20.55
VIII VII VII •7.83 •12.21 •15.06 •17.19 •28.49 •23.96
IX VIII VIII •8.03 •12.55 •15.07 •17.80 •28.16 •24.27
X IX IX •7.76 •12.59 •15.08 •18.12 •28.18 •24.67
XI X X •7.85 •12.97 •15.26 •17.83 •28.49 •24.36
XII XI XI •8.16 •13.09 •14.96 •17.74 •28.45 •24.35

Table 12: BLEU scores achieved through fine-tuning on the mixture of the original parallel data and six-way pseudo-parallel
data. “Initialized” column indicates the model used for initializing parameters and so does “BT” column the model used to
generate pseudo-parallel data. “•” indicates statistical significance of the improvement over #10.

Investigation step Ja→Ru Ru→Ja
Uni-directional Transformer: (b1) in Table 5 0.70 1.96
M2M Transformer: (b3) in Table 5 3.72 8.35
+ six-way pseudo-parallel data: #10 in Table 8 4.43 9.38
M2M multistage fine-tuning: VII in Table 11 7.49 12.10
+ six-way pseudo-parallel data: XII in Table 12 8.16 13.09

Table 13: Summary of our investigation: BLEU scores of the
best NMT systems at each step.

inal parallel data. It achieved higher BLEU scores
than #10 in Table 8 thanks to the pseudo-parallel
data of better quality, but underperformed the base
NMT model VII. In contrast, our fine-tuned model
VIII successfully surpassed VII, and one more it-
eration (IX) further improved BLEU scores for all
translation directions, except Ru→En. Although
further iterations did not necessarily gain BLEU
scores, we came to a much higher plateau com-
pared to the results in Section 4.

6 Conclusion

In this paper, we challenged the difficult task of
Ja↔Ru news domain translation in an extremely
low-resource setting. We empirically confirmed
the limited success of well-established solutions
when restricted to in-domain data. Then, to incor-
porate out-of-domain data, we proposed a multilin-
gual multistage fine-tuning approach and observed
that it substantially improves Ja↔Ru translation
by over 3.7 BLEU points compared to a strong
baseline, as summarized in Table 13. This paper
contains an empirical comparison of several exist-
ing approaches and hence we hope that our paper
can act as a guideline to researchers attempting to
tackle extremely low-resource translation.

In the future, we plan to confirm further fine-
tuning for each of specific translation directions.
We will also explore the way to exploit out-
of-domain pseudo-parallel data, better domain-
adaptation approaches, and additional challenging
language pairs.
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