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Abstract

Despite recent advances in the application of
deep neural networks to various kinds of med-
ical data, extracting information from unstruc-
tured textual sources remains a challenging
task. The challenges of training and interpret-
ing document classification models are ampli-
fied when dealing with small and highly tech-
nical datasets, as are common in the clinical
domain. Using a dataset of de-identified clini-
cal letters gathered at a memory clinic, we con-
struct several recurrent neural network mod-
els for letter classification, and evaluate them
on their ability to build meaningful represen-
tations of the documents and predict patients’
diagnoses. Additionally, we probe sentence
embedding models in order to build a human-
interpretable representation of the neural net-
work’s features, using a simple and intuitive
technique based on perturbative approaches to
sentence importance. In addition to showing
which sentences in a document are most in-
formative about the patient’s condition, this
method reveals the types of sentences that lead
the model to make incorrect diagnoses. Fur-
thermore, we identify clusters of sentences in
the embedding space that correlate strongly
with importance scores for each clinical diag-
nosis class.

1 Introduction

While the majority of clinical data is made up
of structured information (Jee and Kim, 2013),
which can often be readily integrated into data
models for research, there is a significant amount
of semi-structured and unstructured data which
is increasingly being targeted by machine learn-
ing practitioners for analysis. As a general rule,
this unstructured data is more difficult to analyse
due to an absence of a standardised data model
(Ann Alexander and Wang, 2018). Unstructured
clinical data includes a variety of media, such
as video, audio, image and text-based data, with
the majority of such data being made up of text

and images. Recently, there has been a series of
breakthroughs in the application of machine learn-
ing techniques for medical imaging data in or-
der to achieve expert-level performance on diag-
nosis tasks (Rajpurkar et al., 2017). However, ma-
chine learning models using semi-structured and
unstructured textual data from the clinical domain
have received less attention and to date have not
seen the same degree of successful application.
Examples of unstructured medical data featuring
“free text” include discharge summaries, nursing
reports and progress notes. Historically, one of
the challenges of applying natural language pro-
cessing (NLP) methods to clinical data has been
the often limited amount of data available, which
has traditionally necessitated a reliance on manual
feature engineering and relatively shallow textual
features (Shickel et al., 2018).

Taking a novel dataset of labelled clinical letters
compiled at a memory clinic as the target data do-
main, we build state-of-the-art deep learning mod-
els for the task of clinical text classification, and
evaluate them on their ability to predict a clin-
ician’s diagnosis of the patient. However, deep
learning models generally require very large train-
ing datasets. Our approach to the problem there-
fore incorporates transfer learning, and we make
use of embedding data from pre-trained models
trained on large corpora. In order to investigate
the relative usefulness of word-level and sentence-
level information, we train and evaluate several
models, including a ULMFiT model (Howard
and Ruder, 2018) and two long short-term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
models: one trained on word embedding repre-
sentations of the documents and one trained on
sentence embedding representations (Basile et al.,
2012).

An infamous problem of deep neural networks
is that they are “black boxes”, with the details
of how they represent and process information
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being uninterpretable to humans. To shed light
on how a recurrent neural network models clini-
cal documents in order to correctly predict a pa-
tient’s diagnosis, we investigate two complemen-
tary approaches to model interpretation. Firstly,
we develop a simple measure of sentence impor-
tance and demonstrate its effectiveness in inter-
preting a complex LSTM model’s decision mak-
ing process. Secondly, we discover clusters in the
high-dimensional space of the sentence embed-
ding model and test their correlation with feature
importance scores for a given diagnosis class. This
analysis yields insights into a model’s representa-
tion of the clinical notes, allowing us to automat-
ically extract clusters of sentences that are most
relevant to the model’s predictions.

2 Related Work

Document classification is a well-researched task
in NLP that has been tackled using a wide vari-
ety of machine learning models, such as support-
vector machines (SVMs) (Manevitz and Yousef,
2001), convolutional neural networks (CNNs)
(Conneau et al., 2016) and recurrent neural net-
works (RNNs) (Yogatama et al., 2017). In the
clinical domain, document classification models
have been used in diverse tasks such as predicting
cancer stage information in clinical records (Yim
et al., 2017), extracting patient smoker-status from
health records (Wang et al., 2019) and classifying
radiology reports by their ICD-9CM code (Garla
and Brandt, 2013). The problem of categorising
clinical free text documents is closely related to
several subtasks in the area of Electronic Health
Record (EHR) analysis, including information ex-
traction and representation learning. Information
extraction is an umbrella term that covers diverse
subtasks such as expanding abbreviations using
contextual information, and the automatic anno-
tation of temporal events (e.g. mapping from in-
puts such as “The patient was given stress dose
steroids prior to his surgery” to output “[stress
dose steroids] BEFORE [his surgery]” (Sun et al.,
2013). Other NLP problems in this field that are
relevant to free text analysis are outcome predic-
tion and de-identification.

There are many ways to construct a represen-
tation of the input data that can be provided to
a document classification model. A popular al-
ternative to older approaches to text representa-
tions, such as bag-of-words (BoW), is to em-

Class # doc. # sent. # sent. (masked)
D 32 1420 1225
M 30 1140 985
N 44 1767 1547

Table 1: Number of documents and sentences in the
clinical notes dataset. D: Dementia, M: MCI, N: Non-
impaired.

bed the input tokens in a high-dimensional vec-
tor space, resulting in each word being mapped
to a list of real-valued numbers (a “word embed-
ding”). One simple method of extracting word em-
beddings involves concatenating the hidden layer
activations observed in a trained language model
after processing all words up to the target word.
As language models automatically learn rich se-
mantic and syntactic features of words, these em-
beddings can provide valuable input features for
downstream information extraction tasks. While
the dimensions in the embedding space can cor-
respond to interpretable features, this is not gen-
erally the case. However, a major motivation for
using word embeddings is the ability to re-use pre-
trained embeddings, essentially resulting in a form
of transfer learning (Pan et al., 2010). In this study
we use 300-dimensional fastText word embed-
dings (Bojanowski et al., 2017) which were pre-
trained on the Common Crawl dataset using the
skipgram schema (Mikolov et al., 2013), which in-
volves predicting a target word based on nearby
words.

Similar to word embeddings, sentence embed-
dings are high-dimensional vectors that can rep-
resent features of a sequence of words. Our use
of sentence embeddings is motivated by the fact
that, for small amounts of data, it may be more
difficult for a recurrent neural network to capture
diagnosis-relevant dependencies over many word
vectors than it is to classify a document made up of
a smaller number of semantically richer sentence
vectors. In this study we use 4096-dimensional
InferSent embeddings (Conneau et al., 2017) that
were extracted from a model pre-trained on the
Common Crawl dataset.

After training recurrent models using these
state-of-art NLP techniques to predict the diagno-
sis class associated with each document, we ex-
plore ways of visualizing and understanding how
the models incorporate these vectors in order to
make accurate predictions.
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Model Accuracy Precision Recall F1 Score

Random 0.333 0.333 0.333 0.333

Max. class 0.415 0.138 0.333 0.196

BoW+Random Forest 0.425 0.417 0.413 0.414

LSTM (fastText word emb.) 0.543 0.636 0.502 0.502

LSTM (InferSent sentence emb.) 0.690 0.702 0.669 0.674
ULMFiT 0.571 0.437 0.500 0.440

Table 2: Results (average over 5 folds) for the diagnosis classification task for the masked dataset. Precision, recall
and F1 score are macro-averaged across the classes.

3 Data

We collected a corpus of consultation reports com-
piled by clinicians at a memory clinic to use as the
data domain for the document classification task.
Each report is anonymised and describes the clin-
ican’s review of a patient who suffers from mem-
ory or cognitive issues. Each report is labelled
by one of three classes, corresponding to the di-
agnoses of dementia, mild cognitive impairment
(MCI) and non-impaired. The documents can be
considered semi-structured, as they are made up
of free-text details that follow a loose narrative
trajectory. The notes typically begin with a de-
scription of the patient’s history and symptoms,
and ultimately conclude with recommendations on
how to proceed which may include scheduling a
follow-up appointment, arranging further tests, or
organising a treatment course based on the avail-
able evidence.

From this corpus, we build a version of the notes
in which explicit diagnostic information is masked
out. For example, the sentence “We would recom-
mend commencing on a Rivastigmine patch 4.6 mg
for 24 hours and then to be increased to 9.5 mg
for 24 hours once daily if tolerated.” would not be
included in the masked diagnosis dataset, as the
drug Rivastigmine is used to treat mild to mod-
erate Alzheimer’s disease and Parkinson’s, and so
its mention here trivially identifies the diagnosis.
In this work, we are interested in the ability to
make predictions from more subtle diagnostic sig-
nals, requiring our model to build semantic repre-
sentations of cognitive impairment that go beyond
counting the occurrence of single words. Table 1
presents summary metrics of the datasets.

Deep learning models are generally trained and

tested on very large datasets, in contrast to the
small corpus of demential letters that we have
gathered, and in contrast to clinical note databases
generally. This motivates our use of transfer learn-
ing.

Tackling the problems of training and interpret-
ing models trained on datasets of this scale is di-
rectly relevant to the real world challenges of us-
ing natural language processing to support clin-
ical decisions, such as identifying patients who
may be applicable to participate in a clinical trial
(Sarmiento and Dernoncourt, 2016). Annotating
gold-standard training examples for such prob-
lems is resource intensive (Savkov et al., 2016).
We would therefore like to build robust and gen-
eral models given a small amount of samples. Re-
cent work on training large language models on
massive amounts of data thus has much poten-
tial for zero-shot classification of natural language
documents (Yogatama et al., 2017).

4 Models and Evaluation

We investigate the relative performance of LSTM
models trained with a sequence of word embed-
dings, LSTM models trained with a sequence of
sentence embeddings, and a state-of-the-art doc-
ument classification model, ULMFiT. One moti-
vation for choosing these experimental models is
to investigate which models can capture long-term
dependencies across a clinical document, given a
relatively small amount of samples (n=106). In
addition to these three models, we also test a ran-
dom forest baseline model, a model that randomly
selects the class and a model that chooses the
most common class (which is non-impaired). The
random forest model is trained to classify a doc-
ument based on its bag-of-words representation.
All models are cross-validated using 5 folds of
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Figure 1: Visualisation of sentence importance with respect to the successful classification of non-impaired for a
subset of a document. Sentences that were found to be important for the classification of non-impaired are coloured
green while a sentence that increases the chance of a misclassification (i.e. an incorrect MCI diagnosis) is coloured
red. The saturation of the colours corresponds to how much a given word contributes to a sentence’s InferSent
embedding

the dataset, ensuring that the class distribution is
equal across all folds. The ULMFiT model is pre-
trained on the Wikitext-103 dataset (Merity et al.,
2017) and fine-tuned using default hyperparam-
eters (fine-tuning epochs=25, fine-tuning batch
size=8, fine-tuning learning rate=0.004, train-
ing epochs=50, training batch size=32, training
learning rate=0.01) which have been shown to be
robust across various tasks (Howard and Ruder,
2018). The LSTM model’s hyperparameters were
chosen by a grid-search. Both the sentence em-
bedding LSTM and the word embedding LSTM
were made up of one hidden layer with 256 hid-
den units.

The classification results for the models for the
masked dataset are presented in Table 2. Each
of our three models perform significantly better
than chance and better than the random forest
baseline model, with the LSTM model trained
with sentence-embedding sequential input achiev-
ing the best performance. For this amount of
training data, we would expect models that are
trained on shorter sequences of more semantically
enriched pre-trained vectors (i.e. sentence em-
beddings) to perform better than much longer se-
quences of vectors with less dimensions (i.e. word
embeddings). This is because much of the work
of combining word-level tokens into a contextual
representation that is relevant to a statistical model
of human language has already been done when
training with pretrained representations extracted
at the sentence-level. Somewhat surprisingly, the
model trained on sentence embeddings outper-
formed the fine-tuned ULMFiT. Future work may
shed light on how the amount of training samples

can affect the choice of whether to use fine-tuning
or pre-trained embedding representations as model
input.

5 Model Interpretability: Calculating
Sentence Importance Scores

After demonstrating the effectiveness of using
pre-trained sentence embeddings to classify the
clinical documents, we investigated model inter-
pretability by calculating a measure of the impor-
tance of each sentence in the sequence of sen-
tences to the model’s prediction for a document.
We propose a measure of feature importance based
on perturbative approaches to variable importance
(Breiman, 2001), which estimate the importance
of variables by iteratively randomly perturbing
each variable and observing the change in loss.
This technique is similar to measuring informa-
tion gain (Quinlan, 1986), but rather than selecting
important components of fixed input, we rate the
importance of a sentence vector in the sequence
of sentence vectors presented to our sequential
LSTM classifier. For example, in order to gener-
ate the importance score for the first sentence in a
document made up of m sentence embeddings, we
construct an augmented version of the document
containing all but the first sentence, and examine
the resulting change in the prediction for that doc-
ument. More formally, for sentence n, we gener-
ate the following version of the document d (with
ground truth label c) with sentence n removed:

dn = [s0, s1, . . . , sn−1, sn+1, . . . , sm−1]

Next, the augmented document dn is fed into
the trained LSTM (using the best-in-fold model
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Ratio Sentence
-3.469 “He and his wife both report agitation disinhibition and irritability”
0.078 “He would say that he feels depressed at times”
0.149 “She was tremulous which <NAME> felt was most likely due to anxiety”

. . .

2.108 “He had an equivalent score of 19 / 30 on the MMSE”
8.105 “He had an equivalent score of 29 / 30 on the MMSE”

12.887 “He had an equivalent score of 22 / 30 on the MMSE”

Table 3: Sentences sorted by feature importance for a correct diagnosis of non-impaired. Sentences with low
scores do not support a prediction of non-impaired within the context of the corresponding clinical letter.

from Section 3, which achieved an accuracy of
73%) and we measure the network’s output logit
for the correct class. The importance score is cal-
culated as the ratio of the model’s output for the
correct class excluding the sentence to the model’s
output for the correct class including a given sen-
tence.

ration =
logit(c | dn)
logit(c | d)

The most important sentences minimise this ra-
tio. When the ratio is over 1, the inclusion of
the sentence in the document leads to a smaller
probability of selecting the correct class, and so
sentences that maximise the ratio are the most
misleading sentences with respect to the correct
classification. Examples of highly important and
highly misleading sentences across the corpus for
a diagnosis of non-impaired are presented in Ta-
ble 3. The average sentence importance trajectory
over each class was also investigated and is pre-
sented in in Figure 2.

Figure 1 presents a section of a clinical letter
for a patient with a diagnosis of non-impaired,
with sentences coloured green or red depending
on whether they increase or decrease the chance
of correctly classifying the document. Within
each sentence, the contribution of a word to the
InferSent sentence embedding is visualised by
colour saturation. We can see that the importance
measure provides intuitive insights into how the
recurrent neural network models the document.
For example, the final sentence in Figure 1 de-
creases the chance of classifying the document
as non-impaired because it states that the patient
sometimes forgets to take their medicine – in iso-
lation this sentence could naively be considered to
imply a diagnosis of memory impairment, but as
the model processes the full document it is able to

Figure 2: Average sentence importance over each class,
as a function of sentences’ position in the texts. Sen-
tence importance ratios are normalised within each
document and split by in-document position into 20
bins. For each class, we plot the negative of the av-
erage for each bin.

accumulate evidence and predict the correct diag-
nosis. By examining the contribution of each word
to the InferSent vectors, we can see that negat-
ing words such as “not” are handled appropriately
within the sentence embedding (e.g. “not clini-
cally depressed” increases the probability of a cor-
rect non-impaired classification). Our model in-
terpretation technique therefore demonstrates how
the LSTM sentence embedding model improves
on the simple bag-of-words baseline, where the
word “depressed” would be incorrectly taken as
negative evidence for a non-impaired diagnosis.

6 Cluster Analysis

In order to investigate the relationship between
sentence importance and the sentence embedding
space, we performed a cluster analysis. The 4096-
dimensional sentence embeddings were projected
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(a) t-SNE clustering of sentence embedding vectors (b) Feature importance for class dementia

(c) Feature importance for class MCI (d) Feature importance for class non-impaired

Figure 3: 2-dimensional projection of sentence embedding vectors. (a): 30 clusters were identified and labelled
using mean shift clustering. (b) - (d): Heat maps of sentence vectors coloured by sentence importance for each
class reveal clusters of sentences that are relevant to a given diagnosis. Colour scales indicate normalised values;
brighter colours indicate more important sentences.

to two dimensions using t-SNE (van der Maaten
and Hinton, 2008). We used the mean shift clus-
tering technique (Yizong Cheng, 1995), an algo-
rithm that does not require the number of clusters
to be specified in advance, to discover clusters of
similarly represented sentences in this space (Fig.
3(a)). Sentences that are important for the model’s
classification of a specific diagnosis are visualised
by colouring the sentences using the correspond-
ing importance score. This step was performed for
each of the three classes (Fig. 3(b)-(d)).

Correlation tests were used to investigate the re-
lationship between sentence clusters and their im-
portance to a model’s prediction for each class.

For each class c and for each cluster cl, we first
gather the sentences that appear in documents of
class c. Next, we assign each sentence a value of 1
or 0 depending on whether the sentence is in clus-
ter cl. Using Spearman’s Rho, we calculate the
correlation between this value and the sentences’
importance scores for the given class. In each
trial, sentences that do not appear in documents
of the target class are excluded. The results re-
ported in Table 4 show the clusters that were found
to be significantly correlated with at least one of
the classes’ importance scores. It was found that
15 out of the 30 automatically discovered sentence
clusters can be considered significantly important
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in the model’s decision making.
To assist in interpreting the information cap-

tured by each cluster, we depict the clusters using
the most frequent bigrams across all of that clus-
ter’s sentences (Table 4). For example, one cluster
(corresponding to cluster 20 in Figure 3(a)) con-
tains sentences that mention the individual’s fam-
ily (significantly positively associated with a non-
impaired diagnosis), while cluster 22 corresponds
to sentences about the patient’s blood pressure and
heart rate (significantly negatively associated with
a non-impaired diagnosis). Again, these results
show the utility of combining sentence importance
measures with sentence embeddings to reveal the
clinically relevant detail in the documents.

7 Discussion

The results presented in Table 3 demonstrate the
sentences that are most significant and most mis-
leading for the LSTM InferSent model with re-
spect to the diagnosis of non-impairment. We
can see that the most significant sentences are
those that refer to patients’ mood and anxiety
disorders. These types of sentences are over-
represented in the non-impaired group. The types
of sentences that are most misleading to the di-
agnosis of non-impaired are those of the format
“[pronoun] had an equivalent score of [score] /
30 on the MMSE”. An obvious question regarding
this result is whether information about MMSE
scores can be represented by the InferSent em-
beddings in such a way as to distinguish it from
other sentences that differ only, but importantly,
by a single integer value. We can see that the rela-
tionship between the significance of the sentence
to the actual results in the sentence is non-linear.
The 84 mentions of the Mini-Mental State Exami-
nation (MMSE) test are equally divided across the
3 classes; as there are more non-impaired docu-
ments in the dataset overall, the model benefits
from learning not to predict this diagnosis when it
encounters any sentence embedding in the MMSE
cluster (cluster 17 in Figure 3(a); the correspond-
ing points in Figure 3(d) indicate their decreased
importance for this category). Further analysis
may include using diagnostic classifiers (Hupkes
et al., 2018) to test whether a model can accurately
decide whether the first of two given sentence em-
beddings reports a larger score.

Figure 2 shows the average sentence signifi-
cance across the documents for each of the three

classes. For all classes, we can see that the im-
portance of sentences tends to increase with their
in-document position. This trend may correspond
to the semi-structured nature of the documents, re-
flecting information becoming more relevant to a
diagnosis towards the end of a document. An-
other possible explanation could be that the re-
current neural network is unable to capture long-
distance dependencies given the small amount of
samples in the dataset, resulting in a kind of re-
cency bias in the model’s processing (since the
model only makes its prediction at the end of the
sequence of sentences). Further work may involve
systematically changing the position of each sen-
tence within each document in order to investigate
the effect that this has on the importance scores
associated with each sentence.

Table 4 shows that no clusters were significantly
correlated with the class dementia, with all re-
ported clusters being significantly correlated with
at least one of MCI or non-impaired. Exclud-
ing cluster 18, all of the clusters that are signif-
icant for both MCI and non-impaired form pairs
of negative vs. positive correlations between these
two classes, suggesting that the model learns pri-
marily to discriminate between these classes. Ex-
amining the confusion matrix for the model, we
found that the model has a true positive rate of
1.0 and 0.89 for MCI and non-impaired, and min-
imises the amount of false positives between these
two classes. However, the model performs poorly
when the actual document corresponds to a di-
agnosis of dementia (with a true positive rate of
0.29). This is consistent with the observation that
none of the clusters significantly correlate with
this class. While this insight could be gained from
examining the confusion matrix alone, the advan-
tage of employing the interpretation methods de-
veloped in this paper is that they allow us to gain
an understanding of how the model’s processing
of sentences over time leads to these inequalities,
suggesting avenues of attack for constructing more
accurate representations of the documents going
forward.

In future work, we plan to gather more clini-
cal documents that describe patients with mem-
ory impairment and continue our analysis of lan-
guage modelling and classification in this distri-
bution. We hope to subsequently apply state of the
art contextualised embeddings such as ELMO (Pe-
ters et al., 2018) and BERT (Devlin et al., 2018)
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Cluster Top bigrams in cluster RhoD RhoM RhoN

2
“behavioural problems”, “neurological deficit”,
“extra pyramidal”

0.036 −0.215*** 0.142***

3 “short term”, “years ago”, “poor short” −0.022 0.032 0.119***

5
“family history”, “disease dementia”,
“alzheimers disease”

0.039 −0.147*** 0.146***

7
“activities daily”, “daily living”,
“remains independent”

−0.013 −0.121* 0.155***

9
“medical history”, “ischaemic heart”,
“heart disease”

−0.003 0.161*** −0.131***

10
“memory fluency”, “verbal fluency”,
“points lost”

−0.033 0.133** −0.097*

12
“misplacing items”, “cognitive checklist”,
“disorientation time”

0.000 0.143*** −0.098*

17 “30 mmse”, “mmse equivalent”, “29 30” −0.040 −0.193*** 0.112***

18
“cognitive testing”, “100 ace”,
“addenbrooke cognitive”

−0.010 −0.171*** −0.181***

20
“unaccompanied morning”, “four children”,
“two children”

0.022 −0.029 0.165***

22
“blood pressure’, “bpm regular”,
“examination pulse”

−0.045 0.130** −0.124***

23
“b12 folate”, “screening bloods”,
“thyroid function”

−0.022 0.022 −0.089*

24 “current medications”, “mg daily”, “40 mg” 0.021 0.181*** −0.106**

25
“geriatric depression”, “depression scale”,
“scored 15”

0.010 0.182*** −0.229

27
“onset progression”, “progression described”,
“physical examination”

−0.064 0.132** −0.113***

Table 4: Automatically discovered sentence clusters that significantly correlate with sentence importance for at
least one class. For each cluster and for each class, we use Spearman’s Rho to test the correlation between a
sentence’s importance with respect to the class of interest, and whether or not the sentence is in the given cluster.
The most frequent within-cluster bigrams were extracted after removing stop words from the sentences. * p<0.05,
** p<0.01, *** p<0.001, Bonferroni corrected. D: Dementia, M: MCI, N: Non-impaired.

to a larger corpus in order to further use feature
extraction to build and understand meaningful se-
mantic representations of cognitive impairment as
described by clinicians. As part of this work, we
aim to examine how models trained on the writ-
ing style of one clinician apply to those written
by others, as the corpus used in this study was
sourced from a small number of clinicians. We
suspect that analysing a model’s inter- and intra-
clinician performance metrics will yield useful in-
sights into how well the model has generalised,
and how clinicians may differ in terms of the sub-
tle but diagnosis-relevant information they include
in the documents.

8 Conclusion

We showed the effectiveness of using pre-trained
sentence embeddings and recurrent neural net-
works for a document classification task using a
corpus of natural language clinical reports. The
sentence-level LSTM model performed better than
both an LSTM trained on word embeddings and a
simple bag-of-words baseline. Following this re-
sult, we developed a simple and intuitive perturba-
tive measure of sentence importance for the sen-
tences in the corpus. After demonstrating how this
measure can be used to interpret the success and
failure cases of a trained model, we used cluster
analysis to identify regions in the sentence embed-
ding space that are significantly correlated with
sentence importance for specific diagnosis classes.



56

By reviewing the most frequent bigrams in each
cluster and examining the sign of Spearman’s Rho
for each corresponding correlated class, we can
interpret how differential processing of sentence
vectors within each cluster can lead to class im-
balances in the model’s predictions, demonstrating
the power of our approach for model interpretabil-
ity and evaluation.
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