
Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), pages 27–32
Florence, Italy, August 2, 2019. c©2019 Association for Computational Linguistics

27

An Evaluation of Language-Agnostic Inner-Attention-Based
Representations in Machine Translation
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Abstract

In this paper, we explore a multilingual trans-
lation model with a cross-lingually shared
layer that can be used as fixed-size sentence
representation in different downstream tasks.
We systematically study the impact of the size
of the shared layer and the effect of including
additional languages in the model. In contrast
to related previous work, we demonstrate that
the performance in translation does correlate
with trainable downstream tasks. In particu-
lar, we show that larger intermediate layers not
only improve translation quality, especially for
long sentences, but also push the accuracy of
trainable classification tasks. On the other
hand, shorter representations lead to increased
compression that is beneficial in non-trainable
similarity tasks. We hypothesize that the train-
ing procedure on the downstream task enables
the model to identify the encoded information
that is useful for the specific task whereas non-
trainable benchmarks can be confused by other
types of information also encoded in the rep-
resentation of a sentence.

1 Introduction

Neural Machine Translation (NMT) has rapidly
become the new Machine Translation (MT)
paradigm, significantly improving over the tra-
ditional statistical machine translation procedure
(Bojar et al., 2018). Recently, several models and
variants have been proposed with increased re-
search efforts towards multilingual machine trans-
lation (Firat et al., 2016; Lakew et al., 2018; Wang
et al., 2018; Blackwood et al., 2018; Lu et al.,
2018). The main motivation of multilingual mod-
els is the effect of transfer learning that enables
machine translation systems to benefit from rela-
tionships between languages and training signals
that come from different datasets (Ha et al., 2016;
Johnson et al., 2017; Gu et al., 2018). Another as-
pect that draws interest in translation models is the

effective computation of sentence representations
using the translation task as an auxiliary seman-
tic signal (Hill et al., 2016; McCann et al., 2017;
Schwenk and Douze, 2017; Subramanian et al.,
2018). An important feature that enables an imme-
diate use of the MT-based representations in other
downstream tasks is the creation of fixed-sized
sentence embeddings (Cı́fka and Bojar, 2018).

However, the effects of the size of sentence em-
beddings and the relation between translation per-
formance and meaning representation quality are
not entirely clear. Recent studies based on NMT
either focus entirely on the use of MT-based sen-
tence embeddings in other tasks (Schwenk, 2018),
on translation quality (Lu et al., 2018), on speed
comparison (Britz et al., 2017), or only exploring
a bilingual scenario (Cı́fka and Bojar, 2018).

In this paper, we are interested in exploring
a cross-lingual intermediate shared layer (called
attention bridge) in an attentive encoder-decoder
MT model. This shared layer serves as a fixed-
size sentence representation that can be straight-
forwardly applied to downstream tasks. We ex-
amine this model with a systematic evaluation on
different sizes of the attention bridge and exten-
sive experiments to study the abstractions it learns
from multiple translation tasks. In contrast to pre-
vious work (Cı́fka and Bojar, 2018), we demon-
strate that there is a correlation between transla-
tion performance and trainable downstream tasks
when adjusting the size of the intermediate layer.
The trend is different for non-trainable tasks that
benefit from the increased compression that denser
representations achieve, which typically hurts the
translation performance because of the decreased
capacity of the model. We also show that multilin-
gual models improve trainable downstream tasks
even further, demonstrating the additional abstrac-
tion that is pushed into the representations through
additional translation tasks involved in training.
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Figure 1: Architecture of our multilingual NMT system: (left) the attention bridge connects the language-specific
encoders and decoders; (center) input x1 . . . xn is translated into the decoder states s1 . . . st via the encoder states
H = h1 . . . hn and the attention bridge m1 . . .mk; (right) Computation of the hidden representation matrix A,
needed to obtain the fixed-size attentive matrix M = AHT .

2 Architecture

Our architecture follows the standard setup of
an encoder-decoder model in machine translation
with a traditional attention mechanism (Luong
et al., 2015). However, we augment the network
with language specific encoders and decoders to
enable multilingual training as in Lu et al. (2018),
plus we introduce an inner-attention layer (Liu
et al., 2016; Lin et al., 2017) that summarizes the
encoder information in a fixed-size vector repre-
sentation that can easily be shared among differ-
ent translation tasks with the language-specific en-
coders and decoders connecting to it. The over-
all architecture is illustrated in Figure 1 (see also
Vázquez et al., 2019). Due to the attentive con-
nection between encoders and decoders we call
this layer attention bridge, and its architecture is
an adaptation from the model proposed by Cı́fka
and Bojar (2018). Finally, each decoder follows
a common attention mechanism in NMT, with the
only exception that the context vector is computed
on the attention bridge, and the initialization is
performed by a mean pooling over it. Hence, the
decoder receives the information only through the
shared attention bridge.

The fixed-sized representation coming out of
the shared layer can immediately be applied to
downstream tasks.1 However, selecting a reason-
able size of the attention bridge in terms of atten-
tion heads (mi in Figure 1) is crucial for the per-
formance both in a bilingual and multilingual sce-

1As in Lu et al. (2018), we note that the attention bridge
is independent of the underlying encoder and decoder. While
we use LSTM, it could be easily replaced with a transformer
type network (Vaswani et al., 2017) or with a CNN (Gehring
et al., 2017).

nario as we will see in the experiments below.

3 Experimental setup

All models are implemented using the OpenNMT
framework (Klein et al., 2017) trained using the
same set of hyper-parameters.2 We use embed-
ding layers of 512 dimensions, two stacked bidi-
rectional LSTM layers with 512 hidden units (256
per direction) and an attentive decoder composed
of two unidirectional LSTM layers with 512 units.
Regarding the attention bridge, we experimented
with four different configurations: 1, 10, 25 and 50
attention heads with 1024 hidden units each. For
multilingual models, we used a language-rotating
scheduler, in which each mini-batch contains sen-
tences from a different language pair, cycling
through all the language pairs uniformly. We se-
lected the best model according to the BLEU score
on the validation set. We train all the models using
the Europarl Corpus v7 (Koehn, 2005), focusing
on 4 languages: English (EN), French (FR), Ger-
man (DE) and Spanish (ES). First we train bilin-
gual models for EN→DE; then we train multilin-
gual models {DE,ES,FR}↔EN; lastly we train a
final Many-to-Many model using the biggest size,
i.e., 50 attention heads, involving all translation
directions between the three languages, i.e., we
also include DE–ES, DE–FR and ES–FR.

To evaluate the sentence representations we
utilize the SentEval toolkit (Conneau and Kiela,
2018) that combines various established down-
stream tasks for testing representations of English

2Our fork implementation is available at https:
//github.com/Helsinki-NLP/OpenNMT-py/
tree/att-brg.

https://github.com/Helsinki-NLP/OpenNMT-py/tree/att-brg
https://github.com/Helsinki-NLP/OpenNMT-py/tree/att-brg
https://github.com/Helsinki-NLP/OpenNMT-py/tree/att-brg


29

SNLI SICK-E AVG
en→de k=1 63.86 77.09 71.46
en→de k=10 65.30 78.77 72.02
en→de k=25 65.13 79.34 72.68
en→de k=50 65.30 79.36 72.60

Multilingual k=1 65.56 77.96 72.67
Multilingual k=10 67.01 79.48 72.89
Multilingual k=25 66.94 79.85 73.67
Multilingual k=50 67.38 80.54 73.39

Many-to-Many k=50 67.73 81.12 74.33
Most frequent baseline† 34.30 56.70 48.19
GloVe-BOW† 66.00 78.20 75.81
Cı́fka and Bojar (2018) en→cs† 69.30 80.80 73.40

Table 1: Accuracy of different models on two SentE-
val tasks as well as the overall average accuracy on all
of them. The general trend is that a higher number of
attention heads and multilingual models are beneficial.
Results with † taken from Cı́fka and Bojar (2018).

sentences.3 In order to obtain a sentence vector out
of multiple attention heads we apply mean pooling
over the attention bridge.

We are also interested in the translation quality
to verify the appropriateness of our models with
respect to the main objective they are trained for.
For this, we adopt the in-domain development and
evaluation dataset from the ACL-WMT07 shared
task. Sentences are encoded using Byte-Pair En-
coding (Sennrich et al., 2016), with 32,000 merge
operations for each language.

4 SentEval: Classification tasks

Table 1 shows the performance of our models on
two popular tasks (SNLI and SICK-E) as in Cı́fka
and Bojar (2018) as well as the average of all 10
SentEval downstream tasks. The experiments re-
veal two important findings:

(1) In contrast with the results from Cı́fka and
Bojar (2018), our scores demonstrate that an in-
creasing number of attention heads is beneficial
for classification-based downstream tasks. All
models perform best with more than one attention
head and the general trend is that the accuracies
improve with larger representations. The previ-
ous claim was that there is the opposite effect and
lower numbers of attention heads lead to higher
performances in downstream tasks, but we do not
see that effect in our setup, at least not in the clas-
sification tasks.

(2) The second outcome is the positive effect

3Due to the large number of SentEval tasks, we report
results on natural language inference (SNLI, SICK-E/SICK-
R) and the average of all tasks.

SICK-R STSB AVG

en→de k=1 0.74 / 0.67 0.69 / 0.69 0.57
en→de k=10 0.76 / 0.71 0.69 / 0.69 0.52
en→de k=25 0.78 / 0.73 0.67 / 0.66 0.49
en→de k=50 0.78 / 0.72 0.65 / 0.64 0.46

Multilingual k=1 0.76 / 0.71 0.69 / 0.68 0.50
Multilingual k=10 0.78 / 0.74 0.69 / 0.69 0.48
Multilingual k=25 0.78 / 0.74 0.68 / 0.67 0.43
Multilingual k=50 0.79 / 0.74 0.66 / 0.64 0.40

Many-to-Many k=50 0.79 / 0.74 0.69 / 0.68 0.40

InferSent† 0.88 / 0.83 0.76 / 0.75 0.66
GloVe-BOW† 0.80 / 0.72 0.64 / 0.62 0.53
Cı́fka and Bojar (2018) en→cs† 0.81 / 0.76 0.73 / 0.73 0.45

Table 2: Results from supervised similarity tasks
(SICK-R and STSB), measured using Pearson’s (r) and
Spearman’s (ρ) correlation coefficients (r/ρ). The av-
erage across unsupervised similarity tasks on Pearson’s
measures are displayed in the right-most column. Re-
sults with † taken from Cı́fka and Bojar (2018).

of multilingual training. We can see that multilin-
gual training objectives are generally helpful for
the trainable downstream tasks.

Particularly interesting is the fact that the Many-
to-Many model performs best on average even
though it does not add any further training exam-
ples for English (compared to the other multilin-
gual models), which is the target language of the
downstream tasks. This suggests that the model
is able to improve generalizations even from other
language pairs (DE–ES, FR–ES, FR–DE) that are
not directly involved in training the representa-
tions of English sentences.

Comparing against benchmarks, our results are
in line with competitive baselines (Arora et al.,
2017). While our aim is not to beat the state of
the art trained on different data, but rather to un-
derstand the impact of various sizes of attention
heads in a bi- and multilingual scenario, we argue
that a larger attention bridge and multilinguality
constitute a preferable starting point to learn more
meaningful sentence representations.

5 SentEval: Similarity tasks

Table 2 summarizes the results using Pearson’s
and Spearman’s coefficient on the two SentEval
supervised textual similarity tasks, SICK-R and
STSB, and the average Pearson’s measure on the
remaining unsupervised similarity tasks.

Two different trends become visible: i) On the
unsupervised textual similarity tasks, having fewer
attention heads is beneficial. Contrary to the re-
sults in the classification tasks, the best overall
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k=1 k=10 k=25 k=50 M-to-M att.
de 14.66 19.87 20.61 20.83 20.47 22.72

en es 21.82 27.55 28.41 28.13 27.6 30.28
fr 17.8 23.35 24.36 23.79 24.15 25.88

de 16.97 21.39 23.42 24 24.4 24.28
es en 18.38 25.39 27.01 27.12 26.98 28.16
fr 17.52 21.93 24.4 23.9 24.47 25.39

Table 3: BLEU scores for multilingual models. Base-
line system in the right-most column.

model is provided by a bilingual setting with only
one attention head. This is in line with the find-
ings of Cı́fka and Bojar (2018) and could also be
expected as the model is more strongly pushed
into a dense semantic abstraction that is beneficial
for measuring similarities without further training.
More surprising is the negative effect of the mul-
tilingual models. We believe that the multilin-
gual information encoded jointly in the attention
bridge hampers the results for the monolingual se-
mantic similarity measured with the cosine dis-
tance, while it becomes easier in a bilingual sce-
nario where the vector encodes only one source
language, English in this case.

ii) On the supervised textual similarity tasks, we
find a similar trend as in the previous section for
SICK: both a higher number of attention heads and
multilinguality contribute to better scores, while
for STSB, we notice a different pattern.

This general discrepancy between results in su-
pervised and unsupervised tasks is not new in the
literature (Hill et al., 2016). We hypothesize that
the training procedure is able to pick up the infor-
mation needed for the task, while in the unsuper-
vised case a more dense representation is essential.

6 Translation quality

Finally, we also look at the translation perfor-
mance of the multilingual models we have intro-
duced above compared with a baseline, an stan-
dard encoder-decoder model with attention (Lu-
ong et al., 2015). In this section, we verify that
the attention bridge model is stable and success-
fully learns to translate in the multilingual case.

Table 3 shows the comparison between the mul-
tilingual models. In general, we observe the same
trend as in the bilingual evaluation concerning the
size of the attention bridge. Namely, more at-
tention heads lead to a higher BLEU score. The
model with 50 heads achieves the best results
among our models. It obtains scores that range
in the same ballpark as the baseline, only in a few

Figure 2: The BLEU scores obtained by the multilin-
gual models and baseline system with respect to differ-
ent sentence length.

cases there is a degradation of few BLEU points.
Notably, we do not see any increase in translation
quality from the {DE,ES,FR}↔EN model to the
Many-to-Many model; the BLEU scores are statis-
tically equivalent for all six translation directions.

One of the main motivations for having more
attention heads lies in the better support of longer
sentences. To study the effect, we group sentences
of similar length and compute the BLEU score
for each group. As we can see from Figure 2 a
larger number of attention heads has, indeed, a
positive impact when translating longer sentences.
Interestingly enough, on sentences with up to 45
words, there is no real gap between the results of
the baseline model and our bridge models with a
high number of attention heads. It looks like the
performance drop of the attention bridge models
is entirely due to sentences longer than 45 words.

We hypothesize that this might be due to the
increasing syntactic divergences between the lan-
guages that have to be encoded. The shared self-
attention layer needs to learn to focus on different
parts of a sentence depending on the language it
reads and, with increasing lengths of a sentence,
this ability becomes harder and more difficult to
pick up from the data alone.

7 Conclusion

We have shown that fixed-size sentence represen-
tations can effectively be learned with multilin-
gual machine translation using a inner-attention
layer and scheduled training with multiple trans-
lation tasks. The performance of the model heav-
ily depends on the size of the intermediate repre-
sentation layer and we show that a higher num-
ber of attention heads leads to improved trans-
lation and stronger representations in supervised
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downstream tasks (contradicting earlier findings)
and multilinguality also helps in the same down-
stream tasks. Our analysis reveals that the at-
tention bridge model mainly suffers on long sen-
tences. The next steps will include a deeper lin-
guistic analysis of the translation model and the
extension to multilingual models with more lan-
guages with greater linguistic diversity.
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