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Abstract

We explore the extent to which neural net-
works can learn to identify semantically equiv-
alent sentences from a small variable dataset
using an end-to-end training. We collect a new
noisy non-standardised user-generated Alge-
rian (ALG) dataset and also translate it to
Modern Standard Arabic (MSA) which serves
as its regularised counterpart. We compare
the performance of various models on both
datasets and report the best performing con-
figurations. The results show that relatively
simple models composed of 2 LSTM layers
outperform by far other more sophisticated
attention-based architectures, for both ALG
and MSA datasets.

1 Introduction

Detecting Semantic Textual Similarity (STS) aims
to predict a relationship between a pair of sen-
tences based on a semantic similarity score. It
is a well-established problem (Agirre et al., 2012)
which deals with text comprehension and which
has been framed and tackled differently (Beltagy
et al., 2013, 2014). In this work we focus on deep
learning approach. For example, Baudis and Še-
divý (2016) frame the problem as a sentence-pair
scoring using binary or graded scores indicating
the degree to which a pair of sentences are related.

Solutions to detecting semantic similarity ben-
efit from the recent success of neural models ap-
plied to NLP and have achieved new state-of-the-
art performance (Parikh et al., 2016; Chen et al.,
2017). However, so far it has been explored only
on fairly large well-edited labelled data in English.
This paper explores a largely unexplored question
which concerns the application of neural models
to detect binary STS from small labelled datasets.
We take the case of the language used in Alge-
ria (ALG) which is an under-resourced language

with several linguistic challenges. ALG is a col-
lection of local colloquial varieties with a heavy
use of code-switching between different languages
and language varieties including Modern Stan-
dard Arabic (MSA), non-standardised local collo-
quial Arabic, and other languages like French and
Berber, all written in Arabic script normally with-
out the vowels.

ALG and MSA are two Arabic varieties which
differ lexically, morphologically, syntactically,
etc., and therefore represent different challenges
for NLP. For instance, ALG and MSA share some
morphological features, but at the same time the
same morphological forms have different mean-
ings. For instance, a verb in the 1st person singu-
lar in ALG is the same 1st person plural in MSA.
The absence of morpho-syntactic analysers for
ALG makes it challenging to analyse such texts,
especially when ALG is mixed with MSA. Fur-
thermore, this language is not documented, i.e.,
it does not have lexicons, standardised orthogra-
phy, and written morpho-syntactic rules describ-
ing how words are formed and combined to form
larger units. The nonexistence of lexicons to dis-
ambiguate the senses of a word based on its lan-
guage or language variety makes resolving lexical
ambiguity challenging for NLP because relying on
exact word form matching is misleading.
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b. I spent one week at my parents’ house
and when I came back I found that my
son made a big mess. After that my hus-
band changed his opinion and never al-
lowed me to stay over night (at my par-
ents’ house).
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b. In Mawlid we prepare Couscous for
lunch, and you what will you prepare
(for lunch)?

In many cases, while the same word form has sev-
eral meanings depending on its context, different
word forms have the same meaning. As an illus-
tration, consider examples (1) and (2) which are
user-generated texts taken from our corpus (Sec-
tion 3.1.1). In (1), the same word form “P@X” oc-
curs three times with different meanings: “house”,
“made”, and “changed” respectively. Whereas in
(2), the different word forms “Pñ ¢

	
® Ë” and “ @Y

	
«”

mean both “lunch”.

We mention these examples to provide a ba-
sic background for a better understanding of the
challenges faced while processing this kind of
real-world data using the current NLP approaches
and systems that are designed and trained mainly
on well-edited standardised monolingual corpora.
We could, for instance, distinguish the meanings
of “P@X” in (1) if we knew that the 1st occurrence
is a noun and the two others are verbs. Likewise,
if we had a tool to distinguish between ALG and
MSA, it were easier to detect the meaning of “ @Y

	
«”

as “lunch” in ALG rather than the MSA meaning
“tomorrow”.

Traditional models for detecting STS cannot be
applied on such data because they require existing
resources and tools, such as tokeniser, stemmer,
PoS tagger, etc. to pre-process the data and ex-
tract useful features assuming that the data is cor-
rectly spelled (standardised orthography). Thus
using deep neural networks (DNNs) is promising
because representations can be learned in an unsu-
pervised way. In particular, when trained end-to-
end, inputs are mapped directly to the desired out-
puts without the need to handcraft features. Nev-
ertheless, this learning approach based on pattern
matching requires lot of data to learn useful pat-
terns. Besides there are only a few cleaned and
labelled textual corpora available for some lan-
guages and creating new ones is labour intensive.

Our contributions are as follows. (i) We in-
troduce a newly built (small) ALG dataset for
STS. (ii) We compare the performance of different
DNN configurations on this dataset, namely: var-
ious combinations of Recurrent Neural Networks

(RNNs), Convolutional Neural Networks (CNNs),
pre-training of embeddings, including a replica-
tion of two new state-of-the art attention models.
(iii) We test whether increasing the dataset size
helps. (iv) We test whether language regularisa-
tion helps. For this purpose, we run the same ex-
periments on a regularised and comparable MSA
translation of the ALG dataset.

The paper is structured as follows. In Section
2, we briefly review some STS applications. In
Section 3, we describe our experimental setup in-
cluding data and models. In Section 4, we discuss
the results and conclude with our future plans in
Section 5.

2 Related Work

Diverse techniques and formalisms have been
used to deal with various semantic-related tasks.
Among others, machine learning has been applied
to detect semantic textual relatedness such as Tex-
tual Entailment (TE) (Nielsen et al., 2009), STS
(Agirrea et al., 2016), Paraphrase Identification
(PI) (Liang et al., 2016), etc. Earlier systems use
a combination of various handcrafted features and
are trained on relatively small datasets. For ex-
ample, Dey et al. (2016) uses Support Vector Ma-
chines with a set of lexical, syntactic, semantic and
pragmatic features. As discussed earlier, these fea-
tures are not available from our dataset.

These tasks have recently attracted more atten-
tion when DNNs became practical, mainly due
to the availability of large labelled datasets such
as the Stanford Natural Language Inference cor-
pus (SNLI) containing 570K sentence pairs (Bow-
man et al., 2015), Sentences Involving Composi-
tional Knowledge (SICK) containing about 10K
sentence pairs (Marelli et al., 2014), the Microsoft
Research WikiQA Corpus (WIKIQA) containing
more than 23K sentence pairs (Yang et al., 2015),
the Quora dataset released by Kaggle competi-
tion consisting of 400K potential question du-
plicate pairs1, and the Microsoft Research Para-
phrase (MSRP) consisting of more than 5K sen-
tence pairs (Dolan and Brockett, 2005).

We follow the approach of Baudis and Šedivý
(2016) who consider that several tasks dealing
with detecting semantic relatedness are technically
similar and can be formulated as sentence-pair

1Corpus webpage: https://www.kaggle.com/
quora/question-pairs-dataset

https://www.kaggle.com/quora/question-pairs-dataset
https://www.kaggle.com/quora/question-pairs-dataset
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scoring. They propose a generic framework for
text comprehension for evaluating and comparing
existing systems. Several DNN systems have been
proposed. For instance, Mueller and Thyagara-
jan (2016) propose a siamese recurrent architec-
ture using Manhattan LSTM (MaLSTM) for STS.
They use word embeddings supplemented with
synonymy information, LSTM and Manhattan dis-
tance to compose sentence representations.

Additionally, complex DNN systems with var-
ious attention mechanisms have been proposed to
deal with more than one semantic similarity task
at the same time. For instance, Yin et al. (2015)
apply attention to represent mutual influence be-
tween the input sentence pairs. Similarly, Parikh
et al. (2016) propose the Decomposable Attention
Model (DecompAtten) which relies on alignment
using neural attention to decompose the task of
natural language inference into sub-tasks which
are aggregated and used to predict the output. In
the same direction, Chen et al. (2017) propose
the Enhanced Sequential Inference Model (ESIM)
composed of a bidirectional LSTM (BiLSTM) en-
coder, and a soft alignment which computes atten-
tion weights to determine the relevance between
two input sentences. Then they use another BiL-
STM layer to compose local inference information
and aggregate the output by applying average and
max pooling, and concatenating all in one vector.

All preceding models involve considerable so-
phistication of design and sometimes require spe-
cific dataset annotation. This is to say they are
normally trained on large well-edited and labelled
datasets that are available for English but are un-
available for most other languages. Unlike the
previous work, we will compare the performance
of two presumably best performing architectures
to simpler architectures similar to MaLSTM but
with different additional components on a small
unedited dataset.

3 Experiment

3.1 Data

3.1.1 ALG STS data
To the best of our knowledge, there is no ready-
to-use ALG data for any semantic similarity re-
lated task prior to this work. As a basis we use
an extended version of the ALG unlabelled dataset
(Adouane et al., 2018) which currently contains
408,832 unedited short colloquial texts (more than

6 million words) collected from online discussion
forums. For the STS task we created a dataset of
3,000 sentence pairs as follows. We randomly se-
lected 1,000 sentences from the ALG unlabelled
data, including various topics and text lengths.
We asked two ALG native speakers to produce
for each given sentence two more sentences: one
which is semantically equivalent and the other can
be semantically similar but not equivalent, i.e., it
could include the same words or could be about
the same topic.
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b. No, it is not beautiful, pink is outdated.

I do not like pink, it is not fashionable.
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b. I offered to my mother a chocolate pie.

I like the chocolate pie that my mother
baked.

In (3), the two sentences are semantically equiv-
alent but in (4) the two sentences are roughly
about the same topic and include “chocolate pie”,
“mother” and “I” but some important information
differs — like who did what.

The annotators were free to use whatever words
as long as the produced sentences sounded nat-
ural to them and the above instructions were re-
spected. We provided them with two examples of
the desired sentences and explained the difference.
We combined all the sentences and created 3,000
unique sentence pairs.

In the second part of dataset creation, we asked
three different native speakers to provide a similar-
ity score between 0–5 for each sentence pair fol-
lowing the guidelines used in the SemEval-2016
shared task (Agirrea et al., 2016). Finally, another
annotator performed manual checking and major-
ity voting of the annotations.

Because the annotators assigned scores accord-
ing to their judgement, the resulting data is not bal-
anced in terms of the number of instances per class
(0–5) as shown in Table 1. The corpus contains
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36,767 words, 7,074 unique words and sentence
average length of 5.19 words or 34 characters.

Score Interpretation #Pairs
0 The two sentences are completely

dissimilar. 1,550
1 The two sentences are not equivalent,

but are on the same topic. 237
2 The two sentences are not equivalent,

but share some details. 140
3 The two sentences are roughly equivalent,

but some important information differs. 63
4 The two sentences are mostly equivalent,

but some unimportant details differ. 16
5 The two sentences are completely

equivalent, as they mean the same thing. 994

Table 1: Annotation guidelines and the number of in-
stances in the ALG STS dataset.

We first tried to predict the graded six similarity
scores as multi-class STS, but the systems (Sec-
tion 3.2) only predicted the most frequent classes,
namely scores 0 and 5. This behaviour suggests
that given the size of the dataset and the number
of instances for each class, the classes are not dis-
tinguishable enough. Therefore, we re-framed the
task as a binary STS: either two sentences are se-
mantically equivalent or not, rather than predict-
ing their graded similarity (Agirre et al., 2015;
Xu et al., 2015). To this end, we merged all
scores which do not capture semantic equivalence
(0 to 4) into a single class, and refer to them as
non-equivalent. The remaining score of 5 stands
on its own as completely equivalent. The result-
ing binary labelled data contains 994 equivalent
sentence pairs and 2,006 non-equivalent sentence
pairs.

3.1.2 MSA STS data
Contrary to ALG, MSA is a well-represented Ara-
bic variety with standardised spelling. We use a
large MSA Wikipedia corpus2 consisting of more
than 52 million tokens. We automatically removed
all words written in non-Arabic script and punctu-
ation. We refer to this corpus as MSA unlabelled
data.

We also created a labelled STS corpus for
MSA by commissioning another pair of ALG na-
tive speakers to faithfully translate the ALG STS
dataset into MSA. They were instructed to keep
the order of words and structures as close as pos-
sible to the ALG sentences without changing the

2The MSA corpus was downloaded from: http://
goo.gl/d7pxZb.

meaning. We manually checked the quality of
the translation, corrected some minor misspellings
and checked the corresponding similarity scores
(0–5). We proceeded in the same way as for ALG
and created a binary MSA STS dataset including
equivalent and non-equivalent sentence pairs.

Both binary and multi-class STS MSA datasets
have the same number of sentence pairs as their
ALG corresponding datasets. However, the MSA
datasets have a smaller vocabulary, consisting of
only 5,527 unique words from a total of 37,832
words. The average sentence length is 6.84 words
or 33.26 characters. The difference in the vo-
cabulary size is mainly due to misspellings and
spelling variations in the ALG corpus: it is non-
standardised language. Yet both ALG and MSA
datasets have relatively short sentences and they
are about the same topics since one is a translation
of the other.

3.2 Models

All models have the same basic structure. They
consist of two identical siamese networks, one for
each input sentence as shown in Figure 1. The
main differences between the models are in the
embeddings, the sentence encoder, the distance
measure, and the objective function for the final
prediction.

Output

Dense

Distance

Representation-1

Sentence Encoder

Embedding-1

Sentence-1

Representation-2

Sentence Encoder

Embedding-2

Sentence-2

Figure 1: Siamese network architecture. The trained
parameters are shared between the left (1) and right (2)
part of the network.

http://goo.gl/d7pxZb
http://goo.gl/d7pxZb
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3.2.1 Embeddings

We use two kinds of embedding layers. First, an
embedding layer trained only on the training data
based either on characters or words, initialised
either with a uniform or a normal distribution.
We refer to these embeddings as trainable as a
contrast to pre-trained embeddings. Second, we
pre-trained a word2vec and FastText embeddings
on the larger unlabelled data mentioned in Sec-
tion 3.1, using the Gensim (Řehůřek and Sojka,
2010) and FastText (Bojanowski et al., 2016) li-
braries. For word2vec embeddings, we used a
context size of 5 words, minimum occurrence of
1 and dimension of 300. For FastText embed-
dings, we used dimension of 300, range of sub-
characters between 3-5 characters, and a context
size of 5 words, and training for 200 epochs. The
goal of using pre-trained word embeddings is to
test whether we can make use of the large unla-
belled corpora.3

3.2.2 Sentence Encoders

We use either an RNN or a CNN with different
configurations to encode each sentence and out-
put a representation for each. The sentence en-
coders are identical for both sentences and share
weights. Here are some of the encoders that we
experimented with.

RNN-based encoder consisting of a stack of
standard and/or bidirectional LSTM layers with
300 units and a dropout rate of 3%.

CNN-based encoder consisting of a stack of
convolution layers with 60 filters of size 5, with
a relu activation and a dropout rate of 10%, fol-
lowed by max pooling with a pool size of 3, fol-
lowed optionally by a global average pooling and
global max pooling multiplied together.

CNN-RNN-based encoder A combination of
RNN and CNN encoders where we stack a num-
ber of convolution layers with 60 filters of size 5,
with a relu activation and a dropout rate of 10%,
followed by max pooling with a pool size of 3 and
a number of RNN layers (either standard or bidi-
rectional LSTMs).

Attention-based encoder Roughly put, the idea
of an attention mechanism is to attend to some

3The annotated data and the pre-trained embeddings are
available from the 1st author.

parts of an input/output when deriving its rep-
resentation (Bahdanau et al., 2014). We imple-
ment the Decomposable Attention (DecompAtten)
and Enhanced Sequential Inference Model (ESIM)
models, as described in Section 2.

3.2.3 Distance
The distance component serves to compose the
sentence representations. We use standard dis-
tances such as Euclidean distance, Manhattan dis-
tance, and Cosine similarity.

3.2.4 Dense
Instead of using a distance measure between the
sentence representations, we compose the two sen-
tence representations by multiplication (multp),
subtraction (subtr), summation (sum), or concate-
nation (conct) as in the ESIM model. This oper-
ation is followed by a dense layer. We indicate
that this layer is optional by using a dotted frame
in Figure 1. When it is used, we use a sigmoid
activation with a binary cross-entropy loss.

Except for the pre-trained embeddings, all mod-
els are trained end-to-end for 300 epochs using a
batch size of 64 and Adam optimiser with a learn-
ing rate of 0.001.

4 Results and Discussion

We randomly selected from the binary ALG
STS dataset 250 sentence pairs of each class
(equivalent and non-equivalent) as the test set (500
in total), 200 sentence pairs as a development set,
and the remaining 2,300 sentence pairs as a train-
ing set. Note that balancing the test set is not es-
sential. Likewise, we split the binary MSA STS
data by taking the corresponding translations for
each instance in the ALG dataset.

The hyper-parameters reported in Section 3.2
were selected based on the reported common val-
ues in the literature for similar tasks and fine-
tuned on the development set. Moreover, because
of the stochastic nature of the neural models 4

where the results vary between each training run,
we report the average performance on the test set
over 10 training runs for the best performing mod-
els trained on both training and development data
following (Baudis and Šedivý, 2016; Yin et al.,
2015).

In order to increase the size of the training data
and to boost the instances of the minority class

4https://machinelearningmastery.com/
randomness-in-machine-learning/

https://machinelearningmastery.com/randomness-in-machine-learning/
https://machinelearningmastery.com/randomness-in-machine-learning/
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ALG MSA
Model Emb Encoder Dist Acc Acc-aug Acc Acc-aug

1 char-RNN trainable 2-LSTM multp 55.78 61.84 59.65 67.80
2 char-RNN trainable 2-LSTM subtr 70.38 78.56 69.02 71.37
3 word-RNN trainable 2-LSTM multp 85.06 87.20 85.19 86.69
4 word-RNN trainable 2-LSTM subtr 73.73 92.76 68.90 88.20
5 word-RNN word2vec 2-LSTM subtr 71.40 92.51 67.86 89.46
6 word-RNN FastText 2-LSTM subtr 71.68 92.70 68.06 88.57
7 word-CNN trainable 1-CNN sum 50.00 50.00 50.00 50.00
8 DecompAtten trainable attention sum 50.44 53.00 50.02 50.44
9 ESIM trainable attention conct 52.34 52.80 50.34 50.39

Table 2: Average accuracy of the models (%). Acc is accuracy with non-augmented
training data and Acc-aug with the augmented training data.

(equivalent sentence pairs), we duplicated equiv-
alent sentence pairs by reversing their order so
that each sentence pair appears only once in the
same order. This is a standard data augmentation
practice used to mitigate the limited availability
of labelled training data (Yin et al., 2015; Mueller
and Thyagarajan, 2016). The augmented training
set contains 3,244 sentence pairs (1,488 equivalent
and 1,756 non-equivalent pairs). Because there
is no previous work reported for ALG on a sim-
ilar task, we resort to the binary random guess,
namely 50% as a baseline. We report the overall
accuracy for the same models with and without the
augmented training data, for both ALG and MSA
separately. In Table 2, we only report the models
that outperform the baseline.

4.1 Binary STS for ALG

Non-augmented data The results show that
char-RNNs composed of 2 standard LSTM lay-
ers and trainable embedding layer with normal
distribution (1) and (2) perform worse than their
word-based counterparts (3) and (4). This result
contradicts the conclusion that character models
are better at modelling morphologically rich lan-
guages (Vylomova et al., 2017), and consequently
they are better in dealing with misspellings and
capturing spelling variations.

The best performance is achieved by a word-
based 2-LSTM layer encoder and a trainable em-
bedding layer (3), using multiplication as a dis-
tance with an accuracy of 85.06%. Nevertheless,
char-RNN performs better with subtraction rather
than multiplication as a distance (2). Adding pre-
trained embeddings word2vec (5) and FastText (6)
to the word-level RNN in (4) decreases the accu-
racy by 2.33 and 2.05 points respectively. This ef-
fect could be caused by the noise in the ALG unla-
belled data on which the embeddings were trained.

A 1-layer CNN with no pre-trained embeddings
and using summation of the sentence representa-
tions as a distance (7) performs the best compared
to the other options with CNN encoder but over-
all it performs quite poorly. Likewise combining
1-CNN and 1-LSTM layers as encoder (not shown
in Table 2) does not have an effect over using only
1-CNN layer. The models predict all the test sen-
tence pairs as non-equivalent. In other words, the
network could not learn enough to properly distin-
guish between the two classes.

These results contrast those reported by Kadlec
et al. (2015), namely that CNN models perform
better with little data compared to RNN models.
However, it is hard to quantify what is consid-
ered to be small apart from the number of exam-
ples. In general, neural models learn useful fea-
tures when they are trained on enough representa-
tive data. That is to say it is not just a question
of data size, but it is more about the complexity
of the features and the functions that they should
learn. In our case, we suspect that the sparsity and
the noise in the data is making learning harder for
CNN models.

Regarding attention-based encoders, ESIM (9)
outperform DecompAtten (8), and both perform
slightly better than the baseline. The poor perfor-
mance of these models with little noisy data could
be related to the fact that attending to some parts of
a sentence or focusing on surface form similarity
is misleading since the same word form can have
different meanings and different word forms can
have the same meaning, especially that the data
does not contain named entities or punctuation or
digits which could help alignment.

Augmented data All models benefit from the
augmented data, except word-CNN (7) for which
the gain is not clear. The performance of the char-
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Equivalent Non-equivalent
Model Precision (%) Recall (%) F-score Precision (%) Recall (%) F-score

1 char-RNN-multp 73.91 53.54 62.10 63.12 80.80 70.88
2 char-RNN-subtr 88.02 66.54 75.78 72.76 90.80 80.78
3 word-RNN-multp 86.96 88.00 87.48 87.85 86.80 87.32
4 word-RNN-subtr 89.67 97.20 93.28 96.94 88.80 92.69
5 word-RNN-word2vec 89.30 96.80 92.90 96.51 88.40 92.28
6 word-RNN-FastText 90.84 95.20 92.97 94.96 90.40 92.62

Table 3: Average performance of the models per class trained on the ALG augmented data.

RNN (2) shows 8.18 point improvement in ac-
curacy. This result supports the hypothesis that
the poor performance of the model trained on the
non-augmented data is caused by the small size of
the sparse noisy data which makes it hard for the
char-RNN to learn useful patterns. Yet the signif-
icant improvement of the word-RNN (4) by 19.03
points, indicates that word-RNN suits better our
case.

Models with subtraction as a distance benefit
the most from the added data. Similar to their
behaviour on non-augmented data, adding pre-
trained embeddings slightly decreases the perfor-
mance of the model compared to not adding them.
Comparing embeddings, word2vec causes slightly
more drop in the performance of word-RNN com-
pared to FastText. Attention-based models benefit
also from the added data, but the gain is larger for
DecompAtten compared to ESIM.

Looking at the performance of the models for
each class shown in Table 3, it is clear that the
RNN models are doing quite well for both classes
whereas CNN and Attention-based models, not in-
cluded for space limits, are too biased to the non-
equivalent class. Figures in bold are meant to
highlight the gain due to pre-trained embeddings.

Error analysis of the word-RNN model (4)
shows that 7 equivalent sentence pairs are mis-
classified as non-equivalent and 28 non-equivalent
sentence pairs are misclassified as equivalent. We
manually checked the errors and found that most
of the non-equivalent pairs misclassified as equiv-
alent have at least one word in common as in ex-
ample (5) but the words have a different mean-
ing depending on their context. However, distin-
guishing between word senses is hard because the
context is not entirely sufficient. Example (6) is
an equivalent pair misclassified as non-equivalent.
The common pattern among the misclassified ex-
amples is that they have no exact words in overlap.
This could explain why attention-based encoders,
with some form of alignment, fail to generalise to

new instances. Probably there is a bias to the form
with one meaning when senses are not sufficiently
differentiated.
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b. I saw a weird thing.
It is weird that I did not see it.
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b. I am thinking when the grant will be re-
ceived.
I wonder when the grant will be paid.

4.2 Binary STS for MSA
We now evaluate the performance of the same
DNN configurations on parallel regularised MSA
data using the same hyper-parameters as in Sec-
tion 4.1. The results are reported in Table 2.

Non-augmented data Again, the word-RNN
with multiplication (3) performs the best with
an accuracy of 85.19%. The char-RNN (1)
with the same settings achieves an accuracy
of only 59.65%. Using subtraction, the char-
RNN (2) slightly outperforms the word-RNN (4),
with 69.02% and 68.90% accuracy respectively.
Adding FastText (6) and word2vec (5) pre-trained
embeddings causes the accuracy of the best word-
RNN (4) of 68.90% to decrease slightly to 68.06%
and 67.86% respectively. This could be due to the
embeddings not distinguishing between the differ-
ent senses of the same word, i.e., output one vec-
tor representation for each word form. Also the
large MSA corpus on which the embeddings were
trained can have different topical distribution than
the MSA STS data. As with the ALG data, CNN
(7) and attention-based encoders (8–9) behave the
same.

Augmented data Trained on augmented data,
models with subtraction yield the best perfor-
mance compared to multiplication, and word-
RNN (4) outperforms char-RNN (2) with 88.20%
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Equivalent Non-equivalent
Model Precision (%) Recall (%) F-score Precision (%) Recall (%) F-score

1 char-RNN-multp 69.86 61.20 65.25 65.48 73.60 69.30
2 char-RNN-subtr 76.35 62.25 68.58 67.92 80.57 73.70
3 word-RNN-multp 87.04 86.00 86.52 86.17 87.20 86.68
4 word-RNN-subtr 85.77 91.60 88.59 90.99 84.80 87.78
5 word-RNN-word2vec 87.17 92.77 89.88 92.21 86.23 89.12
6 word-RNN-FastText 86.97 91.16 89.02 90.64 86.23 88.38

Table 4: Average performance of the models per class trained on the MSA augmented data.

and 71.37% accuracy respectively. Unlike when
using the ALG data, pre-trained embeddings im-
prove slightly the performance of (4) with 0.37 (6)
and 1.26 (5) points gain in the error reduction re-
spectively. The positive effect of the pre-trained
models could be due to the fact that more regular-
ities are captured. Training on augmented MSA
data does not yield any significant gain over train-
ing on non-augmented data for CNN (7) and atten-
tion based models (8–9).

In Table 4 we report the performance of each
model per class. Due to space limits, we do not in-
clude the CNN and attention-based models which
are again struggling with the equivalent class and
are biased towards the non-equivalent class. The
gain from the pre-trained embedding is in bold.
The models perform almost the same for both
classes but slightly worse than with the ALG data.

Example (7) is a non-equivalent sentence pair
misclassified as equivalent, and example (8) is an
equivalent pair misclassified as non-equivalent by
the word-RNN model (5).

(7) a. �
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b. I also tried the cake and it was great, I
discovered that my kids finished it.
I tested her many times and she was jeal-
ous and envious.
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b. Wish they change this presenter.
Hope they will replace this presenter.

It is hard to explain why these examples are mis-
classified, except that there is not enough context
to discover the meaning of the words. For in-
stance, in (8) the words in bold “ �

éªK

	

YÓ” , “ �
é¢

�
�

	
�Ó”

are synonyms in these two sentences, and the two
sentences have two more word overlaps “ è

	
Yë” and

“ 	
àðQ�


	
ªK
” with the same meaning. This should help

classifying the two sentences as equivalent, but it
is not the case possibly because their contexts are
different.

5 Conclusion and Future Work
We have presented a new STS dataset for ALG
user-generated short texts and its MSA transla-
tion. We then described the neural network mod-
els trained end-to-end with different configura-
tions and compared their performances on a binary
STS task. The results show that relatively simple
model architectures, composed of two word-based
LSTM layers with subtraction as explicit similar-
ity measure used in the training task, suit better
our data compared to the other more sophisticated
architectures which might require more data to
achieve better performance.

We ran the same experiment on the MSA data,
but the results were not really different from the
ALG data. However, pre-training embeddings per-
formed better with MSA, probably because the
language is more regular and knowing some struc-
ture ahead helps. The performance improved with
more data for the minority class (equivalent sen-
tence pairs) for both ALG and MSA. However,
surprisingly the gain of some models with ALG
is greater than their gain with MSA. This is proba-
bly caused by the noisiness and the sparsity of the
data, the linguistic differences between MSA and
ALG, the data size, or all these factors together.
Further and deeper experiments and analyses are
needed for a better understanding of the results.

Overall, the results of the end-to-end training
are promising and could be generalised to other
related languages or language varieties with the
same under-resource settings. As a future work,
we want to explore ways to improve the learn-
ing capability of neural models from small noisy
datasets without handcrafted features, for example
by reducing the noise in the colloquial data (ALG)
by normalising spelling variation.
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