
Proceedings of the 14th International Conference on Finite-State Methods and Natural Language Processing, pages 87–97
Dresden, Germany, September 23-25, 2019. c©2019 Association for Computational Linguistics

87

Distilling weighted finite automata from arbitrary probabilistic models

Ananda Theertha Suresh, Brian Roark, Michael Riley, Vlad Schogol
{ theertha, roark, riley, vlads }@google.com

Google Research

Abstract

Weighted finite automata (WFA) are often
used to represent probabilistic models, such as
n-gram language models, since they are effi-
cient for recognition tasks in time and space.
The probabilistic source to be represented as
a WFA, however, may come in many forms.
Given a generic probabilistic model over se-
quences, we propose an algorithm to approx-
imate it as a weighted finite automaton such
that the Kullback-Leibler divergence between
the source model and the WFA target model is
minimized. The proposed algorithm involves a
counting step and a difference of convex opti-
mization, both of which can be performed effi-
ciently. We demonstrate the usefulness of our
approach on some tasks including distilling n-
gram models from neural models.

1 Introduction

Given a sequence of symbols x1, x2, . . . , xn−1,
where symbols are drawn from the alphabet Σ, a
probabilistic model S assigns to the next symbol
xn ∈ Σ the conditional probability

ps[xn | xn−1 . . . x1].

Such a model might be Markovian, where

ps[xn | xn−1 . . . x1] = ps[xn | xn−1 . . . xn−k+1],

such as a k-gram language model (LM) (Chen and
Goodman, 1998) or it might be non-Markovian
such as a long short-term memory (LSTM) neu-
ral network language model (Sundermeyer et al.,
2012). Our goal is to approximate a probabilistic
model as a weighted finite automaton (WFA) such
that the weight assigned by the WFA is close to the
probability assigned by the source model. Specif-
ically, we will seek to minimize the Kullback-
Leibler (KL) divergence between the source S and
the target WFA model.

Representing the target model as a WFA has
many advantages including efficient use, compact

representation, interpretability, and composability.
WFA models have been used in many applications
including speech recognition (Mohri et al., 2008),
speech synthesis (Ebden and Sproat, 2015), opti-
cal character recognition (Breuel, 2008), machine
translation (Iglesias et al., 2011), computational
biology (Durbin et al., 1998), and image process-
ing (Albert and Kari, 2009). One particular prob-
lem of interest is language models for on-device
(virtual) keyboard decoding (Ouyang et al., 2017),
where WFA models are used due to space and time
constraints. However, storing the training data in
a centralized server and training k-gram or other
WFA models directly may not be feasible due to
privacy constraints (Hard et al., 2018). Alterna-
tively, an LSTM model can be trained by federated
learning (Konečnỳ et al., 2016; Hard et al., 2018),
then converted to a WFA at the server for fast on-
device inference. This not only may improve per-
formance, but also provide additional privacy.

We allow failure transitions (Aho and Corasick,
1975; Mohri, 1997) in the target WFA, which are
taken only when no immediate match is possible at
a given state, for compactness. For example, in the
WFA representation of a backoff k-gram model,
failure transitions can compactly implement the
backoff (Katz, 1987; Chen and Goodman, 1998;
Allauzen et al., 2003; Novak et al., 2013; Hellsten
et al., 2017). The inclusion of failure transitions
will complicate our analysis and algorithms but is
highly desirable in applications such as keyboard
decoding. Further, to avoid redundancy that leads
to inefficiency, we assume the target model is de-
terministic, which requires at each state there is at
most one transition labeled with a given symbol.

The approximation problem can be divided into
two steps: (1) select an unweighted automaton A
that will serve as the topology of the target automa-
ton and (2) weight the automaton A to form our
weighted approximation Â. The main goal of this
paper is the latter determination of the automaton’s

88

^

^aa ε

φ

aa
a _aφ a

_b
b

$

$

φ

abb

φ

a

b φ
$

φ

$

Figure 1: 3-gram topology example derived from the
corpus aab. States are labeled with the context that is
remembered, ∧ denotes the initial context, ε the empty
context, $ the final context (and terminates accepted
strings), and matches any symbol in a context. Fail-
ure transitions, labeled with ϕ, implement backoff from
histories xy to y to ε.

weighting in the approximation.
In some applications, the topology may be un-

known. In such cases, one choice is to build a k-
gram deterministic finite automaton (DFA) topol-
ogy from a corpus drawn from S (Allauzen et al.,
2003). This could be from an existing corpus
or from random samples drawn from S. Fig-
ure 1 shows a trigram topology for the very sim-
ple corpus aab. This representation makes use of
failure transitions. These allow modeling strings
unseen in the corpus (e.g., abab) in a compact
way by failing or backing-off to states that corre-
spond to lower-order histories. Such models can
be made more elaborate if some transitions rep-
resent classes, such as names or numbers, that are
themselves represented by sub-automata. As men-
tioned previously, we will mostly assume we have
a topology either pre-specified or inferred by some
means and focus on how to weight that topology
to best approximate the source distribution.

In previous work, there have been various ap-
proaches for estimating weighted automata. Meth-
ods include state merging and weight estima-
tion from a prefix tree data representation (Car-
rasco and Oncina, 1994, 1999), the EM algorithm
(Dempster et al., 1977) applied to fully connected
HMMs or specific topologies (Eisner, 2001) and
spectral methods applied to automata (Balle and
Mohri, 2012; Balle et al., 2014). For approximat-
ing neural network (NN) models as WFAs, meth-
ods have been proposed to build n-gram models
from RNN samples (Deoras et al., 2011), from
DNNs trained at different orders (Arisoy et al.,
2014; Adel et al., 2014), and from RNNs with
quantized hidden states (Tiño and Vojtek, 1997;
Lecorvé and Motlicek, 2012).

Our paper is distinguished in several respects

from previous work. First, our general approach
does not depend on the form the source distribu-
tion. Second, our targets are a wide class of deter-
ministic automata with failure transitions. Third,
we search for the minimal KL divergence between
the source and target distributions, given a fixed
target topology.

We remark that if the source probabilistic model
is represented as a WFA, our approximation will
in general give a different solution than forming
the finite-state intersection with the topology and
weight-pushing to normalize the result (Mohri,
2009; Mohri et al., 2008). Our approximation has
the same states as the topology whereas a weight-
pushed intersection could have many more states
and and is not an approximation, but an exact rep-
resentation, of the source distribution.

Before presenting and validating algorithms for
a minimum KL divergence approximation when
either the source itself is finite-state or not (in
which case sampling is involved), we next present
the theoretical formulation of the problem and the
minimum KL divergence approximation.

2 Theoretical analysis

2.1 Probabilistic models

Let Σ be a finite alphabet. Let xni ∈ Σ∗ denote the
string xixi+1 . . . xn and xn , xn1 . A probabilistic
model p over Σ is a probabilistic distribution over
the next symbol xn, given the previous symbols
xn−1, such that1∑

x∈Σ

p(xn = x|xn−1) = 1 ∧

∀x ∈ Σ, p(xn = x|xn−1) ≥ 0.

Without loss of generality, we assume that the
model maintains an internal state q and updates
it after observing the next symbol.2 Furthermore,
the probability of the subsequent state just depends
on the state q

p(xni+1|xi) = p(xni+1|q(xi)),

for all i, n, xi, xni+1, where q(xi) is the state the
model has reached after observing sequence xi.
Let Q(p) be the set of possible states. Let the lan-
guage L(p) ⊆ Σ∗ defined by the distribution p be

1We define x0 , ε, the empty string, and adopt p(ε) = 0.
2In the most general case, q(xn) = xn.

89

L(p) , {xn ∈ Σ∗ : p(xn) > 0,

xn = $ ∧ xi 6= $, i < n}. (1)

The symbol $ is used as a stopping criterion. Fur-
ther for all xn ∈ Σ∗, p(xn|xn−1 : xn−1 = $) = 0.

The KL divergence between two models ps and
pa is given by

D(ps||pa) =
∑
xn

ps(x
n) log

ps(x
n)

pa(xn)
, (2)

where for notational simplicity, we adopt the no-
tion 0/0 = 1 and 0 log(0/0) = 0 throughout the
paper. Note that for the KL divergence to be fi-
nite, we need L(ps) ⊆ L(pa). We first reduce
the KL divergence between two models as follows
(cf. Carrasco, 1997; Cortes et al., 2008). In the fol-
lowing, let q∗ denote the states of the probability
distribution p∗.

Lemma 1. If L(ps) ⊆ L(pa), then

D(ps||pa) =
∑
qa∈Qa

∑
x∈Σ

c(x, qa) log
ps(x|qs)
pa(x|qa)

(3)

where c(x, qa) is given by

∑
qs∈Qs

∞∑
i=0

∑
xi:qs(xi)=qs,qa(xi)=qa

ps(x
i) ps(x|qs) (4)

and does not depend on pa.

Proof is omitted due to space limitations.

2.2 Weighted finite automata
A weighted finite automaton A = (Σ, Q,E, i, f)
over R+ is given by a finite alphabet Σ, a finite set
of statesQ, a finite set of transitionsE ⊆ Q×Σ×
R+ × Q, an initial state i ∈ Q and a final state
f ∈ Q. A transition e = (p[e], `[e], w[e], n[e]) ∈
E represents a move from the source or previous
state p[e] to the destination or next state n[e] with
the label `[e] and weightw[e]. The transitions with
source state q are denoted by E[q] and the labels
of those transitions as L[q].

A deterministic WFA has at most one transi-
tion with a given label leaving each state. An un-
weighted (finite) automaton is a WFA that satisfies
w[e] = 1,∀e ∈ E. A probabilistic (or stochastic)
WFA satisfies∑
e∈E[q]

w[e] = 1 and w[e] ≥ 0, ∀q ∈ Q− {f}.

Transitions e1 and e2 are consecutive if n[ei] =
p[ei+1]. A path π = e1 · · · en ∈ E∗ is a finite
sequence of consecutive transitions, the source
and destination states of which we denote by p[π]
and n[π], respectively. The label of a path is
the concatenation of its transition labels `[π] =
`[e1] · · · `[en]. The weight of a path is obtained by
multiplying its transition weights w[π] = w[e1]×
· · · ×w[en]. For a non-empty path, the i-th transi-
tion is denoted by πi.
P (q, q′) denotes the set of all paths in A from

state q to q′. We extend this to sets in the obvi-
ous way: P (q,R) denotes the set of all paths from
state q to q′ ∈ R and so forth. A path π is success-
ful if it is in P (i, f) and in that case the automaton
is said to accept the input string α = `[π].

The language accepted by an automaton A is
the regular set L(A) = {α ∈ Σ∗ : α = `[π], π ∈
P (i, f)}. The weight of α ∈ L(A) assigned by
the automaton is A(α) = Σπ∈P (i,f): `[π]=αw[π].
Similar to Equation 1, we assume a symbol $ ∈ Σ
such that

L(A) ⊆ {xn ∈ Σ∗ : xn = $ and xi 6= $, i < n}.

Thus all successful paths are terminated by the
symbol $.

For a symbol x ∈ Σ and a state q ∈ Q of a
deterministic, probabilistic WFA A, define a dis-
tribution pa(x|q) , w if (q, x, w, q′) ∈ E and
pa(x|q) , 0 otherwise. Then pa is a probabilis-
tic model over Σ as defined in the previous sec-
tion. If A = (Σ, Q,E, i, f) is an unweighted de-
terministic automaton, we denote by P(A) the set
of all probabilistic models pa representable as a
weighted WFA Â = (Σ, Q, Ê, i, f) with the same
topology as A where Ê = {(q, x, pa(x|q), q′) :
(q, x, 1, q′) ∈ E}.

2.3 Weighted finite automata with failure
transitions

A weighted finite automaton with failure transi-
tions (ϕ-WFA) A = (Σ, Q,E, i, f) is a WFA ex-
tended to allow a transition to have a special fail-
ure label denoted byϕ. ThenE ⊆ Q×(Σ∪{ϕ})×
R+ ×Q.

A ϕ transition does not add to a path label;
it consumes no input. However it is followed
only when the input can not be read immediately.
Specifically, a path e1 · · · en in a ϕ-WFA is dis-
allowed if it contains a subpath ei · · · ej such that
`[ek] = ϕ for all k, i ≤ k < j, and there is an-
other transition e ∈ E such that p[ei] = p[e] and

90

qi

qx/ω

qi+1

φ/ωi

qj
φ/ωi+1...φ/ωj-1 qj+1

x/ωj

Figure 2: The (dashed red) path ei = (qi, ϕ, ωi, qi+1)
to ej = (qj , x, ωj , qj+1) is disallowed since x can be
read already on e = (qi, x, ω, q).

`[ej] = `[e] ∈ Σ (see Figure 2). Since the label
x = l[ej] can be read on e, we do not follow the
failure transitions to read it on ej as well.

We use P ∗(q, q′) ⊆ P (q, q′) to denote the set
of (not dis-) allowed paths from state q to q′ in a
ϕ-WFA. This again extends to sets in the obvious
way. A path π is successful in a ϕ-WFA if π ∈
P ∗(i, F) and only in that case is the input string
α = `[π] accepted.

The language accepted by the ϕ-automatonA is
the regular set L(A) = {α ∈ Σ∗ : α = `[π], π ∈
P ∗(i, f)}. The weight of α ∈ Σ∗ assigned by the
automaton is A(α) = Σπ∈P ∗(i,f): `[π]=αw[π]. We
assume each string in L(A) is terminated by the
symbol $ as before. We also assume there are no
ϕ-labeled cycles and there is at most one exiting
failure transition per state.

We express the ϕ-extended transitions leaving q
as

E∗[q] =
{

(q, x, ω, q′) : π ∈ P ∗(q,Q), ω = w[π],

x = `[π] = `[π|π|] ∈ Σ, q′ = n[π]
}
.

This is a set of (possibly new) transitions
(q, x, ω, q′), one for each allowed path from
source state q to destination state q′ with optional
leading failure transitions and a final x-labeled
transition. Denote the labels of E∗[q] by L∗[q].

A probabilistic (or stochastic) ϕ-WFA satisfies∑
e∈E∗[q]

w[e] = 1 and w[e] ≥ 0, ∀q ∈ Q− {f}.

A deterministic ϕ-WFA is backoff-complete if a
failure transition from state q to q′ implies L[q] ∩
Σ ⊆ L[q′] ∩ Σ. Further, if ϕ /∈ L[q′], then the
containment is strict: L[q] ∩ Σ ⊂ L[q′] ∩ Σ. In
other words, if a symbol can be read immediately
from a state q it can also be read from a state fail-
ing (backing-off) from q and if q′ does not have a
backoff arc, then at least one additional label can
be read from q′ that cannot be read from q. For ex-
ample, the topology depicted in Figure 1 has this

property. We restrict our target automata to have a
topology with the backoff-complete property since
it will simplify our analysis, make our algorithms
efficient and is commonly found in applications.

For a symbol x ∈ Σ and a state q ∈ Q
of a deterministic, probabilistic ϕ-WFA A, de-
fine p∗a(x|q) , w if (q, x, w, q′) ∈ E∗[q] and
p∗a(x|q) , 0 otherwise. Then p∗a is a proba-
bilistic model over Σ as defined in Section 2.1.
Note the distribution p∗a at a state q is defined
over the ϕ−extended transitions E∗[q] where pa
in the previous section is defined over the transi-
tions E[q]. It is convenient to define a companion
distribution pa ∈ P (A) to p∗a as follows:3 given
a symbol x ∈ Σ ∪ {ϕ} and state q ∈ Q, define
pa(x|q) , p∗a(x|q) when x ∈ L[q]∩Σ, pa(ϕ|q) ,
1 −

∑
x∈L[q]∩Σ p

∗
a(x|q), and pa(x|q) , 0 other-

wise. The companion distribution is thus defined
solely over the transitions E[q].

When A = (Σ, Q,E, i, f) is an unweighted
deterministic, backoff-complete ϕ-WFA, we de-
note by P∗(A) the set of all probabilistic mod-
els p∗a representable as a weighted ϕ-WFA Â =
(Σ, Q, Ê, i, f) of same topology as A with

Ê ={(q, x, pa(x|q), q′) : (q, x, 1, q′) ∈ E, x ∈ Σ}
∪ {(q, ϕ, α(q, q′), q′) : (q, ϕ, 1, q′) ∈ E}

where pa ∈ P (A) is the companion distribution to
p∗a and α(q, q′) = pa(ϕ|q)/d(q, q′) is the weight
of the failure transition from state q to q′ with

d(q, q′) = 1−
∑

x∈L[q]∩Σ

pa(x|q′). (5)

Note we have specified the weights on the automa-
ton that represents p∗a ∈ P ∗(A) entirely in terms
of the companion distribution pa ∈ P (A), thanks
to the backoff-complete property.

Conversely, each distribution pa ∈ P(A) can
be associated to a distribution p∗a ∈ P∗(A) given
a deterministic, backoff-complete ϕ-WFAA. First
extend α(q, q′) to any failure path as follows. De-
note a failure path from state q to q′ by πϕ(q, q′).
Then define

α(q, q′) =
∏

e∈πϕ(q,q′)

pa(ϕ|p[e])
d(p[e], n[e])

(6)

where this quantity is taken to be 1 when the fail-

3The meaning of P (A) whenA is a ϕ-WFA is to interpret
it as a WFA with the failure labels as regular symbols.

91

ure path is empty (q = q′). Finally define

p∗a(x|q) =

{
α(q, qx)pa(x|qx), x ∈ L∗[q]
0, otherwise

(7)
where for x ∈ L∗[q], qx signifies the first state q′

on a ϕ-labeled path in A from state q for which
x ∈ L[q′].

For (6) to be well-defined, we need
d(p[e], n[e]) > 0. To ensure this condition,
we restrict P(A) to contain distributions such
that pa(x|q) ≥ ε for each x ∈ L[q].4

Given an unweighted deterministic, backoff-
complete, automaton A, our goal is to find the tar-
get distribution p∗a ∈ P∗(A) that has the mini-
mum KL divergence from our source probability
model ps. We can restate our goal in terms of the
companion distribution pa ∈ P(A). Let Bn(q)
be the set of states in A that back-off to state q in
n failure transitions and let B(q) =

⋃|Qa|
n=0Bn(q).

Lemma 2. If L(ps) ⊆ L(A) then

argmin
p∗a∈P∗(A)

D(ps||p∗a) = (8)

argmax
pa∈P(A)

∑
q∈Qa

{ ∑
x∈L[q]

C(x, q) log pa(x|q)

−
∑

q0∈B1(q)

C(ϕ, q0) log d(q0, q)

}
,

where

C(x, q) =
∑

qa∈B(q)

c(x, qa)1q=qxa , x ∈ Σ (9)

C(ϕ, q) =
∑

qa∈B(q)

∑
x∈Σ

c(x, qa)1x/∈L[q] (10)

and do not depend on pa.

Proof is omitted due to space limitations.
The quantity in braces in the statement of

Lemma 2 depends on the distribution pa only at
state q so the minimum KL divergence D(ps||p∗a)
can be found by maximizing that quantity inde-
pendently for each state.

3 Algorithms

Approximating a probabilistic source algorith-
mically as a weighted finite automaton requires
two steps: (1) compute the quantity C(x, q) in
Lemma 2 and (2) use this quantity to find the

4For brevity, we do not include ε in the notation of P(A).

minimum KL divergence solution. The first step,
which we will refer to as counting, is covered in
the next section and the KL divergence minimiza-
tion step is covered afterwards.

3.1 Counting
How the counts are computed will depend on the
source model form. We divide this into two cases.

3.1.1 ϕ-WFA source and target
When the source and target models are represented
as ϕ-WFAs we compute C(x, qa) from Lemma 2.
From Equation 9 this can be written as

C(x, q) =
∑

qa∈B(q)

∑
qs∈Qs

γ(qs, qa)ps(x|qs)1q=qxa

(11)
with x ∈ Σ and

γ(qs, qa) =
∞∑
i=0

∑
xi

ps(x
i : qs(x

i)=qs, qa(x
i)=qa).

The quantity γ(qs, qa) can be computed as

γ(qs, qa) =
∑

π∈P ∗S∩A((is,ia),(qs,qa))

w[π]

where S ∩ A is the weighted intersection of au-
tomata S and A formed using an efficient ϕ-WFA
intersection that compactly retains failure transi-
tions in the result, as described in Allauzen and
Riley (2018). The quantity γ(qs, qa) is the (gen-
eralized) shortest distance from the initial state
to a specified state computed over the positive
real semiring (Mohri, 2002; Allauzen and Riley,
2018). Equation 11 is the weighted count of the
paths in S ∩ A allowed by the failure transitions
that begin at the initial state and end in any transi-
tion leaving a state (qs, q) labeled with x.

This computation can be simplified by the fol-
lowing transformation. First we convert S ∩ A to
an equivalent WFA by replacing each failure tran-
sition with an epsilon transition and introducing a
negatively-weighted transition to compensate for
formerly disallowed paths (Allauzen and Riley,
2018). The result is then promoted to a transducer
T with the output label used to keep track of the
source state inA of the compensated positive tran-
sition (see Figure 3).5

5The construction illustrated in Figure 3 is sufficient when
S ∩ A is acyclic. In the cyclic case a slightly modified con-
struction is needed to ensure convergence in the shortest dis-
tance calculation (Allauzen and Riley, 2018).

92

S ∩A

(qs,qa)

x/ω

(qs',qa')

φ/α

x/ν

T

(qs,qa)

x:qa/ω

(qs',qa')ε:-/α

x:qa'/-α ν

x:qa'/ν

Figure 3: A ϕ-WFA is transformed into an equiva-
lent WFA by replacing each failure transition by an ε-
transition. To compensate for the formerly disallowed
paths, new (dashed red) negatively-weighted transi-
tions are added. The result is promoted to a transducer
T with the output label used to keep track of the source
state in A of the compensated positive transition.

Then, for x ∈ Σ,

C(x, q) =
∑

((qs,qa),x,q,w,(q′s,q
′
a))∈ET

γT (qs, qa)w

(12)
where e = (p[e], il[e], ol[e], w[e], n[e]) is a tran-
sition in T and γT (qs, q) is the shortest distance
from the initial state to (qs, qa) in T computed over
the real semiring as described in Allauzen and Ri-
ley (2018). Equation 12 is the weighted count of
all paths in S ∩A that begin at the initial state and
end in any transition leaving a state (qs, q) labeled
with x minus the weighted count of those paths
that are disallowed by the failure transitions.

Finally, we compute C(ϕ, q) as follows. The
count mass entering a state must equal the count
mass leaving a state∑

(qa,x,1,q)∈A

C(x, q) =
∑

(q,x′,1,qa)∈A

C(x′, q).

Thus

C(ϕ, q) =
∑

(qa,x,1,q)∈A

C(x, q)−
∑

(q,x′,1,qa)∈A,
x′∈Σ

C(x′, q).

This quantity can be computed iteratively in the
topological order of states with respect to the ϕ-
labeled transitions.

3.1.2 Arbitrary source and ϕ-WFA target
In some cases, the source is a distribution with
possibly infinite states, e.g., LSTMs. For these
sources, computing C(x, q) can be computa-
tionally intractable as (11) requires a summa-
tion over all possible states in the source ma-
chine, Qs. We propose to use a sampling ap-
proach to approximate C(x, q) for these cases.
Let x(1), x(2), . . . , x(m) be independent random
samples from ps. Instead of C(x, q), we propose
to use

Ĉ(x, q) =
∑

qa∈B(q)

∑
qs∈Qs

γ̂(qs, qa)ps(x|qs)1q=qxa

with x ∈ Σ and where

γ̂(qs, qa) =
1

m

m∑
j=1

∑
i≥0

1qs(xi(j))=qs,qa(xi(j))=qa .

Observe that the expectation E[γ̂(qs, qa)] is given
by

1

m

m∑
j=1

∑
i≥0

E[1qs(xi(j))=qs,qa(xi(j))=qa]

=
∑
i≥0

ps(x
i : qs(x

i) = qs, qa(x
i) = qa),

hence γ̂(qs, qa) is an unbiased, asymptotically
consistent estimator of γ(qs, qa). Given Ĉ(x, q),
we compute C(ϕ, q) similarly to the previous sec-
tion.

3.2 KL divergence minimization

As noted before, the quantity in braces in the state-
ment of Lemma 2 depends on the distribution pa
only at state q so the minimum KL divergence
D(ps||p∗a) can be found by maximizing that quan-
tity independently for each state.

Fix a state q and let yx , pa(x|q) for x ∈ L[q]
and let y , [yx]x∈L[q]

6. Then our goal reduces to

argmax
y

∑
x∈L[q]

C(x, q) log yx− (13)

∑
q0∈B1(q)

C(ϕ, q0) log
(
1−

∑
x∈L[q0]∩Σ

yx
)

subject to the constraints yx ≥ ε for x ∈ L[q] and∑
x∈L[q] yx = 1.

6We fix some total order on Σ ∪ {ϕ} so that y is well-
defined.

93

Algorithm KL-MINIMIZATION
Notation:
• yx = pa(x|q) for x ∈ L(q) • lb = maxx∈L[q] f(x, q,yn) + C(x, q)
• C(x, q) from Equations 9 and 10 • ub = maxx∈L[q] f(x, q,yn) + C(q)
• C(q) =

∑
x′∈L[q] C(x′, q) • k = |L[q]|

• f(x, q,yn) from Equation 15 • ε = lower bound on yx

Trivial case: If C(q) = 0, output y given by yx = 1/k for all x.
Initialization: Initialize:

y0x =
C(x, q)

C(q)
(1− kε) + ε.

Iteration: Until convergence do:
yn+1
x = max

(
C(x, q)

λ− f(x, q,yn)
, ε

)
,

where λ ∈ [lb, ub] is chosen (in a binary search) to ensure
∑

x∈L(q) yx = 1.

Figure 4: KL-MINIMIZATION Algorithm

This is a difference of two concave functions in
y since log(f(y)) is concave for any linear func-
tion f(y), the C(x, q) are always non-negative
and the sum of concave functions is also concave.
We give a DC programming solution to this opti-
mization (Horst and Thoai, 1999). Let

Ω = {y : ∀x, yx ≥ ε,
∑
x∈L(q)

yx ≤ 1},

be the function domain. The DC programming
solution for such a problem uses an iterative pro-
cedure that linearizes the subtrahend in the con-
cave difference about the current estimate and then
solves the resulting concave objective for the next
estimate. Using this procedure on Equation 13
gives yn+1 as

argmax
y∈Ω

∑
x∈L[q]

{
C(x, q) log yx + yxf(x, q,yn)

}
(14)

where

f(x, q,yn) =
∑

q0∈B1(q)

C(ϕ, q0)1x∈L[q0]∩Σ

1−
∑

x′∈L[q0]∩Σ y
n
x′
. (15)

Observe that 1−
∑

x′∈L[q0]∩Σ y
n
x′ ≥ ε as the au-

tomaton is backoff-complete and yn ∈ Ω.
Let C(q) be defined as:

C(q) =
∑

x′∈L[q]

C(x′, q)

The following lemma provides the solution to
the optimization problem in (14) which leads to a
stationary point of the objective.

Lemma 3. Solution to (14) given by

yn+1
x = max

(
C(x, q)

λ− f(x, q,yn)
, ε

)
, (16)

where λ is chosen so that
∑

x y
n
x = 1 and lies in

[
max
x∈L[q]

f(x, q,yn) + C(x, q), max
x∈L[q]

f(x, q,yn) + C(q)

]
.

Proof is omitted due to space limitations.
From this, we form the KL-MINIMIZATION al-

gorithm in Figure 4. Observe that if all the counts
are zero, then any solution is an optimal solution
and the algorithm returns a uniform distribution
over labels. In other cases, we initialize the model
based on counts such that y0 ∈ Ω. We then repeat
the DC programming algorithm iteratively until
convergence. Since Ω is a convex compact set
and both the functions are continuous and differ-
entiable in Ω, the KL-MINIMIZATION converges
to a stationary point (Sriperumbudur and Lanck-
riet, 2009, Theorem 4).

4 Experiments

We now provide experimental evidence of the the-
ory’s validity and show its usefulness in various
applications. For the ease of notation, we use
WFA-APPROX to denote the exact counting al-
gorithm described in Section 3.1.1 followed by
the KL-MINIMIZATION algorithm of Section 3.2.
Similarly, we use WFA-SAMPLEAPPROX(N) to
denote the sampled counting described in Section
3.1.2 with N sampled sentences followed by KL-
MINIMIZATION.

94

We first give experimental evidence that sup-
ports the theory in Section 4.1. We then show how
to approximate neural models as WFAs in Sec-
tion 4.2. We also use the proposed method to pro-
vide lower bounds on the perplexity given a target
topology in Section 4.3.

For all the experiments we use the 1996 CSR
Hub4 Language Model data, LDC98T31 from the
Broadcast News (BN) task. We use the processed
form of the corpus and further process it to down-
case all the words and remove punctuation. The
resulting dataset has 132M words in the train-
ing set, 20M words in the test set, and has 240K
unique words. From this, we create a vocabu-
lary of approximately 32K words consisting of all
words that appeared more than 50 times in the
training corpus. Using this vocabulary, we create
a trigram Katz model and prune it to contain 2M
n-grams using entropy pruning (Stolcke, 2000),
which we use as a baseline in all our experiments.
We use Katz smoothing since it is amenable to
pruning (Chelba et al., 2010). The perplexity of
this model on the test set is 144.4.7 All algo-
rithms were implemented using the open-source
OpenFst and OpenGrm n-gram and stochas-
tic automata (SFst) libraries8 with the last li-
brary including these implementations (Allauzen
et al., 2007; Roark et al., 2012; Allauzen and Ri-
ley, 2018).

4.1 Empirical evidence of theory

Recall that our goal is to find the distribution on
a target DFA topology that minimizes the KL di-
vergence to the source distribution. However, as
shown in Section 3.2, when the target topology
has failure transitions, the optimization objective
is not convex so the stationary point solution may
not be the global optimum. We now show that the
model indeed converges to a good solution in var-
ious cases empirically.
Idempotency: When the target topology is the
same as the source topology, we show that the
performance of the approximated model matches
the source model. Let ps be the pruned Katz
word model described above. We approximate

7For all perplexity measurements we treat the unknown
word as a single token instead of a class. To compute the per-
plexity with the unknown token being treated as class, multi-
ply the perplexity by k0.0115, where k is the number of tokens
in the unknown class and 0.0115 is the out of vocabulary rate
in the test dataset.

8These libraries are available at www.openfst.org
and www.opengrm.org

●

●

●
● ● ● ●

5e+05 1e+06 2e+06 5e+06 1e+07 2e+07

14
0

14
5

15
0

15
5

16
0

16
5

of samples (N)

te
st

 p
er

pl
ex

ity ●

Katz: baseline
Katz: WFA−Approx
Katz: WFA−SampleApprox(N)
LSTM: WFA−SampleKatz(N)
LSTM: WFA−SampleApprox(N)

Figure 5: Test set perplexity for Katz baseline and var-
ious approximations of that baseline and of an LSTM
model trained on the same data. Note that the Katz
baseline and Katz WFA-Approx plots are identical.

ps onto the same topology using WFA-APPROX

and WFA-SAMPLEAPPROX(·) and then compute
perplexity on the test corpus. The results are
presented in Figure 5. The test perplexity of
the WFA-APPROX model matches that of the
source model and the performance of the WFA-
SAMPLEAPPROX(N) model approaches that of
the source model as the number of samples N in-
creases.
Comparison to greedy pruning: Recall that en-
tropy pruning (Stolcke, 2000) greedily removes n-
grams such that the KL divergence to the origi-
nal model ps is small. Let pgreedy be the resulting
model andAgreedy be the topology of pgreedy. If the
KL-MINIMIZATION converges to a good solution,
then approximating ps onto Agreedy would give a
model that is at least as good as pgreedy. We show
that this is indeed the case; in fact, approximating
ps ontoAgreedy performs better than pgreedy. In par-
ticular, let ps again be the 2M n-gram Katz model
described above. We prune it to have 1M n-grams
and obtain pgreedy, which has a test perplexity of
157.4. We then approximate ps on Agreedy and
the resulting model has test perplexity of 155.6,
which is smaller than the test perplexity of pgreedy.
This shows that the approximation algorithm in-
deed finds a good solution.

4.2 Neural models to WFA conversion

Since neural models such as LSTMs give im-
proved performance over n-gram models, we in-
vestigated if an LSTM distilled onto a WFA model
can obtain better performance than the baseline
WFA trained directly from Katz smoothing. As
stated in the introduction, this could then be used
together with federated learning for fast and pri-

95

vate on-device inference.
To explore this, we trained an LSTM language

model on the training data. The model has 2
LSTM layers with 1024 states and embedding size
of 1024. The resulting model has a test perplexity
of 60.5. We approximate this model as an WFA in
two ways from samples drawn from the LSTM.

The first way is to construct a Katz n-
gram model on N LSTM samples and entropy-
prune to 2M n-grams, which we denote by
WFA-SAMPLEKATZ(N). The second way is
is to approximate onto the baseline Katz 2M
n-gram topology described above using WFA-
SAMPLEAPPROX(N). The results are in-
cluded in Figure 5. It shows that the WFA-
SAMPLEKATZ(N) model performs significantly
worse than the baseline Katz model even at 32M
samples, while the WFA-SAMPLEAPPROX(N)
models have better perplexity than the baseline
Katz model with as little as 1M samples. With
32M samples this way of approximating the
LSTM model as a WFA is 3.6 better in perplex-
ity than the baseline Katz.

4.3 Lower bounds on perplexity
The neural model in Section 4.2 has a perplexity of
60.5, but the best perplexity for the approximated
model is 140.8. Is there a better approximation
algorithm for the given target topology? We place
bounds on that next, in our final experiment.

Let T be the set of test sentences. The test-set
log-perplexity of a model p can be written as

1

|T |
∑
x∗∈T

log
1

p(x∗)
=
∑
x∗

p̂t(x
∗) log

1

p(x∗)
,

where p̂t is the empirical distribution of test sen-
tences. Observe that the best model with topology
A can be computed as

p′a = argmin
pa∈P(A)

∑
x∗

p̂t(x
∗) log

1

pa(x∗)
,

which is the model with topology A that has min-
imal KL divergence from the test distribution p̂t.
This can be computed using WFA-APPROX . If
we use this approach on the BN test set with the
2M n-gram Katz model, the result has a perplex-
ity of 121.1. This demonstrates that, under the as-
sumption that the algorithm finds the global KL
divergence minimum, the test perplexity with this
topology cannot be improved beyond 121.1, irre-
spective of the method.

What if we approximate the LSTM onto the best
trigram topology? To test this, we build a tri-
gram model from the test data and approximate
the LSTM on the trigram topology. This approxi-
mated model has 11M n-grams and a perplexity of
81. This shows that for large datasets, the shortfall
of n-gram models in the approximation is in the
n-gram topology.

5 Summary

In this paper, we have presented an algorithm for
minimizing the KL-divergence between a proba-
bilistic source model over sequences and a WFA
target model. Our algorithm is general enough
to permit source models of arbitrary form (e.g.,
RNNs) and a wide class of target WFA models,
importantly including those with failure transi-
tions, such as n-gram models. We provide some
experimental validation of our algorithm, includ-
ing demonstrating that it is well-behaved in com-
mon scenarios and that it yields improved per-
formance over baseline n-gram models using the
same WFA topology. Additionally, we use our
methods to provide lower bounds on how well a
given WFA topology can model a given test set.
All of the algorithms reported here are available
in the open-source OpenGrm libraries at http:

//www.opengrm.org.
In addition to the above-mentioned results, we

also demonstrated that optimizing the WFA topol-
ogy for the given test set yields far better perplexi-
ties than were obtained using WFA topologies de-
rived from training data alone, suggesting that the
problem of deriving an appropriate WFA topology
– something we do not really touch on in this paper
– is particularly important.

References

Heike Adel, Katrin Kirchhoff, Ngoc Thang Vu, Do-
minic Telaar, and Tanja Schultz. 2014. Compar-
ing approaches to convert recurrent neural networks
into backoff language models for efficient decoding.
In Fifteenth Annual Conference of the International
Speech Communication Association.

Alfred V. Aho and Margaret J. Corasick. 1975. Effi-
cient string matching: an aid to bibliographic search.
Communications of the ACM, 18(6):333–340.

Jürgen Albert and Jarkko Kari. 2009. Digital image
compression. In Handbook of weighted automata.
Springer.

http://www.opengrm.org
http://www.opengrm.org

96

Cyril Allauzen, Mehryar Mohri, and Brian Roark.
2003. Generalized algorithms for constructing lan-
guage models. In Proceedings of ACL, pages 40–47.

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wo-
jciech Skut, and Mehryar Mohri. 2007. OpenFst Li-
brary. http://www.openfst.org.

Cyril Allauzen and Michael D. Riley. 2018. Algo-
rithms for weighted finite automata with failure tran-
sitions. In International Conference on Implemen-
tation and Application of Automata, pages 46–58.
Springer.

Ebru Arisoy, Stanley F. Chen, Bhuvana Ramabhadran,
and Abhinav Sethy. 2014. Converting neural net-
work language models into back-off language mod-
els for efficient decoding in automatic speech recog-
nition. IEEE/ACM Transactions on Audio, Speech
and Language Processing (TASLP), 22(1):184–192.

Borja Balle, Xavier Carreras, Franco M. Luque, and
Ariadna Quattoni. 2014. Spectral learning of
weighted automata. Machine learning, 96(1-2):33–
63.

Borja Balle and Mehryar Mohri. 2012. Spectral learn-
ing of general weighted automata via constrained
matrix completion. In Advances in neural informa-
tion processing systems, pages 2159–2167.

Thomas M. Breuel. 2008. The OCRopus open source
OCR system. In Proceedings of IS&T/SPIE 20th
Annual Symposium.

Rafael C. Carrasco. 1997. Accurate computation of the
relative entropy between stochastic regular gram-
mars. RAIRO-Theoretical Informatics and Applica-
tions, 31(5):437–444.

Rafael C. Carrasco and José Oncina. 1994. Learn-
ing stochastic regular grammars by means of a state
merging method. In International Colloquium on
Grammatical Inference, pages 139–152. Springer.

Rafael C. Carrasco and Jose Oncina. 1999. Learn-
ing deterministic regular grammars from stochastic
samples in polynomial time. RAIRO-Theoretical In-
formatics and Applications, 33(1):1–19.

Ciprian Chelba, Thorsten Brants, Will Neveitt, and
Peng Xu. 2010. Study on interaction between
entropy pruning and Kneser-Ney smoothing. In
Eleventh Annual Conference of the International
Speech Communication Association.

Stanley Chen and Joshua Goodman. 1998. An em-
pirical study of smoothing techniques for language
modeling. Technical report, TR-10-98, Harvard
University.

Corinna Cortes, Mehryar Mohri, Ashish Rastogi, and
Michael Riley. 2008. On the computation of the
relative entropy of probabilistic automata. Interna-
tional Journal of Foundations of Computer Science,
19(01):219–242.

Arthur P. Dempster, Nan M. Laird, and Donald B. Ru-
bin. 1977. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the royal sta-
tistical society. Series B (methodological), pages 1–
38.

Anoop Deoras, Tomáš Mikolov, Stefan Kombrink,
Martin Karafiát, and Sanjeev Khudanpur. 2011.
Variational approximation of long-span language
models for LVCSR. In Acoustics, Speech and Sig-
nal Processing (ICASSP), 2011 IEEE International
Conference on, pages 5532–5535. IEEE.

Richard Durbin, Sean R. Eddy, Anders Krogh, and
Graeme J. Mitchison. 1998. Biological Sequence
Analysis: Probabilistic Models of Proteins and Nu-
cleic Acids. Camb. Univ. Press.

Peter Ebden and Richard Sproat. 2015. The Kestrel
TTS text normalization system. Natural Language
Engineering, 21(3):333–353.

Jason Eisner. 2001. Expectation semirings: Flexible
EM for learning finite-state transducers. In Proceed-
ings of the ESSLLI workshop on finite-state methods
in NLP, pages 1–5.

Andrew Hard, Kanishka Rao, Rajiv Mathews,
Françoise Beaufays, Sean Augenstein, Hubert Eich-
ner, Chloé Kiddon, and Daniel Ramage. 2018.
Federated learning for mobile keyboard prediction.
arXiv preprint arXiv:1811.03604.

Lars Hellsten, Brian Roark, Prasoon Goyal, Cyril Al-
lauzen, Françoise Beaufays, Tom Ouyang, Michael
Riley, and David Rybach. 2017. Transliterated mo-
bile keyboard input via weighted finite-state trans-
ducers. In FSMNLP 2017, pages 10–19.

Reiner Horst and Nguyen V. Thoai. 1999. DC pro-
gramming: overview. Journal of Optimization The-
ory and Applications, 103(1):1–43.

Gonzalo Iglesias, Cyril Allauzen, William Byrne,
Adrià de Gispert, and Michael Riley. 2011. Hier-
archical phrase-based translation representations. In
EMNLP 2011, pages 1373–1383.

Slava M. Katz. 1987. Estimation of probabilities from
sparse data for the language model component of a
speech recogniser. IEEE Transactions on Acoustic,
Speech, and Signal Processing, 35(3):400–401.

Jakub Konečnỳ, H. Brendan McMahan, Felix X. Yu,
Peter Richtárik, Ananda Theertha Suresh, and Dave
Bacon. 2016. Federated learning: Strategies for im-
proving communication efficiency. arXiv preprint
arXiv:1610.05492.

Gwénolé Lecorvé and Petr Motlicek. 2012. Conver-
sion of recurrent neural network language models
to weighted finite state transducers for automatic
speech recognition. In Thirteenth Annual Confer-
ence of the International Speech Communication As-
sociation.

97

Mehryar Mohri. 1997. String-matching with automata.
Nord. J. Comput., 4(2):217–231.

Mehryar Mohri. 2002. Semiring frameworks and
algorithms for shortest-distance problems. Jour-
nal of Automata, Languages and Combinatorics,
7(3):321–350.

Mehryar Mohri. 2009. Weighted automata algorithms.
In Handbook of Weighted Automata, pages 213–254.
Springer.

Mehryar Mohri, Fernando C. N. Pereira, and Michael
Riley. 2008. Speech recognition with weighted
finite-state transducers. In Handbook on speech
proc. and speech comm. Springer.

Josef R. Novak, Nobuaki Minematsu, and Keikichi Hi-
rose. 2013. Failure transitions for joint n-gram mod-
els and g2p conversion. In INTERSPEECH, pages
1821–1825.

Tom Ouyang, David Rybach, Françoise Beaufays, and
Michael Riley. 2017. Mobile keyboard input de-
coding with finite-state transducers. arXiv preprint
arXiv:1704.03987.

Brian Roark, Richard Sproat, Cyril Allauzen, Michael
Riley, Jeffrey Sorensen, and Terry Tai. 2012. The
OpenGrm open-source finite-state grammar soft-
ware libraries. Proceedings of the ACL 2012 System
Demonstrations, pages 61–66.

Bharath K. Sriperumbudur and Gert R.G. Lanckriet.
2009. On the convergence of the concave-convex
procedure. In Proceedings of the 22nd International
Conference on Neural Information Processing Sys-
tems, pages 1759–1767. Curran Associates Inc.

Andreas Stolcke. 2000. Entropy-based pruning
of backoff language models. arXiv preprint
cs/0006025.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
2012. LSTM neural networks for language model-
ing. In Thirteenth annual conference of the interna-
tional speech communication association.

Peter Tiño and Vladimir Vojtek. 1997. Extract-
ing stochastic machines from recurrent neural net-
works trained on complex symbolic sequences. In
Knowledge-Based Intelligent Electronic Systems,
1997. KES’97. Proceedings., 1997 First Interna-
tional Conference on, volume 2, pages 551–558.
IEEE.

