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Introduction

These are the proceedings of the 14th International Conference on Finite-State Methods and Natural
Language Processing (FSMNLP 2019), which was held September 23-25, 2019 in Dresden, Germany.

The conference series FSMNLP is the premier forum of the ACL Special Interest Group on
Finite-State Methods (SIGFSM). It serves researchers and practitioners working on natural language
processing (NLP) applications or language resources, theoretical and implementational aspects, or their
combinations, that make use of finite-state methods.

FSMNLP 2019 received 20 submissions, each of which was carefully reviewed by at least three experts
in the field. On the basis of these reviews the program committee selected 12 papers to be accepted for
presentation at the conference.

In addition to the regular papers, one tutorial and two invited talks were presented:

Tutorial:

Aarne Ranta (University of Gothenburg, Sweden)
Grammatical Framework: an Interlingual Grammar Formalism

Invited talks:

Frank Drewes (Umeå University, Sweden)
A Survey of Recent Advances in Efficient Parsing for Graph Grammars

Kilian Gebhardt (Technische Universität Dresden, Germany)
Latent Variable Grammars for Discontinuous Parsing

We would like to express our gratitude to all authors for submitting their papers to FSMNLP 2019, to the
members of the program committee and the four subreviewers for their excellent work in selecting the
best papers, and to the members of the research group Foundations of Programmming Languages, TU
Dresden for their help with the local arrangements.
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co-chairs
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Grammatical Framework:
an Interlingual Grammar Formalism

Tutorial

Aarne Ranta

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Sweden

Abstract Grammatical Framework (GF) was born at Xerox Research Centre Europe in 1998.
Its purpose was to provide a declarative grammar formalism for interlingual translation systems.
The core of GF is Constructive Type Theory (CTT), also known as Logical Framework, which
is used for building interlingual representations. On top of these representations, GF provides a
functional programming language for defining reversible mappings from interlinguas to concrete
languages, equivalent to Parallel Multiple Context-Free Grammars (PMCFG).

Open-source since 1999, GF has a world-wide community that has built comprehensive gram-
mars for over 40 languages. GF is also used in several companies to build applications for
translation, natural language generation, semantic analysis, chatbots, and dialogue systems. The
focus has been on Controlled Natural Languages (CNL), but recent research has also combined
GF with statistical and machine learning techniques, such as neural dependency parsing. In
this way, GF can scale up to robust and wide-coverage language processing, without sacrificing
explainability.

The tutorial is meant for an audience that has some experience with formal language theory
and its use in practical implementations. However, it is self-contained and does not assume
specific knowledge such as CTT or PMCFG. The structure is the following:

1. Hands-on introduction (45 min). Interactive coding in the GF Cloud to get an idea of how
GF works.

2. Theoretical background (45 min). GF as a formalism and programming language, with
references to its main inspirations (constructive type theory, Montague grammar, catego-
rial grammars, XFST)

3. The GF Ecosystem (30 min). Software tools, on-going academic research, commercial
applications, and open-source community activities.
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Krasimir Angelov, The Mechanics of the Grammatical Framework, PhD Thesis, Chalmers Uni-
versity of Technology, 2011. Standard reference on the internals of GF, from both implementa-
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in Honor of Lauri Karttunen, CSLI, Stanford, 2019, pp. 545–568. Follow-up of recent research
themes, with some parallels to Xerox Finite State Tool, which was an important inspiration for
GF.

GF homepage: http://www.grammaticalframework.org/
Speaker’s homepage: http://www.cse.chalmers.se/˜aarne/
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A Survey of Recent Advances in Efficient
Parsing for Graph Grammars

Invited Talk

Frank Drewes

Umeå University, Sweden

Abstract Context-free graph grammars, in particular hyperedge replacement graph gram-
mars, look back on over 30 years of history. They share many of the good properties of context-
free string languages. Unfortunately, the complexity of parsing is the big exception: early results
in the field showed that even for fixed grammars, the membership problem can be NP-complete.
Moreover, the known results about polynomial parsing that were obtained afterwards, while
constituting nice theoretical work, seemed to be of limited practical value. This is because they
were either based on very ”impractical” restrictions, or the degree of the polynomial running
time depended on the grammar and could thus become large.

In the current decade, the question received renewed interest because hyperedge replacement
is one of the candidate formalisms for specifying semantic graphs in natural language process-
ing. Using graph grammars in this area requires parsing algorithms that are not only polynomial
in theory, but efficient in practice. Preferably, the degree of the polynomial bounding their run-
ning time should be a (small) constant independent of the grammar, or else it should depend on
parameters not likely to be large. The talk will present an overview of results towards this goal,
discussing their requirements, advantages, and disadvantages as well as a few possible directions
for future work.

Speaker’s homepage: https://www.umu.se/en/staff/frank-drewes/
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Latent Variable Grammars for
Discontinuous Parsing

Invited Talk

Kilian Gebhardt

Technische Universität Dresden, Germany

Abstract Latent variable context-free grammars are powerful models for predicting the syn-
tactic structure of sentences (Matsuzaki, Miyao, and Tsujii 2005; Petrov, Barrett, et al. 2006;
Petrov and Klein 2007). When trained on annotated corpora, the resulting latent variables can be
shown to capture different distributions for, e.g., NPs in subject and object position. Several lan-
guages (and in consequence also syntactic treebanks for these languages) such as Dutch (Lassy
van Noord 2009), German (NeGra, Skut et al. 1997; TiGer Brants et al. 2004), but also English
(Penn Treebank, Marcus, Santorini, and Marcinkiewicz 1993, Evang and Kallmeyer 2011) con-
tain structures that cannot be adequately modelled by context-free grammars. In consequence,
a class of more power grammar formalisms called mildly context-sensitive has been studied (cf.
Kallmeyer 2010). Although parsing with these models is polynomial in the length of the input
sentence (Seki et al. 1991), it has for a long time been regarded prohibitively slow. However, in
recent years it was shown that the application of mildly-context sensitive grammars is feasible
in coarse-to-fine parsing approaches (van Cranenburgh 2012; Ruprecht and Denkinger 2019).

In this talk I consider how both the latent variable approach and mildly context-sensitive
grammars can be joined and applied to discontinuous treebanks:

1. A large class of latent variable grammars can be captured as a probabilistic regular tree
grammar combined with an algebra. I show how the training methodology of latent vari-
able PCFG can be generalized for this class.

2. I recall two mildly context-sensitive grammar formalisms: linear context-free rewriting
systems (LCFRS, Vijay-Shanker, Weir, and Joshi 1987) and hybrid grammars (Neder-
hof and Vogler 2014; Gebhardt, Nederhof, and Vogler 2017). In particular, I consider
the induction of hybrid grammars, which can be parametrized such that the polynomial
complexity of parsing is of bounded degree. This way also hybrid grammars that are
structurally equivalent to finite state automata can be obtained.

3. I analyse different trends when training latent variable LCFRS and hybrid grammars on
different discontinuous treebanks and applying them for parsing.
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Abstract

We propose a formal model for translating
unranked syntactic trees, such as dependency
trees, into semantic graphs. These tree-to-
graph transducers can serve as a formal ba-
sis of transition systems for semantic parsing
which recently have been shown to perform
very well, yet hitherto lack formalization. Our
model features “extended” rules and an arc-
factored normal form, comes with an efficient
translation algorithm, and can be equipped
with weights in a straightforward manner.

1 Introduction

In dependency semantic parsing, one is given a
natural language sentence and has to output a
directed graph representing an associated, most-
likely semantic analysis. Semantic parsing in-
tegrates tasks that have usually been addressed
separately in statistical natural language process-
ing, such as named entity recognition, word sense
disambiguation, semantic role labeling, and co-
reference resolution. Semantic parsing is currently
receiving considerable attention, as attested by the
number of approaches being proposed for its solu-
tion (Oepen et al., 2014, 2015) and by the variety
of existing semantic representations and available
datasets (Kuhlmann and Oepen, 2016).

A successful approach to dependency semantic
parsing by Wang et al. (2015b,a) first parses the
input sentence into a dependency tree t, and then
applies a transition-based algorithm that translates
t into a dependency graph in Abstract Meaning
Representation (AMR), a popular semantic repre-
sentation developed by Banarescu et al. (2013). In
this work, we present a finite-state transducer for
tree-to-graph translation that can serve as a mathe-
matical model for transition-based systems such as
the one by Wang et al. (2015b) and, more in gen-
eral, for work on the syntax-semantics interface.

Bottom-up tree transducers (Thatcher, 1973)
have gained significant attention in the field of ma-
chine translation, where they are used to map syn-
tactic phrase structure trees from source to target

languages. This holds in particular for their “ex-
tended” version, which may process, in a single
step, sections of the input consisting of several
symbols; see (Maletti et al., 2009) and references
therein. We propose a similar formalism for de-
pendency semantic parsing, mapping syntactic de-
pendency trees into directed graphs that represent
the associated semantic interpretation.

When translating dependency trees into graphs
in a bottom-up fashion, we face two problems.
Firstly, bottom-up tree transducers process ranked
trees, i.e., the number of children at each node is
bounded by some constant. Thus, typically, these
tree transducers use a single rule to process in one
shot a node along with all of its (previously pro-
cessed) children in the source tree. In contrast,
in the case of dependency trees there is no global
constant that limits the number of children a node
may have, and processing all of the children by
means of a single rule is problematic.

Secondly, in an output tree of a bottom-up tree
transducer, nodes that are located near one another
are translations of nodes in a source tree that are in
close proximity as well. This condition is often re-
ferred to as locality. Locality does no longer hold
true when translating trees into graphs. In fact,
so-called reentrancy nodes in a graph have sev-
eral parents, which are translations of nodes in the
source tree whose distance from one another may
not be bounded by a constant. Reentrancies thus
require some form of nonlocal processing, gener-
ally not found in tree transducers.

The main contribution of this work is a finite-
state tree-to-graph transducer that processes de-
pendency trees in a bottom-up, left-to-right fash-
ion. Our solution to the two problems mentioned
above is rather simple. Each node is processed to-
gether with its children in several translation steps
which consume the children left to right. Fur-
thermore, in order to implement reentrancy, each
translated subtree produces a graph annotated with
a record of selected vertices, to be made accessible
later in the translation process.

7



While our transducers use extended translation
rules in the sense of Maletti et al. (2009), they can
be cast in a simple normal form, facilitating algo-
rithmic processing. We provide a polynomial time
algorithm for translating an input dependency tree
into a packed graph forest, from which each trans-
lation graph can efficiently be recovered.

Related work. Bottom-up tree-to-graph trans-
ducers were introduced by Engelfriet and Vogler
(1994, 1998) who based their work on hyperedge
replacement. Since the graph construction mech-
anism we use is equivalent to hyperedge replace-
ment, our notion of tree-to-graph transducers is es-
sentially an unranked and extended generalization
of theirs, except for the fact that ours cannot cre-
ate multiple copies of unbounded material in the
input. This ability seems inappropriate for model-
ing natural language semantics.

The system by Wang et al. (2015b) has in-
spired our work. A technical comparison between
their formalism and ours is made in Remark 1.
An alternative approach to the syntax-semantics
interface exploits multi-component synchronous
tree-adjoining grammars; see Nesson and Shieber
(2006) and references therein. However, these for-
mal models yield tree-like semantic representa-
tions, as opposed to general graphs.

A common approach in semantic parsing is
to extend existing syntactic dependency parsers
to produce graphs, realizing translation models
from strings to graphs, as opposed to the tree-
to-graph model investigated here. On this line,
transition-based, greedy parsers have been adapted
by Ballesteros and Al-Onaizan (2017), Damonte
et al. (2017), Hershcovich et al. (2017), Peng et al.
(2018) and Vilares and Gómez-Rodrı́guez (2018).
Despite the fact that the input is a bare string, these
systems exploit features obtained from a precom-
puted run of a dependency parser, thus committing
to some best parse tree, similarly to the pipeline
model of Wang et al. (2015b). Dynamic pro-
gramming parsers have also been adapted to pro-
duce graphs by Kuhlmann and Jonsson (2015) and
Schluter (2015). Semantic translation from strings
to graphs is further investigated by Jones et al.
(2012) and Peng et al. (2015) using synchronous
hyperedge replacement grammars, who provide
unsupervised learning algorithms for grammar ex-
traction. Finally, Groschwitz et al. (2018) use
a neural supertag parser to map a string into a
dependency-style tree representation of the com-

positional structure of the corresponding AMR
graph. More precisely, this tree is a term in a spe-
cial algebra: its constants denote lexicalized AMR
graph fragments, which are combined into larger
and larger AMR graphs by two binary algebraic
operations for graph combination. These opera-
tions supply a partial AMR graph either with an
argument or with a modifier. The evaluation of the
term then yields the output AMR for the input sen-
tence. The tree-to-graph mapping is entirely deter-
ministic, in contrast to our approach. Groschwitz
et al. (2018) also provide an unsupervised align-
ment algorithm that extracts rules from semantic
graph banks.

2 Preliminaries

In this section we introduce the notation and ter-
minology that is used throughout this paper.

General Notation. The set of natural numbers
(including zero) is denoted by N, and N+ = N \
{0}. For n ∈ N the set {1, . . . , n} is abbreviated
to [n]. In particular, [0] = ∅. The set of all finite
sequences of elements of a set S is written S∗, ε
is the empty sequence, S+ = S∗ \ {ε}, and 2S is
the powerset of S. Given a sequence w, we write
[w] for the set of its elements. Concatenation of
sequences s, s′ is denoted by juxtaposition or, if
preferred for notational clarity, as s · s′.

Trees. Let Σ be an alphabet. The set TΣ of (un-
ranked) trees over Σ is the smallest set such that,
for all f ∈ Σ and t1, . . . , tn ∈ TΣ (n ∈ N), we
have f(t1, . . . , tn) ∈ TΣ. In particular f(), which
we abbreviate by f , is in TΣ.

The nodes of a tree are identified by their Gorn
addresses, which are sequences in N∗+: the root
has the address ε, and if α is the address of a
node in ti then iα is the address of that node in
f(t1, . . . , tn). The set of all nodes of t isN(t) and
the size of t is |t| = |N(t)|.

The label of node α in t is t(α), and the sub-
tree rooted at node α is t/α. For Σ′ ⊆ Σ, the
set of all nodes α ∈ N(t) with t(α) ∈ Σ′ is de-
noted by NΣ′(t). Throughout the paper, a subset
{α1, . . . , αk} of the set of nodes of a tree t is de-
noted as (α1, . . . , αk) to express that its nodes are
listed in lexicographic order.

The following notion will play a crucial role in
the definition of the translation step for our trans-
ducers in Section 3. Let 2 6∈ Σ be a special sym-
bol. A context is a tree c ∈ TΣ∪{2} that contains
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exactly one occurrence of 2, and this occurrence
is a leaf. Given such a context and a tree t, we
let c[t] denote the tree obtained from c by replac-
ing 2 with t. Thus, c[t] = t if c = 2, and oth-
erwise c[t] = f(s1, . . . , si−1, si[t], si+1, . . . , sn),
where c = f(s1, . . . , sn) and si ∈ TΣ∪{2} is the
context among s1, . . . , sn. For contexts c 6= 2,
the notation c[t] is straightforwardly extended to
c[t1, . . . , tk] for trees t1, . . . , tk (k ∈ N). It yields
the tree obtained by inserting the sequence of sub-
trees t1, . . . , tk at the position marked by 2. (This
yields a tree since we only use it if c 6= 2.) To
be precise, if c = f(s1, . . . , sn) and i ∈ [n] is the
index such that 2 occurs in si, then c[t1, . . . , tk] is
equal to f(s1, . . . , si−1, t1, . . . , tk, si+1, . . . , sn)
if we have si = 2; otherwise, it is f(s1, . . . , si−1,
si[t1, . . . , tn], si+1, . . . , sn).

Graphs. The translation process we propose as-
sembles the output graph by combining smaller
graphs into larger ones in a stepwise fashion. For
this, every graph has a designated group of ver-
tices, called ports. In the assembly step, ports from
the graphs to be combined can be merged.

For a given alphabet ∆, the set G∆ of graphs
with labels in ∆ consists of all quintuples G =
(V,E, lab, port) such that

1. V is a finite set of vertices,
2. E ⊆ V ×∆× V is the set of labeled edges,
3. lab : V → ∆ is a function labeling each ver-

tex, and
4. port ∈ V ∗ is a sequence of pairwise distinct

vertices called ports.
The size of G is |G| = |V | + |E|. If port =

v1 · · · vn, then the p-th port vp of G, p ∈ [n], is
denoted by port(p) and type(G) = |port | is the
type of G. If the components of G are not explic-
itly named, they are denoted by VG,EG, labG, and
portG, respectively. To keep the notation simple,
we do not use separate sets for the labels of ver-
tices and edges. Such a distinction may of course
be added by partitioning ∆ into two sets, but for
the present paper this is unnecessary.

3 Bottom-Up Unranked Tree-to-Graph
Transducers

Informally, our transducers process the input tree
in a locally bottom-up, left-to-right manner. To
apply a translation rule with a left-hand side s
at a given node α, s must cover α together with
k ≥ 0 of its leftmost subtrees. Hence, these sub-
trees must have been processed earlier, to the ex-

α

. . . . . .

left-hand side

Figure 1: Rule application at node α is locally leftmost
(any number, including zero, of the leftmost children
of α are consumed) and bottom-up (the left-hand side
covers those subtrees all the way down to the leaves).
The result of applying a rule at α deletes the subtrees
covered by the left-hand side and turns the label of α (a
state or input symbol) into a state q.

tent necessary to make the part to be processed
identical to s. Applying the rule then removes the
subtrees and turns α into a state (or turns it from
one state into another, if it already was a state due
to an earlier step). Disregarding for the moment
the partial output graphs involved, this is depicted
schematically in Figure 1.

Note that, in particular, the number k of pro-
cessed children can be zero, which means that sin-
gle nodes can initially be turned into states by
translation rules whose left-hand sides consist of
just one node. More generally, rules in which the
root of the left-hand side is an input symbol (with
or without children) can be viewed as initializing
the processing of the remaining children of that
node by turning their parent into an “initial” state.

An (unranked, linear, nondeleting) bottom-up
tree-to-graph transducer (briefly t2g transducer)
is a tuple Θ = (Σ,∆, Q,R, µ, F ) consisting of

1. finite input and output alphabets Σ and ∆;
2. a finite set Q of states disjoint with Σ, where

every state q ∈ Q has a type type(q) ∈ N;
3. a finite setR of translation rules defined below;
4. a merging function µ : 2∆ \ {∅} → ∆; and
5. a set F ⊆ Q of final states.

Note that the merging function is finite (because
∆ is). It allows us to determine the label of a ver-
tex obtained by merging vertices with different la-
bels. We do not place any restrictions on µ, but
consider it as an unknown function that is to be
learnt from data. However, it is reasonable to as-
sume that in linguistic settings, µwill be generated
by a binary function in the sense that µ({δ}) = δ
and µ(∆′ ∪ {δ}) = µ({µ(∆′), δ}) for all δ ∈ ∆
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and ∆′ ∈ 2∆ \ {∅}. Thus, in this case µ can be
efficiently represented by a table of size |∆|2.

As already mentioned, a translation rule reads a
tree fragment of the input, say φ, replaces it with
a single node labeled by a state, and produces as
output some graph fragment φ′. The tree φ cannot
be a single node labeled by a state: see Section 7
for discussion of this restriction. Some nodes α
within φ may be labeled by a state. This means
that the input tree has already undergone some par-
tial processing, at the position corresponding to
α, resulting in an output graph fragment which is
“associated” with α. Finally, the graph fragment
φ′ produced by the translation rule is obtained by
combining the graph fragments associated with
the nodes within φ labeled by a state, in some way
which is specified by the right-hand side of the rule
itself. Formally, a translation rule s → 〈q,G〉
consists of a left-hand side s ∈ TΣ∪Q \ Q and a
right-hand side 〈q,G〉, where q ∈ Q and G is a
graph with type(G) = type(q). Further, G must
fulfill the following condition: if P = {α:p | α ∈
NQ(s), p ∈ [type(s(α))]} then G ∈ G∆∪(2P \{∅})
and every α:p ∈ P occurs at most once in the la-
bels of vertices in G. A vertex v carrying a label
in 2P \{∅} is called a docking vertex. Intuitively,
each α:p ∈ labG(v) is a syntactic name (or formal
parameter) referring to the p-th port of the graph
Gα associated with the node matched by α. Dur-
ing the application of the rule, the p-th port of Gα
will be merged with v. This is formalized next.

A configuration of Θ is a pair 〈t,Γ〉 with
t ∈ TΣ∪Q such that Γ: NQ(t) → G∆, where
type(Γ(α)) = type(t(α)) for every α ∈ NQ(t).
Given an input tree t0 ∈ TΣ, the computation of
a transducer starts with 〈t0,Γ0〉 where Γ0 is the
function with the domain NQ(t0) = ∅. Suppose
inductively that, after some computation steps, a
configuration 〈t,Γ〉 has been reached. A transla-
tion rule s→ 〈q,G〉 can be applied to this config-
uration if t can be written as t = c[f(t1, . . . , tn)],
such that s = f(t1, . . . , tk) for some k ≤ n. If so,
let α be the node in c such that c(α) = 2. Then
there is a computation step 〈t,Γ〉 →Θ 〈t,Γ〉 with
t = c[q(tk+1, . . . , tn)], where Γ is as follows:

1. For every node β ∈ NQ(t) \ {α}, if β is the
corresponding node in t, then Γ(β) = Γ(β).1

1Here, the node corresponding to β is defined in the ob-
vious way, to take care of the change of Gorn addresses that
results from the deletion of t1, . . . , tk: if β = αiγ (i ∈ N+),
then its corresponding node in t is α(k + i)γ. If α is not a

2. Γ(α) is obtained as follows:

First, take the disjoint union of G and all graphs
Γ(αβ), β ∈ NQ(s), the ports of the resulting
graph being those of G.

Second, for every docking vertex v ∈ VG,
if labG(v) = {β1:p1, . . . , βm:pm}, then
merge v with all vi = portΓ(α·βi)(pi) for
i ∈ [m] and label the merged vertex by
µ({labΓ(α·β1)(v1), . . . , labΓ(α·βm)(vm)}).

Example 1 Consider the sentence “The emperor
loves, respects, and fears himself.” A simplified
Universal Dependencies parse tree of the sentence
is shown leftmost in Figure 2. Here, we have re-
moved the “and” node as well as the additional
root node above the “loves” node. Further, the
edge labels in the tree should be considered as in-
termediate nodes (since our trees, for simplicity,
and in contrast to graphs, do not have edge labels).
The figure shows how a t2g transducer may turn
the tree into a semantic graph akin to AMR.

In Step 1 we assume for the sake of illustra-
tion that the learning algorithm has seen the left-
most path of the tree (“The emperor loves”) of-
ten enough to construct an individual (“extended”)
translation rule for it, and that it has also learned
that the emperor referred to is usually Julius. Thus,
the translation rule

loves(nsubj(emperor(det(The))))→ 〈q0, G0〉

turns node “loves” into the state q0 and its first de-
pendent vanishes. The pair 〈q0,Γ(ε)〉 = 〈q0, G0〉
is illustrated by a dashed box with Γ(ε) shown in-
side. The numbers next to the vertices indicate the
ports. Thus, all three vertices are ports. Note that
the rule, for illustration purposes, anticipates the
existence of a direct object (or patient) of “love”,
but labels the corresponding node with a question
mark because the processed part of the tree does
not determine the argument.

In Step 2, we apply a translation rule of the form
q0(conj(respects)) → 〈qconj, G〉 to add two ver-
tices and four edges to the graph. The graph G in
the right-hand side is shown in Figure 3. The ports
of G become the ports of Γ(ε), and each of the
vertices labeled ε:p is merged with the p-th port of
G0 (i.e., of the Γ(ε) of the previous step).

Step 3 processes fears(dobj(himself)), turning
this subtree into a graph with two ports, with a

proper prefix of β, then the corresponding node is β itself.
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arg0 arg1

respects fears
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conj conj

dobj

q0
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and
1

love respect

Julius 2 ?3

arg0

arg1arg0

arg1

fears
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conj

dobj

qconj

→Θ

and
1

love respect

Julius 2 ?3

arg0

arg1arg0

arg1

fear
1
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arg0 arg1

conj

qconj

q1

→Θ

and

love respect fear

Julius

arg0 arg1

arg0 arg1

arg0 arg1

qf

Figure 2: Computation of a t2g trans-
ducer applied to the Universal Dependen-
cies parse tree of “The emperor loves, re-
spects, and fears himself.”

and
1

{ε:1} respect

{ε:2} 2 {ε:3}3

arg0 arg1

Figure 3: The graph G used in the translation rule
q0(conj(respects))→ 〈qconj, G〉 of Step 2.

reentrancy caused by the semantics of “himself”.
Note that, similarly to Step 1, it is still unclear
at this stage which entity “himself” refers to, so
we assume that the rule just keeps it. It may be
instructive to note that Step 3 is independent of
Steps 1 and 2, hence it could just as well have been
executed at the very beginning or in between these
two.

Finally, Step 4 combines the two graphs by

{ε:1}

{1:1}

{ε:2, ε:3, 11:2}

Figure 4: The graph H used in the translation rule
qconj(conj(q1))→ 〈qf , H〉 of Step 4.

applying a rule of the form qconj(conj(q1)) →
〈qf , H〉. The graph H (shown in Figure 4) con-
tains a vertex with label {ε:2, ε:3, 11:2}, causing
the vertices labeled “Julius”, “?”, and “himself” to
be merged. The function µ determines the label of
the merged node. Here, we assume that µ gives
proper names precedence over pronouns, which in
turn take precedence over “?”.
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Remark 1 The transition-based system of Wang
et al. (2015b) and subsequent versions translate
dependency trees to AMR by visiting nodes and
dependency arcs of the input tree bottom-up and
left-to-right. At each node or arc, it greedily ap-
plies one out of eight alternative actions, turning
the tree into a graph. Six actions are local, mean-
ing that they involve nodes at a close distance in
the input tree. These include node or arc rela-
belling, reversing arc directions, deleting a node,
and deleting an arc by merging its two nodes. Each
of these actions can easily be captured by some in-
dividual translation rule of a t2g transducer.

Two remaining actions are nonlocal: one reat-
taches a node and the other creates a new arc to
form a reentrancy. These actions are restricted to
local actions for efficiency reasons (Wang et al.,
2015b, Section 3.2), so reattachment attaches to
the grandparent or great grandparent, and reen-
trancy involves sibling nodes only. While t2g
transducers can simulate reattachment, a major
difference between the two models lies in the cre-
ation of reentrancies, as discussed below.

Wang’s system can repeatedly apply the reen-
trancy action, turning for instance n sibling nodes
into a clique, for any n. This is not possible in our
model, since translation rules can create reentran-
cies only by accessing a fixed number of vertices
“remembered” as ports. We believe this restriction
to be linguistically adequate: while the repeated
use of conjunctions and modifiers can yield AMR
nodes with unbounded node degree, structures re-
sembling cliques of unbounded size would corre-
spond to an unbounded number of concepts, ar-
guments or modifiers, pairwise dependent on each
other. This does not appear to be a reasonable lin-
guistic pattern.

However, note that t2g transducers can imple-
ment a weak form of nonlocality by percolating
port nodes across any distance in the underlying
derivation tree, though not in any number. This
makes it possible to create reentrancies that extend
further than to sibling nodes. In terms of transla-
tion power, the two formalisms seem close to each
other in practice, but we conjecture that they are
formally incomparable.

Readers who are familiar with the concept of
hyperedge replacement may have noticed that, ex-
cept for the role of the merging function, the pro-
cess described in item 3 in the definition of →Θ

is just hyperedge replacement (where the replaced

hyperedges are kept implicit).
A configuration 〈t,Γ〉 is final if t ∈ F , i.e., if

the first component has been reduced to a single
state, which is final. For an input tree t0, the set
of all output graphs computed by Θ is denoted by
Θ(t0). It is the set of all graphs Γ(ε) such that
〈t0,Γ0〉 →∗Θ 〈t,Γ〉 for some final configuration
〈t,Γ〉. The transduction computed by Θ is the
set {(t, g) ∈ TΣ × G∆ | g ∈ Θ(t)}. The domain
language of Θ is {t ∈ TΣ | Θ(t) 6= ∅}.

We define the size of Θ to be the sum of the
sizes of its rules. The size of a rule is the size of the
tree in the left-hand side plus the size of the graph
in the right-hand side. This notion will be used in
the next sections for the computational analysis of
the algorithms we present.

4 Derivation Trees

In this section, we describe how a computation of
a t2g transducer Θ can be represented by means
of a tree over the alphabet R, the set of translation
rules of Θ. We call these trees derivation trees
of Θ. Derivation trees will be used in Section 6
to design efficient translation algorithms. We also
show that the derivation trees of Θ form a regular
tree language (and, in fact, even a local one).

Consider a computation γ of Θ that has the form
〈t0,Γ0〉 →+

Θ 〈q,Γ〉 with t0 ∈ TΣ and q ∈ Q. If
γ consists of a single step, then a translation rule
of the form r0 : t0 → 〈q,G〉 has been used. In this
case the derivation tree associated with γ, written
d(γ), is simply r0.

If γ consists of more than one step, assume that
at the last step of γ we have used a translation rule
r0 of the form s→ 〈q,G〉. We can then write γ as
〈t0,Γ0〉 →+

Θ 〈s,Γ′〉 →r0 〈q,Γ〉. Let γ′ denote the
first part 〈t0,Γ0〉 →+

Θ 〈s,Γ′〉 of the computation.2

We define rk(r0) = |NQ(s)| to be the rank of r0.
In the derivation tree d(γ), r0 has rk(r0) direct
subtrees. If NQ(s) = (α1, . . . , αrk(r0)), then the
i-th subtree of r0 corresponds to the sub-derivation
that ended in the state at αi. Accordingly, we pro-
ceed to split the input tree t0 into smaller pieces
on the basis of the node addresses αi.

In order to describe this thoroughly, we need to
determine a correspondence between nodes in s
and nodes in t0. Intuitively, s is a segment at the
top of t0 that extends to the right. To see this, ob-

2Recall that NQ(s) is the set of all nodes in s labeled by
states in Q, and that we write NQ(s) = (α1, . . . , αrk(r0)) to
indicate that α1, . . . , αrk(r0) are listed in lexicographic order.
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t0

s

Figure 5: Schematic illustration of the part s of an in-
put tree t0 which is left after some computation steps.
(Note that this is only a structural illustration; some of
the node labels in s are not the same as in t0 anymore,
but have been replaced with states.)

serve that the root ε of s corresponds to the root of
t0. Some of the children of ε in t0 may have been
consumed by γ′ and thus are no longer present in
s. However, this happens strictly from left to right.
Therefore, if a child of ε in t0 is still present in s,
then all of its siblings to the right are still present,
too. The same pattern continues recursively at the
children of these nodes in s. The situation is illus-
trated schematically in Figure 5.

Formally, for a node α ∈ N(s) we define the
pre-image α ∈ N(t0) of α inductively over the
structure of s, as follows:

1. ε = ε.
2. Assume that α · 1, . . . , α · k ∈ N(s) are the

children of a node α in s. Then it should
be clear that the children of α in t0 are α ·
1, . . . , α · n for some n ≥ k. We would like
to identify the k-th last children of the preim-
age with the k children of the postimage, and
so we let α · i = α · (i+n−k) for all i ∈ [k].

For a set N ⊆ N(s) of node addresses, we let
N = {α | α ∈ N}.

We are now ready to split t0 into the subtrees
that, via the computation γ′, gave rise to the states
at α1, . . . , αrk(r0). We do this by defining the sets
Ni ⊆ N(t0) of their nodes, i ∈ [rk(r0)]. For each
i ∈ [rk(r0)], Ni is the set of all nodes β ∈ N(t0)
such that αi is the first node in N(s) that appears
on the path from β to the root of t0.

Thus, Ni consists of αi and those of its descen-
dants which are not in s anymore, i.e., which have
already been “consumed” by the computation γ′

in the process of producing node αi in s. For each
i ∈ [rk(r0)], define tree ti as the portion of tree t0
that is induced by the nodes in Ni.

For each i ∈ [rk(r0)], consider the translation
rules of γ′ that are applied to nodes in Ni. Clearly,
the restriction of γ′ to them yields a computa-
tion γi of the form 〈ti,Γ0〉 →+

Θ 〈s(αi),Γi〉 whose

length is at most the length of γ′ and thus less than
the length of γ. Let d(γi) be the derivation tree
associated with γi. Then we define the derivation
tree d(γ) to be r0(d(γ1), . . . , d(γrk(r0))).

The inductive procedure above associates a
unique derivation tree d(γ) with each computation
γ of Θ. Observe that each node of d(γ) has a la-
bel r ∈ R and a number of children rk(r). This
means that the set of derivation trees of Θ, writ-
tenD(Θ), is defined over a finite, ranked alphabet.
The set D(Θ) can be recognized by a bottom-up
finite-state tree automaton M , as follows.3 The
set of states of M is Q, with F being the subset
of accepting states. Its set of rules consists of all
r(q1, . . . , qk)→ q such that:

1. r : t→ 〈q,G〉 is a translation rule of Θ,
2. NQ(t) = (α1, . . . , αk), and
3. t(αi) = qi for all i ∈ [k].

Recall from Section 3 that the size of Θ is the sum
of the sizes of its translation rules. We can easily
construct rule r(q1, . . . , qk)→ q of M in time lin-
ear in the size of r. Hence, M can be constructed
in time (and space) linear in the size of Θ.

Given a derivation tree dt ∈ D(Θ), such that
dt = r(dt1, . . . , dtk), we can compute its input
tree in(dt) and its output graph out(dt) recur-
sively, as follows. Suppose the root r of dt is
the translation rule r : t → 〈q,G〉 with NQ(t) =
(α1, . . . , αrk(r)).
1. If ti = in(dt i) for all i ∈ [k], then in(dt) is

obtained from t and t1, . . . , tk by fusing each
node αi with the root of ti and making ti(ε) the
label of the fused node. The subtrees of ti are
added to the left of the leftmost subtree of αi in
t. (If αi is a leaf, ti just replaces αi.)

2. If Gi = out(dt i) for all i ∈ [k], then the graph
out(dt) is obtained from the disjoint union of
G and G1, . . . , Gk by merging each docking
vertex v ∈ VG with ports in G1, . . . , Gk, as
follows: if labG(v) = {αi1 :p1, . . . , αim :pm},
then v is merged with all vj = portGij

(pj),
j ∈ [m], and the resulting vertex is labeled by
µ({labGi1

(v1), . . . , labGim
(vm)}).

Note that the definition of out(dt) simply re-
iterates the way in which computations are defined
to construct output graphs. As a consequence, it is
a straightforward task to show that dt = d(γ) for
a computation γ that consumes in(dt) and yields
the output graph out(dt).

3For bottom-up tree automata, see e.g. (Comon et al.,
2002, Chapter 1).
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Finally, let ρ be the size of the largest translation
rule used in dt . It is not difficult to see that, follow-
ing the recursive procedure above, both in(dt) and
out(dt) can be constructed in time O(ρ · |dt |).

5 Arc-Factored Normal Form

Extended left-hand sides are convenient for spec-
ifying transducers, but in order to prove formal
properties about transducers or implement algo-
rithms based on them, it is useful to express the
transition rules in a more restricted normal form.
The normal form introduced in this section pro-
cesses a tree by first turning every node into a
state, and then by visiting the individual arcs of
the tree one at each step. A translation rule is in
arc-factored normal form if its left-hand side is
in Σ or has the form q(q′) where q, q′ ∈ Q. A t2g
transducer is in arc-factored normal form if each of
its translation rules is in arc-factored normal form.

We now show that every t2g transducer Θ can
effectively be transformed into a t2g transducer
in arc-factored normal form which computes the
same transduction. First, introduce a new state qf
of type 0 for every f ∈ Σ that occurs in the left-
hand side of some translation rule, add the rule
f → 〈qf , ∅〉 (where ∅ denotes the empty graph),
and replace f by qf in the left-hand sides of all
original rules. Clearly, the computed transduc-
tion remains the same and all rules which violate
the condition of the arc-factored normal form have
left-hand sides in TQ.

Now, we split rules with large left-hand sides
into smaller ones. As long as the transducer is not
in arc-factored normal form, select any translation
rule s → 〈q,G〉 such that |s| > 2. Then s has
the form c[q1(q2, t1, . . . , tn)] for some context c,
states q1, q2, and trees t1, . . . , tn (n ≥ 0). If k =
type(q1) and ` = type(q2), we decompose the
translation rule into two rules, namely q1(q2) →
〈q1;2, H〉 and c[q1;2(t1, . . . , tn)]→ 〈q,G′〉, where
q1;2 is a fresh state with type(q1;2) = k + `.

The intermediate graph H consists of k+ ` iso-
lated vertices u1, . . . , uk, v1, . . . , v` with portH =
u1 · · ·ukv1 · · · v` and, for all i ∈ [k] and j ∈ [`],
labH(ui) = ε:i and labH(vj) = 1:j. The effect of
this translation rule is to take the disjoint union of
the graphs associated with the two nodes, concate-
nating the port sequences.

The graph G′ is obtained from G by appropri-
ately renaming the references of the form α·1:p
where α is the address of 2 in c: for every p ∈ [`],

if α·1:p occurs in a label of a vertex in G, then it
is replaced by α:(`+ p). Moreover, in every label
each port reference of the form α·i:p for i > 1 is
replaced by α·(i− 1):p.

It should be clear that the two translation rules,
executed one after the other, have precisely the
same effect as the original one. This completes
the proof of the arc-factored normal form.

Note that the size increase implied by the pre-
ceding construction is modest. More precisely,
each rule will be decomposed into as many rules
as there are arcs in the original left-hand side, and
the size of graphs in the right-hand sides of in-
termediate translation rules is at most twice the
largest type τ of states in Q. Hence, the to-
tal size of the new rules replacing s → 〈q,G〉
is O(|s| · τ + |G|). More sophisticated construc-
tions can result in a smaller transducer. A rather
simple optimization is to drop all ports from the
discrete graph H which do not occur in G, and to
identify those referenced in the label of the same
docking vertex. We do not further pursue this here.

6 Translation into a Packed Forest

Given a transducer Θ = (Σ,∆, Q,R, µ, F ) and an
unranked tree t, we construct a suitable represen-
tation for the set of all graphs that are translations
of t under Θ. We solve the problem in two steps,
specified below. To simplify the presentation, we
assume Θ is in arc-factored normal form.

6.1 Grounding

The first step annotates every occurrence of a sym-
bol in t with its address, yielding t̂, and constructs
a new t2g transducer Θt = (Σ′,∆, Q′, R′, µ, F ′)
with domain language {t̂} and output graphs that
are the translations of t by Θ. Let N(t̂) = N(t)
and t̂(α) = t(α)α for all α ∈ N(t). We restrict the
domain language of Θ to the set {t̂}, in such a way
that the translation process of Θ is “preserved”.
We call this construction the grounding of Θ to t.
For this, let kα = min{i ∈ N+ | αi /∈ N(t)} for
every α ∈ N(t), i.e., kα is the number of children
of α plus one.
1. The input alphabet Σ′ consists of all symbols

appearing in t̂.
2. The set Q′ consists of all 〈q, α, i〉 such that
q ∈ Q, α ∈ N(t), and i ∈ [kα]. Intuitively,
α records the position in the tree and i is the
number of the next child to be consumed.

3. The set F ′ is {〈q, ε, kε〉 | q ∈ F}.
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4. For every translation rule f → 〈q,G〉 of Θ and
every α ∈ N(t) with t(α) = f , we include
fα → 〈〈q, α, 1〉, G〉 in R′.

5. For every translation rule q1(q2) → 〈q,G〉 of
Θ and every αi ∈ N(t) (i ∈ N+), we let
〈q1, α, i〉(〈q2, αi, kαi〉) → 〈〈q, α, i + 1〉, G〉 be
a translation rule in R′.

Note that the grounding algorithm above bears
close similarity with the notion of parsing by inter-
section, which makes use of the construction pro-
posed by Bar-Hillel et al. (1964) for producing a
context-free grammar that generates the intersec-
tion of the languages of a context-free grammar
and a finite-state (string) automaton. It should thus
be clear that Θt(ŝ) = ∅ for all s ∈ TΣ \ {t}, and
Θt(t̂) = Θ(t).

The construction of Θt can be carried out in
time proportional to the product of the sizes of Θ
and t. In practice, many of the translation rules
of Θt may be useless. It is possible to avoid this
by interleaving the construction of the translation
rules of Θt with a simulation of the process of
parsing by Θ on input t. This has the advantage
of pruning the construction, so that useless trans-
lation rules are filtered out.

6.2 Graph Forest

In the second step of our translation algorithm,
we construct a suitable representation of all the
graphs that are obtained in any translation of t
based on Θ. Using the t2g transducer Θt from the
previous step, we can apply the construction out-
lined in Section 4 and produce a bottom-up finite-
state tree automaton Mt whose language is the set
D(Θt) of all derivation trees of Θt. Together with
the interpretation of generated derivation trees dt
as out(dt) this yields the desired compact repre-
sentation of the set Θ(t) of graphs t translates into.
We therefore call Mt a graph forest for the trans-
lation of t under Θ.

One can now use standard algorithms to, e.g.,
generate the graphs of the form out(dt). Further,
if the rules of Θ are equipped with weights from
some weight structure, these weights carry over to
the rules of Mt in the obvious way. If we now
turn every such weighted rule r(q1, . . . , qk)→w q
of Mt into the weighted context-free string pro-
duction q →w r(q1, . . . , qk), where states become
nonterminal symbols, and rule names, parenthe-
ses and commas are viewed as terminal symbols,
we get an equivalent weighted context-free gram-

mar generating D(Θt) (where trees are viewed as
strings over the mentioned alphabet). One can
now apply Knuth’s generalization of Dijkstra’s
shortest paths algorithm (Knuth, 1977) to find the
best-scoring derivation tree inD(Θt), and thus the
“best” translation of t. As Knuth’s algorithm runs
in time O(n log n) in the size of the grammar, the
total time required by this process is O(m logm),
where m is the product of the sizes of Θ and t.

7 Discussion

We have developed a novel finite-state transducer
that implements nonlocal processing to translate
unranked dependency trees into general graphs for
semantic representation of natural language.

Our formalism is essentially a finite-state device
processing unranked trees in a bottom-up fash-
ion, following a well-assessed tradition in nat-
ural language processing. We remark that tree
preprocessing to convert unranked trees into bi-
nary trees, in the style of the stepwise tree au-
tomata of Martens and Niehren (2005), is not at-
tractive from a linguistic standpoint since it might
destroy the linguistic intuition underlying transla-
tion rules. Therefore, our solution to the problem
of processing unranked trees uses on-the-fly bina-
rization at each node. This solution was previously
adopted by the Z-automata of Björklund et al.
(2019), recognizing dependency trees. In fact, if
we remove the graph component from the right-
hand side of translation rules in t2g transucers, we
obtain Z-automata.

Our definition of translation rules forbids the
rewriting of single nodes labeled by a state. This is
done to avoid cycling on the same input node for
an unbounded number of steps. This ability would
make it possible to turn a single input tree into
infinitely many semantic graphs that can be arbi-
trarily larger than the input syntactic tree. Such a
model would not be linguistically adequate.

As already remarked, there is a deep similar-
ity between the definition of computation step in
t2g transducers and hyperedge replacement. In
fact a synchronous hyperedge replacement gram-
mar could easily simulate a t2g transducer.

The next step in this project is the development
of algorithms for unsupervised extraction of t2g
translation rules from semantic graph corpora.
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Abstract

In finite-state language processing pipelines,
a lexicon is often a key component. It needs
to be comprehensive to ensure accuracy, re-
ducing out-of-vocabulary misses. However, in
memory-constrained environments (e.g., mo-
bile phones), the size of the component au-
tomata must be kept small. Indeed, a delicate
balance between comprehensiveness, speed,
and memory must be struck to conform to de-
vice requirements while providing a good user
experience.

In this paper, we describe a compression
scheme for lexicons when represented as
finite-state transducers. We efficiently encode
the graph of the transducer while storing tran-
sition labels separately. The graph encoding
scheme is based on the LOUDS (Level Or-
der Unary Degree Sequence) tree representa-
tion, which has constant time tree traversal for
queries while being information-theoretically
optimal in space. We find that our encoding
is near the theoretical lower bound for such
graphs and substantially outperforms more tra-
ditional representations in space while remain-
ing competitive in latency benchmarks.

1 Introduction

Modern finite-state language processing pipelines
often consist of several finite-state transducers in
composition. For example, a virtual keyboard
pipeline, used for decoding on mobile devices,
can consist of a context dependency transducer
C, a lexicon L, and an n-gram language model
G (Ouyang et al., 2017). A bikey C transducer
is used to encode context in gesture decoding,
the lexicon transducer L maps from a character
string to the corresponding word ID, and the lan-
guage model G gives the a priori probability of a
word sequence. A similar decomposition is often
used in speech recognition decoding (Mohri et al.,
1996).

These models are then composed as

C ◦ L ◦G.
The application of this combined model to an
input character string outputs the corresponding
word string and probability. Unfortunately, in
order to be accurate, these models may need to
be large. This problem is aggravated when the
composition is performed statically since the state
space grows with the product of the input automata
sizes. In practice, on-the-fly composition is of-
ten used to save space (Mohri et al., 1996; Hori
et al., 2004; Caseiro and Trancoso, 2006). Addi-
tionally, it is of practical importance to have com-
pact and efficient finite-state language model com-
ponent representations.

There are a variety of compression schemes
available for automata (Daciuk, 2000). These
range from general compression algorithms,
which do not depend on a specific underlying
structure (Daciuk and van Noord, 2001; Daciuk
and Weiss, 2011; Mohri et al., 2015) to schemes
that try to heavily exploit specific structural
properties of the inputs (Watanabe et al., 2009;
Sorensen and Allauzen, 2011). Another important
consideration is whether the automata can be de-
compressed just for a queried portion or need to
be more fully decompressed. Generic compres-
sion algorithms often have relatively good com-
pression ratios over a wide class of machines, but
they sacrifice speed and space in use since they
often do not admit such selective decompression.
In contrast, structurally-specific compression al-
gorithms can have an attractive balance between
the compression ratio and query performance, but
are limited to precise subclasses of machines. In
real-time production systems, the latter method of-
ten proves more desirable since a user should not
have to wait long or waste space when a query is
answered.
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Among the transducers mentioned above, the
context-dependency transducer C can be rep-
resented implicitly (in code) and structurally-
specific compression algorithms for the n-gram
language model G have previously been devel-
oped (Sorensen and Allauzen, 2011). This leads
us to investigate the compression of the lexicon L.

This paper is organized as follows. Section 2
introduces the formal algebraic structures and no-
tation that we will use. Section 3 describes differ-
ent representations for these algebraic structures.
In Section 4, we formally define a lexicon and ex-
plore its possible representations. Section 5 devel-
ops an information-theoretic bound on the num-
ber of bits needed to encode a lexicon, Section 6
presents our encoding, and Section 7 presents ex-
periments on the quality of that encoding. Finally,
we offer concluding remarks in Section 8.

2 Preliminaries

2.1 Graphs and Trees
A directed graph (or digraph) G = (V,A) has a
finite set of nodes (or vertices) V and a finite set of
directed arcs (or edges) A ⊆ V × V . An arc a =
(p[a], n[a]) spans from a source node p[a] to a des-
tination node n[a]. A path π is a non-empty list of
consecutive arcs a1, a2, . . . , an where p[ai+1] =
n[ai]. We write p[π] = p[a1], n[π] = n[an]. A
cycle is a path π with p[π] = n[π]. A digraph
is acyclic if it has no cycles. The out-degree of a
node v ∈ V is |{w ∈ V | (v, w) ∈ A}| and the
in-degree is |{w ∈ V | (w, v) ∈ A}|.

We distinguish several specific digraph cases:

• An out-tree (V,A, i) is an acyclic digraph for
which the in-degree of every node is 1 except
for the distinguished root node i ∈ V , which
has in-degree 0. The nodes with out-degree 0
are called leaves.

• An in-tree (V,A, f) is an acyclic digraph for
which the out-degree of every node is 1 ex-
cept for the distinguished root node f ∈ V ,
which has out-degree 0. The nodes with in-
degree 0 are called leaves.

• A directed bipartite digraph (V1∪V2, A) par-
titions the nodes into two disjoint sets V1 and
V2 with A ⊆ (V1 × V2) ∪ (V2 × V1).

2.2 Finite-State Transducers
A finite-state transducer T = (Σ,Γ, Q,E, i, F )
has a finite input alphabet Σ, a finite output al-

phabet Γ, a finite set of states Q, a finite set of
transitions E ⊆ Q× (Σ ∪ {ε})× Γ∗ ×Q, an ini-
tial state i and a final set of states F ⊆ Q. The
symbol ε represents the empty string. A transition
e = (p[e], i[e], o[e], n[e]) ∈ E represents a move
from the source state p[e] to the destination state
n[e] with the input label i[e] and output label o[e].
Associated with any transducer is a directed graph
G(T ) = (Q,A) where A = {(q, q′) ∈ Q × Q :
(q, x, y, q′) ∈ E}. Thus, there is a 1:1 correspon-
dence between states and nodes but there may be
multiple transitions, with different labelings, that
correspond to the same digraph arc. In that case,
we say the transition is a digraph multiarc.

A path π = e1, . . . , en, a cycle, p[π] and n[π]
are analogously defined to digraphs and define
i[π] = i[e1] . . . i[en] and o[π] = o[e1] . . . o[en].
P (q, q′) denotes the set of all paths in T from state
q to q′. We extend this to sets in the obvious way:
P (q,R) denotes the set of all paths from state q to
q′ ∈ R and so forth. A path π is successful if it is
in P (i, F ) and in that case the transducer is said to
accept the input string i[π] and output o[π].

A finite-state transducer is subsequential if it is
input deterministic, that is, no two outgoing tran-
sitions at the same state share the same input label,
and the destination state of any epsilon transition
is a final state with no outgoing transitions.

3 Representations

3.1 Graph and Tree Representations

Basic Graph and Tree Representation. A simple
digraph representation uses adjacency lists: de-
note the nodes V by integers from 1 to N , let
a be an array indexed by the node number, and
let a[q] = (q1, . . . , qn) be a list of the nodes
{qj ∈ V : (q, qj) ∈ A}. An in-tree and out-tree
can use this representation where a distinguished
integer such as 1 or |V | is used to denote the root.
A directed bipartite graph can also use this rep-
resentation where it may be convenient to number
the nodes in V1 from 1 to |V1| and V2 from |V1|+1
to |V |.

Compact Tree Representation. In the case of
trees, there is a particularly compact representa-
tion known as LOUDS (Level Order Unary De-
gree Sequence). We can quantify compactness as
follows.

For a finite set with M elements, we require at
least N = logM bits to uniquely encode each el-
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ement. We call an encoding scheme succinct if it
takes at mostN+o(N) bits to encode any element
uniquely.

The LOUDS tree encoding is a succinct rep-
resentation of ordinal trees (where a node’s chil-
dren have a total ordering). Given an ordinal tree
of N nodes, it encodes it in 2N + 1 bits, while
the information-theoretic lower bound is 2N −
O(logN) (Jacobson, 1989). Moreover, O(1) time
parent-child traversals can be implemented using
o(N) extras bits of storage (Geary et al., 2004).

Let b be a bitstring where b[i] is the element
at index i when starting from 0. Then, we define
Rankx and Selectx, where x ∈ {0, 1}, as

Rankbx(n) = |{i | b[i] = x, 0 ≤ i < n}|
Selectbx(n) = the index of the n-th x in b.

These operations can be performed in constant
time using o(|b|) extra bits of space (Vigna, 2008).

The LOUDS encoding is then constructed as
follows. We start with the bitstring 10. Then,
from the root in breadth-first order, we append
1d0, where d is the number of children of the cur-
rent node. Here, we assume the graph is labeled
in breadth-first order. Then, a node n corresponds
to the n-th 1 in the bitstring (or, equivalently, the
(n + 1)-th 0). We can find the parent or first/last
child (if any) using a combination of Rank and
Select queries:

Parentb(n) = Rankb0(Selectb1(n))

FirstChildb(n) = Rankb1(Selectb0(n) + 1)

LastChildb(n) = Rankb1(Selectb0(n+ 1)− 1).

From these, we can retrieve the number of chil-
dren of a node, the i-th child, whether or not a
node is a leaf, and many other operations in a con-
stant number of queries (Geary et al., 2004; Del-
pratt et al., 2006). It is known that Select and Rank
can be performed in constant time in the length
of the bitstring by augmenting the bitstring with
o(N) additional bits of information (thus retain-
ing any succinctness properties) (Kim et al., 2005;
Vigna, 2008).

3.2 Transducer Representations
Basic Transducer Representation. A simple
transducer representation uses adjacency lists as
well, stored in an array a indexed by states that
are denoted by integers from 0 to |Q| − 1, The
value a[q] = ((i1, o1, q1), . . . , (in, on, qn)) is a list

of the elements of {(ij , oj , qj) ∈ Σ × Γ × Q :
(q, ij , oj , qj) ∈ E}. The initial state can be de-
noted by 0 and the final states can be stored sepa-
rately. We will call this representation AdjList
in our experiments where we use 32 bits for each
of the input label, output label, and destination
state of each transition.

Compact Transducer Representation. A more
compact transducer representation stores the |Q|
adjacency lists across 2 global arrays as follows.
First an array I, indexed by integers from 0 to |Q|,
holds the values I[q] =

∑
0≤i<q |a[q]|. Second

an array A, indexed by integers from 0 to |E| −
1, holds the concatenation of the adjacency lists
a[0] · · · a[|Q| − 1]. The adjacency list for a given
state q can be recovered from I and A as

a[q] =

I[q+1]−1⋃

i=I[q]

{A[i]}.

Observe that I stores a monotonic nondecreas-
ing sequence of integers, hence we encode us-
ing a differential coding approach similar to
PForDelta (Zukowski et al., 2006). We store A

using a variable-length encoding that ensures that
log |Q| + log |Σ| + log |Γ| bits are used per entry
in A on average. Final states are stored as super-
final transitions. We will call this representation
CmpAdjList in our experiments.

4 Lexicons

Lexicon Definition. We define a lexicon as a fi-
nite binary relation L ⊂ Σ+ × Γ that pairs non-
empty character strings from the finite alphabet Σ
to a word symbol in the finite alphabet Γ. This
terminology matches our keyboard application de-
scribed above. For the speech recognition applica-
tion, the Σ alphabet represents phonemes. We will
assume the relationL is functional and one-to-one.
In other words, each character string in the domain
of L maps to only one word (i.e., no homonyms)
and each word maps to only one character string
(i.e., unique spellings). This is natural for the key-
board application.1

Lexicon Representation While there are many
ways to represent a lexicon, we focus on using a
character-to-word finite-state transducer. An ad-
vantage of this approach is that we can use trans-

1For the speech application the alphabets may need to be
extended to eliminate any homophones and non-unique pro-
nunciations (Mohri et al., 1996).
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Figure 1: A character-to-word lexicon transducer in canonical form. The dashed arcs are special bridge arcs.
Notice that removing the bridge arcs disconnects the graph while leaving two tree structures.

ducer determinization and minimization to put the
transducer into a minimal canonical form (possi-
ble since L is finite and thus has an acyclic trans-
ducer representation) (Mohri et al., 2002). Figure
1 gives an example of a character-to-word lexicon
transducer in this canonical form. Each word in a
canonical lexicon corresponds to exactly one suc-
cessful path (by subsequentiality) and every suc-
cessful path has exactly one transition with an non-
ε output label (by definition of a lexicon). Further,
there is only one final state (by acyclicity and min-
imality) which we will denote by f . What remains
is to store this representation compactly. We will
do so by storing the transducer graph and its labels
separately.

Given a minimal lexicon transducer T , we will
now show that we can decompose the graph G(T )
into three sub-graphs: a prefix graphGp(T ), a suf-
fix graph Gs(T ), and a bridge graph Gb(T ). We
further show that Gp(T ) is an out-tree, Gs(T ) is
an in-tree, and Gb(T ) is a directed bipartite graph.
We will use this decomposition in our stored rep-
resentation.

Formally, let G(T ) = (Q,A) as defined above.
Then define Gp(T ) = (Qp, Ap), Gs(T ) =
(Qs, As), and Gb(T ) = (Qb, Ab) as

Qp = {q ∈ Q : π ∈ P (i, q) ∧ o[π] = ε}
Qs = {q ∈ Q : π ∈ P (q, F ) ∧ o[π] = ε}
Qb = {q ∈ Q : (q, q′) ∈ Ab ∨ (q′, q) ∈ Ab}
Ap = {(q, q′) ∈ A : q, q′ ∈ Qa}
As = {(q, q′) ∈ A : q, q′ ∈ Qs}
Ab = {(q, q′) ∈ A : (q, x, y, q′) ∈ E ∧ y 6= ε}.

In other words, the prefix graph corresponds to
transitions on paths in T before the output label,
the suffix graph to those after the output label, and
the bridge graph to those with the output label. It
is easy to see a transition in T corresponds to an
arc in exactly one of these sub-graphs. Further,Qp

and Qs partition Q.
The prefix graph is an out-tree rooted at i ∈ Qp.

Suppose there are two arcs entering some state q ∈
Qp. Then there must be two successful paths in
T that pass through q with the same word label,
which is a contradiction.

Similarly, the suffix graph is an in-tree rooted at
f ∈ Qs. For example, suppose there are two arcs
leaving some state q ∈ Qs. Then again there must
be two successful paths in T that pass through q
with the same word label, which is a contradiction.

Finally, the bridge graph is a directed bipartite
graph with arcs that span from Qp to Qs because
for any successful path in T the transition with a
non-ε output label is preceded by a subpath with
all ε output labels from the initial state i and fol-
lowed by a subpath with all ε output labels to the
final state f . Observe that only bridge arcs in Ab

can be multiarcs of G(T ) since L is one-to-one.
Figure 1 shows this decomposition for our ex-

ample with the bridge arcs specially marked.

5 The Optimal Graph Encoding

Now that we have described the canonical form
of our lexicon transducer and its graph decom-
position, we can begin to devise a compression
scheme. We first wish to find the information-
theoretic bound on the number of bits required
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to uniquely encode any lexicon graph. That is,
among all lexicon transducers with given prefix
out-tree and suffix in-tree sizes (and a given num-
ber of leaves in each) and k bridge arcs, how many
bits is sufficient to encode them so that they are all
pairwise distinguishable?

In this section, we let n and n` be the number of
nodes and leaves in the prefix out-tree and m and
m` be the same for the suffix in-tree.

The LOUDS tree encoding is optimal for all n
node ordinal trees up to lower order terms (Jacob-
son, 1989). This is because there are

(
2n
n

)

n

ordinal trees on n nodes, and

log

(
2n
n

)

n
= 2n−O(log n).

This is compared to the 2n + 1 bits used by
LOUDS. However, when the number of leaves is
known, this bound can be reduced. There are

(
n−2
n`−1

)(
n−1
n`−1

)

n`

ordinal trees with n nodes and n` leaves (Ya-
manaka et al., 2012).

We are left with the task of counting the number
of valid bridge graphs with k arcs. Each bridge
graph is uniquely defined by choosing a set of k
bridge arcs, i.e., a k element subset of Qp × Qs.
Every state in a minimal lexicon transducer must
belong to a successful path, hence every node in
its graph must belong to a path from the root of
Qp to the root of Qs. A leaf in Qp (resp. Qs)
belongs to such a path if and only if it is the origin
(resp. destination) of a bridge arc. Hence, a set
of k bridge arcs Ab ∈ Pk(Qp × Qs) is valid iff
for every leaf q there exists a bridge arc a ∈ Ab

such that q = p[a] or q = n[a]. Let Q`
p and Q`

s

be the set of leaves in the prefix and suffix graphs
respectively, and Q` = Q`

p ∪Q`
s.

Let Aq denote the set of sets of k bridge arcs
where the leaf q ∈ Q` is not part of an arc:

Aq =

{
Pk((Qp \ {q})×Qs) if q ∈ Q`

p,
Pk(Qp × (Qs \ {q})) otherwise.

A set of bridge arcs is valid if and only if it does
not belong to any of Aq. Hence, the number of
valid sets of bridge arcs is
∣∣∣∣∣∣
Pk(Qp ×Qs) \

⋃

q∈Q`

Aq

∣∣∣∣∣∣
=

(
nm

k

)
−

∣∣∣∣∣∣
⋃

q∈Q`

Aq

∣∣∣∣∣∣
.

We can now apply the inclusion-exclusion princi-
ple to compute the cardinality of the union in that
last term:
∣∣∣∣∣∣
⋃

q∈Q`

Aq

∣∣∣∣∣∣
=

∑

∅6=X⊆Q`

(−1)|X|+1

∣∣∣∣∣
⋂

x∈X
Ax

∣∣∣∣∣ .

Observe that, for a non-empty subset X of Q`,
⋂

x∈X
Ax = Pk((Qp \X)× (Qs \X))

and the cardinality of that intersection is:
∣∣∣∣∣
⋂

x∈X
Ax

∣∣∣∣∣ =

(
(n− i)(m− j)

k

)

where i = |X ∩Qp| and j = |X ∩Qs|. Hence, the
cardinality of the intersection defined by a givenX
depends only on the number of leaves fromQp and
Qs in X . We can continue the inclusion-exclusion
computation using

∣∣∣∣∣∣
⋃

q∈Q`

Aq

∣∣∣∣∣∣
=

n∑̀

i=0

m∑̀

j=0

i+j>0

(−1)i+j+1
∑

X⊆Q`

|X∩Q`
p|=i

|X∩Q`
s|=j

∣∣∣∣∣
⋂

x∈X
Ax

∣∣∣∣∣ =

n∑̀

i=0

m∑̀

j=0

i+j>0

(−1)i+j+1

(
n`

i

)(
m`

j

)(
(n− i)(m− j)

k

)
,

the last derivation following from
∣∣∣∣
{
X ⊆ Q`

∣∣∣∣
i = |X ∩Qp|,
j = |X ∩Qs|

}∣∣∣∣ =
(
n`

i

)(
m`

j

)
.

We can now complete the computation of the
number of valid bridge graphs:

(
mn

k

)
−

n∑̀

i=0

m∑̀

j=0

i+j>0

(−1)i+j+1(n`
i

)(
m`
j

)(
(n−i)(m−j)

k

)

=

n∑̀

i=0

m∑̀

j=0

(−1)i+j

(
n`

i

)(
m`

j

)(
(n− i)(m− j)

k

)
.

We are unaware of any asymptotic analysis of
this summation or a way to closely estimate its
logarithm. To compare it with our encoding, we
use a loose upper bound of

(
nm
k

)
and Stirling’s ap-

proximation to get

log

(
nm

k

)
≈ nm log nm− k log k

−(nm− k) log(nm− k).
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Overall, the number of possible lexicon graphs
given n,m, k, n`, and m` can be found by mul-
tiplying the number of n (m) node, n` (m`) leaf
trees (

n−2
n`−1

)(
n−1
n`−1

)

n`

(
m−2
m`−1

)(
m−1
m`−1

)

m`

by the number of valid bridge graphs.
Finally, we note that by choosing any out-tree

as a prefix graph, any in-tree as a suffix graph, and
any valid bridge graph, we obtain a graph that is
a valid lexicon graph. A minimal lexicon trans-
ducer can be derived from that graph by labeling
each non-bridge arc with a unique input label (and
epsilon output) and each bridge arc with a unique
input and output label.2

6 Compact Lexicon Encoding

6.1 Encoding the Graph
We encode the prefix, suffix, and bridge graphs
separately. Encoding the prefix out-tree and suffix
in-tree using LOUDS leads to a natural numbering
of the nodes inQ: nodes inQp are numbered from
0 to n − 1 in BFS order and nodes in Qs from n
to |Q| − 1 in BFS order using the reverse of As,
{(q′, q) | (q, q′) ∈ As}, with 0 and n denoting
the roots of Qp and Qs, respectively. The LOUDS
representation of the prefix and suffix graphs con-
sists of two bitstrings, bp of length n+ 1 and bs of
length m+ 1, using 2(n+m+ 1) bits combined.

We represent the bridge graph using a compact
adjacency list approach. We use an array Ab in-
dexed from 0 to n − 1 holding the concatenation
of the bridge-arc adjacency lists of the prefix nodes
ab[0] · · · ab[n− 1]. We use a bitmap bb with n+ k
bits, one for each prefix node and bridge arc, to im-
plement an index into Ab as follows. The bitmap
bb is encoded by concatenating 1d0 for each pre-
fix node q, where3

d =
∣∣{q′ ∈ Qs | (q, q′) ∈ Ab}

∣∣ = |a[q]|.

We retrieve the number of bridge arcs originating
at a node q ∈ Qp by computing

Nb(q) = Selectbb0 (q)− Selectbb0 (q − 1),

2 Since a minimal transducer is labeled-pushed (Mohri,
2000), a bridge arc that is the only outgoing arc at a given
node must be a multiarc that becomes 2 (or more) transitions
with the same source and destination but with distinct input
and output labels.

3In the case where multiarcs are present, which is ex-
tremely rare in practice, their multiplicities are encoded by
using d = |{e ∈ E | p[e] = q ∧ (q, n[e]) ∈ Ab}|.

and the index in the dense array Ab to the position
where the adjacency list for q starts by

Ib(q) = Rankbb1 (Selectbb0 (q − 1)).

The variable-length encoding mentioned in Sec-
tion 3.2 is used to compress Ab in k logm bits,
since the k entries in Ab can take at most m val-
ues.

It is possible to reduce the bridge arc adjacency
list and multiplicity encoding to

min(n+ k logm,m+ k log n) + k + 1

bits by noting that the bridge arcs travel unidirec-
tionally from the prefix out-tree to suffix in-tree
so we can represent them in either the forward or
reverse direction, depending on which uses less
space. However, we choose not to do this as it
would incur an additional traversal time cost.

In total, our encoding uses

2(n+m+ 1) + n+ k + kdlogme

bits to store the graph. We note that this is asymp-
totically worse than the best possible from Section
5. Nevertheless, in Section 7, we show empiri-
cally that it performs substantially better than the
CmpAdjList format and is useful in practice.

6.2 Encoding the Labeling
We now encode the arc labels for each of the three
component graphs using four ancillary arrays.

The arrays Lp and Ls store the input labels for
each of the n−1 prefix arcs and m−1 suffix arcs.
For q ∈ Qp \ {0}, Lp[q − 1] holds the input label
for the unique incoming prefix arc to q. Likewise,
for q ∈ Qs \ n, Ls[q− n− 1] holds the input label
for the unique outgoing suffix arc to q. Recall that
arcs in the prefix out-tree or suffix in-tree always
have output label ε.

The arrays Lib and Lob store the input and output
label for each of the k bridge arcs, using the same
indexing as Ab: the bridge arc corresponding to the
j-th entry in Ab, has input label Lib[j], output label
Lob [j] and destination Ab[j].

Each of the arrays Lp, Ls, Lib, and Lob is com-
pressed using the same variable-length encoding
scheme as CmpAdjList. This allows us to di-
rectly compare the effect of encoding the graph
separately from the arc label data. Encoding fi-
nality is simple – only one node, the root of the
suffix in-tree, is final.
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Figure 2: An example memory layout of our character-
to-word lexicon transducer. The arrows demonstrate
which nodes and arcs are encoded by which bits in the
bridge arc and LOUDS tree bitmaps.

An overview of the memory layout of our en-
coding is given in Figure 2. We discuss the prac-
tical space savings in Section 7. All together, we
call this representation the LOUDS lexicon format
in our experiments.

6.3 Traversing the Transducer
We traverse the transducer by constructing the
transitions originating at a given state q on de-
mand.

When q ∈ Qp, the set E[q] of outgoing transi-
tions in q can be decomposed as

E[q] = Ep[q] ∪ Eb[q]

where Ep[q] represents the transitions correspond-
ing to prefix arcs andEb[q] the ones corresponding
to bridge arcs. The first component can be com-
puted from the prefix LOUDS tree by

Ep[q] =

LastChildbp (q)⋃

q′=FirstChildbp (q)

{(q, Lp[q′ − 1], ε, q′)}

and the second component can be recovered from
the compact adjacency representation of the bridge
graph as

Eb[q] =

Ib(q)+Nb(q)−1⋃

j=Ib(q)

{(q, Lib[j], Lob [j], Ab[j])}.

When q ∈ Qs \ {n}, there is a single outgoing
transition in q that can be computed from the suffix

LOUDS tree as

(q, Ls[q − n− 1], ε, n+ Parentbs(q − n)).

Finally, when q = n, q is the root of the suffix
out-tree. There are no outgoing transitions in q but
q is final.

6.4 Closure
In practice, we often use a modified lexicon trans-
ducer representing its closure T+, which accepts
one or more words from the lexicon. For this, an
ε-labeled transition from the final state to the ini-
tial state can be added to the canonical transducer.4

7 Experiments

We compare our lexicon encoding to the two other
transducer representations in Section 3.2. We
measure the memory size of the resulting ma-
chines as well as their runtimes on a decoding
task. We prepare a set of lexicons using the
most common 500k words in the Google keyboard
(GBoard) Russian language model. We extract the
50k, 100k, . . . , 500k most frequent words to
create a total of 10 lexicons.

We first compare the space used by the
AdjList, the CmpAdjList, and the LOUDS
lexicon formats. The results are shown in Figure
3. The LOUDS lexicon outperforms the other two
formats in every case. On the 500k word lexicon,
it is 90.8% smaller than the AdjList format and
58.8% smaller than the CmpAdjList format.

Figure 4 shows the number of bits required to
encode the Russian lexicons using our encoding
and the upper bound of the optimal encoding. We
use the parameters from Table 1 along with the up-
per bound described in Section 5 and the number
of bits for our representation from Section 6. Our
graph encoding nearly matches the upper bound
approximation in all situations. For the 500k lex-
icon, the difference between our encoding and the
upper bound is less than 2%. In contrast, the stan-
dard adjacency list format graph requires ten times
more space across all test cases. We now con-
sider the performance of our encoding on a bench-
mark decoding task consisting of on-the-fly com-
position with an n-gram language model followed
by shortest path computation, which simulates a
typical pipeline in applications. For the language
model, we use a 244k state n-gram model trained

4In the keyboard example, this transition might instead be
labeled with the space symbol on input.
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# Words 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
Prefix Nodes 76207 148026 219494 292499 360911 429080 494766 558619 620429 670232
Suffix Nodes 7867 12548 15964 18187 20634 22454 23850 25059 25955 26977
Prefix Leaves 13402 26371 39300 52288 64894 77462 89881 102067 114228 124097
Suffix Leaves 1602 2560 3266 3732 4182 4512 4754 4989 5221 5421

Table 1: The size of the prefix out-tree and suffix in-tree as well as the number of leaves in each for all of the
Russian lexicons. Note that the number of bridge arcs is the same as the number of words.
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Figure 3: The amount of disk space required by each of
the FST formats on our Russian language lexicon test
set.

on Russian language data. Figure 5 shows the
speed of this benchmark for each of the lexicon
formats. At its worst, the LOUDS format was ∼
20% slower than the CmpAdjList format. How-
ever, for the 500k word case, the difference be-
tween the LOUDS format and the CmpAdjList
format was only 8.6%. In these experiments, no
pre-processing (transition sorting, caching, etc.)
of the transducers was done so that the raw ac-
cess time for each format could be measured more
accurately.

8 Conclusion

In this paper, we described a compact encoding for
character-to-word lexicon transducers in canonical
minimal form. The transducer graph is decom-
posed into simpler subgraphs, exploited in the en-
coding. The arc label data is encoded separately
using variable-length compression schemes. We
presented an information-theoretic lower bound
for the graph encoding and compare the encoding
to an asymptotic upper bound approximation.

Our encoding is compared to two alternative
formats – adjacency lists with and without vari-
able length compression. Ours is more than 58%
smaller while being only ∼9% slower in tests on
a decoding benchmark. Furthermore, this encod-
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Figure 4: The theoretical number of bits required to
encode the graphs of the Russian lexicons. We compare
our encoding’s exact space requirements with the upper
bound as discussed in Section 5.
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Figure 5: The time for the decoding task with a 244k
state n-gram model. The average over 50 trials is given.

ing is very close to the information-theoretic upper
bound on all the test cases.
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Abstract

Tests added to Kleene algebra (by Kozen
and others) are considered within Monadic
Second Order logic over strings, where they
are likened to statives in natural language.
Reducts are formed over tests and non-tests
alike, specifying what is observable. Notions
of temporal granularity are based on observ-
able change, under the assumption that a finite
set bounds what is observable (with the possi-
bility of stretching such bounds by moving to a
larger finite set). String projections at different
granularities are conjoined by superpositions
that provide another variant of concatenation
for Booleans.

1 Introduction

Regular languages can be studied declaratively
through formulas of Monadic Second-Order logic
over strings (MSO; e.g., Libkin, 2010) or through
equations built with the constructs +, ·,∗ , 0, 1 of
a Kleene algebra (KA; e.g., Kozen, 1994). A KA
with a subalgebra of tests forming a Boolean alge-
bra is a KA with tests (KAT; e.g., Kozen, 1997).
Tests are identified below with statives that serve
as a basis for the approach to temporal semantics
in linguistics initiated in Dowty (1979). This iden-
tification is justified by

(i) a guarded string interpretation of KAT
(Kozen and Smith, 1996), in which tests
form states, as conceived in Propositional
Dynamic Logic (PDL, Fischer and Ladner,
1979), and

(ii) a notion of homogeneity associated (by
Dowty and other linguists) with statives, and
linked below to tests under a conception of
time as observable change.

These two points are developed below in MSO
using reducts. Kozen and Smith’s definition of
guarded strings is reformulated so that

(†) the MSO-sentence ϕ picking out guarded
strings over actions Σ and tests B does not
mention B (or their Boolean complements),
asserting only that exactly one action occurs
at every position except for the final one,
where no action occurs.

Precisely what (†) means is taken up in section 2,
with the help of reducts. Why (†) is significant
becomes plain in section 3, where the reformula-
tion is used to clarify the connection with tests and
states in PDL.1 A notion of temporal granularity
based on observable change in MSO is built on
projections that compress reducts. These projec-
tions are applied in section 4 to generalize interval
networks from (Allen, 1983).

2 Guarded strings, MSO and reducts

For any finite set Σ, let RegΣ be the set of lan-
guages over the alphabet Σ accepted by finite au-
tomata. Then 〈RegΣ,∪, ·,∗ , ∅, ε〉 is a KA — ar-
guably, the Σ-canonical KA. For a KA with tests,
we start in §2.1 with a finite set B of tests, and
present the free Boolean algebra generated byB in
terms of powersets 2X of sets X . Strings over the
alphabet 2B∪Σ are then used in §2.2 for an exten-
sion to a KA. This deviates tellingly from Kozen
and Smith (1996)’s presentation of guarded strings
over the alphabet Σ ∪ B ∪ B with Boolean com-
plements B of B, reviewed in §2.3. The deviation
is natural from the perspective of MSO, which is
brought into the picture along with reducts in §2.4.

2.1 Finite free Boolean algebras
Given a set B, the set TB of Boolean terms over
B is the smallest set ⊇-containing B ∪ {0, 1} that
is closed under the binary connectives +, · and the
unary connective c (for complements). Assuming

1 We focus throughout on semantic intuitions relevant to
our present purposes, leaving out details such as the equa-
tional axioms of KA or the precise language of PDL.
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B is finite, the free Boolean algebra generated by
B is

F (B) = 〈2(2B),∪,∩, ∅, 2B, 2B \ ·〉

(with addition ∪, multiplication ∩, and comple-
ment 2B \ X of a subset X of 2B). A B-atom is
a subset q of B, and is used to interpret Boolean
terms over B as follows

[[b]]B := {q ⊆ B | b ∈ q} for b ∈ B
[[0]]B := ∅ [[1]]B := 2B

and for terms t, t′ ∈ TB ,

[[t+ t′]]B := [[t]]B ∪ [[t′]]B
[[t · t′]]B := [[t]]B ∩ [[t′]]B
[[c(t)]]B := [[1]]B \ [[t]]B.

2.2 Guarded strings of sets

Next, given a set Σ disjoint from TB , Σ∩TB = ∅,
let the set TΣ,B of (Σ, B)-terms be the smallest set
containing Σ ∪ TB that is closed under the binary
connectives +, · and the unary connective ∗. To
extend the interpretation [[t]]B of Boolean terms t
over B to (Σ, B)-terms, we weaken the notion of
a B-atom as follows. Let 2BΣ be the set

2BΣ := {q ∪ {p} | q ⊆ B and p ∈ Σ}

of sets obtained from a subset of B by adjoining
an element of Σ. The set

GBΣ := (2BΣ)∗2B (⊂ (2B∪Σ)+

is generated by the rules

q ⊆ B
q ∈ GBΣ

q ⊆ B p ∈ Σ s ∈ GBΣ
(q ∪ {p})s ∈ GBΣ

to produce strings

(q1 ∪ {p1}) · · · (qn ∪ {pn})qn+1

of length n + 1 (for n ≥ 0), formed from
q1 · · · qn+1 ∈ (2B)n+1 and p1 · · · pn ∈ Σn. Let us
call elements of GBΣ (Σ, B)-guarded strings (mak-
ing B-atoms (Σ, B)-guarded strings of length 1).
To interpret a (Σ, B)-term as a set of (Σ, B)-
guarded strings, two bits of notation are handy.

(i) For any string s of length > 0, let αs be the
symbol that occurs first in s.

(ii) For any symbol q and language L, let L[q] be
the set of strings that, with q attached to the
right, belong to L

L[q] := {s | sq ∈ L}.

Now, given sets L and L′ of strings of length > 0,
the Σ-fused product of L and L′ is the set

L •Σ L′ := {ss′ | s′ ∈ L′ and s ∈ L[αs′ \ Σ]}

of strings ss′ from s′ ∈ L′ and s such that sq ∈ L
where q is αs′ \ Σ. That is,

L •Σ L′ = {s ·Σ s′ | s ∈ L, s′ ∈ L′ and

s ·Σ s′ is defined}

where ·Σ is a partial binary function on strings of
length > 0 such that

sq ·Σ αs′ is defined ⇐⇒ q = α \ Σ

=⇒ sq ·Σ αs′ = sαs′.

Notice that if L and L′ are both sets of B-atoms,
then their Σ-fused product is just their intersection

L •Σ L′ = L ∩ L′.

Consequently, we can extend [[·]]B : TB → 22B to
an interpretation [[·]]Σ,B : TΣ,B → 2G

B
Σ , setting

[[t]]Σ,B := [[t]]B for t ∈ TB
[[p]]Σ,B := {(q ∪ {p})q′ | q, q′ ⊆ B} for p ∈ Σ

and for all t, t′ ∈ TΣ,B ,

[[t+ t′]]Σ,B := [[t]]Σ,B ∪ [[t′]]Σ,B

[[t · t′]]Σ,B := [[t]]Σ,B •Σ [[t′]]Σ,B

[[t∗]]Σ,B := ([[t]]Σ,B)?Σ

where the Σ-asterate ?Σ is the Σ-fused analog of
Kleene star

L?Σ :=
⋃

n≥0

Ln

with L0 := 2B (the •Σ-identity for 2G
B
Σ ) and

Ln+1 := L •Σ Ln.

2.3 Strings in place of sets
Guarded strings in Kozen and Smith (1996) are
conceived over an alphabet different from 2B∪Σ

by fixing a string b1 · · · bn that enumerates

B = {b1, . . . , bn}

28



B-atom alphabet product
GBΣ q ⊆ B 2Σ∪B •Σ
GΣ,B c1 · · · cn ∈ AB Σ ∪B ∪B �n

Table 1: Guarded strings 2 ways, given Σ and B

without repetition (making n the cardinality ofB).
Each b ∈ B is paired with a fresh test b, relative
to which a B-atom q ⊆ B can be understood as n
choices c1 · · · cn between bi and bi, with

ci :=

{
bi if bi ∈ q
bi otherwise.

2B is repackaged as the language

AB := (b1 + b1)(b2 + b2) · · · (bn + bn)

to turn GBΣ from §2.2 into the set

GΣ,B := (AB Σ)∗AB

of guarded strings over Σ and B, with alphabet

Σ ∪B ∪B where B := {b1, . . . , bn}.

Every (Σ, B)-term t is then interpretable as a sub-
set [[t]] of GΣ,B , with

[[p]] = {sps′ | s, s′ ∈ AB} for p ∈ Σ

and for b ∈ B,

[[b]] = {s ∈ AB | s ∈ (B ∪B − {b})+}.

In place of the Σ-fused product •Σ, we have the
coalesced product �n

L �n L′ := {sŝs′ | sŝ ∈ L, ŝs′ ∈ L′
and length(ŝ) = n}.

Inasmuch as the two KATs over 2G
B
Σ and 2GΣ,B

are isomorphic, it is tempting to dismiss the dif-
ference recorded in Table 1 as cosmetic. Nonethe-
less, there are reasons for preferring 2B over AB

from the perspective of MSO, a natural home for
Boolean tests, with or without atoms.

2.4 MSO and reducts

Given a finite set A, an MSOA-model is under-
stood (in this paper) to be a structure

〈[n], Sn, {Ua}a∈A〉

over the set [n] := {1, . . . , n} of integers from 1 to
n (for some positive integer n), with the successor
relation

Sn := {(i, i+ 1) | i ∈ [n− 1]}

on [n], and for each a ∈ A, a subset Ua of [n].
We can identify 〈[n], Sn, {Ua}a∈A〉with the string
α1 · · ·αn over the alphabet 2A given by

αi := {a ∈ A | i ∈ Ua} for i ∈ [n]

making Ua the set of positions where a occurs

Ua = {i ∈ [n] | a ∈ αi}.

To construe a string a1 · · · an ∈ A+ as an MSOA-
model, we lift it to a1 · · · an ∈ (2A)+, draw-
ing boxes instead of curly braces {, } for sets qua
string symbols, as opposed to sets qua languages.2

Given a string s over the alphabet 2A and a subset
A′ ofA, theA′-reduct of s, ρA′(s), is s intersected
componentwise with A′

ρA′(α1 · · ·αn) := (α1 ∩A′) · · · (αn ∩A′)

(Fernando, 2016). To illustrate, for A = Σ ∪ B,
the Σ-reduct of a string

(q1 ∪ p1 ) · · · (qn ∪ pn )qn+1

in GBΣ is
p1 · · · pn .

Indeed, we can describe GBΣ by embedding Σ into
2Σ∪B via

Σ2 := { p | p ∈ Σ}.

or by MSOA-formulas built with unary predicate
symbols Pa labeled by a ∈ A and the binary pred-
icate symbol S (for successors).

Proposition 1. For any disjoint sets Σ and B,

GBΣ = {s ∈ (2B∪Σ)+ | ρΣ(s) ∈ Σ2
∗2}

= {s ∈ (2B∪Σ)+ | s |= ∀xχΣ(x)}

where χΣ(x) is the MSOΣ(x)-formula

∃y(xSy) ≡
∨

a∈Σ

Pa(x)

(saying x is non-final iff some a ∈ Σ occurs at x)
2 Although conflating a string s with the singleton lan-

guage {s} is usually harmless, it is dangerous to confuse, for
instance, the empty language ∅with the string 2 (of length 1),
or the language of two strings {a, a′} with the single string

a, a′ .
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conjoined with the MSOΣ(x)-formula

¬
∨

a∈Σ

(Pa(x) ∧
∨

a′∈Σ\{a}
Pa′(x))

(saying no two symbols from Σ occur at x).

Note that ∀xχΣ(x) is an MSOΣ-sentence stating

(†) exactly one symbol from Σ occurs at every
string position except for the last position,
where no symbol from Σ occurs.

Inasmuch as (†) describes a very particular encod-
ing of guarded strings (applicable to GBΣ but not
to GΣ,B), it is natural to ask: can we motivate (†)
without resorting to details of encoding? We will
argue in section 3 that we can, observing for now
that χΣ(x) makes no mention of B (belonging, as
it does, to MSOΣ).

The price for working with

〈GBΣ ,∪, •Σ, ∅, 2B, 2B \ ·〉

as opposed to Kozen and Smith (1996)’s KAT

〈GΣ,B,∪, �n, ∅,AB,AB \ ·〉

is a complication in the alphabet of strings inter-
preting MSOA from A to 2A. But since MSOA-
models are already strings over 2A, that price has
already been paid. Rather it is the step from GBΣ
to GΣ,B that is costly, complicating the label set A
with a set B of labels for complements of B. It is
telling that a string in GΣ,B satisfies the MSO{b,b}-
biconditionals

Pb(x) ≡ ¬Pb(x)

only at positions x where b or b occurs. By con-
trast, every string in GBΣ can be expanded to a
MSOΣ∪B∪B-model satisfying

∀x (Pb(x) ≡ ¬Pb(x)) for every b ∈ B

(not that b is needed to interpret TΣ,B in 2G
B
Σ ).

A crude measure of the complexity of a regular
language L ⊆ (2A)+ is given by

Proposition 2. For any finite set A and regular
language L ⊆ (2A)+, there is a smallest subset A′

of A such that for some MSOA′-formula ϕ,

L = {s ∈ (2A)+ | s |= ϕ}.

Proposition 2 follows from

(‡) for all strings s ∈ (2A)+, subsetsA′ ofA and
MSOA′-formulas ϕ,

s |= ϕ ⇐⇒ ρA′(s) |= ϕ

and the fact that if A′′ is another subset of A,

ρA′′(ρA′(s)) = ρA′∩A′′(s).

Provable by induction on ϕ, (‡) is an instance of
the satisfaction condition characteristic of institu-
tions (Goguen and Burstall, 1992), to which we
shall return in §3.3 below.

If the least set A′ that Proposition 2 associates
with L is called the grain of L, then GBΣ has grain
Σ (by Proposition 1 and a moment’s reflection).
Not so the regular language GΣ,B , whose image
under the map

a1 · · · an 7→ a1 · · · an

has grain Σ ∪ B ∪ B. Proposition 1 consigns
B to the background (using MSO’s propositional
connectives to interpret the Boolean structure of a
KAT), drawing all attention to Σ. Indeed, as con-
ceived in PDL, tests belong in Σ — or so we argue
in the next section (pace Kozen)

The remainder of this section fleshes out, for
A = Σ∪B ∪B, an MSOA-definition ψB

Σ of GΣ,B

GΣ,B = {s ∈ A+ | s |= ψB
Σ}

and is best skipped by readers for whom χΣ(x)
is ugly enough. We let ψB

Σ be ∀x ψΣ,B(x) for
ψΣ,B(x) given with the help of some abbrevia-
tions. For A′ ⊆ A, let oneA′(x) be the MSO dis-
junction

oneA′(x) :=
∨

a∈A′
Pa(x)

saying some symbol from A′ occurs in position x,
and let atmB(x1 . . . xn) abbreviate

∧

1≤i<n

xiSxi+1 ∧
∧

1≤i≤n
one{bi,bi}(xi)

putting a string from AB in x1 . . . xn. Now,
ψΣ,B(x) is the conjunction of (1), (2) and (3)
below, where (1) ensures bi + bi is followed by
bi+1 + bi+1 for i from 1 to n− 1

n−1∧

i=1

(one{bi,bi}(x) ⊃ ∃y(xSy ∧

one{bi+1,bi+1}(y))) (1)
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KAT PDL
Boolean in B formula ϕ
action in Σ program (e.g., test ϕ?)
B-atom ⊆ B state ∈ Q
guarded string input/output pair ∈ Q×Q

Table 2: KAT vs PDL

while (2) says bn + bn can only be followed by a
symbol from Σ

∀y(one{bn,bn}(x) ∧ xSy ⊃ oneΣ(y)) (2)

(allowing for the case where x is the last position
of the string), and (3) puts atoms before and after
x whenever a symbol from Σ occurs at x

oneΣ(x) ⊃ (beforeB(x) ∧ afterB(x)) (3)

where beforeB(x) abbreviates

∃x1 · · · ∃xn (xnSx ∧ atmB(x1 . . . xn))

and afterB(x) abbreviates

∃x1 · · · ∃xn (xSx1 ∧ atmB(x1 . . . xn)).

3 Tests and observable change

A test in PDL is a program ϕ? built from a propo-
sition ϕ, where, given a set Q of states,

(i) ϕ is interpreted as the set [[ϕ]] ⊆ Q of states
satisfying ϕ, and

(ii) a program p is interpreted as a binary relation
[[p]] on Q consisting of pairs (q, q′) such that

on input q, p can output q′

(iii) ϕ? is a side-effect free test of ϕ that aborts on
states that do not satisfy ϕ

[[ϕ?]] := {(q, q) | q ∈ [[ϕ]]}.

A cursory comparison of PDL with KAT, sum-
marised in Table 2, suggests KAT Booleans form
PDL states (or B-atoms), raising the question:

where is the KAT counterpart of ϕ? in
Σ, which is assumed disjoint from the
set B of Booleans?

The present section fills this gap by introducing for
every b ∈ B, a test ?b that is interpreted the way
an action p in Σ is in KAT, albeit with more care
than the “anything-goes” clause

[[p]]Σ,B := {(q ∪ p )q′ | q, q′ ⊆ B}

that accepts any input/output pair q, q′. To reg-
ulate the changes effected by an action in Σ, we
introduce a labeled transition relation

E ⊆ 2B × Σ× 2B

and interpret each p ∈ Σ as the subset

{(q ∪ p )q′ | E(q, p, q′)}

of GBΣ (writing E(q, p, q′) and (q, p, q′) ∈ E inter-
changably). The “anything-goes” interpretation is
the special case

E = 2B × Σ× 2B.

But to capture the meaning of a test ?b in the man-
ner PDL does for ϕ?, we require that

E(q, ?b, q′) =⇒ b ∈ q and q = q′

for all q, q′ ⊆ B. To align the interpretation closer
to the input/output semantics of PDL programs,
we will interpret [[?b]] as

{(q ∪ ?b )q | q ⊆ B and b ∈ q}

and form B-reducts (removing actions p ∈ Σ
buried in guarded strings) before compressing
them (according to bc from §3.1).

3.1 Regulated programs including tests
Given sets Σ and B, and for every b ∈ B, a label
?b 6∈ Σ ∪B such that

?b =?b′ only if b = b′,

let
Σ[B] := Σ ∪ {?b | b ∈ B}.

We can then extend any set E ⊆ 2B × Σ× 2B to

EB := E ∪ {(q, ?b, q) | q ⊆ B and b ∈ q}

and pick out the subset G�E (pronounced “G re-
stricted by E”) of GΣ[B]

B generated by

q ⊆ B
q ∈ G�E

sq ∈ G�E EB(q, p, q′)
s(q ∪ p )q′ ∈ G�E

.

to interpret a term t from TΣ[B],B as a subset [[t]]�E
of G�E by suitable adjustments to [[·]]Σ,B . In partic-
ular, for b ∈ B,

[[b]]�E = {q | q ⊆ B and b ∈ B}
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and for p ∈ Σ[B],

[[p]]�E = {(q ∪ {p})q′ | q, q′ ⊆ B and

EB(q, p, q′)}

and for •Σ as defined in §2.2,

[[t · t′]]�E = [[t]]�E •Σ [[t′]]�E .

Now, whereas

L •Σ L′ = L ∩ L′ for L,L′ ⊆ 2B,

the interpretation [[?b]]�E of a test ?b is not a subset
of 2B unless it is ∅.

To relate [[?b]]�E back to [[b]]�E , a few definitions
are helpful. Let us call a string α1 · · ·αn stut-
terless if αi 6= αi+1 for all i ∈ [n − 1]. The
block compression bc(s) of a string s = α1 · · ·αn

deletes from s every αi such that αi = αi+1

bc(s) := s if length(s) < 2

bc(αα′s) :=

{
bc(α′s) if α = α′

αbc(α′s) otherwise.

Clearly, bc(s) is stutterless and

s is stutterless ⇐⇒ s = bc(s).

Moreover, if ?b were removed from the strings in
[[?b]]�E , then we would be left with strings qq such
that b ∈ q, to which we can apply bc to get [[b]]�E .
We systematise the removal of elements of Σ[B]
from strings in [[t]]�E next, aligning our semantics
with PDL’s.

3.2 Observable change
For terms t ∈ TΣ[B],B and subsets C of Σ[B]∪B,
let us apply block compression bc to the C-reducts
of strings in [[t]]�E for

[t]E,C := {bc(ρC(s)) | s ∈ [[t]]�E}

and observe that for all b ∈ B,

[?b]E,B = [b]E,B = [[b]]�E .

More generally, let us define a translation

θ : TΣ[B],B → TΣ,B

translating tests ?b back to b

θ(?b) := b for b ∈ B

otherwise leaving t as is

θ(a) := a for a ∈ Σ ∪B
θ(t+ t′) := θ(t) + θ(t′) θ(t∗) := θ(t)∗

θ(t · t′) := θ(t) · θ(t′) θ(c(t)) := c(θ(t)).

Also, let us say Σ is E-active if for every p ∈ Σ,

E(q, p, q′) =⇒ q 6= q′

for all q, q′ ⊆ B (requiring that states change un-
der p).

Proposition 3. For all t ∈ TΣ[B],B ,

[t]E,B = [θ(t)]E,B

and assuming Σ is E-active,

[θ(t)]E,B = {ρB(s) | s ∈ [[θ(t)]]�E}.

The two parts of Proposition 3 can be sharpened at
the cost of complicating the notation.

Part 1 For all t ∈ TΣ[B],B ,

[t]E,C = [θ(t)]E,C

for any set C disjoint from Σ[B].

Given p ∈ Σ, let us say p is (E,C)-observable if

E(q, p, q′) =⇒ q ∩ C 6= q′ ∩ C
for all q, q′ ⊆ B (so that p is C-observably E-
active).

Part 2 For all t ∈ TΣ,B ,

[t]E,C = {ρC(s) | s ∈ [[t]]�E}
assuming that every p ∈ Σ from which t is formed
is (E,C)-observable.

3.3 Actions for a specific Boolean
The condition that p is (E,C)-observable can be
formulated in MSOC∪{p} as

∀x∀y ((Pp(x) ∧ xSy) ⊃ diffC(x, y)) (4)

where diffC(x, y) abbreviates the MSO-formula

diffC(x, y) :=
∨

b∈C
¬(Pb(x) ≡ Pb(y))

saying x and y can be separated by a unary pred-
icate with label from C. Dropping the action p
from (4) results in the requirement that every tem-
poral step S change C

∀x∀y (xSy ⊃ diffC(x, y)) (ntcC)

designated (ntcC) for the slogan

32



no time without changeC .

This slogan is behind the function bcC that maps a
string s to the block compression of its C-reduct

bcC(s) := bc(ρC(s))

(turning [[t]]�E to [[t]]E,C in §3.2).

Proposition 4. For any C ⊆ A and s ∈ (2A)∗,

s |= (ntcC) ⇐⇒ bcC(s) = s

and

bcC(bcC(s)) = bcC(s).

To understand the importance of the subscript C,
recall that MSO satisfaction |= has the property
(‡) for all strings s ∈ (2A)+, subsets C of A and

MSOC-sentences ϕ,

s |= ϕ ⇐⇒ ρC(s) |= ϕ.

(‡) brings out a fundamental limitation of an
MSOC-sentence ϕ, its insensitivity to differences
between strings with the same C-reduct.

The significance of the subscript C is easy to
overlook when describing G�E in MSO. Consider
from Proposition 1, the χΣ(x) conjunct

¬twoΣ(x) := ¬
∨

a∈Σ

(Pa(x) ∧
∨

a′∈Σ\{a}
Pa′(x))

banning two programs in Σ from occurring simul-
taneously at x. The problem with running p ∈ Σ
simultaneously with ?b 6∈ Σ at x is that the state
transitions they describe under EB may clash. In-
deed, programs in PDL and more generally, Dy-
namic Logic (Harel et al., 2000) are interpreted as
executing in isolation; for instance, the PDL test
ϕ? ensures the input state does not change, and
a random assignment x :=? changes at most the
value of x. In both cases, any change from a pro-
gram running concurrently is ruled out. Put an-
other way, χΣ(x)’s conjunct ¬twoΣ(x) expresses
the assumption that each program in Σ is to be un-
derstood as covering all programs that might run
at x.

By contrast, actions described in everyday
speech are invariably partial in that

(i) their effects are bounded, and
(ii) they never occur in isolation.

Keeping (i) and (ii) in mind, and zeroing in on
a specific Boolean b ∈ B, let us add labels l(b)
and r(b) to Σ for actions that mark the left and
right borders of b as follows. Let ∆l

b(x) be the
MSO{b}(x)-formula

∆l
b(x) := (∃y)(xSy ∧ Pb(y)) ∧ ¬Pb(x)

putting x just before b becomes true, and let ∆r
b(x)

be the MSO{b}(x)-formula

∆r
b(x) := Pb(x) ∧ ¬(∃y)(xSy ∧ Pb(y))

putting x at b’s right border. We then use ∆l
b(x) to

define Pl(b)

∀x (Pl(b)(x) ≡ ∆l
b(x)) (lb)

and ∆r
v(x) for Pr(v)

∀x (Pr(b)(x) ≡ ∆r
b(x)) (rb)

(Fernando, 2019). Now, replacing diffC(x, y) in
(ntcC) by

borderC(x) :=
∨

b∈C
(Pl(b)(x) ∨ Pr(b)(x))

yields: no time without bordersC

∀x∀y (xSy ⊃ borderC(x)). (ntbC)

More precisely,

(
∧

b∈C
(lb) ∧ (rb)) ⊃ ((ntcC) ≡ (ntbC))

since for every b ∈ C,

((lb) ∧ (rb) ∧ xSy) ⊃
(Pb(x) ≡ Pb(y)) ≡ (Pl(b)(x) ∨ Pr(b)(x))

suppressing ∀x∀y to simplify the notation. Re-
turning now to points (i) and (ii) above, notice that
under (lb) and (rb),

(i) the effects of l(b) and r(b) are confined to b
and although

((lb) ∧ (rb)) ⊃ ¬∃x(Pl(b)(x) ∧ Pr(b)(x))

means l(b) cannot occur with r(b),
(ii) l(b) can occur with l(b′) or r(b′) for b′ 6= b. 3

Complex actions can be built from a finite set of
b-specific actions l(b) and r(b), provided we stay
away from the GBΣ postulate ¬twoΣ(x), which ef-
fectively pretends actions are indivisible atoms.

3 Approximating l(b) by the Dynamic Logic program

(b = false)?; b :=?; (b = true)?

overshoots badly, having unbounded effects that go beyond
l(b) in banning any changes to b′ different from b.
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4 Projections and superpositions

Having re-interpreted concatenation · as •Σ and �n
in section 2 so that its restriction to tests is Boolean
conjunction, we present in this section yet another
notion of conjunction for combining descriptions
of change at varying granularities. We start with
the descriptions in §4.1, computing their conjunc-
tions in §4.2.

4.1 Some star-free descriptions
Given a subsetC of some fixed setA (determining
a fragment MSOA) and a string s of subsets of C,
let us agree the pair (C, s) describes the set of stut-
terless strings over the alphabet 2A that bcC maps
to s.4 That is, if we gather together all stutterless
strings over 2A in

LA := {bc(s) | s ∈ (2A)∗}
then

[[(C, s)]]A := {s′ ∈ LA | bcC(s′) = s}.
To illustrate, for

s1 = 1 ,

[[({1}, s1)]]{1,2} consists of s1, all strings from

( 2 )∗ 1

and many more, including 2 2,1 2 . In general,
for s ∈ LA, [[(A, s)]]A is {s}. Otherwise, if C is
a proper subset of A, then [[(C, s)]]A is infinite. In
either case, [[(C, s)]]A is first-order definable with
the transitive closure < of S. That is, [[(C, s)]]A is
star-free.

Next, we interpret a finite subset C of 2A × LA
as the intersection

[[C]]A =
⋂

(C,s)∈C
[[(C, s)]]A

of the interpretations of pairs (C, s) in C. No-
tice [[C]]A is also star-free. Continuing the example
above, if

C2 = {({1}, s1), ({2}, s2)}
where si = i then [[C2]]{1,2} consists of ex-
actly 13 strings, one for each of the interval rela-
tions from Allen (1983), such as

2 1,2 2 depicting 1 during 2

4 The restriction here to stutterless strings is motivated
by the Aristotelian dictum, no time without change, a C-
relativization of which is enforced by bcC (Proposition 4).

(e.g., Fernando, 2016). Generalizing from 2 inter-
vals to any integer n ≥ 2, we can extend the set

{({i}, si) | i ∈ [n]}

to a partial function C from 2[n] to L[n], defined
on certain pairs {i, j} which C maps to a string
C({i, j}) depicting an Allen relation between i
and j. The result is an interval network with node
set [n] and edge set

{C ∈ domain(C) | |C| = 2},

each C in which is labeled by the Allen relation
depicted by C(C). We can label the edge C by a
set L ⊆ LC if we loosen (C, s) to the pair (C,L),
interpreted as the inverse image of L under bcC
restricted to LA

[[(C,L)]]A := {s ∈ LA | bcC(s) ∈ L}
=
⋃

s∈L
[[(C, s)]]A.

For A ⊆ A′,

[[C]]A′ = {s ∈ LA′ | bcA(s) ∈ [[C]]A}
= [[(A, [[C]]A)]]A′

since

bcC(s) = bcC(bcC′(s)) when C ⊆ C ′ ⊆ A.

Thus, we can calculate [[C]]A by concentrating on⋃
domain([[C]]) before attending to the full set A

[[C]]A = [[(Ĉ, [[C]]Ĉ)]]A for Ĉ :=
⋃

domain(C).

As §4.2 makes clear, [[C]]Ĉ is always finite (unlike
[[C]]A ⊇ [[C]]Ĉ).

4.2 Conjunction as superposition
We now define, for any subsets C and C ′ of A, a
binary operation &C,C′ on languages such that for
all s ∈ LC and s′ ∈ LC′ ,

[[{(C, s), (C ′, s′)}]]C∪C′ = {s} &C,C′ {s′}

and more generally, for all L ⊆ LC and L′ ⊆ LC′ ,

L &C,C′ L′ = [[(C,L)]]C∪C′ ∩ [[(C ′, L′)]]C∪C′ .

As a first stab, observe that if &◦ forms the com-
ponentwise union of strings of the same length

α1 · · ·αn &◦ α′1 · · ·α′n := (α1 ∪ α′1) · · · (αn ∪ α′n)
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then

ρC∪C′(s) = ρC(s) &◦ ρC′(s).

It will be useful to introduce rules (s0) and (s1)

&(ε, ε, ε)
(s0)

&(s, s′, ŝ)
&(αs, α′s, (α ∪ α′)ŝ) (s1)

that together generate &◦ as the set of triples
(s, s′, ŝ) such that

&(s, s′, ŝ) is derivable from (s0) and (s1).

To factor in bc for bcC , we add the two rules (b1)
and (b2)

&(αs, s′, ŝ)
&(αs, α′s′, (α ∪ α′)ŝ) (b1)

&(s, α′s′, ŝ)
&(αs, α′s′, (α ∪ α′)ŝ) (b2)

so that, for example, the language

[[({1}, 1 )]]{1,2} ∩ [[({2}, 2 )]]{1,2}

of Allen relations between 1 and 2 (from §4.1) is
the set of strings s such that

&( 1 , 2 , s)

is derivable from (s0), (s1), (b1) and (b2). The in-
tersection [[(C, s)]]C∪C′ ∩ [[(C ′, s′)]]C∪C′ becomes
trickier when C ∩ C ′ 6= ∅ (as with the transitiv-
ity table in Allen (1983)). Accordingly, we refine
the rules (s1), (b1) and (b2), adding the side con-
ditions

α ∩ C ′ ⊆ α′ and α′ ∩ C ⊆ α

to these rules for

&(s, s′, ŝ) α ∩ C ′ ⊆ α′ α′ ∩ C ⊆ α
&(αs, α′s, (α ∪ α′)ŝ) (s1)C,C′

and similarly for (b1)C,C′ and (b2)C,C′ . Now, let
&C

C′(s, s′, ŝ) abbreviate:

&(s, s′, ŝ) is derivable from (s0),

(s1)C,C′ , (b1)C,C′ and (b2)C,C′ .

Then for all s ∈ LC , s′ ∈ LC′ and ŝ ∈ LC∪C′ ,

&C
C′(s, s′, ŝ) ⇐⇒ ŝ ∈ [[{(C, s), (C ′, s′)}]]C∪C′

and indeed, the definition we require is

L &C,C′ L′ := {ŝ ∈ LC∪C′ | (∃s ∈ L)(∃s′ ∈ L′)
&C

C′(s, s′, ŝ)}

(Woods and Fernando, 2018).

4.3 More projections
Recalling the KAT dichotomy between Booleans
inB and actions in Σ (paralleling that between for-
mulas and programs in Dynamic Logic5) it should
be noted that the sets C and C ′ have been con-
strued throughout to be subsets of B. The MSO-
formulas ∆l

b(x) and ∆r
b(x) introducing the actions

l(b) and r(b) in §3.3 define a border translation
from B to Σ under which bc becomes the removal
d2 of empty boxes underlying projections in the
S-strings of Durand and Schwer (2008), with, for
instance, the Allen relation 1 during 2 recast as

l(2) l(1) r(1) r(2)

(Fernando, 2019; Fernando and Vogel, 2019).
This section has focused on bc (for tests/statives)
to lighten the notation. We can adapt §§4.1, 4.2
for C,C ′ ⊆ Σ, putting d2 in place of bc.

5 Conclusion

The present paper is essentially an argument for
interpreting MSOA relative to strings over the al-
phabet 2A, rather than strings over the alphabet A.
The latter smuggles in an assumption ∀x specA(x)
where specA(x) is the MSOA(x)-formula

∨

a∈A
(Pa(x) ∧

∧

a′∈A\{a}
¬Pa′(x))

specifying exactly one label from A for the string
position x. For a KAT generated by Booleans B
and actions Σ, the alphabet A may contain B ∪ Σ
(not to mention B), with the guarded string in-
terpretation in (Kozen and Smith, 1996) impos-
ing specB(x) and specΣ(x) at various positions
x, treating states as Boolean atoms (absent in an
infinite free Boolean algebra) and actions as pro-
grams running in isolation (as in Dynamic Logic).
Neither specB(x) nor specΣ(x) is necessary or
desirable for applications where descriptions of
states and actions are partial. Section 2 challenges
specB(x), slighting B with a Σ-reduct (Proposi-
tion 1), while section 3 puts notions of observ-
able change (described in Propositions 3 and 4)
ahead of specΣ(x) to account for tests. Cast-
ing spec aside, section 4 compresses C-reducts,
for C ⊆ B, and conjoins them by superposition.
(More in Fernando, To appear.)

5Linguistic papers applying Dynamic Logic to tempo-
ral semantics include Naumann (2001); Pustejovsky and
Moszkowicz (2011).
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Abstract

The research on machine learning of mor-
phology often involves formulating morpho-
logical descriptions directly on surface forms
of words. As the established two-level mor-
phology paradigm requires the knowledge of
the underlying structure, it is not widely used
in such settings. In this paper, we pro-
pose a formalism describing structural rela-
tionships between words based on theories of
morphology that reject the notions of inter-
nal word structure and morpheme. The for-
malism covers a wide variety of morpholog-
ical phenomena (including non-concatenative
ones like stem vowel alternation) without the
need of workarounds and extensions. Further-
more, we show that morphological rules for-
mulated in such way can be easily translated to
FSTs, which enables us to derive performant
approaches to morphological analysis, genera-
tion and automatic rule discovery.

1 Introduction

In computational linguistics, morphological anal-
ysis is usually understood as segmenting words
into smaller meaningful units, called morphs.
There exists a well-established computational
model for such analysis, called two-level morphol-
ogy (Koskenniemi, 1983; Beesley and Karttunen,
2003). It models the mapping between the sur-
face forms of words and the morph sequences us-
ing handwritten rules, which are compiled to Fi-
nite State Transducers. This allows for a com-
position of lexicon and rules to an efficient mor-
phological analyzer. Examples of such analyzers
include Omorfi for Finnish (Pirinen, 2015), Mor-
phisto for German (Zielinski and Simon, 2008)
and TRMorph for Turkish (Çöltekin, 2010).

However, the research coming from the ma-
chine learning side often requires models that
describe string transformations between surface

forms directly, without referring to any underlying
structures which cannot be observed in the data
and are difficult to infer by a learning algorithm.
Such transformations can also be described and
implemented as finite-state transducers. Despite
that, a standardized model of this kind of morpho-
logical description seems to be lacking. Instead,
many authors develop their own models and im-
plementations for the purpose of a concrete learn-
ing algorithm. With some exceptions, the design,
implementation and performance of the string pro-
cessing algorithms is usually not described in de-
tail and the approaches used for that are sometimes
suboptimal.

In this paper, we present a finite-state computa-
tional model of string transformations on surface
forms based on a linguistic theory called Whole
Word Morphology. We first review research on
machine learning of morphology which motivates
the need for such a model (Sec. 2). In Sec. 3,
we describe the formalism and its linguistic foun-
dations, and in Sec. 4, we present the implemen-
tation of the formalism within the FST calculus.
Sec. 5 contains a procedure for automatic rule dis-
covery from unannotated data, while in Sec. 6, we
measure the performance of our implementation
of the model.

2 Motivation and Related Work

The recent research on machine learning of mor-
phology tends more and more often towards mod-
els describing transformations on whole words, in-
stead of representing words as concatenations of
morphs. Arguably the most important reason for
this is that morph boundaries are often not clearly
visible in surface forms due to morphophonology
and orthography.1 In the following, we review

1This was also the reason for the emergence of two-
level morphology. However, two-level morphology was de-
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some of the papers utilizing such transformational
models. Our focus here is not the learning algo-
rithm (which is usually the main focus of the re-
spective paper), but the assumed model of mor-
phology, together with its linguistic and computa-
tional foundations.

(Neuvel and Fulop, 2002) present a compu-
tational model of morphology based on Whole
Word Morphology (Ford et al., 1997). Morphol-
ogy is described in terms of patterns which sum-
marize structural similarities and differences be-
tween pairs of words. The patterns consist of con-
stant elements and wildcards: for example, the
relationship within the pair (receive, reception)
would be expressed as /Xceive/ ↔ /Xception/.
In order to discover such rules automatically, the
authors use rather simple string processing algo-
rithms: they try matching every word to every
other and check whether the beginnings or the
ends of the words match. They subsequently com-
pute an alignment by anchoring the words either
at their beginning or end.

(Wicentowski, 2002) proposes a transforma-
tional model designed for learning mappings be-
tween inflected forms and lemmas. It is based on
splitting words into seven parts and describing the
changes in each part separately. In addition to pre-
fixation and suffixation, it aims to cover phenom-
ena such as internal vowel changes or changes at
the boundary between stem and prefix/suffix (e.g.
hop ∼ hopping), which are attributed to a sepa-
rate segment. (Lindén, 2008, 2009) likewise at-
tempts to model the transformation between base
and inflected form part by part, but adopts a sim-
pler, three-way split into prefix, stem and suffix.
(Lindén, 2009) mentions that the model was im-
plemented as a cascade of Finite State Transduc-
ers.

(Botha and Blunsom, 2013) propose a model
of morphology aimed at capturing especially the
templatic morphology found in Semitic languages.
The model is based on Simple Range Concate-
nating Grammars (SRCGs), which are a mildly
context-sensitive class of formal grammars. It is
thought as an extension of the purely concatena-
tive model, which can be represented by a context-
free (or perhaps even regular) grammar.

signed with the goal of efficient implementation of handwrit-
ten grammars and, despite some research in this direction
(Theron and Cloete, 1997; Koskenniemi, 2013), is rather not
suitable for the machine learning scenario.

(Durrett and DeNero, 2013) and (Ahlberg et al.,
2014) present two different approaches to learning
inflection from complete paradigm tables. The in-
put data in such setting are lists of tuples (b, w, t),
where b is the base word (lemma), w the inflected
word and t a tag, i.e. a bundle of inflectional fea-
tures. An important point of learning algorithms
for this task is an appropriate model of string
transformations from b to w. (Durrett and DeN-
ero, 2013) use a semi-Markov log-linear model to
model the probability of application of individual
transformations (like prefix, stem or suffix change)
independently, while (Ahlberg et al., 2014) model
string transformations on whole words in form of
patterns with wildcards. We note that the string
transformation model of (Durrett and DeNero,
2013) is tightly coupled to the machine learning
method applied by the authors, while the model of
(Ahlberg et al., 2014) is more general and inde-
pendent of the classification method (in this case,
memory-based classification).

With works like (Soricut and Och, 2015;
Narasimhan et al., 2015; Luo et al., 2017), we can
observe a shift from segmentation to word-based
string transformations also in the area of unsuper-
vised learning of morphology. Currently, they ap-
pear to adopt very simple transformation models
that only involve affixation. On the other hand,
(Janicki, 2015) and (Sumalvico, 2017) present
a probabilistic model suitable for unsupervised
learning, which is based on Whole Word Morphol-
ogy and describes morphology in terms of whole-
word transformation patterns.

As a conclusion from the above literature re-
view, we recognize a need for a standardized
model of morphological relationship between sur-
face forms of words. As most of the models pre-
sented above are motivated by the need to cover
non-concatenative phenomena, especially internal
vowel changes and Semitic templatic morphology,
the model we aim at should be able to handle those
phenomena in a natural and general fashion. Fol-
lowing (Neuvel and Fulop, 2002), we see Whole
Word Morphology as the right linguistic founda-
tion for such formalism, and following (Lindén,
2008, 2009), we consider FSTs to be the right
tool for implementing string transformations effi-
ciently. Thus, the contribution of the present paper
is twofold:

1. A formal definition of a transformational
model of morphology, similar to the ones em-
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ployed by (Neuvel and Fulop, 2002; Ahlberg
et al., 2014; Janicki, 2015),

2. An implementation of the model based on the
FST calculus.

3 The Formalism

3.1 Definitions

We base our formalism on the linguistic theory of
Whole Word Morphology (henceforth, WWM) in-
troduced by (Ford et al., 1997; Neuvel and Singh,
2002). It models structural similarities in form and
meaning between words in form of rules, which
are expressed as patterns containing wildcards.
For example, the relationship within the French
pair (chanteur, chanteuse) can be expressed by the
following rule:2

/Xœr/N.MASC ↔ /Xøz/N.FEM (1)

In the above rule, X denotes a variable which can
be instantiated with any string of phonemes and
represents the common part of both words. The
units inside slashes refer to whole words in their
surface forms.

In general, we express a morphological rule
with n variables as follows:

/a0X1a1 . . . Xnan/ 7→ /b0X1b1 . . . Xnbn/ (2)

The elements ai and bi are constants (literal
strings), which usually represent the differing
parts of words on the left-hand and right-hand side
of the rule.3 The elements Xi are variables (wild-
cards), which represent the part that is preserved
by the rule, but varies from pair to pair. Addition-
ally, the following conditions must be satisfied:

1. The variables must be retained in the same
order on both sides of the rule.

2. For 0 < i < n, either ai or bi has to be non-
empty.

2The example comes from (Ford et al., 1997), which is a
linguistic monography, thus it represents words in form of
phonemic transcriptions. All further examples use written
representations.

3However, the constants ai, bi for a given position i do
not have to differ. By being equal or containing a common
part, they might also represent the context necessary for the
rule to apply. For example, in the rule /Xate/ 7→ /Xation/,
both constants contain the common prefix ‘at’. Formulating
this rule as /Xe/ 7→ /Xion/ would correspond to the same
string transformation, but would extend its coverage to a few
further cases, like (deplete, depletion).

Because of the first condition, we can repre-
sent such rule as a vector of 2n + 2 strings:
〈a0, a1, . . . , an, b0, b1, . . . , bn〉.

Contrary to (1), which is a relational descrip-
tion and thus uses a bidirectional arrow, we for-
mulate our rules as having a privileged direction.
Although most rules can be applied in both direc-
tions, the productivity of back-formation is mostly
much lower, so that specifying a direction seems
linguistically plausible. Modeling rules which
are similarly productive in both directions can be
achieved by including the reverse rule separately
in the grammar.

As an illustration of (2), the rule expressing
the relationship between the German pairs (sin-
gen, gesungen), (klingen, geklungen), (trinken,
getrunken) could have the following form:

/X1iX2/ 7→ /geX1uX2/ (3)

The rule could also contain more constant ele-
ments to express the necessary conditions for its
application:

/X1inX2en/ 7→ /geX1unX2en/ (4)

With each rule, we can associate a function r,
which transforms a word fitting to the left-hand
side of the rule into a set of corresponding words
fitting to the right-hand side:

r(v) = {b0x1b1 . . . xnbn : x1, . . . , xn ∈ Σ+

∧ v = a0x1a1 . . . xnan}
(5)

Note that the outcome of the rule application is a
set of words, rather than a single word. In gen-
eral, the rule application might result in multi-
ple different words, because there might be dif-
ferent ways of splitting the word into the sequence
a0X1a1 . . . Xnan. For example, the application of
the rule /X1aX2/ → /X1äX2e/ to the German
word Kanal results in the set: {Känale,Kanäle}.
In case the word does not fit to the left-hand side of
the rule, the rightmost condition is never fulfilled
and the result is an empty set. Thus, the function
r is defined on the whole of Σ+.

3.2 Coverage of Morphological Phenomena
In addition to covering affixation, circumfixation
and stem vowel alternations, as shown already in
the previous section, the following further mor-
phological phenomena can be handled by the for-
malism:
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Templatic morphology. A relationship between
pairs like the Arabic (kataba, kutiba) can be gen-
eralized as the following rule:

/X1aX2aX3a/ 7→ /X1uX2iX3a/ (6)

Although the formalism does not provide a way
to restrict the instantiations of variables to a single
consonant, it could be easily extended to express
such restrictions on variables in a form similar to
regular expressions.

Compounding. The proponents of Whole Word
Morphology and similar theories explicitly reject
the analysis of compounds as ‘words composed
of multiple words’ (Singh and Dasgupta, 2003;
Starosta, 2003). In consequence, compounds are
also analyzed as related to a single word, while
the other part is considered to be a morphological
constant. For example, the English word black-
berry would be related to black via the following
rule:

/X/N/ADJ 7→ /Xberry/N (7)

According to (Singh and Dasgupta, 2003;
Starosta, 2003), the relationship between the a
rule like (7) and the word ‘berry’ is purely ety-
mological and thus not a part of a synchronic de-
scription of morphology. This claim is supported
by the fact that newly coined compounds (in lan-
guages that exhibit compounding) virtually always
involve at least one part that is already known as
‘compound-forming’, rather than combining two
arbitrary words. Indeed, in morphological analyz-
ers based on two-level morphology, the cyclicity
used to model compouding often causes massive
overgeneration.

4 WWM Rules as FSTs

A rule defined as in (2) can be easily converted
to an FST. The general scheme for that is given
in Fig. 1. The arrows represent concatenation
and each rectangular block represents a transducer.
There are two kinds of blocks: transducers map-
ping corresponding constants, like a0 : b0, and
transducers representing the variables. The latter
are simply identity transducers accepting Σ+. Fig-
ure 2 shows a concrete FST corresponding to the
rule (4).

4.1 Analysis
There is no concept of a ‘morphological analy-
sis’ in WWM. Each word is treated as an indepen-
dent unit of language. However, given a word, we

might be interested in its structural relationships to
other words.

Let R be the set of rules found in the morphol-
ogy of a language of interest and let Tr be a trans-
ducer corresponding to rule r. The disjunction of
all rules, TR, yields a transducer accepting mor-
phologically related pairs:

TR =
⋃

r∈R
Tr (8)

Further, let V denote a vocabulary and TV the
identity transducer corresponding to V . With the
following composition, we obtain a transducer ca-
pable of mapping all words from V to all their pos-
sible derivations:

TA = TV ◦ TR (9)

TA can be called a ‘WWM analyzer’. A lookup
of an unknown word v in TA yields all words
from the known vocabulary from which v can be
derived. Furthermore, a three-way composition
TV ◦ TR ◦ TV gives us all pairs of related words
from V .

4.2 Generation
Another common question of morphology is:
Given a vocabulary V and a set of rules R, what
further words can be postulated? The identity
transducer for such new words, TN , is obtained
from the following formula:

TN = TA ↓ \TV (10)

where TA ↓ denotes the output projection of TA
and \ denotes subtraction.

5 Automatic Rule Discovery

As shown in Sec. 3, our definition of rule
is general enough to capture many morphologi-
cal phenomena, including some important non-
concatenative ones. On the other hand, the re-
sulting computational model is simple enough to
allow for completely unsupervised rule discovery
without prior linguistic knowledge. In this section,
we show how to achieve this in two stages: first,
we identify pairs of string-similar words in the vo-
cabulary. Then, we extract candidate rules from
each such pair. Frequent patterns are good candi-
dates for rules, which can be passed to a further
statistical model, like the one of (Janicki, 2015;
Sumalvico, 2017).
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a0 : b0 X1 a1 : b1 . . . Xn an : bn

Figure 1: A scheme for converting morphological rules into FSTs.

start
0:g 0:e ?

?

i:u n:n ?

?

e:e n:n

Figure 2: The transducer corresponding to rule (4).

5.1 Finding Pairs of Similar Words

A plausible and widely used string similarity mea-
sure is edit distance (Levenshtein, 1966). Using
the Fast Similarity Search algorithm (Bocek et al.,
2007), we are able to identify pairs of words with
edit distance at most k without comparing each
word to every other. The algorithm works by
generating a deletion neighborhood of each word,
consisting of strings that can be obtained from that
word by deleting up to k characters. The result-
ing list of pairs (word, substring) is sorted accord-
ing to the substring. Observe that words with edit
distance ≤ k are guaranteed to share a common
substring, although words sharing a common sub-
string might also have edit distance> k. Thus, we
treat pairs of words sharing a common substring as
candidates, for which edit distance has to be com-
puted with usual means.

For the purpose of discovering potential mor-
phological rules, it is reasonable to modify the no-
tion of edit distance. Firstly, morphological rules
usually operate on groups of consecutive letters,
rather than single letters independently, so deletion
or substitution of a segment of consecutive letters
should yield higher similarity than deletion or sub-
stitution of the same number of non-consecutive
letters. Secondly, although we are going to permit
word-internal alternations, more change should be
permitted at the beginning and at the end of words,
since that is where most morphological rules op-
erate. Bearing in mind the representation (2), let
laffix denote the maximum length of a morpholog-
ical constant at the beginning or the end of a word
(a0, b0, an, bn in (2)), linfix the maximum length of
a morphological constant inside the word (ai, bi
for 0 < i < n in (2)) and kmax the maximum
number of variables. In order to generate pairs
which are related by a rule satisfying this con-
straint, we obtain the following constraints on a
deletion environment: deleting up to laffix con-

secutive letters at the beginning and end of the
word, and up to linfix consecutive letters in at most
kmax − 1 slots inside the word. The usual setting
for those parameters, which covers a vast majority
of morphological rules encountered in practice, is
laffix = 5, linfix = 3, kmax = 2.

Such settings allow for deletion of up to 13 let-
ters in total, so that even for middle-length words
it would consider all pairs to be similar. In order to
prevent this, we introduce an additional constraint:
the total amount of deleted characters must be
smaller than half of the word’s length. In this way,
we can consider long affixes, but only if enough of
the word is still left to form a recognizable stem.

With all those constraints, computing a deletion
neighborhood of a word becomes a complex op-
eration. It is therefore helpful to visualize and
implement it using transducers. We will con-
struct the transducer S mapping words to their
deletion neighborhoods as a composition of two
simpler transducers: S = S1 ◦ S2. The trans-
ducer S1 (Fig. 3) performs the deletions, substitut-
ing a special symbol δ for each deleted character.
The transducer consists of segments, correspond-
ing to the deleted sequences: states 0-5 represent
the prefix, 10-15 the suffix and 7-9 the infix. Be-
tween each pair of segments, an arbitrary number
of identity mappings is performed (state sequences
5-6 and 9-10). The epsilon transitions, for exam-
ple from states 0-4 to 5, correspond to a less-than-
maximum number of deletions in a given slot. It
can easily be seen that changing e.g. the parameter
laffix simply corresponds to altering the length of
the top and bottom chains, just as linfix correspond
to the length of the middle chain and kmax − 1 to
the number of such middle chains.

The transducer S2 (Fig. 4) takes the output of
S1 and checks whether the number of deletions is
smaller than the number of remaining characters.
As the general formulation of this problem can-
not be solved by a finite-state machine, it requires
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Figure 3: The transducer S1 for generating a deletion neighborhood.
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Figure 4: The filter S2 ensuring that no more than the
half of a word is deleted.

a bound on word length. In my implementation,
I restrict the maximum word length to 20 charac-
ters, but it is easy to change this parameter. The
states of S2 correspond to the difference between
the number of letters and the number of deletions
seen so far. The states above the initial state cor-
respond to positive, and the ones below to nega-
tive values. Furthermore, S2 removes the deletion
symbols and returns the substring consisting of the
remaining letters.

We can now generate all pairs of similar words
from a lexicon automatonL by performing the fol-
lowing composition:

P = (L ◦ S) ◦ (L ◦ S)−1 (11)

There are various ways to implement this in prac-

tice. Computing the composition directly is usu-
ally not feasible because of high memory com-
plexity. One possibility is to use S for substring
generation, but otherwise proceed as in the orig-
inal FastSS algorithm: store the words and sub-
strings in an index structure, either on disk or in
memory, then retrieve words for each substring.
Another possibility is to use S to generate sub-
strings for a given word and then look the sub-
strings up in the transducer (L ◦ S)−1 to obtain
similar words. The latter composition can be com-
puted statically. We additionally convert the re-
sulting transducer to HFST optimized lookup for-
mat (Silfverberg and Lindén, 2009). While the
lookup approach is still significantly slower, it has
an advantage in providing a way to retrieve all
words w′ similar to a given word w at once. It
is thus better suited for parallelization, especially
in case the pairs (w,w′) are subject to further pro-
cessing.

5.2 Extraction of Rule Candidates

Given a pair (w,w′) of string-similar words, we
want to extract morphological rules modeling the
difference between those words. For this purpose,
we first align the words on character-to-character
basis using the well-known dynamic programming
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algorithm for computing edit distance (Wagner
and Fischer, 1974). Then, we attribute each char-
acter mapping either to a morphological constant
or a variable, in a way that fulfills the constraints
on laffix, linfix and k. The candidate rules are
constructed incrementally while iterating over the
alignment and unfinished rules are stored in a pri-
ority queue. In case an aligned character pair can
be attributed either to a constant or to a variable,
both possibilities are stored in a queue, so that
at the end we obtain multiple rules with varying
degrees of generality. For example, the rules ex-
tracted from the German pair (trifft, getroffen) in-
clude /X1iX2t/→ /geX1oX2en/ (the most gen-
eral rule), as well as e.g. /Xifft/→ /geXoffen/.

Table 1 shows example rules extracted from a
word list coming from German Wikipedia. While
the top of the list consists entirely of morpholog-
ical patterns, the bottom of the table shows that
patterns resulting from accidental word similari-
ties can also become frequent enough to be con-
fused with morphological rules. Thus, this ap-
proach identifies rule candidates, which have to
be further filtered based on other criteria than mere
frequency.

6 Experiments

We have implemented the algorithms described
in the previous section using the HFST library
(Lindén et al., 2011). Furthermore, we conducted
experiments realizing the algebraic operations de-
scribed in Sec. 4 and the rule discovery proce-
dure described in Sec. 5. The results demonstrate
that our model is suitable for building analyzers
based on the Whole Word Morphology paradigm
and the required computational resources are eas-
ily achievable.

First, we run the rule discovery procedure on
word lists extracted from German Wikipedia.4

The generation of pairs of similar words and the
subsequent rule extraction is implemented in a
parallelized fashion. Table 2 shows the computa-
tion times for various sizes of input vocabulary and
numbers of processes. The results demonstrate
that this step is feasible for input data of as much
as 150,000 words (and probably even somewhat
larger). In our view, this is enough to discover the

4Note that unsupervised learning of morphology per se
is not our focus in this paper. The rule discovery procedure
would constitute only a preprocessing step to proper learning.
However, we use the resulting rule transducer TR in further
compositions to demonstrate their computational feasibility.

vast majority of productive morphological rules.
We disjunct several thousand most frequent

rules to construct a rule transducer TR, which is
used in algebraic operations shown in Table 3.
Most operations are realized within at most several
minutes, the longest one being the construction of
the largest generator in slightly above 11 minutes.

Note that the computation times reported in Ta-
ble 3 are much shorter than the ones in Table 2.
Moreover, the former appear to increase linearly
in both |V | and |R|. Thus, although the limits on
the vocabulary size in the rule discovery procedure
are quite tight, once we have discovered the rules
(or obtained them in another way, e.g. manually
written), we can apply the transducer to find pairs
of related words in much larger lexica. Using 3-
way composition (Allauzen and Mohri, 2008) for
computing TA◦TV could probably further improve
the analysis of a new lexicon.

7 Conclusion

We have presented a formalism allowing for the
description of morphological regularities as trans-
formational patterns on whole words in their sur-
face forms. The formalism is grounded in linguis-
tic theories rejecting the notion of internal struc-
ture of words and can be especially useful in the
context of machine learning, where descriptions
of such underlying structures are not available. It
captures non-concatenative phenomena naturally
and allows for representing rules as FSTs, so that
performant algorithms for morphological analysis
and generation are readily available as algebraic
operations on transducers. We suggest that such
standardized formalism can present an alternative
to models of morphology and string processing al-
gorithms developed for a specific machine learn-
ing method, which are common in the literature.
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discovery procedure.
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tion
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1k 2k 5k 10k

TV ◦ TR
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100k 26.9 56.3 137 237
150k 41.3 86.6 208 355

TA ◦ TV
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TA ↓ \TV
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150k 88.6 159 397 682

Table 3: Computation times (in seconds) for various
operations related to the WWM analyzer. All alge-
braic operations include the minimization of the result-
ing transducer.
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Abstract
We develop a general framework for weighted
parsing which is built on top of grammar-
based language models and employs flexible
weight algebras. It generalizes previous work
in that area (semiring parsing, weighted de-
ductive parsing) and also covers applications
outside the classical scope of parsing, e.g., al-
gebraic dynamic programming. We show an
algorithm which terminates and is correct for
a large class of weighted grammar-based lan-
guage models.

1 Introduction

The weighted parsing problem takes as input a
weighted language model (LM) and a syntactic
object a. For instance, the LM can be given by
some grammar G, e.g., a context-free grammar
(CFG) or a linear context-free rewriting system
(LCFRS), and a can be some string. Each rule r
of G has a value (weight of r); the weight is an ele-
ment of some weight algebra K. That algebra has
a binary commutative and associative operation ⊕
on its carrier set, which is used to handle ambigu-
ity of G. As output we expect an element k ∈ K

which is the ⊕-accumulation of the weight wt(d)K
of each abstract syntax tree (AST) d of a in G, i.e.,

k =
∑⊕

d∈AST(G,a)

wt(d)K

where wt(d)K is computed by other operations of
the algebra K (using the weights of the occurring
rules) and

∑⊕ is an extension of ⊕ to infinitely
many summands (infinitary sum operation). For
instance, if K = [0, 1] is the set of probabilities,
⊕ = max,

∑⊕ = sup, and wt(d)K is the product of
all weights of occurrences of rules in d, then k is
the maximal probability of an AST of a in G.

Goodman (1999) developed a formal frame-
work for weighted parsing, called semiring pars-
ing. As weight algebras he used complete semir-
ings (K,⊕,⊗, 0, 1,∑⊕) (Eilenberg, 1974), i.e.,

∑⊕

is the infinitary sum operation extending ⊕. The
binary operation ⊗ is used to compute wt(d)K .
By appropriate choices of the complete semiring,
he formalized the following problems as weighted
parsing problems for a CFG G and a: the calcula-
tion of recognition, string probabilities, number of
derivations, derivation forests, probability of best
derivation, best derivation, and best n derivations.
The algorithm which he proposed for solving the
weighted parsing problem is a pipeline with two
phases. In the first phase, the CFG G, a deduc-
tion system I (Shieber et al., 1995), and the syn-
tactic object a (i.e., a string) are combined into a
single CFG G′ (using a construction idea of Bar-
Hillel et al., 1961). In the second phase, the value
k (from above) is calculated, if G′ is acyclic.1

Nederhof (2003) developed a similar frame-
work, called weighted deductive parsing. As
weight algebras he employed algebras of the form
(K,min, 0, Ω,∑min) where K is a totally ordered
set, ∑min = inf (infimum), inf(K) ∈ K, and Ω

is a set of superior functions; a superior function
f is an operation on K which is monotone non-
decreasing in each argument and f (k1, . . . , km) ≥
max(k1, . . . , km) holds. The algorithm which he
proposed for solving the weighted parsing prob-
lem is again a pipeline with two phases, where
the first phase is the same as in the framework
of Goodman (1999) and the resulting CFG G′ is
denoted by c(G, a). In the second phase, he em-
ployed the algorithm of Knuth (1977), which gen-
eralizes the shortest distance algorithm of Dijkstra
(1959) from graphs to hypergraphs and also works
if G′ is cyclic. If the CFG G′ is non-branching,
i.e., a linear grammar (Khabbaz, 1974, Def. 1),
then in the second phase a graph algorithm can

1Goodman (1999) actually defines the algorithm so that it
attempts to compute an infinite sum. He states that in appli-
cations, this computation needs to be replaced by instructions
specific to the used semiring.
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be used as an alternative to Knuth’s algorithm;
e.g., the single source shortest distance algorithm
of Mohri (2002) if the weight algebra K is a com-
plete semiring which is closed for G′.

In this paper, we generalize the two-phase
pipeline approach of Goodman (1999) and Neder-
hof (2003) as follows. We specify the LM by
using the general approach of initial algebra se-
mantics (Goguen et al., 1977). For this, we em-
ploy weighted regular tree grammars (wRTG) and
evaluate the generated trees (by the unique ho-
momorphism) in some language algebra L, which
provides the set of syntactic objects as carrier set.
This approach is very flexible and covers LMs for
strings (CFG, LCFRS), but also trees and graphs
(Drewes et al., 2016). Our second generalization
concerns the weight algebra. We consider com-
plete multioperator monoids (Kuich, 1999) which
are algebras of the form (K,⊕, 0, Ω,∑⊕), where
Ω is a set of operations on K and

∑⊕ is the in-
finitary sum operation which extends ⊕. We call
the combination of such an LM and weight alge-
bra weighted RTG-based language model (wRTG-
LM). These combinations are very general and
even exceed the scope of parsing; e.g., each alge-
braic dynamic programming problem (Giegerich
et al., 2004), like minimum edit distance or ma-
trix chain multiplication, can be formalized within
this framework.

For solving the weighted parsing problem,
given a wRTG-LM and a syntactic object a, we
formalize the first phase as canonical weighted
deduction system, which uses a CYK-like deduc-
tion system. For the second phase (value com-
putation algorithm), we propose a generalization
of Mohri’s approach to hypergraphs, in the spirit
of Knuth’s generalization of Dijkstra’s algorithm.
We prove (in sketches) that our weighted parsing
algorithm is terminating and solves the weighted
parsing problem for every closed wRTG-LM with
a finitely decomposing language algebra. This
covers the approaches of Goodman (1999) and
Nederhof (2003); our value computation algo-
rithm subsumes the algorithms of Knuth (1977)
and Mohri (2002). Due to space restrictions, we
cannot show our detailed proofs of the theorems
in this paper.

2 Preliminaries

Mathematical notions. We let N = {0, 1, 2, . . .}
be the set of natural numbers and [m] = {1, . . . ,m}

for each m ∈ N. An alphabet is a finite, nonempty
set. The powerset of a set A is denoted by P(A).
Let f : A → B be a mapping; we extend it to
the mapping f ′:P(A) → P(B) by letting f (U) =
{ f (a) | a ∈ U}, and we denote f ′ also by f . A
family over A is a mapping f : I → A, where I is
a countable set (index set). As usual, we represent
each family f over A by ( f (i) | i ∈ I) and abbrevi-
ate f (i) by fi.

Ranked sets, trees, and regular tree grammars.
A ranked set is a set Γ such that each γ ∈ Γ is
associated with a natural number rkΓ(γ), its rank.
The set of all elements of Γ with rank m ∈ N is
denoted by Γm. A ranked set Σ with Σ ⊆ Γ is rank
preserving (in Γ) if Σm ⊆ Γm for each m ∈ N. Let
H be a set. The set of trees over Γ and H is defined
in the usual way, where elements of H may only
occur at leaves. We denote this set by TΓ(H) and
abbreviate TΓ(∅) by TΓ. Let t ∈ TΓ(H). A path
in t is a sequence of positions of d from the root to
a leaf. Let p be a path in t. The sequence of labels
of d along p is denoted by seq(d, p). A ranked
alphabet is a ranked set which is an alphabet.

A regular tree grammar (RTG) (Brainerd,
1969) is a tuple G = (N, Σ, A0,R) where N is an
alphabet (nonterminals), Σ is a ranked alphabet
(terminals) with N ∩ Σ = ∅, A0 ∈ N (initial non-
terminal), and R is finite set of rules where each
rule has the form A→ σ(A1, . . . , Am) with m ∈ N,
A, A1, . . . , Am ∈ N, and σ ∈ Σm. Each RTG G can
be considered as a context-free grammar G′ (with
terminal alphabet Σ ∪ {(, ), comma}), which gen-
erates well-formed expressions. Thus the deriva-
tion relation⇒G is the usual derivation relation of
G′. The tree language generated by G is the set
L(G) = {t ∈ TΣ | A0 ⇒∗G t}.

By viewing each rule A → σ(A1, . . . , Am) of
R as symbol with rank m, we can define the set
AST(G) of abstract syntax trees of G to be the set
of all d ∈ TR such that for each position w of d the
following holds: if d has label A→ σ(A1, . . . , Am)
at w, then the i-th successor of w (i ∈ [m]) is la-
beled by a rule with left-hand side Ai (cf. Fig. 2).
We define the mapping πΣ : AST(G) → TΣ such
that πΣ(d) is obtained from d by replacing each la-
bel A → σ(A1, . . . , Am) by σ (cf. Fig. 2). Hence
πΣ(AST(G)) = L(G).

Γ-algebras. Let Γ be a ranked set. A Γ-algebra
(or: algebra) is a pair (A, φ) whereA is a set (car-
rier set) and φ is a mapping (interpretation map-
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ping) which maps each γ ∈ Γm (m ∈ N) to an m-
ary operation φ(γ) overA, i.e., φ(γ):Am → A. In
the sequel, we will sometimes identify φ(γ) and γ
(as it is usual in algebra).

The Γ-term algebra is the Γ-algebra (TΓ, φΓ)
where φΓ(γ)(t1, . . . , tm) = γ(t1, . . . , tm) for every
m ∈ N, γ ∈ Γm, and t1, . . . , tm ∈ TΓ. For each
Γ-algebra (A, φ) there is exactly one homomor-
phism, denoted by (.)A, from the Γ-term algebra
to (A, φ) (Wechler, 1992). We write its applica-
tion to an argument t ∈ TΓ as tA. Intuitively, (.)A
evaluates a tree t in (A, φ), in the same way as
arithmetic expressions (e.g., 3 + 2 · (4 + 5)) are
evaluated in the {+, ·}-algebra (Z,+, ·) to some val-
ues (here: 21). Often we abbreviate an algebra
(A, φ) by its carrier set A. For every a ∈ A we
let factors(a) = {b ∈ A | b <factor

∗a}, where for
every a, b ∈ A, b <factor a if there is a γ ∈ Γ

such that b occurs in some tuple (b1, . . . , bm) with
φ(γ)(b1, . . . , bm) = a. We call (A, φ) finitely de-
composable if factors(a) is finite for every a ∈ A.

Monoids. A monoid is an algebra (K,⊕, 0) such
that ⊕ is a binary, associative operation on K and
0 ⊕ k = k = k ⊕ 0 for each k ∈ K. In the rest of
this paper, each occurrence of k, k1, k2, . . . is as-
sumed to be universally quantified over K if not
specified otherwise. The monoid is commutative
if ⊕ is commutative; it is extremal (Mahr, 1984) if
k1⊕k2 ∈ {k1, k2}; it is idempotent if k⊕k = k. It is
naturally ordered if the binary relation �⊆ K ×K
(defined by k1 � k2 if there is a k ∈ K such that
k1⊕k = k2) is anti-symmetric (in which case it is a
partial order, since reflexivity and transitivity hold
by definition). It is complete if for each count-
able set I, there is an operation

∑⊕
I which maps

each family (ki | i ∈ I) to an element of K, co-
incides with ⊕ when I is finite, and otherwise sat-
isfies axioms which guarantee commutativity and
associativity (Eilenberg, 1974, p. 124). We abbre-
viate

∑⊕
I (ki | i ∈ I) by

∑⊕
i∈I ki. A complete monoid

is d-complete (Karner, 1992) if for every k ∈ K

and family (ki | i ∈ N) of elements of K the fol-
lowing holds: if there is an n0 ∈ N such that for
every n ∈ N with n ≥ n0,

∑⊕
i∈N:i≤n ki = k, then∑⊕

i∈N ki = k. A complete monoid is completely
idempotent if for every k ∈ K and countable set I
it holds that

∑⊕
i∈I k = k.

By easy calculations we obtain the following
implications: (1) if K is extremal, then it is idem-
potent, (2) if K is completely idempotent, then it
is d-complete, and (3) if K is d-complete, then it

is naturally ordered.

Multioperator monoids. A multioperator
monoid (M-monoid) (Kuich, 1999) is an algebra
(K,⊕, 0, Ω) such that (K,⊕, 0) is a commutative
monoid and Ω is a set of operations on K which
contains at least the unary identity id:K → K.
We view Ω as a ranked set, and hence (K, φ) as an
Ω-algebra where φ(ω) = ω for each ω ∈ Ω. Thus
tK ∈ K is the evaluation of t ∈ TΩ in the algebra
(K, φ). An M-monoid inherits the properties of
its monoid (e.g., being complete). We denote a
complete M-monoid by (K,⊕, 0, Ω,∑⊕).

An M-monoid is distributive if for each m-ary
ω ∈ Ω and every i ∈ [m],

ω(k1,i−1, ki ⊕ k, ki+1,m)
= ω(k1,i−1, ki, ki+1,m) ⊕ ω(k1,i−1, k, ki+1,m)

where k1,i−1 and ki+1,m abbreviate k1, . . . , ki−1 and
ki+1, . . . , km, respectively. If K is complete, then
we additionally require that the above equation
also holds for each countable set of summands.

Next we show examples of M-monoids.

• Each semiring (K,⊕,⊗, 0, 1) can be considered
as the M-monoid (K,⊕, 0, Ω⊗) (Fülöp et al.,
2009) where Ω⊗ = {mul(m)

k
| m ∈ N, k ∈ K}

and for every m ∈ N we define
mul(m)

k
(k1, . . . , km) = k ⊗ k1 ⊗ · · · ⊗ km .

Note that 1 = mul(0)
1

().

• Knuth (1977) uses complete, distributive M-
monoids of the form (K,min, 0, Ω,

∑min) where
K is a totally ordered set, inf(K) ∈ K, and
the operations in Ω are superior functions. We
will call such M-monoids superior M-monoids.
We note that each superior M-monoid is d-
complete.

3 Weighted RTG-based language models
and the weighted parsing problem

As framework for the definition of our lan-
guage models we use the initial algebra approach
(Goguen et al., 1977). An RTG-based language
model (RTG-LM) is a tuple (G, (L, φ)) where

• G = (N, Σ, A0,R) is an RTG and

• (L, φ) is a Γ-algebra (language algebra) such
that Σ ⊆ Γ is rank preserving; the elements ofL
are called syntactic objects.

The language generated by (G, (L, φ)) is the set
L(G)L = {tL | t ∈ L(G)} ⊆ L ,

i.e., the set of all syntactic objects which result
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r1: S
1.0−→ 〈x1 x2〉(NP,VP) r8: NN

1.0−→ 〈fruit〉
r2: NP

0.2−→ 〈x1〉(NN) r9: NNS
0.4−→ 〈flies〉

r3: NP
0.5−→ 〈x1 x2〉(NN,NNS) r10: NNS

0.6−→ 〈bananas〉
r4: NP

0.3−→ 〈x1〉(NNS) r11: VBZ
1.0−→ 〈flies〉

r5: VP
0.4−→ 〈x1 x2〉(VBZ,PP) r12: VBP

1.0−→ 〈like〉
r6: VP

0.6−→ 〈x1 x2〉(VBP,NP) r13: IN
1.0−→ 〈like〉

r7: PP
1.0−→ 〈x1 x2〉(IN,NP)

Figure 1: Rules of RTG of Ex. 1.

from evaluating trees of L(G) in the language al-
gebra L. For each a ∈ L, we let

AST(G, a) = {d ∈ AST(G) | πΣ(d)L = a} .

Example 1. We consider the Γ-algebra
CFG∆ = (∆∗, φ) as language algebra where
∆ = {fruit, flies, like, bananas}, Γ = ⋃m∈N Γm, and
Γm = {〈u0x1u1 · · · xmum〉 | ui ∈ ∆∗}. We define

φ(〈u0x1u1 · · · xmum〉)(a1, . . . , am)
= u0a1u1 · · · amum

for every a1, . . . , am ∈ ∆∗.
We consider the RTG G = (N, Σ, S,R) with

N = {S,NP,VP,PP,NN,NNS,VBZ,VBP, IN}
and Σ = {〈δ〉 | δ ∈ ∆} ∪ {〈x1〉, 〈x1x2〉} ⊆ Γ, and
R contains the rules shown in Fig. 1 (ignoring the
numbers above the arrows for the time being).

The tree in the middle of the upper row of
Fig. 2 is an abstract syntax tree d ∈ AST(G).
It expresses that certain insects (fruit flies) like
something (bananas). We obtain πΣ(d) by drop-
ping the non-highlighted parts of d (left of up-
per row). The application of the homomorphism
(.)CFG∆ : TΣ → CFG∆ to πΣ(d) yields the string
a = fruit flies like bananas. We note that there
is another abstract syntax tree d′ ∈ AST(G), viz.,
d′ = r1(r2(r8), r5(r11, r7(r13, r4(r10)))) such that
πΣ(d′)CFG∆ = a. It expresses how fruit performs
a certain activity (to fly like bananas). Hence this
RTG-LM is ambiguous. �

It should be clear from Ex. 1 that each context-
free grammar with terminal alphabet ∆ can be
represented as an RTG-LM (G,CFG∆), and vice
versa, each RTG-LM (G,CFG∆) represents a
CFG. In the same way, one can characterize
LCFRS and tree adjoining grammars by (1) super-
posing sorts to the set N of nonterminals of the
RTG (in order to represent fanout and the char-
acteristic “substitution tree / adjoining tree” of ar-
guments, respectively), and (2) by defining ap-

propriate Γ-algebras LCFRS∆ (Kallmeyer, 2010,
Def. 6.2+6.3) and TAG∆ (Büchse et al., 2012;
Koller and Kuhlmann, 2012), respectively. The
language algebras CFG∆, LCFRS∆, and TAG∆
are finitely decomposable.

A weighted RTG-based language model
(wRTG-LM) is a tuple

(
(G, (L, φ)), (K,⊕, 0, Ω,∑⊕), wt

)
,

where

• (G, (L, φ)) is an RTG-LM,

• (K,⊕, 0, Ω,∑⊕) is a complete M-monoid
(weight algebra), and

• wt maps each rule of G with rank m to an m-
ary operation in Ω. We lift wt to the mapping
wt′: TR → TΩ and denote wt′ also by wt.

Definition 2. The weighted parsing problem
is the following problem: given a wRTG-LM(
(G, (L, φ)), (K,⊕, 0, Ω,∑⊕),wt

)
and an a ∈ L,

compute the value parse(a) ∈ K where
parse(a) =

∑⊕
d∈AST(G,a)

wt(d)K . �

Example 3. (Ex. 1 cont.) The best derivation
problem of (Goodman, 1999) consists of comput-
ing, given a syntactic object a and a grammar, the
abstract syntax trees of a with maximal probabil-
ity (and this probability). Let R∞ be a ranked set
such that (R∞)m is infinite for each m ∈ N. In anal-
ogy to Goodman, we define the best derivation M-
monoid to be the d-complete M-monoid

BD =
(
V, maxBD, (0, ∅), ΩBD,

∑maxBD ),
where V = [0, 1] × P(TR∞) and [0, 1] is the inter-
val of real numbers from 0 to 1 and

• for every (p1,D1), (p2,D2) ∈ V , the value
maxBD((p1,D1), (p2,D2)) is (pi,Di) if pi > p j

for i, j ∈ {1, 2}, and (p1,D1 ∪ D2) if p1 = p2,

• ΩBD = {tcp,r | p ∈ [0, 1] and r ∈ R∞},
where for each p ∈ [0, 1] and r ∈ R∞ of
rank m, we define tcp,r: Vm → V (tc abbre-
viates top concatenation) such that for every
(p1,D1), . . . , (pm,Dm) ∈ V

tcp,r
(
(p1,D1), . . . , (pm,Dm)

)
= (p′,D′)

where p′ = p · p1 · . . . · pm and D′ =
{r(d1, . . . , dm) | di ∈ Di, 1 ≤ i ≤ m}, and

• for every family ((pi,Di) | i ∈ I) over V , we
define

∑maxBD
i∈I (pi,Di) = (p,D), where p =

sup{pi | i ∈ I} and D =
⋃

i∈I:pi=p Di.

Since BD is completely idempotent, it is also d-
complete.
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〈x1 x2〉

〈x1 x2〉

〈fruit〉 〈flies〉

〈x1 x2〉

〈like〉 〈x1〉

〈bananas〉

S→

NP→

NN→ NNS→

VP→

VBP→ NP→

NNS→

(NP,VP)

(NN,NNS) (VBP,NP)

(NNS)

d ∈ AST(G)

〈x1 x2〉

〈x1 x2〉

〈fruit〉 〈flies〉

〈x1 x2〉

〈like〉 〈x1〉

〈bananas〉

t ∈ TΣ

tc1.0,r1

tc0.5,r3

tc1.0,r8 tc0.4,r9

tc0.6,r6

tc1.0,r12 tc0.3,r4

tc0.6,r10

in TΩ

(
0.0216, {r1(r3(r8, r9), r6(r12, r4(r10)))})

(
0.0144, {r1(r2(r8), r5(r11, r7(r13, r4(r10))))})

maxBDa = fruit flies like bananas

wt(d′) ∈ TΩd′ ∈ AST(G)πΣ(d′) ∈ TΣ

πΣ wt

(.)CFG∆
(.)BD

(.)BD
wtπΣ

(.)CFG∆

parse

Figure 2: Illustration of the weighted parsing problem for the wRTG-LM
(
(G,CFG∆),BD,wt

)
and the syntactic

object a = fruit flies like bananas of ∆∗, see Ex. 3.

Now we consider the finite set R of rules
of the RTG G given in Ex. 1. We can as-
sume that R ⊆ R∞ is rank preserving. We de-
fine the mapping wt: R → ΩBD by wt(ri) =
tcpi,ri where pi is shown in Fig. 1 above the ar-
row of ri. For each d ∈ AST(G, a), the sec-
ond component of wt(d)BD has exactly one el-
ement. Recall d′ from Ex. 1, a second AST
which is evaluated to a. We obtain wt(d′)BD =
(0.0144, {r1(r2(r8), r5(r11, r7(r13, r4(r10))))}). Thus

maxBD
(

wt(d)BD,wt(d′)BD
)
= wt(d)BD .

As one might expect, it is more likely that a refers
to the preferences (to like bananas) of certain in-
sects (fruit flies). Fig. 2 illustrates the parsing
problem for the wRTG-LM ((G,CFG∆),BD,wt)
and a = fruit flies like bananas. �

In summary, each wRTG-LM consists of two
components: a syntax component and a weight
component. The syntax component (cf. the left of
Fig. 2) contains the language algebra (L, φ). This
is a Γ-algebra whose carrier set is the set of syn-
tactic objects. The mapping πΣ maps each abstract
syntax tree to a tree in the Σ-term algebra TΣ ,
which is then evaluated to a syntactic object by the
unique homomorphism (.)L (recall that Σ ⊆ Γ).

The weight component (cf. the right of Fig. 2)
contains a complete M-monoid (K,⊕, 0, Ω,∑⊕)
whose carrier set is the set of weights. The map-
ping wt maps each abstract syntax tree to a tree in
the Ω-term algebra TΩ, which is then evaluated to
a weight in K by the unique homomorphism (.)K .
Weights in K are accumulated using ⊕.

A→ dela(A) φ(dela)(w) = aw dela(n) = n + 1
A→ insa(A) φ(insa)(w) = wa insa(n) = n + 1
A→ repa,b(A) φ(repa,b)(w) = awb repa,b(n) = n′

A→ nil φ(nil)() = $ nil() = 0

Figure 3: Rules of G for each a, b ∈ ∆, the interpre-
tation φ, and the operations in Ω where n′ = n + 1 if
a , b, and n otherwise.

The weighted parsing problem takes as input a
wRTG-LM and a syntactic object a, and it com-
putes the ⊕-accumulation of the weights of each
AST of a.

Example 4. Giegerich et al. (2004) formalized dy-
namic programming (Bellman, 1952, 1954) in an
algebraic setting, called algebraic dynamic pro-
gramming (ADP). We claim that each ADP prob-
lem is a weighted parsing problem. To support
this statement, we consider the computation of
the minimum edit distance (med) between two
words over some alphabet ∆ by deletion, inser-
tion, and replacement, and we “simulate” its ADP-
specification as wRTG-LM ((G, (L, φ)),K,wt).
The rules of the RTG G and the interpretation
φ are shown in the first and second columns of
Fig. 3, respectively. Thus, for each tree t ∈ L(G),
tL = u$v for some u, v ∈ ∆∗. We choose the
complete, distributive M-monoid (K,⊕, ∅, Ω,∑⊕)
with K = {h(F) | F ∈ P(N)} for the single-
valued objective function h:P(N) → P(N) with
h(F) = {min(F)}. We let F1 ⊕ F2 = h(F1 ∪ F2) for
every F1, F2 ∈ K, and

∑⊕
i∈N Fi = {inf(

⋃
i∈N Fi)}.

The set Ω is shown in the third column of Fig. 3.
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- wRTG-LM(
(G,L),K,wt

)
- a ∈ L

canonical weighted
deduction system

wRTG-LM(
(G′,CFG∅),K,wt′

) value computation
algorithm (Alg. 1)

V(A′0) =∑⊕
d∈AST(G′)

wt′(d)K parse(a)=

weighted parsing algorithm

Figure 4: Two-phase pipeline for solving the weighted parsing problem (A′0 is the initial nonterminal of G′).

Note that h satisfies Bellman’s principle of op-
timality: h(ω(F)) = h(ω(h(F))) for each unary
ω ∈ Ω and F ∈ K. Then med(u, v) = parse(u$v−1)
for every u, v ∈ ∆∗, where v−1 is the reversal of v.

This construction can be generalized to a pro-
cedure which turns every specification of an ADP
problem into a weighted parsing problem. Due to
space restrictions, we cannot present this proce-
dure in its entirety. �

4 The weighted parsing algorithm

The weighted parsing algorithm is supposed to
solve the weighted parsing problem. As input, it
takes a wRTG-LM G and a syntactic object a. Its
output is intended to be parse(a). The algorithm is
a pipeline with two phases (cf. Fig. 4) and follows
the modular approach of Nederhof (2003). First,
a canonical weighted deduction system computes
from G and a a new wRTG-LM G′ with the same
weight structure as G, but a different RTG and the
language algebra CFG∅. Second, G′ is the input to
the value computation algorithm (Alg. 1), which
computes the value V(A′0); this is supposed to be∑⊕

d∈AST(G′) wt(d)K = parse(a).

Weighted deduction systems. Parsing of some
string w with some grammar G can be formalized
as a deduction system D (Shieber et al., 1995).
D consists of a set of inference rules

I1 ... Im
I {c1, . . . , cp}

where m ∈ N, I, I1, . . . , Im are items, and c1, . . . , cp

are side conditions. Each item represents a
Boolean-valued property (of some combination of
nonterminals of G and/or substrings of a = w).
The meaning of an inference rule is: given that
I1, . . . , Im and c1, . . . , cp are true, I is true as well.
Nederhof (2003) pointed out that “a deduction sys-
tem having a grammar G [...] and input string w in
the side conditions can be seen as a construction
c of a context-free grammar c(G, w) [...]”; also, he
extendedD and c(G, a) with weights.

Inspired by this, we define the canonical
weighted deduction system as a mapping cwds
which takes two arguments: (a) a wRTG-LM

G = ((G,L),K,wt
)

such that the language alge-
bra (L, φ) is finitely decomposable and (b) a syn-
tactic object a ∈ L. Let G = (N, Σ, A0,R). Then
we define

cwds
(G, a) = ((G′,CFG∅),K,wt′

)
,

where G′ = (N′, Σ′, A′0,R
′) and

• N′ = {(A0, a)}∪ (N×Σ× factors(a)
)
; N′ is finite,

because L is finitely decomposable,
• Σ′ = {〈x1 . . . xm〉 | a rule with rank m is in R},
• A′0 = (A0, a), and
• for each σ ∈ Σ, the rule r′ = (A0, a) →

(A0, σ, a) is in R′ and wt′(r′) = id; for each r =(
A → σ(A1, . . . , Am)

)
in R and a0, a1, . . . , am ∈

factors(a) with φ(σ)(a1, . . . , am) = a0 and every
rule Ai → σi(. . . ) (i ∈ [m]) in R, the rule r′

(A, σ, a0)→ 〈x1 . . . xm〉((A1, σ1, a1), . . . , (Am, σm, am)
)

is in R′ and we let wt′(r′) = wt(r).

Note that cwds implements a CYK-like deduction
system. The elements of N′ have a very general
form. Depending on L, they can be understood
as, e.g., spans of strings, occurrences of patterns
in trees, or occurrences of subgraphs in graphs.
We note that for every d ∈ AST(G′) it holds that
πΣ(d)CFG∅ = ε, i.e., each abstract syntax tree is
evaluated to the empty string. Moreover, cwds is
weight-preserving in the following sense:
(1) there is a bijective mapping ψ from the set

AST(G, a) to AST(G′) and
(2) for every d ∈ AST(G, a) we have that

wt(d)K = wt′(ψ(d))K .

Value computation algorithm. This is Alg. 1.
Its input is a wRTG-LM G′ with language algebra
CFG∅. It maintains a mapping V , which assigns
a weight to each nonterminal, and a Boolean vari-
able changed. The output is the value V(A′0). The
algorithm starts by assigning the weight 0 to each
nonterminal (lines 1–2). Then, in a repeat-until
loop (lines 3–12), the weight of each nonterminal
is recomputed in every iteration of that loop as fol-
lows (where 〈x1,m〉 abbreviates 〈x1, . . . , xm〉):

V(A) =
⊕
r∈R′:

r=(A→〈x1,m〉(A1,...,Am))

wt′(r)
(
V(A1), . . . ,V(Am)

)
.
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Algorithm 1 Value computation algorithm

Input:
(
(G′,CFG∅), (K,⊕, 0, Ω,∑⊕), wt′

)
which

is a wRTG-LM with G′ = (N′, Σ′, A′0,R
′)

Variables: V: N′ → K, V ′ ∈ K, changed ∈ B
Output: V(A′0)

1: for each A ∈ N′ do
2: V(A)← 0

3: repeat
4: changed ← false
5: for each A ∈ N′ do
6: V ′ ← 0

7: for each r = (A→ 〈x1,m〉(A1, . . . , Am)) in R′ do
8: V ′ ← V ′ ⊕ wt′(r)

(
V(A1), . . . ,V(Am)

)

9: if V(A) , V ′ then
10: changed ← true
11: V(A)← V ′

12: until changed = false

The algorithm terminates after the first iteration in
which no nonterminal has changed its weight.

We note that in practice, a complete compu-
tation of cwds(G, a) prior to the execution of the
value computation algorithm (Alg. 1) is impossi-
ble. Similar to Nederhof (2003), we execute the
value computation algorithm on an incomplete in-
put which is extended on demand (lazy evalua-
tion). More precisely, G′ is initialized so that it
only contains the rules of rank 0 (and the nonter-
minals in their left-hand sides). Then, each time a
value different from 0 is first assigned to a nonter-
minal A in line 11, we compute the following set
of rules: each rule whose right-hand side only con-
tains A and other nonterminals for which this com-
putation has already been done is in that set. These
new rules (and the nonterminals in their left-hand
sides) are added to G′.

5 Termination and correctness

We are interested in two formal properties of the
value computation algorithm (Alg. 1) and of the
weighted parsing algorithm (Fig. 4): termination
and correctness.

The value computation algorithm computes the
weights of the ASTs bottom-up and reuses the re-
sults of common subtrees (as in dynamic program-
ming); this requires distributivity of the weight
algebra. Moreover, solving the weighted parsing
problem by a terminating algorithm involves the
following difficulty: there may be infinitely many
ASTs (due to cycles) which are evaluated to the

same syntactic object a. Thus parse(a) is an in-
finite sum, which in general cannot be computed
in finite time. Hence, a terminating algorithm can
only solve the weighted parsing problem if the in-
finite sum is equal to the sum over some finite sub-
set of the infinite sum’s index set.

We have organized this section as follows.
In Subsection 5.1 we define the class of closed
wRTG-LMs (similar to Mohri, 2002) and prove
that the value computation algorithm (Alg. 1) is
terminating and correct for closed wRTG-LMs as
input. We say that the value computation algo-
rithm is correct if after termination

V(A′0) =
∑⊕

d∈AST(G′)
wt′(d)K .

In Subsection 5.2 we prove that the weighted
parsing algorithm (Fig. 4) is terminating and cor-
rect for two classes of inputs. We say that the
weighted parsing algorithm is correct if it com-
putes parse(a).

5.1 Properties of the value computation
algorithm

Since each wRTG-LM has a finite set of rules, an
infinite set of ASTs is only possible if the ASTs
are cyclic in the following sense. Recall that R′ is
the set of rules of the input G′ to the value compu-
tation algorithm (Alg. 1). Let ρ ∈ (R′)∗. We call ρ
cyclic if |ρ| ≥ 2, ρ1 = ρ|ρ|, and for every i, j ∈ N,
if 1 ≤ i < j < |ρ|, then ρi , ρ j. From now on,
let ρ ∈ (R′)∗ be cyclic, d ∈ TR′ , and c ∈ N. A
path p in d is (c, ρ)-cyclic if ρ occurs exactly c
times in seq(d, p). We define the set cutout(d, ρ)
which contains every tree obtained from d by cut-
ting out at least one occurrence of ρ. We illustrate
cutout by an example in Fig. 5.

Definition 5. Let c ∈ N. A wRTG-LM G′ =(
(G′,CFG∅),K,wt′

)
is c-closed if K is distribu-

tive and d-complete, and for each d ∈ TR′ and
cyclic string ρ ∈ (R′)∗ the following holds: if there
is a (c, ρ)-cyclic path in d, then
wt′(d)K ⊕

⊕
d′∈cutout(d,ρ)

wt′(d′)K =
⊕

d′∈cutout(d,ρ)
wt′(d′)K .

G′ is closed if it is c-closed for some c ∈ N. �

For every c ∈ N and ranked set R′, we let
T(c)

R′ be the set of all those d ∈ TR′ such that
for every cyclic ρ ∈ (R′)∗ and c′ > c, no path
in d is (ρ, c′)-cyclic. In other words, T(c)

R′ con-
tains all those trees of TR′ which have at most c
occurrences of some cycle in some of their paths.
Clearly T(c)

R′ is finite, T(c)
R′ ⊆ T(c+1)

R′ for every c ∈ N,
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Figure 5: Top: tree d over the ranked set R′ = {r(2)
1 , r(1)

2 , r(1)
3 , r(0)

4 } with a (2, ρ)-cyclic path (horizontal line) for
ρ = r1r2r1. Bottom: the set cutout(d, ρ). Please do not confuse the elements of R′ with the rules of Ex. 1 and 3.

and
⋃

c∈N T(c)
R′ = TR′ . Given a wRTG-LM G′ =(

(G′,CFG∅),K,wt′
)

with set of rules R′, we let
AST(G′)(c) = T(c)

R′ ∩AST(G′) for every c ∈ N.

Theorem 6. For every c ∈ N and c-closed wRTG-
LM
(
(G′,CFG∅),K,wt′

)
the following holds:∑⊕

d∈AST(G′)
wt′(d)K =

⊕
d∈AST(G′)(c)

wt′(d)K .

Proof (sketch). As K is distributive, we can show
by induction on n ∈ N that for every B ⊆
AST(G′) r AST(G′)(c) with |B| = n, adding B to
the index set of ⊕ does not change the sum’s value.
Then, as K is d-complete, the equality holds. �

This theorem reflects the desired property:
given that our wRTG-LM is c-closed (with c ∈ N),
each (possibly infinite) sum over all ASTs can be
computed as a sum over the finite set AST(G′)(c).

Theorem 7. The value computation algorithm
(Alg. 1) is terminating and correct for every closed
wRTG-LM G′ with language algebra CFG∅.
Proof (sketch). Let G′ be c-closed. We note that
in line 8, the value in the right-hand side of ⊕ al-
ways corresponds to the sum over the weights of
some trees in (TR′)A; this is due to the fact that K
is distributive. By the form of recomputation in
lines 3–12, each d ∈ (TR′)A contributes to that
sum at most once. Furthermore, V ′ only differs
from V(A) if a tree from the finite set T(c)

R′ has been
used to compute V ′, but not V(A) (this is a con-
sequence of G′ being closed). Thus, changed is
only set to true finitely often and the algorithm
eventually terminates. Then, after termination,
V(A′0) =

⊕
d∈AST(G′)(c) wt′(d)K and Theorem 6 im-

plies correctness. �

5.2 Properties of the weighted parsing
algorithm

We discuss two classes of wRTG-LMs for which
the weighted parsing algorithm (Fig. 4) is termi-

nating and correct.
(1) Closed wRTG-LMs with arbitrary language al-
gebras. Each of them is a wRTG-LM

(
(G, (L, φ)),

(K,⊕, 0, Ω,∑⊕), wt
)

which is c-closed for some
c ∈ N, and c-closed is defined as in Def. 5. (We
note that this generalization is possible because
Def. 5 does not use any property of CFG∅.) The
following particular wRTG-LMs are closed:

• wRTG-LMs with acyclic RTG, where an
RTG G is acyclic if AST(G) = AST(G)(0),

• wRTG-LMs with superior, d-complete M-
monoids as weight algebras, and

• wRTG-LMs with weight algebra BD if no chain
rule and ε-rule has probability 1.0 (as in Ex. 3).

(2) Non-looping wRTG-LMs with distributive M-
monoids as weight algebras. A wRTG-LM G is
non-looping if for every syntactic object a and
tree d over the set of rules of G which is evaluated
to a the following holds: no proper subtree of d
is evaluated to a. ADP problems can be specified
by non-looping wRTG-LMs, because the syntactic
objects of ADP represent (sub-)problems which
have to be solved. Thus, if G is looping, then the
solution of a subproblem would depend on itself,
which contradicts dynamic programming. In gen-
eral, non-looping is not decidable, but it is for par-
ticular language algebras, e.g., CFG∆.

Lemma 8. For every closed or nonlooping
wRTG-LM G with finitely decomposable lan-
guage algebra and syntactic object a, the wRTG-
LM cwds(G, a) is closed.

Theorem 9. The weighted parsing algorithm
(Fig. 4) is terminating and correct for every closed
or nonlooping wRTG-LM with finitely decompos-
able language algebra.

Proof. The weighted parsing algorithm terminates
because (a) the computation of cwds is terminating
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algorithm class of valid inputs class C1 of RTG class C2 of weight algebras

(a) Knuth (1977) C1 × C2 RTG superior M-monoid
(b) Goodman (1999) C1 × C2 acyclic RTG complete semiring
(c) Mohri (2002) C2 closed for C1 monadic RTG commutative, d-complete semiring
(d) Alg. 1 closed wRTG-LM RTG distributive, d-complete M-monoid

Table 1: Comparison of four value computation algorithms. The second column represents the class of wRTG-LMs
to which the corresponding algorithm is applicable. The expression C1 × C2 denotes the class of all wRTG-LMs
with RTGs in C1 and weight algebras in C2.

for every wRTG-LM with finitely decomposable
language algebra and (b) the value computation
algorithm (Alg. 1) is terminating by Theorem 7,
which we can be applied due to Lemma 8. The
weighted parsing algorithm is correct because (a)
cwds is weight-preserving and (b) the value com-
putation algorithm is correct by Theorem 7 (which
is applicable again due to Lemma 8), hence

parse(a)
(a)
=
∑⊕

d∈AST(G′)
wt′(d)K

(b)
= V(A′0) . �

6 Comparison of value computation
algorithms

Here we compare our value computation algo-
rithm (Alg. 1) to the algorithm of Knuth (1977),
the second phase of Goodman (1999), and the al-
gorithm of Mohri (2002).

We focus on the question of applicability of
the algorithms, i.e., we identify the classes of
inputs for which the algorithms are terminat-
ing and correct (class of valid inputs). In
order to have a basis for a fair comparison,
we understand the inputs of the algorithms of
Knuth (1977), Goodman (1999), and Mohri
(2002) as particular wRTG-LMs of the form(
(G′,CFG∅), (K,⊕, 0, Ω,∑⊕),wt′

)
with G′ =

(N′, Σ′, A′0,R
′). An algorithm is correct for such

a wRTG-LM if it returns
∑⊕

d∈AST(G′) wt′(d)K .
We employ two parameters: C1 (subset of the

class of all RTGs) and C2 (subset of the class of
all weight algebras). Tab. 1 shows the classes of
valid inputs parameterized with values for C1 and
C2. Each valid input in rows (a)–(d) is a closed
wRTG-LM. Thus, if one of the value computation
algorithms (a)–(c) is applicable, then our value
computation algorithm (Alg. 1) is applicable too.
In particular, Alg. 1 is applicable to wRTG-LMs
with the best derivation M-monoid BD as weight
algebra (cf. Ex. 3), which in general is the case for
neither of algorithms (a)–(c). The reason for this
is that BD is not superior (opposing (a)) and RTG-
LMs are in general neither acyclic (opposing (b))

nor monadic (opposing (c)). The same holds for
ADP problems.

We cannot give a general statement about the
complexity of our value computation algorithm
(Alg. 1), because the operations in the weight al-
gebra of a wRTG-LM can be undecidable. If we
abstract from the costs of particular operations,
then we obtain the complexity of Mohri’s algo-
rithm. This complexity depends on the number of
times the value of a nonterminal changes, which
in general is not polynomial in the size of the in-
put wRTG-LM. Mohri circumvents this problem
by specifying the order in which nonterminals are
processed for well-known classes of inputs, e.g.,
acyclic graphs or superior weight algebras. We
can adapt this idea by imposing such an ordering
on the iteration over the nonterminals in line 5.
Thus our value computation algorithm achieves
the same complexity as Knuth’s algorithm (if the
input is restricted to superior wRTG-LMs) or the
algorithm in Goodman’s second phase (if the input
is restricted to acyclic wRTG-LMs), respectively.

We note that although our value computation
algorithm (Alg. 1) has the same complexity as
the other algorithms, in average it performs more
computations than those. This is because in each
iteration of lines 5–11, the values of all nontermi-
nals are recomputed. This could be avoided by
using a direct generalization of Mohri’s algorithm
to the branching case rather than Alg. 1. However,
the intricacies of such a generalization would ex-
ceed the scope of this paper.
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Abstract

We show that regular transductions for which
the input part is generated by some multiple
context-free grammar can be simulated by syn-
chronous multiple context-free grammars. We
prove that synchronous multiple context-free
grammars are strictly more powerful than this
combination of regular transductions and mul-
tiple context-free grammars.

1 Introduction

In machine translation, one is interested in auto-
matically translating sentences of one natural lan-
guage into sentences of another natural language.
Such translations can be considered as string-to-
string transductions by viewing the words of a nat-
ural language as symbols of a formal language,
and viewing sentences as strings. Several formal
models for such transductions have been proposed,
e.g., syntax-directed translation schemata (Lewis
and Stearns, 1968), also known as synchronous
context-free grammars (Chiang, 2007), two-way
generalized sequential machines (2gsm) (Sheperd-
son, 1959; Aho and Ullman, 1970), MSO definable
string-to-string transductions (MSO-sst) (Courcelle
and Engelfriet, 2012), and streaming string trans-
ducers (SST) (Alur and Černý, 2010).

It has been established that the deterministic
versions of 2gsm, MSO-sst, and SST generate
the same class of string-to-string transductions
(Alur and Černý, 2010; Engelfriet and Hoogeboom,
2001); the same is true for the nondeterministic ver-
sions of MSO-sst and SST (Alur and Deshmukh,
2011). Due to these characterizations, the involved
transducers and the corresponding transductions
are called regular transducers and regular trans-
ductions, respectively.

In statistical machine translation (Lopez, 2008),
one aims at automatically inferring a translation

model from some bilingual corpus, where the trans-
lation model is chosen from some class of formal
devices, e.g., the class of regular transducers. In the
seminal paper by Brown et al. (1993), the inference
is based on the concept of alignment graph (used
as hidden random variable in the EM-algorithm
(Dempster et al., 1977)); each such graph consists
of an input sentence w, an output sentence v, and a
binary relation between the set pos(v) of positions
of v and the set pos(w) of positions of w. In the
particular case of the IBM models each alignment
graph is a partial mapping from pos(v) to pos(w).
These have almost the same mathematical structure
as the origin graphs of Bojańczyk (2013), except
that in the latter, the mapping is total.

Bojańczyk (2013) and Bojańczyk et al. (2017a,b)
investigated the concept of regular transductions
with origin semantics, where the origin semantics
of a regular transducer A is a set of the origin
graphs that A can create: if A produces a portion
v′ of the output while reading the input symbol at
position i, then each position of v′ is aligned to i.

Since the domain of each regular transduction
is a regular string language, it cannot capture non-
regular syntactic phenomena on the source side
of the translation. To enhance this capability, this
paper investigates imposing additional syntactic
restrictions on the input of a regular transducer,
through intersection with a multiple context-free
grammar (Seki et al., 1991) (MCFG). We prove
that the resulting transduction can also be gener-
ated by a synchronous MCFG, which is a pair of
MCFGs with synchronized nonterminals, much as
in, e.g., synchronous context-free grammars. We
further give an example of a synchronous MCFG
whose transduction cannot be represented as the
intersection of a regular transducer and a MCFG.
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2 Preliminaries

We let N = {0, 1, 2, . . .}, N+ = N \ {0}, and
[i, j] = {k ∈ N | i ≤ k ≤ j} for every i, j ∈ N.
We abbreviate [1, j] by [j]. We abbreviate se-
quences of objects, like a1 · · · an and a1, . . . , an,
by a1,n. We denote the powerset of a set A by
P(A). We abbreviate a set {a} with one element
by a. An alphabet A is a nonempty and finite set.

For functions f : A → B and g : B → C, we
denote their composition by f ◦g, i.e., (f ◦g)(a) =
g(f(a)) for each a ∈ A.

We let X = {x1, x2, x3, . . .} be a set of vari-
ables and Xk = {x1, . . . , xk} for each k ∈ N.

Let Σ1 and Σ2 be alphabets. An origin graph
(over Σ1 and Σ2) is a triple (w, v, g) wherew ∈ Σ∗1,
v ∈ Σ∗2, and g (origin mapping) maps each position
j of v to a position i of w. Intuitively, the pair
(j, i) ∈ g indicates that the symbol at position j of
v originated from position i of w. Let A be a set
of origin graphs and L1 and L2 formal languages.
Then we define

A e (L1 × L2) =

{(w, v, g) | (w, v, g) ∈ A,w ∈ L1, v ∈ L2} .

We generally refer to Σ1 as the input alphabet
and Σ2 as the output alphabet. For a set L ⊆ L1 ×
L2 we define the input projection as proj1(L) =
{w | (w, v) ∈ L} and the output projection as
proj2(L) = {v | (w, v) ∈ L}.

3 Streaming String Transducers

Here we recall the definition of streaming trans-
ducer from Alur and Deshmukh (2011), with some
slight modifications that refer to the final output of
a string.

LetR be a finite set of registers, and let ρ = |R|.
Let Γ be an alphabet. A copyless assignment to
R over Γ (or short: assignment) is a mapping
α : R → (R∪Γ)∗ such that any r ∈ R occurs at
most once in the set {α(r′) | r′ ∈ R}. We assume
there is a fixed total ordering r1, . . . , rρ of the ρ reg-
isters inR. This allows us to specify an assignment
α in the form (r1, . . . , rρ) := (α(r1), . . . , α(rρ)).
The identity assignment is the mapping id : R →
(R ∪ Γ)∗ such that id(r) = r for each r ∈ R.
The set of all copyless assignments to R over Γ
is denoted by Ass(R,Γ). The composition of two
copyless assignments α1, α2 ∈ Ass(R,Γ) is the

mapping α1 ◦ α′2 : R → (R ∪ Γ)∗, where α′2 is
the canonical extension of α2 to a mapping of type
(R∪ Γ)∗ → (R∪ Γ)∗. For convenience, we drop
the prime and write α1 ◦ α2 instead of α1 ◦ α′2.
Clearly, α1 ◦α2 is a copyless assignment toR over
Γ, and (Ass(R,Γ), ◦, id) is a monoid.

A nondeterministic streaming string transducer
(over Σ1 and Σ2) (for short: NSST) is a tuple
A = (Q,Σ1,Σ2,R, ro, T, q0, F ) where Q is a fi-
nite, nonempty set of states, Σ1 and Σ2 are the in-
put alphabet and the output alphabet, respectively,
R is a finite set of registers, ro ∈ R is the output
register, T ⊆ Q×Σ1×Ass(R,Σ2)×Q is a finite
set of transitions, q0 ∈ Q is the initial state, and
F ⊆ Q is the set of final states.

The summary of A is the mapping

∆ : (Q× Σ∗1)→ P(Ass(R,Σ2)×Q)

defined inductively as follows.

∆(q, ε) = {(id, q)}
∆(q, wa) = {(α ◦ αw, q′′) |

(∃q′ ∈ Q) : (αw, q
′) ∈ ∆(q, w),

(q′, a, α, q′′) ∈ T}
for each q ∈ Q, w ∈ Σ∗1, and a ∈ Σ1.

The string-to-string transduction computed by A
is the set [[A]] ⊆ Σ∗1 × Σ∗2 defined by

[[A]] = {(w, (α ◦ α′ε)(ro)) |
w ∈ Σ∗1, (∃q′ ∈ F ) : (α, q′) ∈ ∆(q0, w)}

where αε ∈ Ass(R,Σ2) is defined by αε(r) = ε.
Clearly, proj1([[A]]) is a regular language. We note
that q0 ∈ F if and only if {v ∈ Σ∗2 | (ε, v) ∈
[[A]]} = {ε}.

Each (w, v) ∈ [[A]] is obtained by at least one
sequence of transitions, and possibly more than one
due to nondeterminism. For a given such sequence,
each symbol occurrence in v is obtained by applica-
tion of a transition (q′, a, α, q′′), and this links the
index of that symbol occurrence in v to the index of
the corresponding occurrence of a in w. Thereby
the sequence of transitions corresponds in a natu-
ral way to an origin graph. The set of such origin
graphs is denoted by [[A]]o, and will be called the
origin semantics of A.
Example 3.1. Let Σ = {a, b,#}. We consider the
transformation

τ = {(w,w#w) | w ∈ {a, b}∗,
|w| = 2 · n for some n ∈ N+} .
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a b

a b # a b

Figure 1: Origin graph of (ab, ab#ab) in Exam-
ple 3.1.

For instance (ab, ab#ab) ∈ τ . The transfor-
mation τ can be computed by the NSST A =
(Q,Σ,Σ,R, r1, T, q0, F ) where Q = {q0, q1, qf},
F = {qf}, R = {r1, r2}, T contains, for every
i ∈ {0, 1} and γ ∈ {a, b}, the transitions

(
qi, γ, (r1, r2) := (r1γ, r2γ), q1−i

)
and(

q1, γ, (r1, r2) := (r1γ#r2γ, ε), qf
)
.

For instance,

∆(q0, ε) = {(id, q0)}
∆(q0, a) = {((r1, r2) := (r1a, r2a), q1)}

∆(q0, ab) = {((r1, r2) := (r1ab, r2ab), q0),
((r1, r2) := (r1ab#r2ab, ε), qf )} .

Let α denote (r1, r2) := (r1ab#r2ab, ε). Then

(α ◦ αε)(r1) = αε(α(r1)) = αε(r1ab#r2ab)

= ab#ab .

Since q0 is the initial state and qf is the final state,
we obtain (ab, ab#ab) ∈ [[A]]. The corresponding
origin graph is shown in Figure 1.

We call a NSST nondeleting if for each as-
signment α occurring in a transition, each reg-
ister r occurs exactly once in {α(r′) | r′ ∈
R}. For each NSST A, there is a nondeleting
NSST A′ such that [[A]] = [[A′]]. The proof is
very similar to the proof of a similar result for
MCFG by Seki et al. (1991), which we will men-
tion again in Section 4. We outline how A′ =
(Q′,Σ1,Σ2,R′, ro, T ′, q′0, F ′) is constructed from
A = (Q,Σ1,Σ2,R, ro, T, q0, F ).

First,Q′ contains a new state q′0 plus states of the
form qD where q ∈ Q and D ⊆ R. The intuition
is that the registers in D are those that must remain
empty in A′, as in a corresponding computation
in A their contents would later appear as part of
a register that is deleted (or that is not the output
register when the end of the input is reached). By
keeping those registers empty, they no longer need

to be deleted, and instead can be added in an ar-
bitrary way to assignments without changing the
semantics. We let qD ∈ F ′ if and only if q ∈ F
and ro /∈ D, and q′0 ∈ F ′ if and only if q0 ∈ F .

For each D ⊆ R and (q, a, α, q′) ∈ T , we have
(qD′ , a, α

′, q′D) ∈ T ′, where D′ and α′ are defined
as follows. The registers in D′ are obtained in one
of two ways. First, if r ∈ D, then every register
in α(r) is in D′, and secondly, if a register r′ does
not occur in α(r) for any r, then it is in D′.

In the first instance, α′(r) is a copy of α(r) for
each r /∈ D, and α′(r) is obtained from α(r) by
omitting all output symbols for each r ∈ D. How-
ever, each register r′ that does not occur in α(r),
for any r, is added to α′(r′′) in an arbitary place
for an arbitrary r′′. Moreover, if q = q0, then T ′

also contains (q′0, a, α
′, q′D).

For example, if

(q, a, (r1, r2, r3, r4) := (r2br3, c, d, er1), q
′)

is in T , then for D = {r1, r3}, we have D′ =
{r2, r3, r4}, where D′ contains r2 and r3 because
r2br3 is assumed to be deleted later, and D′ con-
tains r4 because it is deleted here. Further, T ′

would include

(qD′ , a, (r1, r2, r3, r4) := (r2r3, cr4, ε, er1), q
′
D)

where we have added r4 to the right-hand side of
the assignment in an arbitrary place.

4 Synchronous Multiple Context-Free
Grammars

A multiple context-free grammar (over Σ) (for
short: MCFG) is a tuple G = (N,S,Σ, P ) where
N is an alphabet of nonterminals, each nontermi-
nalA has a fanout in N (denoted by fo(A)), S ∈ N
is an initial nonterminal with fo(S) = 1, Σ is an
alphabet of terminals, and P is a finite set of rules,
where each rule has the form

A0(w1,`0)→ A1(x
(1)
1,`1

) · · ·An(x
(n)
1,`n

)

where n ∈ N, A0, A1, . . . , An are nonterminals
with fo(Ai) = `i for each i ∈ [0, n]; for each i ∈
[n], x(i)1,`i

is a sequence of `i variables inX such that

the set of all variables occurring in x(1)1,`1
, . . . , x

(n)
1,`n

is Xm where m =
∑n

i=1 `i; for each j ∈ [`0], each
wj is in (Σ ∪ Xm)∗; finally, the rule is linear in
X , i.e., each variable in X occurs at most once in
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w1 · · ·w`0 . The rank of this rule is n. The rank of
G is the maximal rank of its rules.

Rules can be instantiated by consistent substi-
tution of variables. The derivation relation⇒ of
G is defined in the usual way, by applying instan-
tiated rules. The language over Σ generated by
G is defined to be the set of strings w such that
S(w)⇒∗ ε, and is denoted by L(G). Two MCFGs
are equivalent if they generate the same language.

A MCFG is called uni-lexicalized if there is ex-
actly one terminal in each rule. For each MCFG
there is an equivalent uni-lexicalized MCFG. A
MCFG is called nondeleting if each variable that
occurs in the right-hand side occurs exactly once
in the left-hand side. For each MCFG there is an
equivalent nondeleting MCFG (Seki et al., 1991).

A synchronous multiple context-free grammar
(for short: synchronous MCFG) is a tuple G =
(N,S,Σ1,Σ2, P ) such that G′ = (N,S,Σ1 ∪
Σ2, P ) is an MCFG (called underlying MCFG)
except that S has fanout 2. Moreover, for each non-
terminal A we split its fanout ` into an input fanout
`1 and an output fanout `2 such that ` = `1 + `2,
and denote this by fo(A) = (`1, `2). In particular,
we let fo(S) = (1, 1). We call the first `1 argu-
ments of A its input arguments and the remaining
`2 arguments its output arguments, and we sepa-
rate these two blocks by a semicolon. We require
that elements of Σ1 and Σ2 may only occur in in-
put arguments and output arguments, respectively.
Finally, we require that no variable may simultane-
ously occur in an input and in an output argument.
We implement this requirement by choosing X as
set of input variables and Y = {y1, y2, . . .} as set
of output variables. Hence, a rule of a synchronous
MCFG has the form

A0(w1,`0 ; v1,m0)→
A1(x

(1)
1,`1

; y
(1)
1,m1

) · · ·An(x
(n)
1,`n

; y
(n)
1,mn

)

where n ∈ N, A0, A1, . . . , An are nonterminals
and each Ai has fanout (`i,mi); for each i ∈ [n],
x
(i)
1,`i

and y(i)1,mi
are sequences of variables in X and

Y , respectively; for each j ∈ [`0], string wj is in
(Σ1 ∪ {x(1)1,`1

, . . . , x
(n)
1,`n
})∗, and for each j ∈ [m0],

string vj is in (Σ2 ∪ {y(1)1,m1
, . . . , y

(n)
1,mn
})∗; finally,

the rule is linear in X and Y .

The MCFG G1 = (N,S,Σ1, P1) is the input
component of G, where the fanout of each nonter-
minal ofN is its input fanout in G, and P1 is the set

of all rules of P in which the output arguments are
dropped. Similary, we define the output component
of G.

Let G be a synchronous MCFG. We define the
derivation relation ⇒G of G to be the derivation
relation of its underlying MCFG. The string-to-
string transduction computed by G is the set

[[G]] = {(w, v) ∈ Σ∗1 × Σ∗2 | S(w; v)⇒∗ ε} .

A uni-lexicalized synchronous MCFG is a syn-
chronous MCFG in which each rule either contains
exactly one input symbol or contains neither input
symbols nor output symbols. In a straightforward
way, we can associate with each uni-lexicalized
synchronous MCFG G a set [[G]]o of origin graphs
by linking each occurrence of an output terminal
of a rule to the unique input terminal of that rule.

5 Intersecting the Input of NSST with
MCFG

Lemma 5.1. For every NSST A over Σ1 and
Σ2 and every MCFG G over Σ1, there is a uni-
lexicalized synchronous MCFG G′ over Σ1 and Σ2

such that [[A]]o e ([[G]]× Σ∗2) = [[G′]]o.

Proof. Let A = (Q,Σ1,Σ2,R, ro, T, q0, F ),
where R consists of the registers r1, . . . , rρ, and
let G = (N,S,Σ1, P ) be an MCFG. Without loss
of generality we may assume that A is nondeleting
and that G is uni-lexicalized.

The intuition behind the construction of G′ cov-
ers two aspects. Starting from the MCFG G, we
impose the state behaviour of A onto the non-
terminal behaviour of G by a type of construc-
tion that can be traced back to Bar-Hillel et al.
(1964). This aspect of the construction achieves
proj1([[G′]]) = proj1([[A]]) ∩ [[G]]. The second as-
pect concerns the manipulation of the registers of
A. We let G′ simulate the assignments in its output
component, while its input component processes
the input string.

The number of relevant assignments is in general
infinite. In order to be able to simulate these assign-
ments using a finite set of rules of G′, we split up
each assignment into a finite part, called “pattern”,
and a potentially infinite part, called “residue”. The
pattern represents ρ register occurrences in the im-
age of the assignment, while the residue consists of
the 2ρ strings that are interlaced with the register
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occurrences. The patterns are maintained as anno-
tations of the nonterminals of G′ and the residues
appear in the output arguments of G′. The residues
of the left-hand side of a rule will be expressed in
terms of residues that appear as output variables
in the right-hand side. For this purpose, we intro-
duce assignments that have output variables in their
image.

For instance, let G contain the rule
A(ax

(2)
1 x

(1)
1 ) → B(x

(1)
1 ) C(x

(2)
1 ) and A

have states q1, . . . , q5. Assume that there is a
transition (q5, a, α, q3), and that there are strings
w

(2)
1 , w

(1)
1 ∈ Σ∗1 such that (α2, q1) ∈ ∆(q3, w

(2)
1 )

and (α1, q2) ∈ ∆(q1, w
(1)
1 ). Then G′ will have a

rule of the form

A
(q5,p

(0)
1 ,q2)

(ax
(2)
1 x

(1)
1 ; ...)→

B
(q1,p

(1)
1 ,q2)

(
x
(1)
1 ; ...

)
C
(q3,p

(2)
1 ,q1)

(
x
(2)
1 ; ...

)

where p(1)1 and p(2)1 are patterns corresponding to
α1 and α2, respectively, and p(0)1 corresponds to
α1 ◦α2 ◦α. Hence there is a corresponding pattern
for each argument in the right-hand sided and in
the left-hand side.

Formally, a pattern overR is an assignment p ∈
Ass(R, ∅). Obviously, Ass(R, ∅) is finite. Now as-
sume a rule A0(w1,`0)→ A1(x

(1)
1,`1

) · · ·An(x
(n)
1,`n

).

Let ~̀ = (`1, . . . , `n), X~̀ = {x(k)i | k ∈ [n], i ∈
[`k]}, and Y~̀ = {y(k)i | k ∈ [n], i ∈ [2ρ`k]}. For
each α ∈ Ass(R,Σ2 ∪ Y~̀) we define the pattern
p(α) and the residue r(α) ∈ ((Σ2 ∪ Y~̀)∗)∗ as fol-
lows. Assume that for each j ∈ [ρ] the string
α(rj) has the form vj,0rj,1vj,1 · · · rj,µjvj,µj for
some µj ∈ [0, ρ], vj,k ∈ (Σ2 ∪ Y~̀)∗ (k ∈ [0, µj ]),
and {rj,1, . . . , rj,µj} ⊆ R. Then

p(α) = ((r1, . . . , rρ) :=
(r1,1 · · · r1,µ1 , . . . , rρ,1 · · · rρ,µρ))

r(α) = (v1,0, v1,1, . . . , v1,µ1 , . . . ,
vρ,0, vρ,1, . . . , vρ,µρ) .

For example, let α be the assignment

(r1, r2, r3, r4) :=

(ay3br4, r2y2cr3, dey4, fy1r1) .

Then

p(α) = ((r1, r2, r3, r4) := (r4, r2r3, ε, r1))

r(α) = (ay3b, ε, ε, y2c, ε, dey4, fy1, ε) .

For a pattern p(k)i corresponding to x(k)i , we de-
fine an assignment [p

(k)
i ] ∈ Ass(R, Y~̀), which in-

troduces output variables next to register occur-
rences. Assume that

p
(k)
i = ((r1, . . . , rρ) := (s1 · · · sµ1 ,

sµ1+1 · · · sµ2 , . . . ,
sµρ−1+1 · · · sµρ))

for some µ1, . . . , µρ ∈ [0, ρ], µi ≤ µi+1 (i ∈ [ρ−
1]), and sj ∈ R (j ∈ [µρ]). Let µ0 = 0 and
κj = 2ρ(i− 1) + µj + j (j ∈ [0, µρ]). Then

[p
(k)
i ](rj) =

y
(k)
κj−1+1 sµj−1+1 y

(k)
κj−1+2 · · · sµj y(k)κj .

For instance, if ρ = 4 and p(2)3 is the pattern

(r1, r2, r3, r4) := (r4, r2r3, ε, r1)

then µ1 = 1, µ2 = 3, µ3 = 3, µ4 = 4, κ0 =
2ρ(i − 1) = 16, κ1 = κ0 + µ1 + 1 = 18, κ2 =
κ0 + µ2 + 2 = 21, κ3 = κ0 + µ3 + 3 = 22,
κ4 = κ0 + µ4 + 4 = 24, and

[p
(2)
3 ] = ((r1, r2, r3, r4) :=

(y
(2)
17 r4y

(2)
18 , y

(2)
19 r2y

(2)
20 r3y

(2)
21 , y

(2)
22 , y

(2)
23 r1y

(2)
24 )) .

We construct the synchronous MCFG G′ =
(N ′, S′,Σ1,Σ2, P

′) as follows. We let

N ′ = {S′} ∪ {Ac | A ∈ N, foG(A) = `,
c ∈ (Q×Ass(R, ∅)×Q)`}

where foG′(S′) = (1, 1) and foG′(Ac) =
(foG(A), 2ρ · foG(A)).

Let A0(w1,`0) → A1(x
(1)
1,`1

) · · ·An(x
(n)
1,`n

) be a
rule in P . For every k ∈ [0, n] and i ∈ [`k] let
q
(k)
i,1 , q

(k)
i,2 ∈ Q and p(k)i ∈ Ass(R, ∅). We abbrevi-

ate (q
(k)
i,1 , p

(k)
i , q

(k)
i,2 ) by c(k)i .

We extend ∆ to a function

∆′ : Q× (Σ1 ∪X~̀)
∗ → P(Ass(R,Σ2 ∪Y~̀)×Q)

by defining

∆′(q, ε)={(id, q)}
∆′(q, wa)={(α ◦ αw, q′′) |

(∃q′ ∈ Q) : (αw, q
′) ∈ ∆′(q, w),

(q′, a, α, q′′) ∈ T}
∆′(q, wx(k)i )={([p(k)i ] ◦ αw, q(k)i,2 ) |

(αw, q
(k)
i,1 ) ∈ ∆′(q, w)}
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Then the set P ′ contains the rule

(A0)c(0)1,`0

(w1,`0 ; v1,2ρ`0)→

(A1)c(1)1,`1

(x
(1)
1,`1

; y
(1)
1,2ρ`1

) · · ·

(An)
c
(n)
1,`n

(x
(n)
1,`n

; y
(n)
1,2ρ`n

)

for each choice of α1,`0 such that (αi, q
(0)
i,2 ) ∈

∆′(q(0)i,1 , wi) and p(αi) = p
(0)
i , for each i ∈ [`0],

where r(αi) = (v2ρ(i−1)+1,2ρi). This is illustrated
in Figure 2.

In addition, for each c ∈ {(q0, p(1)1 , q) | p ∈
Ass(R, ∅), q ∈ F} the rule

S′(x1;αε([p
(1)
1 ](ro)))→ Sc(x1; y

(1)
1,2ρ)

is in P ′. Note that if G is uni-lexicalized, then so is
G′.

We can prove the following invariant. For ev-
ery A ∈ N , ` = fo(A), w1, . . . , w` ∈ Σ∗1,
v1, . . . , v2ρ` ∈ Σ∗2, c = (c1, . . . , c`) with ci =
(qi1, pi, qi2) ∈ Q×Ass(R, ∅)×Q for each i ∈ [`],
we have

Ac(w1,`; v1,2ρ`)⇒∗G′ ε if and only if

A(w1,`)⇒∗G ε ∧
(∀i ∈ [`]) : (∃α) : (α, qi2) ∈ ∆(qi1, wi) ∧

r(α) = v2ρ(i−1)+1,2ρi .

This invariant implies that for every w ∈ Σ∗1 and
v ∈ Σ∗2: S′(w; v) ⇒∗G′ ε if and only if S(w) ⇒∗G
ε ∧ (w, v) ∈ [[A]]. Thus [[G′]] = [[A]] ∩ ([[G]] ×
Σ∗2). By the assumption that G is uni-lexicalized,
furthermore [[G′]]o = [[A]]o e ([[G]]× Σ∗2).

Example 5.2. We consider the NSST A of Ex-
ample 3.1 and the MCFG G = (N,A,Σ, P ) with
N = {A}, fo(A) = 1, and for each γ ∈ Σ, P
contains the rules

A(γx1)→ A(x1) and A(γ)→ ε .

Obviously, [[G]] = Σ∗. We apply the construction
of Lemma 5.1 to A and G and we obtain the uni-
lexicalized synchronous MCFG G′ which contains
for each γ ∈ Σ and i ∈ {0, 1} at least the following
rules.

S′(x1; y1y2y3)→A(q0,p,qf )(x1; y1,4)

A(qi,p,qf )(γx1; y1, γy2, γy3, y4)→
A(q1−i,p,qf )(x1; y1,4)

A(q1,p,qf )(γ; ε, γ#, γ, ε)→ ε

where p = ((r1, r2) := (r1r2, ε)). For instance,
∆′(q0, γx1) contains ([p

(1)
1 ] ◦ α, qf ) where α =

((r1, r2) := (r1γ, r2γ)) is the assignment in the
transition (q0, γ, α, q1) of A. The calculation of
[p

(1)
1 ] ◦ α is
(
r1
r2

)
[p

(1)
1 ]−→
(
y1r1y2r2y3

y4

)
α−→

(
y1r1γy2r2γy3

y4

)

hence p([p
(1)
1 ] ◦ α) = ((r1, r2) := (r1r2, ε)) and

r([p
(1)
1 ] ◦ α) = (y1, γy2, γy3, y4).

An example of a derivation is

S′(ab; ab#ab) ⇒G′ A(q0,p,qf )(ab; ε, ab#, ab, ε)

⇒G′ A(q1,p,qf )(b; ε, b#, b, ε)

⇒G′ ε .

This example can be easily generalized:

Lemma 5.3. For every NSST A there is a
uni-lexicalized synchronous MCFG G′ such that
[[A]]o = [[G′]]o.

Proof. Let A be a NSST over Σ1 and Σ2. As illus-
trated by Example 5.2, we can construct a MCFG
G such that [[G]] = Σ∗1. The result then follows
from Lemma 5.1.

On the basis of Lemma 5.3, one can obtain com-
plexity bounds on typical tasks involving NSST,
such as deciding whether (w, v) ∈ [[A]] for given
strings w and v and NSST A, relying on known
complexity results for synchronous MCFG, and
related formalisms such as synchronous LCFRS
(Kaeshammer, 2013).

However, the relation between NSST and syn-
chronous MCFG does not in any obvious way sug-
gest a practical algorithm to do inference of NSST
on the basis of sets of origin graphs, and this prob-
lem must remain outside the scope of the present
paper.1

6 A Proper Subclass of Synchronous
MCFG

In the light of Lemma 5.1 one may ask whether for
every synchronous MCFG G one may find NSSTA

1We thank an anonymous reviewer for the suggestion to
consider the problem of inference of NSST.
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A
(q5,p

(0)
1 ,q2)

(
ax

(2)
1 x

(1)
1 ; y

(1)
1 y

(2)
3 b, cy

(2)
4 y

(1)
2 y

(2)
1 de, y

(2)
2 y

(1)
3 , y

(1)
4

)

B
(q1,p

(1)
1 ,q2)

(
x
(1)
1 ; y

(1)
1 , y

(1)
2 , y

(1)
3 , y

(1)
4

)
C
(q3,p

(2)
1 ,q1)

(
x
(2)
1 ; y

(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
4

)

(α1, q2) ∈ ∆′(q5, ax
(2)
1 x

(1)
1 )

α1 = [p
(1)
1 ] ◦ [p

(2)
1 ] ◦ α = ((r1, r2) := (y

(1)
1 y

(2)
3 b r1 cy

(2)
4 y

(1)
2 y

(2)
1 de r2 y

(2)
2 y

(1)
3 , y

(1)
4 ))

p(α1) = ((r1, r2) := (r1r2, ε)) = p
(0)
1

r(α1) = (y
(1)
1 y

(2)
3 b, cy

(2)
4 y

(1)
2 y

(2)
1 de, y

(2)
2 y

(1)
3 , y

(1)
4 )

p
(1)
1 = ((r1, r2) := (r2r1, ε))

[p
(1)
1 ] = ((r1, r2) := (y

(1)
1 r2y

(1)
2 r1y

(1)
3 , y

(1)
4 ))

p
(2)
1 = ((r1, r2) := (r2, r1))

[p
(2)
1 ] = ((r1, r2) := (y

(2)
1 r2y

(2)
2 , y

(2)
3 r1y

(2)
4 ))

Figure 2: The construction in the proof of Lemma 5.3, for an NSST with two registers, A(ax
(2)
1 x

(1)
1 ) →

B(x
(1)
1 ) C(x

(2)
1 ), and transition (q5, a, α, q3) with α = ((r1, r2) := (br1c, der2)).

and MCFG G′ such that [[G]] = [[A]] ∩ ([[G′]]× Σ∗2),
for the shared output alphabet Σ2, and perhaps even
that [[G]]o = [[A]]o e ([[G′]]×Σ∗2). In this section we
show the answer to the former question is negative,
whereby it is negative for the latter question as well.
This holds even if the rank of G is restricted to 1 and
[[G]] is a function, that is, if (w, v1), (w, v2) ∈ [[G]]
implies v1 = v2.

To see this, consider the synchronous MCFG
G of rank 1 with N = {S,A}, Σ1 = Σ2 =
{a, b, a′, b′}, and the following rules.

S(x1x2; y)→ A(x1, x2; y)

A(x1a, x2a
′; yaa′)→ A(x1, x2; y)

A(x1a, x2b
′; yab′)→ A(x1, x2; y)

A(x1b, x2a
′; yba′)→ A(x1, x2; y)

A(x1b, x2b
′; ybb′)→ A(x1, x2; y)

A(ε, ε; ε)→ ε

For two strings w = a1 · · · an and w′ = a′1 · · · a′n
of identical length n, we define shuffle(w,w′) to
be the string a1a′1 · · · ana′n. The string-to-string
transduction computed by G can now be written as

[[G]] = {(ww′, shuffle(w,w′)) | (∃n ∈ N) :
w ∈ {a, b}n ∧ w′ ∈ {a′, b′}n}

which is clearly a function. Suppose [[G]] were
[[A]] ∩ ([[G′]] × Σ∗2) for some NSST A =
(Q,Σ1,Σ2,R, co, T, q0, F ) and MCFG G′. Then

[[G]] = [[A]] ∩ ({ww′ | (∃n ∈ N) :
w ∈ {a, b}n ∧ w′ ∈ {a′, b′}n} × Σ∗2) .

For each (w,w′) ∈ {a, b}n×{a′, b′}n, there are
q ∈ Q, q′ ∈ F , and assignments α1 and α2 such
that (α1, q) ∈ ∆(q0, w) and (α2, q

′) ∈ ∆(q, w′).
We then have (α2 ◦ α1 ◦ αε)(ro) = shuffle(w,w′).

As illustrated in Figure 3, we want to capture
how the contents that the registers have just after
reading w eventually become substrings of register
ro, after also w′ has been read. To formalize this,
we first define Φα1(r) = r|(α1◦αε)(r)| for r ∈ R. In
words, each register r is mapped to |(α1 ◦ αε)(r)|
copies of its own name, to encode the size of its
contents after reading w. Secondly, we introduce a
new symbol †, and define Ψ to be the assignment
such that Ψ(r) = r for r ∈ R and Ψ(c) = † for
c ∈ Σ2. We now define σ(α1, α2) = (α2 ◦ Ψ ◦
Φα1)(ro) ∈ ({†} ∪ R)2n. We call σ(α1, α2) the
schema of α1 and α2.

If we fix n > 0, to be determined later, then the
number of possible schemas σ(α1, α2) is bounded
by (2n)2ρ, where ρ = |R| as before. This follows
from the fact that each schema is determined by
a set of pairs of indices. There is one such pair
for each register r, consisting of the index in the
schema where the substring r|(α1◦αε)(r)| starts, and
another index where it ends. If this substring is
empty, this can be encoded by a starting index that
is greater than the ending index.

We define the predicate G as

G(w,w′, q, s) ≡
(∃α1, α2, q

′ ∈ F ) : (α1, q) ∈ ∆(q0, w)∧
(α2, q

′) ∈ ∆(q, w′)∧
σ(α1, α2) = s
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α1 ◦ αε
a
b′
b

r1

...

b′
b
a′

ri

...

a
a′
b
a′

rj

...

α2 ◦ α1 ◦ αε
a
...

ro

a
a′
b
a′

b

b′
b
a′

b
...

σ(α1, α2)

†
...
rj
rj
rj
rj
†
ri
ri
ri
†
...

indices

q0 q q′
w w′

Figure 3: The processing of ww′ and corresponding schema σ(α1, α2). A set of indices, one pair per register,
determines a schema.

for (w,w′) ∈ {a, b}n × {a′, b′}n, q ∈ Q and
schema s. For each (w,w′) ∈ {a, b}n × {a′, b′}n,
there is at least one combination of q and s such
that G(w,w′, q, s).

For each q ∈ Q, let C(q) be the number of
pairs (w,w′) ∈ {a, b}n × {a′, b′}n such that
G(w,w′, q, s) for some s. Now fix q to be such
thatC(q) is maximal among the κ states ofA. This
means that there are at least 22n/κ pairs (w,w′) ∈
{a, b}n × {a′, b′}n such that G(w,w′, q, s) for
some s.

For each schema s, let C(q, s) be the num-
ber of pairs (w,w′) ∈ {a, b}n × {a′, b′}n such
that G(w,w′, q, s). Now fix s to be such that
C(q, s) is maximal among the at most (2n)2ρ

schemas. This means that there are at least 22n

κ·(2n)2ρ
pairs (w,w′) ∈ {a, b}n × {a′, b′}n such that
G(w,w′, q, s).

There is a string w′ ∈ {a′, b′}n such that
there are at least 22n

κ·(2n)2ρ /2
n = 2n

κ·(2n)2ρ strings
w ∈ {a, b}n such that G(w,w′, q, s). For this w′

and α2 fixed, there are at least log2(
2n

κ·(2n)2ρ ) =

n− log2 κ− 2ρ(1 + log2 n) ≥ n− log2 κ− 2ρn
positions in shuffle(w,w′) where we may find
both a and b, depending on the choice of w ∈
{a, b}n. This means the schema s contains at least
2n − 2 log2 κ − 4ρn − ρ occurrences of symbols
from R; note that in the output string, symbols
from {a′, b′} are interlaced with symbols from
{a, b}.

Similarly, there is a string w ∈ {a, b}n such that
there are at least 2n

κ·(2n)2ρ strings w′ ∈ {a′, b′}n
such that G(w,w′, q, s). For this w and α1 fixed,
there are at least n − log2 κ − 2ρn positions in
shuffle(w,w′) where we may find both a′ and b′,
depending on the choice of w′ ∈ {a, b}n. This
means the schema s contains at least 2n−2 log2 κ−
4ρn− ρ occurrences of †.

Altogether, this requires the length of the
schema, and thereby of the output string, to be
at least 4n− 4 log2 κ− 8ρn− 2ρ. We now obtain
the contradiction 4n− 4 log2 κ− 8ρn− 2ρ > 2n

by choosing n > ρ+2 log2 κ
1−4ρ .

The transduction [[G]] above is almost the same
as the transduction called merge by Alur and Černý
(2010), who also present a proof that this is beyond
the power of deterministic SST (DSST). Because
this transduction is a function, and because func-
tional NSSTs are equivalent to DSSTs (Alur and
Deshmukh, 2011), this could be used to produce
an alternative to our proof above. However, the
proof by Alur and Černý (2010) appears to contain
at least one mistake, which is why we chose to
present our own.2

2The proof by Alur and Černý (2010) considers “short
configurations”. These represent the contents of the registers
after reading the first half of an input string, but replacing
the contents of a register by a special symbol ∗ if its length
is greater than some number t such that 2t > ρ. (Here we
use our own variable names rather than those of op. cit.) It is
then argued that the number of distinct short configurations
is bounded by κρ2t. It appears to us this should have been
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7 Conclusions

Motivated by potential applications of origin
graphs for machine translation, we have consid-
ered NSSTs. We have shown that when their input
languages are restricted by MCFGs, then transduc-
ers with origin semantics are obtained that can also
be generated by synchronous MCFGs. We have
further shown that not every synchronous MCFG
can be obtained by such a combination of a NSST
and a MCFG.
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Abstract

We present a broad coverage model of Turkish
morphology and an open-source morphologi-
cal analyzer that implements it. The model
captures intricacies of Turkish morphology-
syntax interface, thus could be used as a base-
line that guides language model development.
It introduces a novel fine part-of-speech tagset,
a fine-grained affix inventory and represents
morphotactics without zero-derivations. The
morphological analyzer is freely available. It
consists of modular reusable components of
human-annotated gold standard lexicons, im-
plements Turkish morphotactics as finite-state
transducers using OpenFst and morphophone-
mic processes as Thrax grammars.1

1 Introduction

The agglutinative morphology of Turkish is com-
plex, due to rich inflectional and derivational mor-
photactics, a considerably large affix inventory,
and morphophonemic processes with potential ir-
regularities. Therefore, morphology processing is
an integral part of Turkish NLP in devising sublex-
ical representations to serve the needs of language
model development (Oflazer et al., 2003; Çakıcı,
2005; Sulubacak et al., 2016).

From a theoretical standpoint, Bozşahin (2002)
claims that transparent integration of morphology
to syntactic processing is essential in order to over-
come phrasal scope conflicts. They propose that
morphology-syntax integration can be attained in
architectural level using: (i) a lexemic grammar
where morphological parsing is the precursor of
syntactic analysis to resolve sublexical hypothe-
sis space for syntax to operate on lexemic con-
stituents, or (ii) a morphemic grammar with lex-
ical items of root forms and affixes that has ade-
quate lexical categories to capture correct seman-

1 https://github.com/google-research/
turkish-morphology

tic bracketing, for a transparent morphology-syn-
tax interface. They illustrate latter approach on a
linear fragment of Turkish inflectional paradigms
using a lexicalized grammar formalism.

The former approach is studied mainly over
two-level models (Koskenniemi, 1984). Oflazer
(1994) presents the first two-level description of
Turkish morphology, Sak et al. (2009) adapts this
definition to build a stochastic finite-state trans-
ducer (FST) that is trained on 200 million words
and Şahin et al. (2013) utilize flag diacritics in
limiting illicit morphological parses. Consider-
ing the restricted availability of these morpholog-
ical analyzers, open-source alternatives have been
proposed by Akın and Akın (2007) and Çöltekin
(2010, 2014).

In this paper we present a morphology model
for Turkish that improves the above-mentioned
models in a number of ways. Our model captures
all syntactic processes that are handled by mor-
phology at the word level over a sufficiently elabo-
rate representation. It uses a gold standard human-
annotated lexicon which, to our knowledge, is the
first in the literature. We introduce a fine part-
of-speech tagset which provides finer control in
modeling morphotactics for lexical categories, and
represent productive derivational morphology in a
level of comprehensive scrutiny that none of the
previous models do. Finally, we present novel
methods to represent named entities in morpho-
logical analysis, eliminate zero-derivations from
morphotactics and a linguistically sound approach
to handle some intricacies around case morphol-
ogy.

The model is implemented as an FST, it is open-
source, thus extensible. It can be used in building
lexemic syntactic processors that depend on mor-
phological analysis, and also in morphemic gram-
mar development and treebank induction.
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Input: affıyla
Intermediate: af”+SH+YlA
Output: (af[NN]+[PersonNumber=A3sg]+SH[Possessive=P3sg] +YlA[Case=Ins])+[Proper=False]

Figure 1: Levels of analysis for the word affıyla ‘with their excemption’. For illustrative purposes ambiguous
interpretations on both intermediate and output tape is omitted and only a single parse is presented.

2 Levels of Analysis

Morphological analysis is composed of morpho-
phonemic and morphotactic analysis layers. As
illustrated in Fig. 1 the morphophonemic layer
acts as the first level of analysis. It resolves pho-
netic processes that work at the morphology level
by mapping input surface forms to an intermedi-
ate representation (see Section 3). The interme-
diate representation consists of an annotation of
the morphophonemic irregularities of the root fol-
lowed by the meta-morphemes that correspond to
the affixes that are realized in the surface form.2

The morphotactic layer is composed of the lexi-
con of root forms (see Section 4), affix inventory,
and a word-internal grammar that defines affixa-
tion paths for each lexical category (see Section
5). It maps the intermediate representation into a
morphological parse, which represents the sublex-
ical segmentation and marks the root form with its
lexical category, and inflectional and derivational
affixes with their functional feature tags.

3 Morphophonemics

The morphophonemic layer is implemented as 9
Thrax grammars (Roark et al., 2012) which are
formed of regular expressions and word-internal
context-dependent rewrite rules that are compiled
into FSTs. Composing the FSTs defined by these
grammars yields the morphophonemic model. We
handle all known phonological phenomena that
play a role in Turkish word formation and that
manifest itself in word orthography (Oflazer et al.,
1994; Göksel and Kerslake, 2004).

A vowel harmony grammar maps back/front
vowels into the meta-phoneme A and high vowels
to H given the preceeding vowels (e.g. evinde →
evHndA). A vowel change grammar implements
the alteration of root final ‘e’ to ‘i’ when a suf-
fix that starts with ‘y’ is affixed (e.g. diyecek →

2 We represent meta-phonemes in capitals (e.g. H rep-
resents the set of high vowels {‘u’, ‘ü’, ‘ı’, ‘i’}), and fully
realized phonemes that appear in the surface form in lower-
case. + is used in the intermediate representation to denote
morpheme boundaries. On the output tape inflectional mor-
phemes are marked with + delimeter and derivational mor-
phemes are marked with -.

deyecek). A vowel drop grammar implements eli-
sion, i.e. /vowel/ - / /0/ alteration (e.g. burnu →
burunu).

A consonant voicing grammar handles
sonorization and respectively maps root final
{‘t’, ‘d’} into {‘p’, ‘b’} and {‘c’, ‘ ‘g’, ‘ng’}
into {‘ç’, ‘k’, ‘nk’} if a suffix starting with a
vowel is affixed (e.g. kitabının → kitap~ının, or
rengi → renki). A consonant change grammar
maps suffix initial dental consonants {‘d’, ‘t’}
into the meta-phoneme D by referring whether
the morpheme to its left ends with {‘f ’, ‘s’, ‘t’,
‘k’, ‘ç’, ‘ş’, ‘h’, ‘p’} (e.g. evde → evDe, or
uçakta → uçakDa). A consonant drop grammar
captures elision of affix initial consonants when
the morpheme that preceeds the affix ends with a
consonant (e.g. evinin→ evSiNin). A gemination
grammar implements duplication of the root final
consonants {‘b’, ‘d’, ‘k’, ‘l’, ‘m’, ‘n’, ‘s’, ‘t’, ‘z’}
when a suffix that starts with a vowel is affixed
to the root (e.g. affıyla → af ”ıyla). A y-insertion
grammar implements insertion of root final ‘y’ to
roots that end with ‘su’ when a suffix starting with
a dropping consonant or high vowel is affixed to
them (e.g. akarsuyuyla→ akarsuˆuyla).

Finally, a dedicated morpheme segmentation
grammar marks morpheme boundaries (e.g. ev-
lerinde → ev+ler+i+nde). Most of these phono-
logical processes (except vowel harmony and
some of the consonant voicing/change processes
with certain irregularities) are not generalized but
only apply to a small set of roots from certain lex-
ical categories. Therefore, they are annotated on
root forms (see Section 4.3).

4 Lexicon of Root Forms

Our lexicon consists of 47,202 entries.3 An en-
try is a 5-tuple of root form (or word stem), its
part-of-speech (PoS), annotation of morphophone-
mic irregularities, morphosyntactic and semantic

3 The base lexicon can be extended through open-source
contributions especially with lexical items of open class
categories. See annotation guidelines on https://github.
com/google-research/turkish-morphology/blob/
master/analyzer/src/lexicon/README.md.
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Tag Root Morphophonemics Features Compound
NN af af” - false
NN milletvekili milletvekil - true
CC velevki - +[ConjunctionType=Sub] false

Figure 2: Structure of the lexicon.

features, and a boolean denoting whether the root
form is a compound (see Fig. 2).

Each lexicon entry was annotated by 3 human
annotators, where one of the annotators was the
tie-breaker on 2-way annotation. Thus the lex-
icon is expected to have higher consistency and
quality in compared with those that are acquired
through semi-automatic extraction and labeling of
lexical items over web-based corpora (Çöltekin,
2014) and affix stripping algorithms (Eryiğit and
Adalı, 2004), which do not guarantee gold stan-
dard annotations due to the ambiguity that mor-
phophonemic processes introduce in the surface
form of the affixes.

4.1 Root Form

By root form (or word stem) we mean the part of
a word form that remains when all inflectional and
derivational morphemes are stripped. We assume
any productive affixation process should be rep-
resented in morphotactics and respective affixes
should be members of the affix inventory, but not
part of the root form. This includes all morphemes
that interact with syntactic processes. Morphosyn-
tactic productivity is not a sole indicator of such
processes. Affixes that compositonally alter the
semantics of the root form should also be a part
of the affix inventory. Our morpheme segmenta-
tion scheme, which is based on these principles, is
presented in Section 5.2.

4.2 Part-of-Speech Tagset

All previous models of Turkish morphology
and labelled corpora assume coarse PoS tagsets
(Oflazer et al., 2003; Sulubacak et al., 2016). Dis-
tinctively, we use a more elaborate subcategoriza-
tion of coarse lexical types, the fine PoS tagset
that is presented in Table 1. The reason to use a
fine categorization is two-fold. It provides control
in modeling morphotactics so that we can define
a custom grammar of affixation for each lexical
category which captures the true inflectional and
derivational paradigms of the category in order to
restrict overgeneration. Second, the morphologi-
cal parse incorporates a realistic representation of

Coarse Tag Fine Tag Description

ADJ JJ Adjective
VJ Verb in participle form

ADP IN Postposition

ADV
CRB Converb
RB Adverb
WRB Interrogative adverb

AFFIX PFX Prefix
CONJ CC Coordinating conjunct

DET
DT Determiner
PDT Prediterminer
WDT Wh-determiner

EXS EX Existential verb

NOUN

ADD Electronic address
NN Common noun
NNP Proper noun
VN Verbal noun

NUM CD Cardinal number
ONOM DUP Onomatopoeic

PRON

PRD Demonstrative pronoun
PRF Derived pronoun
PRI Indefinite pronoun
PRP Personal pronoun
PRP$ Possessive pronoun
PRR Reflexive pronoun
WP Wh-pronoun

PRT

EP Final particle
OP Coordinative particle
RPC Clitic particle
RPNEG Negation particle
RPQ Question particle

VERB NOMP Nominal predicate
VB Verb

Table 1: Fine PoS tagset that is used in lexical
categorization. As a reference for comparisong we
present their mapping to coarse tags, which is aligned
with Universal Dependecies (UD) (Petrov et al., 2012;
Nivre et al., 2016) except the bold marked Turkish-
specific additions. Due to space considerations we do
not present the tags ‘.’ (punctuation) and ‘X’ (catch-
all for abbreviations, etc.). For the complete PoS
tagset that we use, refer to https://github.com/

google-research/turkish-morphology/blob/

master/analyzer/src/lexicon/README.md.

lexical types and thus it is more informative of the
actual syntactic structure.

The tags are categorized into two mutually ex-
clusive sets. Those that are lexical (used in anno-
tating the PoS of roots in the lexicon), and those
that arise due to derivational morphology. The
second set is {CRB, PRF, VJ, VN}. Fig. 3-a-d
presents an example of their use in sentence-level
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(a) Pronominalization ‘Ali took (the one) that is with the child’
Ali çocuktakini aldı
Ali çocuk+DA-ki+NH al[VB]+DH
Ali[NNP] (child[NN]+Loc)([PRF]-Pron+Acc) take[VB]+Past

(b) Noun Clause ‘Ali knows that you stole the money’
Ali parayı senin çaldığını biliyor
Ali para+YH sen+NHn çal-DHk+SH+NH bil+Hyor
Ali[NNP] money[NN]+Acc you[PRP$]+Gen (steal[NN])([VN]-PastNom+P3sg+Acc) know[VB]+Prog1

(c) Relative Clause ‘Ali knows the money that you stole since three years’
Ali senin çaldığın parayı
Ali sen+NHn çal-DHk+Hn para+YH
Ali[NNP] you[PRP$]+Gen (steal[VB])([VJ]-PastPart+P2sg) money[NN]+Acc

üç yıldır biliyor
üç yıl-DHr bil+Hyor
3[CD] (year[NN])([RB]-Since) know[VB]+Prog1

(d) Adverbial Clause ‘I went home running’
Eve koşarak gittim
Ev+YA koş-YArAk git+DH+m
Home[NN]+Dat (run[VB])([CRB]-Ger) go[VB]+Past+V1sg

(e) Nominal Predicate ‘(that is) Ali’s child’
Ali’nin çocuğudur
Ali+’+NHn çocuk+SH+DHr
Ali[NNP]+Apos+Gen child[NOMP]+P3sg+GenCop

Figure 3: Morphological feature and PoS labeling of sentences that illustrate the use of morphologically derived
lexical categories and nominal predicates in sentence-level context.

context. Fig. 3-e illustrates an example for the
NOMP (nominal predicate) category. It captures
cases where non-verbal roots are affixed with cop-
ula markers and act as the main predicate of the
sentence. Unlike previous models, we differen-
tiate between verbal and non-verbal predicates in
terms of PoS labels.

4.3 Morphophonemic Irregularities

Consonant voicing irregularities apply to roots
whose final voiceless consonant fails to get voiced
despite attachment of an affix that starts with
a vowel. It only applies to sounds that are [-
voiced][+plosive]. We annotate final voiceless
plosives { ‘k’, ‘p’, ‘t’, ‘ç’} on roots that do not
follow this process with K, ~ and Ç (e.g. meşK,
tehdit~, göÇ). Likewise, roots that undergo gem-
ination and y-insertion are respectively annotated
with ” and ^ (e.g. af ” or akarsu^).

The lateral ‘l’ has allophones when it occurs in
root final position after back vowels. When an af-
fix beginning with a vowel is attached to roots with
palatalized root final ‘l’, affix form is resolved as
if the vowel in the last syllable of the root is a front
vowel. Hence, we respectively annotate back vow-
els {‘a’, ‘â’, ‘o’, ‘u’} that appear in the last sylla-
ble of such roots with {, [, %, and } (e.g. ihtim{l
or metrop%l). Similarly, last vowel of the roots
that undergo epenthesis and vowel closing are an-

notated with ? and E (e.g. buru?n or yE).
In case of code-switching foreign words are

used in Turkish sentences and get inflected ac-
cording to the lexical category that they hold
in sentence-level context while root form is pre-
served on surface. Last syllable of the Turkish
pronunciation of these roots are annotated to guide
morpophonemics model to resolve surface form of
the affixes that attach to them (e.g. charter*ır*).
Abbreviations are handled in the same manner.

4.4 Lexical Features

Besides the morphological features described in
Section 5 we represent certain syntactic agree-
ment, semantic and sentence-level segmentation
features in morphological parse. These features
are lexically conditioned, thus annotated in the
root form lexicon. They can be used in feature-
engineering for morphological disambiguation,
PoS tagging and syntactic parsing. There are 5
such feature categories:

Apostrophe marks optional apostrophes
that separate affixes from nominal and
nominal predicate roots (e.g. Ankara’da
‘Ankara+Apostrophe+Loc’).

Temporal is used to mark common nouns
and adverbs that denote temporality (e.g. süre
‘(for some) duration’ or akşamüzeri ‘towards
evening’).
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Input: kitaplık
Output: (kitap[NN]+[PersonNumber=A3sg]+[Possessive=Pnon] +[Case=Bare])([NN]-lHk[Derivation=For]

+[PersonNumber=A3sg]+[Possessive=Pnon]+[Case=Bare])+[Proper=False]

Figure 4: Morphological parse of the word kitaplık ‘bookshelf ’. Composed of two IGs, each enclosed in paran-
theses. First one consisting of the root kitap ‘book’ and its inflections and second consisting of the derivational
morpheme -lHk (which derives ‘bookshelf ’ from ‘book’) and its inflectional features.

ConjunctionType specifies subcategorization
of conjuct roots, denoting whether they are adver-
bial, coordinating, parallel or subordinating given
the sentence and/or discourse-level context (e.g.
ya ‘either+Parallel’ or ile ‘with+Coordinating’).

DeterminerType marks determiner roots as
definite, indefinite, demonstrative or directional
(e.g. çoğu ‘most of +Indefinite’).

ComplementType indicates whether the com-
plement of a postposition is a number, finite
verb, or nominal which is marked for a certain
case. This feature is inherited from the METU-
Sabancı Treebank (MST) (Atalay et al., 2003;
Oflazer et al., 2003). Unlike MST, we distinguish
postpositions with number and finite verb com-
plements from those that have nominative case
marked nominal counterparts (e.g. (gitti ‘went’)
diye+FiniteComplement, or (yatırımcı ‘investor’)
için+NominativeComplement).

4.5 Compound Nouns
Certain noun roots end with compounding marker
+SH, which is ambiguous with 3rd person pos-
sessive inflection morpheme (e.g. milletvekil(i)
‘member of parliament+SH’). These roots have ir-
regular nominal inflectional morphotactics. When
inflected for 3rd person plural (A3pl), inflectional
morpheme +lAr precedes +SH as in Fig. 5. Such
noun roots are annotated in the lexicon as shown
in Fig. 2 and we define a custom inflectional
paradigm for them to capture this behaviour in the
morphotactics model.

(a) milletvekil+lAr+SH
milletvekil+ler+i
milletvekilleri

(b) *milletvekil(i)+lAr+SH
*milletvekil(i)+ler+i
*milletvekilileri

Figure 5: 3rd person singular inflections on compound
noun roots.

5 Morphotactics

The morphotactic layer is implemented using the
OpenFst library (Allauzen et al., 2007). We de-

fine 15 FSTs, where each reflects a custom affixa-
tion grammar per coarse lexical category (Section
4.2). The overall morphotactics model is obtained
by composing those 15 FSTs.

5.1 Segmentation And Inflectional Groups
Following Hakkani-Tür et al. (2002) and Oflazer
(2003), we segment a word into its root and inflec-
tional groups (IG). IGs tokenize a word into sub-
segments based on the derivational boundaries that
are in the word. As illustrated in Fig. 4 it is a com-
plex segmental unit comprising of the derivational
morpheme, lexical category of the derived form
and inflections that might occur after that deriva-
tion.

In IG-based modeling last IG determines the fi-
nal lexical category of the word and inflectional
features of the last IG apply to the whole word in
determining its grammatical function in sentence-
level context. While building cascaded NLP ar-
chitectures with lexemic syntactic processing units
morphological features of the last IG are infor-
mative in PoS tagging and syntactic parsing to
constraint data sparsity. We do not employ IG-
based segmentation as a theoretical construct in
our model, but rather include it as part of the mor-
phological analysis representation. Together with
IG boundaries we also represent segmentation of
individual morphemes which is helpful in extract-
ing morphemic grammars and assigning individ-
ual lexical categories to each morpheme.

5.2 Affix Inventory and Feature Tagset
Our affix inventory is composed of 51 inflectional
and 72 derivational morphemes (excluding mor-
phemes that are not realized in surface and by
generalizing allophones over meta-phonemes). In-
flectional morphemes are categorized over 8 fea-
ture categories (e.g. Case or Possessive on nom-
inals, Copula or TenseAspectMood on verbals)
and 42 feature values (e.g. Case=Abl or TenseA-
spectMood=Aor), whereas a single feature cate-
gory is used to mark all derivations (Derivation)
which can take 62 feature values (e.g. Deriva-
tion=PastPart). Compared to the models reported
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(a) çaldığını ‘that you stole (it)’
(çal[VB]+[Polarity=Pos])([VN]-DHk[Derivation=PastNom]+[PersonNumber=A3sg] +SH[Possessive=P3sg]
+NH[Case=Acc])+[Proper=False]

(b) çaldığın ‘(the thing) that you stole’
(çal[VB]+[Polarity=Pos])([VJ]-DHk[Derivation=PastPart]+Hn[Possessive=P2sg]) +[Proper=False]

(c) koşarak ‘(by) running’
(koş[VB]+[Polarity=Pos])([CRB]-YArAk[Derivation=Ger])+[Proper=False]

Figure 6: PoS and derivational feature labeling for nominalizers, participles and converbials.

in the literature this is the most fine-grained mor-
pheme segmentation model for Turkish.4

Çakıcı (2012) reports an affix inventory of 53
inflectional and 29 derivational morphemes, which
is inherited from Oflazer et al. (1994) and used
in extracting morpheme segmentations from MST.
An investigation into the affix inventory of Şahin
et al. (2013) shows that they do not represent
some productive derivational processes (see Ta-
ble 2). An example is -lA (Make), which cre-
ates denominal and deadjectival verbs in Turkish.
According to Nakipoğlu and Üntak (2008) verbs
derived by this suffix make up the largest por-
tion of Turkish verb lexicon (excluding light verb
constructions), accounting for about 21% of the
verbs that are found in Turkish dictionaries. Çöl-
tekin (2014) also does not represent -CAk (Coll),
-CAnAk (Coll), -izm (Doct) -gil (Fam), -ist (Foll),
-lA (Make), -lArcA (Of), -vari(Sim), -Hmtrak
(Sim), -dA (Snd). Akın and Akın (2007) and Sak
et al. (2009) does not segment infinitive mark-
ers from the root form. Sulubacak et al. (2016)
consider verbal derivational morphemes -lAn (Ac-
quire), -lAş (Become) and nominal derivational
morphemes -CH (Agentive), -CHk and -CAğHz
(Diminutive) on noun roots as a part of the root
form, although they are semantically productive.

To represent the adequate phrasal scope of these
affixes in morphemic syntactic processing and to
recover clausal architecture in sentence-level dis-
ambiguation tasks in lexemic syntactic processing
it is essential to explicitly segment and mark them.
One example is Turkish subordination, which is
handled through morphology. As illustrated in
Fig. 3-b-d, noun, relative and adverbial clauses are
created with an affix that attaches to the base verb
to create a clause out of the sentence headed by
the verb, which can then function as an argument
or adjunct of the matrix verb.

4 For an exhaustive list of morphemes segmented
and tagged by our model, refer to https://github.
com/google-research/turkish-morphology/blob/
master/analyzer/src/morphotactics/README.md.

Feature Description Morpheme Example
Rcp Reciprocal -Hş söyleş
Rfx Reflexive -Hn süslen
Nonf Nonfinite -YHş tüken-iş
Dim Diminutive -cAğHz çocuk-cağız
Doct Doctrine -izm komün-izm
Fam Family -gil, -lAr annem-gil
Foll Follower -ist, -st komün-ist
From From -lH Ankara-lı
Lang Language -CA Alman-ca
Ness Ness -lHk insan-lık
Make Make -lA işaret-le
Aff Affinity -CHl et-çil
Of Of -lArcA ton-larca
Sim Similar -Hmtrak, -vari sarı-mtrak
Coll Collective -CAk, -CAnAk toplu-canak
Ly Adverbial -CAsHnA aptal-casına
Bcm Become -lAş iyi-leş
Snd Sound -dA fokur-da

Table 2: Derivational morphemes in our affix inventory
distinct from Şahin et al. (2013).

We segment subordinating affixes that are de-
scribed in Göksel and Kerslake (2004). They can
be subcategorized into: (i) Nominalizers which
create noun clauses (or verbal nouns), (ii) Par-
ticiples which create adjectival clauses, (iii) Con-
verbials which create adverbial clauses. A sub-
set of these suffixal forms are ambiguous between
two functions, they both create noun and adjectival
clauses (e.g. -DHk affix in Fig. 3-b and Fig. 3-c).
We explicitly mark differing functions of these
in sentence-level context. Morphological feature
tags for morphemes that create a noun clause end
with -Nom (short for nominalizer, e.g. PastNom),
and feature tags for those that create an adjecti-
val clause end with -Part (short for Participle, e.g.
PastPart). Words derived via attachment of subor-
dinating affixes are also differentiated at the level
of PoS. If they are derived by Nominalizers they
receive the fine tag VN (verbal noun), words de-
rived by Participles receive the tag VJ (verbal ad-
jective) and those that are derived by Converbials
are tagged as CRB (short for converbial). This
brings in further syntactic expressivity to the mor-
phological analyses as shown in Fig. 6.
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(a) İyi ile kötünün savaşı. ‘The battle between the good and the bad.’
(iyi[NN]+[PersonNumber=A3sg]+[Possessive=Pnon]+[Case=Bare]) +[Proper=False]

(b) 1000 liraya tablet baktım ama iyisini bulamadım.
‘I have searched for a tablet to buy for 1000 liras but couldn’t find a good one.’
(iyi[PRI]+[PersonNumber=A3sg]+SH[Possessive=P3sg]+NH[Case=Acc]) +[Proper=False]

(c) İyi bir insan. ‘A good person.’
(iyi[JJ])+[Proper=False]

(d) İlaç bana iyi geldi. ‘The medicine made me feel well.’
(iyi[RB])+[Proper=False]

(e) Bugün iyiyim. ‘I am well today.’
(iyi[NOMP]+[PersonNumber=A3sg]+[Possessive=Pnon]+[Case=Bare] +[Copula=PresCop]
+YHm[PersonNumber=V1sg])+[Proper=False]

Figure 7: Morphological parses for root form iyi ‘good’ in 5 distinct sentence-level context.

5.3 Eliminating Zero-Derivation

The distinction between lexical categories is
blurry in Turkish. Previous models employ a
zero-derivation mechanism to capture this ambi-
guity, which is syntactic type shifting of a word
through affixation of a so-called empty morpheme
that does not realize in surface form. Instead, we
cross-categorize lexical entries of root forms in the
lexicon according to the syntactic functions they
can take. This method ensures all derivational
morphemes to have a corresponding realization in
the surface. Representation-wise morphological
parse ends up being significantly simplified and
more tractable without empty morphemes while
the base lexicon is kept compact and maintainable.

Fig. 7 presents disambiguated analyses for the
word iyi ‘good’ in context. In its root form
the word is 5-way ambiguous between categories
NN, PRI, JJ, RB, and NOMP. As a preprocessing
step prior to FST compilation such categorically
ambiguous root forms are cross-categorized by
adding new lexical items to the lexicon with a tag
from the set of ambiguous lexical categories. We
utilize a comprehensive set of cross-categorization
rules that capture all ambiguous lexical category
pairs.5 This method enables us to strip lexical
ambiguity handling from morphotactic model de-
velopment while keeping morphotactic models for
each lexical category generic. For example, word
form iyisi (iyi+si, ‘good+SH[3Psg]’) will only be
parsed as NN, NOMP, and PRI, where JJ and RB
interpretations are pruned, even though the root
form is cross-categorized for those tags. This is
because the morphotactic model for JJ and RB

5 For the complete set of cross-categorization
rules that we use, refer to https://github.com/
google-research/turkish-morphology/blob/
master/analyzer/src/morphotactics/README.md.

would not allow root form iyi to be inflected for
3rd person possessive (P3sg).

5.4 Case Marking
Turkish is a nominative-accusative language
where subjects are marked with nominative case
(not realized in surface form) and direct objects
with accusative (+YH and +NH). It is also shown
to exhibit a grammatical phenomenon called Head
Incorporation, which results in the verb forming
a complex grammatical unit with its direct object
(Kornfilt, 2003). In such cases direct object nomi-
nals do not have any case marking and they exhibit
different behaviour from their cased counterparts
in terms of syntactic and semantic properties.

Turkish is considered a free word order lan-
guage where direct objects can be scrambled
within the sentence from their canonical (prever-
bal) position (Bozşahin, 1998, 2000). However, as
illustrated by Fig. 8-c caseless direct objects are
less flexible to scramble and leave their prever-
bal positions.6 Besides scrambling, caseless direct
objects are also shown to be invisible to syntax
in terms of binding and passivization (Aydemir,
2004; Öztürk, 2005, 2009). Furthermore, Aydemir
(2004) shows that depending on whether the direct
object has accusative case, the item that occurs be-
fore it can either be interpreted as an adjective or
adverb. In Fig. 9-a, the noun araba has accusative
marking, and modifier iyi is interpreted as an ad-
jectival modifier of the noun. In Fig. 9-b, araba
does not have any case and therefore invisible for
syntactic modification, iyi is interpreted as an ad-
verb and modifies the whole verb phrase. These

6 A detailed investigation into the extent of flexibility
by which caseless objects can move from their preverbal
positions is beyond the scope of this paper. For a thor-
ough linguistic analysis, refer to Gračanin-Yüksek and İş-
sever (2011).
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pieces of evidence are taken to indicate that case-
less direct objects might not be forming syntactic
arguments on their own.

(a) Ahmet dün akşam pasta ye+di
Ahmet yesterday evening cake+Nom eat+Past

(b) Ahmet pasta+yı dün akşam ye+di
Ahmet cake+Acc yesterday evening eat+Past

(c) *Ahmet pasta dün akşam ye+di
*Ahmet cake yesterday evening eat+Past

Figure 8: Scrambling, adopted from Kornfilt (2003).

(a)Ahmet iyi arabayı kullanır
Ahmet iyi araba+YH kullan+Hr
Ahmet[NNP]good[JJ]car[NN]+Accdrive[VB]+Aor
‘Ahmet drives the good car’

(b)Ahmet iyi araba kullanır
Ahmet iyi araba kullan+Hr
Ahmet[NNP]good[RB]car[NN]+Baredrive[VB]+Aor
‘Ahmet drives well’
(lit. ‘Ahmet does good car-driving’)

Figure 9: Modification of caseless direct objects.

Previous Turkish morphology models mark
such caseless objects with subjective case (nomi-
native). They also extend application of subjective
case to all other caseless nominals in the sentence,
even to those that are caseless objects of postpo-
sitional phrases. We find this treatment syntac-
tically problematic, because grammatical proper-
ties of subjects and caseless objects are completely
different, so we label them distinctively. While
a subject is marked with nominative case (Nom),
caseless objects are marked to bear no case (Bare).
These distinctive case features can be useful in
downstream NLP tasks, especially in adequately
disambiguating subjects from caseless objects in
syntactic parsing.

5.5 Agreement
In Turkish a predicate agrees with its subject in
Person and Number. As shown in Lewis (1967),
Good and Alan (2000) and Göksel and Kerslake
(2004) there are four suffixal paradigms for this
agreement. The predicate can combine with af-
fixes in one of these paradigms depending on its
Tense-Aspect-Mood properties. Predicates having
past tense (+YDH) or conditional (+YsA) are in-
flected with -k paradigm, those that are in impera-
tive and optative mood are respectively inflected
with imperative and optative paradigms, and all
others are inflected with -z paradigm. Our model
is sufficiently expressive of these paradigms based

on agreement properties of predicates.
TenseAspectMood verbal inflectional feature

that is marked on predicates clarifies which
paradigm needs to be used in agreement mor-
phology. Agreement itself is encoded in the Per-
sonNumber feature of the morphological parse of
verbals and nominals. Verbal agreement feature
tags start with ‘V’ prefix (e.g. V3sg), whereas for
nominals prefix ‘A’ is used (e.g. A3sg). Fig. 10
presents a scrambled raising construction, where
embedded clause subject seni receives objective
(accusative) case from the matrix verb san. Since
the sentence is scrambled, word order is not a reli-
able indicator of which noun phrase is the subject
of which clause. However, this information is eas-
ily recoverable from the morphological analyses
using the agreement between PersonNumber fea-
tures of the verbs and noun phrases.

5.6 Proper Nouns

We represent named entities as part of the morpho-
logical parse with the boolean feature Proper. All
words that are part of a multi-word named entity
are marked as Proper=True. This method allows
us to label internal structure (PoS and morpho-
logical features) of multi-word named entities and
spans of tokens that form them in sentence-level
context (see Fig. 11). Trained over a representa-
tive corpus, a disambiguator based on such fea-
tures of our model can output predictions whether
a sequence of words form a named entity in con-
text.

6 Testing and Evaluation

In order to test correctness of generated morpho-
logical analyses and identify possible gaps in the
root form lexicon, we utilized a human-annotation
based iterative development and testing scheme.
6 annotators, who are linguistically trained Turk-
ish native speakers disambiguated morphologi-
cal analyses that are output by our morphologi-
cal analyzer by referring to sentence-level context.
Annotation is done on a corpora of 2,200 sen-
tences which are randomly extracted from Turk-
ish Wikipedia pages. Annotators iteratively an-
notated batches of 200 sentences, reported illicit
morphological analyses and word forms that can-
not be parsed. Analyses for every word in the cor-
pora is annotated by 2 annotators. The model and
the root form lexicon is improved by taking ac-
count of syntactic constructions that are observed
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Seni ben akıllısın sandım
sen+YH ben akıllı+sHn san+DH+m
you[PRP]+A2sg+Acc I[PRP]+A1sg+Nom smart[NOMP]+V2sg consider[VB]+Past+V1sg
‘I considered you smart’

Figure 10: Person and number agreement in scrambled raising construction.

Yüzüklerin Efendisini izledim
Yüzük+lAr+NHn Efendi+SH+NH izle+DH+m
Ring[NN]+A3pl+Gen+Proper=True Lord[NN]+P3sg+Acc+Proper=True watch[VB]+Past+V1sg+Proper=False
‘I watched Lord of the Rings’

Figure 11: Proper feature labeling on named entities that span across multiple tokens.

in the corpora until no illicit analysis is reported
and a satisfactory level of coverage is attained.
Our improvements also aimed to refactor affix-
ation grammars that are defined by the morpho-
tactics model to limit overgeneration by disallow-
ing affixation of certain derivational morphemes
to a set of inflectional morphemes (e.g. -gil (Fam-
ily) nominal derivation morpheme can only follow
common and proper noun word stems or posses-
sive inflections).

Table 3 shows coverage statistics of our model
on a data set that is different than our development
corpora. We define coverage as the fraction of
word forms that our model can parse among the
set of unique observed word forms. We calculate
it over a merge of training and test set sentences
of Turkish section of the CoNLL 2007 Shared
Task of Dependency Parsing data set (Nivre et al.,
2007), which contains 60,310 tokens and 18,443
unique word forms (after case-folding). On con-
trary to Çöltekin (2010) we do not remove tags,
punctuation and numbers from the data set. The
analyzer can parse 17,624 word forms, yielding
95.56% coverage, while generating 24.96 analy-
ses and 2.06 IGs on average per word form. When
we remove Proper morphological feature from the
morphological parse, which generates duplicate
analyses that only differ by this feature, the aver-
age number of analyses per word form is reduced
to 12.82. Note that the coverage we report is not
directly comparable with Şahin et al. (2013) since
we do not employ any fallback mechanisms that
depend on affix stripping. Such fallback meth-
ods potentially result in higher coverage with oc-
casionally incorrect morphological parses.

7 Conclusions and Future Work

In this paper we presented a syntactically expres-
sive morphology model for Turkish, a human-
annotated gold lexicon of root forms and a fine-

Coverage statistics
Tokens 60,130
Unique word forms 18,443
Accepted word forms 17,624
Unrecognized word forms 819
Coverage 95.56%

Average number of analyses
With Proper feature 24.96
Without Proper feature 12.82
Average number of inflectional groups
With Proper feature 2.06
Without Proper feature 2.05

Table 3: Statistics on analyzer coverage and average
number of analyses and inflectional groups that it gen-
erates.

grained affix inventory. While doing so, we
also introduced a novel method to eliminate zero-
derivations, a fine part-of-speech tagset and elab-
orate representations of inflectional/derivational
features. We have shown that the implemented
model has high coverage and does not overgen-
erate. In terms of lexemic syntactic processing,
we would like to investigate implications of our
representation in building morphological disam-
biguators and syntactic parsers. In parallel, we
would also like to experiment with fully mor-
phemic grammar induction, since our fine-grained
morpheme segmentation scheme can be used in
capturing adequate phrasal scope.
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for sharing their implementation; Ryan McDon-
ald, Jan Botha and Bernd Bohnet for their com-
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Gülşen Eryiğit and Eşref Adalı. 2004. An affix strip-
ping morphological analyzer for Turkish. In Pro-
ceedings of the IASTED International Conference
on Artificial Intelligence and Applications.

Aslı Göksel and Celia Kerslake. 2004. Turkish: A com-
prehensive grammar. Routledge.

Jeff Good and CL Alan. 2000. Affix-placement varia-
tion in Turkish. In Proceedings of the 25th Annual
Meeting of the Berkeley Linguistics Society: Special
Session on Caucasian, Dravidian, and Turkic Lin-
guistics, pages 63–74.
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Araştırmaları, 22(1):33–49.

Dilek Z Hakkani-Tür, Kemal Oflazer, and Gökhan Tür.
2002. Statistical morphological disambiguation for
agglutinative languages. Computers and the Hu-
manities, 36(4):381–410.

Jaklin Kornfilt. 2003. Scrambling, subscrambling,
and case in Turkish. Word order and scrambling,
125155.

Kimmo Koskenniemi. 1984. A general computational
model for word-form recognition and production. In
Proceedings of the 10th International Conference on
Computational Linguistics and 22nd Annual Meet-
ing on Association for Computational Linguistics.
Association for Computational Linguistics.

Geoffrey L Lewis. 1967. Turkish grammar. Oxford
University Press.
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Abstract

This paper describes a new and larger
coverage Finite-State Morphological Anal-
yser (FSM) and Generator for the Dra-
vidian language Tamil. The FSM has
been developed in the context of com-
putational grammar engineering, adhering
to the standards of the ParGram effort.
Tamil is a morphologically rich language
and the interaction between linguistic anal-
ysis and formal implementation is complex,
resulting in a challenging task. In order to
allow the development of the FSM to fo-
cus more on the linguistic analysis and less
on the formal details, we have developed
a system of meta-morph(ology) rules along
with a script which translates these rules
into FSM processable representations. The
introduction of meta-morph rules makes
it possible for computationally naive lin-
guists to interact with the system and to
expand it in future work. We found that
the meta-morph rules help to express lin-
guistic generalisations and reduce the man-
ual effort of writing lexical classes for mor-
phological analysis. Our Tamil FSM cur-
rently handles mainly the inflectional mor-
phology of 3,300 verb roots and their 260
forms. Further, it also has a lexicon of
approximately 100,000 nouns along with a
guesser to handle out-of-vocabulary items.
Although the Tamil FSM was primarily
developed to be part of a computational
grammar, it can also be used as a web
or stand-alone application for other NLP
tasks, as per general ParGram practice.

1 Introduction
A morphological analyser and generator is a
crucial tool for Natural Language Processing
(NLP), especially for processing morphologi-
cally rich languages like Tamil, in which mor-
phemes are used to mark various types of infor-

mation like tense, aspect, mood, person, num-
ber and, gender, etc. Our use of Finite-State
Morphology (FSM) is based on the two-level
approach to morphology in which there are
two layers, namely surface and lexical (Kart-
tunen and Beesley, 2001). The surface layer
represents the actual word, and the lexical
layer has a string, also called a lexical string,
which shows the morphological analysis. For
a language like Tamil, this analysis string is
generally complex and may be long.

Designing and writing out a large number of
lexical strings is not only tedious but also com-
plicated for a morphologically rich language
like Tamil. On the other hand, Tamil is mor-
phologically well structured, in other words,
the order of morphemes is generally rather
templatic (Lehmann, 1993), though there are a
few exceptions. For instance, simple indicative
verbs consist of a root that is then followed by
a tense marker and finally the person-number-
gender (PNG) marker. Because of the com-
plex, yet templatic nature of the morphologi-
cal system, we decided to aid and speed up the
development of the Tamil FSM via the innova-
tion of a set of meta-morph(ology) rules. We
further found that our meta-morph approach
can also be extended to other structured lan-
guages by performing some initial experimen-
tation with Sinhala, an Indo-Aryan language.

Our FSM is being developed in the context
of the construction of a computational gram-
mar for Tamil. For this, we are using the Xe-
rox Linguistic Environment (XLE) using Lex-
ical Functional Grammar (LFG), adhering to
standards and methods set within the interna-
tional ParGram effort (Butt et al., 1999).1

1https://typo.uni-konstanz.de/redmine/projects/
pargram/wiki
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2 Background
2.1 The Tamil language
Tamil is a Dravidian language, specifically a
Southern Dravidian language that is spoken
natively by more than 80 million people across
the world. It has been recognised as a classi-
cal language by the government of India since
it has more than 2000 years of a continu-
ous and unbroken literary tradition (George,
2000). It is an official language of Sri Lanka
and Singapore, and has regional official sta-
tus in Tamil Nadu and Pondichchery, India.
It has also been recognised as a minority or
indigenous language in several countries in-
cluding Malaysia, Mauritius and South Africa
and is taught as a second language in several
other countries, including Canada, Australia
and United Kingdom.

Tamil is an agglutinative language where a
set of morphemes are generally suffixed to a
lemma. However, there are a few exceptions
where morphemes are prefixed to lemmas.
Words in Tamil take both inflectional and
derivational suffixes, and engage in compound-
ing. Nouns in Tamil are primarily marked for
case and number. Verbs, on the other hand,
display complex morphological paradigms that
express a range of information relevant for syn-
tactic and semantic analysis.

2.2 Morphology of Tamil
2.2.1 Verb morphology
Verbs in Tamil realise a range of information
including tense, mood, aspect, negation, inter-
rogation, information about emphasis, speaker
perspective, sentience or rationality, and con-
ditional and causal relations (Annamalai et al.,
2014). Entities in Tamil are fundamentally
classified into rational vs. irrational. Entities
are termed rational if they are perceived as be-
ing able to think on their own. The rest are
termed irrational. Further, it has been claimed
that a weak vs. strong distinction found ex-
ists in the verbal paradigms that can be used
to determine transitivity, ergativity, volitativ-
ity and affectedness (Paramasivam, 2011).

All of these properties are realised via
suffixation. For instance, he has been com-
ing can be translated by the Tamil verb
form வíÄெகாë�Êí�Êå�றாî (van-
tukoṇṭiruntirukkirān̲). This word consists

of the following morphs: வா (vā) (lemma:
‘come’) + ெகாëÂ (koṇṭu) (continuous) +
இÊíÄ (iruntu) (has) + இÊ (iru) (be) +
�Ë(kiru) (present tense)+ ஆî (ān̲) (3rd
person + singular + masculine + rational). In
Tamil, PNG and rationality are expressed via
a single portmanteau form (Nuhman, 1999;
Sarveswaran et al., 2018). For instance, in
the above example it is the morph ஆî (ān̲)
that marks all of these features.

Tamil verbs can be classified on the ba-
sis of criteria that can be either morpho-
logical, syntactic or semantic (Paramasivam,
2011; Agesthialingom, 1971). Many scholars,
including Lisker (1951); Graul (1855); Arden
(1962) have classified verbs based on their
morphology, specifically, based on how mor-
phemes conjugate. Graul (1855) has provided
an early classification on which other scholars
have built their proposals (e.g., Irākavaiyaṅkār
1958; Sithiraputhiran 2004). His classifica-
tion was also adapted for the Tamil lexicon
project (Rajaram, 1986). Graul’s classification
of Tamil verbal lemmas includes 12 categories,
and is based on the future tense markers in the
verbs. His basic classification is also adopted
in our work. In addition, Tamil also contains a
set of auxiliaries, derived verbs and compound
verbs.

2.3 Noun morphology
Nouns in Tamil display the morphological pro-
cesses of inflection, derivation and compound-
ing. Nouns are inflected for number and cases
(Rajendran, 2012; Nuhman, 1999). In our
FSM, we have so far tackled the inflectional
morphology. We have also implemented a
guesser which handles the inflections of out-
of-lexicon nouns, including compound nouns.
Compound nouns are handled as a single unit
in our current system.

Rajendran (2012) has proposed a paradigm
for noun morphology with 26 classes based on
the morphophonological changes, also called
canti (Sandhi). Among these 26 classes, 9
classes are used to capture the morphophono-
logical rules pertaining to pronouns. Pronouns
take different forms (different from their nom-
inative forms) when inflecting for a case suffix.
Currently, we are handling a subset of all of
the possible pronoun categories.

In our noun paradigm, we have identified 38
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classes for pronouns, including personal, pos-
sessive, and interrogative pronouns. We found
that though many pronouns are subject to the
same morphophonological rules, these result in
different analyses or lexical strings. Therefore,
these have been sorted into different classes.
Overall, we followed the same classification as
proposed by Rajendran (2012) for other noun
classes.

2.4 Finite-State Morphology

Figure 1: Word form (or Surface form) and Anal-
ysis form (or Lexical form)
Source : https://fomafst.github.io/morphtut.html

The theory of two-level morphology saw suc-
cessful early applications for morphologically
rich languages like Finnish, Russian and
Sanskrit (Koskenniemi, 1983; Karttunen and
Beesley, 2001). Subsequently, it has been
taken up by researchers developing morpho-
logical analysers for other languages, including
the South Asian languages Urdu, Sindhi and
Nepali (Bögel et al., 2007; Prasain, 2011; Rah-
man, 2016) (see also Seiss 2012 for the morpho-
logically extremely complex Australian lan-
guage Murrinh-patha). In the two-level mor-
phological analysis, a word is represented at
two levels, namely the lexical level or lexical
form, and the surface level or surface form, as
shown in Figure 1.

Several tools have been developed to model
FSM. Proprietary tools like the Xerox Finite-
State Transducer (XFST) (Beesley and Kart-
tunen, 2003) and the FSM Library from
AT&T (now in OpenFST) have been widely
used in the past. Open source solutions
like OpenFST (Allauzen et al., 2007), HFST
(Lindén et al., 2009) and Foma (Hulden, 2009)
are also employed. XFST has been used
widely as an aid to grammar engineering in the
LFG/XLE context (Beesley and Karttunen,

2003; Butt et al., 1999; Rahman, 2016) as part
of the ParGram effort. However, we found
that in addition to licensing issues, XFST also
has issues in rendering the scripts of South
Asian languages, including Tamil, Sinhala and
Devanagari. Among the available open source
solutions, Foma complies with XFST stan-
dards, and has built-in support for the Uni-
code processing and proper rendering of South
Asian scripts. We therefore decided to work
with this software.

3 Related work

3.1 Meta-model / Meta-grammar
development

Fokkens and Bender (2013) argue strongly
that humans are better suited to the task of
developing linguistic analyses than machines.
We also believe that it is specifically bet-
ter for the analysis of a language like Tamil,
which is computationally under-resourced and
which displays complex and interacting pat-
terns of linguistic structure that need to be
made transparent for down-stream NLP ap-
plications.

Bender et al. (2011) and Butt and King
(2003) point out that regression testing is im-
portant for grammar engineering to be able
to manage complex models when extended.
This is also true for the development of a
morphological analyser for a morphologically
complex language like Tamil, where a contin-
uous development is required, and where each
time the system should be checked for possi-
ble errors. In order to facilitate the regres-
sion testing, Fokkens and Bender (2013) pro-
posed a meta-grammar layer for grammar de-
velopment, which places the customisation of
source code under the control of grammar en-
gineers while other users are then encouraged
to do whatever changes may be necessary for
their language specific needs. Otherwise, engi-
neers need to engage with in-depth linguistic
knowledge, and in turn, linguists need to en-
gage with engineering issues.

The concept of meta-modelling has also
been used in domains such as information min-
ing. For instance, Ruiz et al. (2016) have pro-
posed meta-association rules to compile new
information from data extracted from multi-
ple data sets, in order to provide a summarised
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representation. Similarly, the meta-rules pro-
posed here also provide a summary of how
words are formed.

3.2 Morphological analysers
A number of studies have been done on FSMs
for South Asian languages. One of the earliest
was Bögel et al. (2007) for Urdu that includes
a transliteration component so that the mor-
phological analyzer and generator can also be
used for the structurally almost identical lan-
guage Hindi. In addition to inflectional and
derivational morphology, it also tackles com-
plex problems such as reduplication and com-
pounding. Prasain (2011) has developed an
FSM for Nepali using the two-level morphol-
ogy approach and XFST tool. Rahman (2016)
has developed an analyser and generator for
Sindhi as a part of his work on grammar devel-
opment for Sindhi. He also used XFST, which
he then integrated within his grammar.

Antony and Soman (2012) have carried out
a survey on the state of affairs of computa-
tional morphology of Indian languages, and
have documented 17 efforts of morphological
analysers and/or generators for Tamil. 12 of
them were carried out before 2007 and the rel-
evant papers, data sets and/or software are
not retrievable. The remainder have been car-
ried out since 2010. Among those five ef-
forts (Anand Kumar et al., 2010b,a; Menaka
et al., 2010) are available for download in bi-
nary form yet without any data sets.

Menaka et al. (2010) and Anand Kumar
et al. (2010b) have used rule-based approaches
which only perform morphological genera-
tions. Anand Kumar et al. (2010a) have, on
the other hand, applied a machine learning
approach for the morphological analysis and
generation of Tamil. Anand Kumar et al.
(2010a) claim that the system was tested us-
ing 40,000 verbs and 30,000 nouns, and that
the machine learning system was trained using
130,000 verbs and 70,000 nouns from their own
corpus. However, data sets, sources or any de-
tailed documentation are not available except
for a sample corpus with 270,000 tokens. The
extendability of this work to aid grammar de-
velopment is also questionable, and would yet
need to be researched. An email exchange with
the authors has established that they do not
work on this domain anymore.

Parameshwari (2011) has implemented a
morphological analyser and generator for
Tamil using a rule-based approach which cov-
ers verbs, nouns, adjectives, pronouns, numer-
als and non-standard Tamil words, with the
use of the Apertium tool. The author claims
that the system shows an accuracy of 84%.
There are no associated data sets or rules avail-
able and the authors are also not contactable.

Lushanthan et al. (2014) have proposed
a morphological analyser and generator for
Tamil and have implemented it using XFST.
The authors have used transliteration to han-
dle the Tamil script given that XFST has is-
sues in rendering, although it supports Uni-
code internally. The authors have considered
2,000 noun and 96 verb stems for the analy-
sis and generation. They have tested the pro-
posed system using their own data set consist-
ing of 3,500 nouns and 500 verbs with a success
rate of 78%. However, the data sets and XFST
rules have not been made available.

Anna University, India has developed
a morphological analyser in 2001 called
Atcharam that has recently been added to the
GitHub repository.2 It is developed for TAB
(TAmil Bilingual) encoded text as a stand-
alone application using Java. Further, there
is no detailed technical documentation or rule
set. Some data in the form of a list of words
are available in the repository. However, those
are encoded using TAB, and an attempt to
convert them to Unicode was also not success-
ful.

There are also some morphological tools
available in the GitHub code repository
without corresponding academic publications.
Pranavan and et al.3 have provided work on
a basic morphological analyser developed as a
stand-alone application using Java. However,
as also claimed by the developers, it is a basic
analyser which handles only 20 words with 28
conjugation forms.

Yet another code repository is that by
tacola-aucse.4 This is also developed as a
stand-alone application using Java, covering
the analysis of verbs and nouns. However, no

2https://github.com/tacola-auceg/morpha_ta
3https://github.com/Pranavan135/Tamil

_Morphological_Analyzer
4https://github.com/tacola-aucse/Morphological-

Analyzer-For-Tamil
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information about the data set or the rules de-
veloped, were found. We managed to run the
tool with an older version of Java, but, irreg-
ular verbs like ெசìதாî (cettān) ‘he died’ do
not give any analysis. In some cases, the given
analysis is very confusing, especially when an
out-of-vocabulary word is fed in. For instance,
the analysis of சòேவüவரî (carvēśvaran), a
proper noun, showed that it has the root of
சòேவ (carvē) and a future tense marker ÷
(v) and the past tense marker î (n). That is,
it not only mistakes a proper noun for a verb,
it also provides a completely wrong analysis
with two tense markers. Furthermore, if the
text is not Unicode normalised, then the tool
produces unexpected results. Finally, when
there are multiple analyses for a word, only
one is provided. In comparison to the other
tools available, however, this tool works well,
but the extendability of the stand-alone Java
tool is not very straightforward, unless a com-
plete documentation can be found.

4 Development of Tamil FSM

4.1 Need for a Tamil FSM
Our research conducted on existing Tamil
morphological analysers has demonstrated
that none of the analysers developed in the
past are complete or maintained anymore and
that most of the existing applications do not
support Unicode encoding. Our target task
of constructing a computational grammar re-
quires a morphological analyser with good ac-
curacy with a specific type of interface to the
grammar. None of the existing efforts fulfill
these requirements.

On the other hand, we found that the open
source software Foma fulfils our requirements;
while rendering our scripts correctly, it also
complies with XFST and can be easily inte-
grated to the grammar we develop.

4.2 Methodology
Lexicons of verbs and nouns were compiled
from various sources and classified on the ba-
sis of their inflected classes. Thereafter, a set
of labels was identified and a parser to parse
the meta-morph rules was developed. Next,
orthographic rules were written for the iden-
tified classes. The FSM was then evaluated.
In order to evaluate, a data set was also com-

piled, since there were no existing benchmark
data sets found. All the inputs were pre-
processed before being analysed. The Tamil
FSM has been developed as a web-based sys-
tem (parsers.projects.uom.lk) so that anyone
can check or use it, where a word can be fed
in, and an analysis produced as an output.

4.2.1 Pre-processing
Due to the nature of the Tamil Unicode encod-
ing and input methods, all the inputs needed
to be Unicode normalised before being fed to
the web interface for analysis or generation. In
Tamil, the same character can be formed by
multiple code sequences if it is not controlled
or handled by the keyboard input driver. For
instance, the letter ெகா can be entered by
users using the following sequences: க + ெ◌ா
or க + ெ◌ + ◌ா . However, it is only the
first sequence is acceptable and logical. Be-
cause, in Tamil, a composite character like
ெகா is formed by adding a vowel to a con-
sonant. In Unicode, vowels are denoted by
vowel modifiers. Therefore, a consonant can-
not be followed by two vowel modifiers (ac-
tually two vowels). However, in the case of
க + ெ◌ + ◌ா , there are two vowel modi-
fiers are followed by a consonant. This is im-
possible in Tamil. Therefore, it is important
to convert all the unacceptable formations to
acceptable formations; the process of convert-
ing other forms to Unicode normalised form is
called Unicode normalisation. Otherwise, this
would lead to issues when passing through the
FST. We therefore developed a script that en-
ables the Unicode normalisation of Tamil text.

4.2.2 Compiling lexicons
A lexicon of 3,300 lemmata of Tamil verbs
was compiled from the following two verified
sources:

• Annamalai et al. (2014) identified 369 of
the most frequently used verbs in Mod-
ern Tamil. Their analysis is based on a
corpus of 7 million tokens compiled from
the web and took into account expert ad-
vice on linguistic matters. Their list has
been included in the contemporary Tamil
dictionary Cre-A (Ramakrishnana, 2014).

• Irākavaiyaṅkār (1958) surveyed Tamil lit-
erature up until 1958, where he identi-
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fied 3,124 lemmas and categorised these
into 12 classes as per the classification
proposed by Graul (1855) (Sithiraputhi-
ran, 2004). However, some of these forms
are not used in the contemporary lan-
guage. Nevertheless, since the analysis
of those verbs is necessary for processing
the historical Tamil text, the entire list
has been considered for the development
of our FSM.

In Tamil, complex verbs are formed on the ba-
sis of infinitival forms, verbal participles and
verbal nouns (Boologarambai, 1986). There-
fore, in addition to the verbal lemmata col-
lected, auxiliary classes were also constructed
manually, using the infinitival and verbal par-
ticiple forms of the lemmata.

Tamil nouns were collected from various
databases online, glossaries and corpora. An
initial level of cleaning was additionally con-
ducted in order to ensure that the list has only
lemmata.

4.2.3 Verb Paradigm
Instead of handling words individually, a
paradigmatic approach is used to reduce the
volume of the problem. Anand Kumar
et al. (2010b) have proposed a paradigm with
32 classes in their data-driven morphological
analyser, while Menaka et al. (2010) identi-
fied a verb paradigm with 34 classes in their
Tamil morphological generator study. How-
ever, we have here chose to use the widely ac-
cepted 12 verb paradigm proposed by Graul
(1855). In addition to these 12 categories, each
of the 7 irregular verbs defined in (Annamalai
et al., 2014) is considered as a separate cate-
gory. Further, 15 auxiliaries, identified from
the literature, were also implemented as 15
separate classes. Altogether, a taxonomy of
34 classes has been used to develop the FSM
for verbal forms.

4.2.4 Conjugation forms
Annamalai et al. (2014) have identified 254
forms for each Tamil verb after a rigorous
analysis of their corpus of contemporary texts.
Some verbs may not take all of the 254 forms.
Further, Rajaram (1986) has also identified 21
forms for each verb from a pedagogical per-
spective. On the other hand, Anand Kumar
et al. (2010a) claim that a Tamil verb lemma

can take up to 8,000 forms though not all are
listed or found in the literature. In our FSM
260 inflectional forms are considered. These
forms are the set common to Annamalai et al.
(2014) and Rajaram (1986). For each lemma,
these 260 forms are generated and analysed.
However, more forms can easily be added to
the system without the need of any additional
programming.

4.2.5 Morpheme labels
There are different sets of labels used to mark
the morphemes in the morphological analysers
of Anand Kumar et al. (2010a); Menaka et al.
(2010). Kirov et al. (2016) attempt to unify
the morphological labels under the brand of
Unimorph to facilitate the cross-lingual mor-
phological transfer.

However, in our Tamil FSM, we have de-
veloped a set of our own morpheme labels.
Because PNG and rationality are marked by
a single morph in Tamil, it is more efficient
from a grammar engineering perspective to
handle them together, thus reducing the num-
ber of lexical rules in the grammar (Butt et al.,
1999). While we have decided to develop and
use our own labelling, we plan to implement
an interface that will facilitate exporting infor-
mation in the Unimorph format (Kirov et al.,
2016).

5 Meta-morph rules
From the review of Tamil morphological anal-
ysers, it is evident that most of the efforts in
defining morphological structure or morpho-
tactics are deeply coupled with the program-
ming logic. In some other efforts, people have
spent a considerable amount of time writing
rules.

Snippet 1 Snippet of meta-morph rules
1.classes=C1,C2,C3,C4,C5,C17,C18,C19
2.commonLabels=+fin+sim+ind
3.v-ind=root+tense+png
4.v-euph=root+past+euph+pngeuph

On the other hand, arguments have been
presented that a meta-representation of the
formal implenentational details will allow and
encourage computationally naive linguists to
contribute to the development of linguistic re-
sources for language processing.
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The meta-morph rules outlined in this pa-
per successfully hide the programming details
of the morphological analysis and help to focus
only on the analysis of the language. Further,
this also automates the generation of lexical
entries, which when done manually is not only
a tedious and time-consuming task, but also
one where people can easily make mistakes.
This is particularly true for a language like
Tamil in which each verb may undergo sev-
eral hundred inflections. Therefore, even if a
paradigm approach is used, it is challenging
to write rules, maintain them and perform a
regression testing without the aid of a meta-
grammar.

To achieve this we have developed meta-
morph rules. Consider Snippet-1 of the meta-
morph rules example. Line number 3 shows
how finite, simple and indicative verbs are
formed for the classes listed in line number 1.
The order of conjugation also matters, where
it shows that with a verb root, first, it is a
tense marker that is coined, and finally a PNG
marker follows. These rules can also be ap-
plied in other studies to see how words are
conjugated in Tamil. Further, the rules can
be defined at different levels. For instance,
line number 3 shows that all the finite, simple
and indicative verbs are formed by conjugat-
ing a tense and a PNG, where tense stands
for the realisation of one of the three tenses
available. However, line number 4 shows that
verbs which consist of euphonic markers (ma-
terial used to fulfill phonological phrasing re-
quirements) are constructed only with past
tense verbs, and with a specific PNG marker.
Snippet-1 thus exemplifies the type of meta-
morph rules that we have devised.5

The corresponding values for the labels in
the meta-morph rules are stored in JSON6

files. Data are stored in JSON as key-value
pairs which are also human readable. The
above rules and JSON entries can be written in
a plain text file. For instance, Snippet-2 shows
how tense labels are defined and stored in a
JSON file. As shown here, there can be dif-
ferent past tense markers for different classes
of verbs. For general cases, the tense marking

5A reviewer asks about the formal power of the
meta-morph rules. Essentially they replace the con-
tinuation classes found in LEXC.

6https://www.json.org/

can be done as shown in line 3. However, if re-
quired, a particular tense marker can also be
used, as shown in line number 4 of the above
Snippet-1. In addition to labels, values corre-
sponding to each morph can also be stored in
the JSON file, as shown in Snippet-2. For in-
stance, in the above example for “past1”, the
label is past and the morph ì (which marks
the verb as past) is also included as a part of
the label. This information becomes part of
the lexical analysis. Further, as shown in the
Snippet-2, the proposed data structure pro-
vides the flexibility for defining different tense
markers and labels for different classes, and
these data can be referred at different levels
when writing the meta-morph rules. For in-
stance, it can be either referred as “past” or
“past1” rule-base.

Snippet 2 Snippet of data in a JSON file
”tense”: {
”past”: {

”past1”: {
”label”:”+past=ì”,
”marker”:”த”,
”classes”:[”C1”,”C15”]
},

”past2”: {
”label”:”+past=ëê”,
”marker”:”ëட”,
”classes”:[”C2”]

}
},
”pres”:{

”pres1”: {
”label”:”+pres=�ó”,
”marker”:”�ற”,
”classes”:[”C2”,”C3”]

}
},
”fut”: {

”fut1”: {
”label”: ”+fut=÷”,
”marker”: ”வ”,
”classes”: [”C3”,”C4”]

}
}
}

In case a mistake in the labelling, or in the
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value of a marker, is found, it can be easily cor-
rected in the JSON text file without needing
to engage with FSM programming.

Once the meta-morph rules are finalised,
they can be parsed to produce the actual
lexical strings that are then fed to Foma to
compile an FST. A parser is developed using
Python to parse these morph-rules to gener-
ate lexical rules for Foma. A sample of com-
piled meta-morph rules will look as shown in
Snippet-3. We use the pipe “|” symbol to mark
morpheme boundaries, as inspired by Beesley
and Karttunen (2003), who use “TB” to mark
the token boundary. “|” is used in Universal
Dependencies to separate features.7 The % is
allowed to escape special characters in the lex-
ical string.

Apart from the generation of these interme-
diate entries, orthographical rules were writ-
ten for each class in the paradigm as neces-
sary. If a new class needs to be introduced,
then a new set of entries needs to be added to
the orthographical file. Otherwise, there is no
need to touch the lexical strings or the ortho-
graphical files.

Snippet 3 Snippet of lexical string or analysis
string

%|+fin %|+sim %|+ind %|+strong
%|+past %= ì %|+3sgn %=அÄ

We initially developed a Tamil FSM by
entering all of the necessary lexical strings
manually, yet found this to be tedious task
that took time and energy away from under-
standing the more generalised overall struc-
ture of the language morphology. In evalu-
ating our progress, we found that correcting
errors was complicated and time-consuming,
since we always had to engage with the de-
tails of the Foma specifications. The frustra-
tion with these time-consuming tasks led us
to experiment with meta-morph rules. We
found writing rules in the meta-morph and
defining feature-value pairs using JSON to be
easy and quick. It also helped us to accel-
erate the process of developing our FSM for
Tamil, where for instance the identification of
mistakes could be corrected easily. Adding a

7https://universaldependencies.org/format.html

lexical string or new conjugational form also
became very straightforward. We need to just
list the classes which will take those new forms
and then define a generalised rule for the for-
mation of that word as shown in Snippet-1.

6 Evaluation and Discussion
There are no benchmark data sets available
to evaluate a morphological analyser in Tamil.
Therefore, the 500K corpus from AUKBC8

was used for evaluation. This corpus is com-
piled from a popular Tamil historical novel
written by an Indian author. From the 19,250
unique verbs found in the corpus, only the
finite, infinitives, relative participles, verbal
participles and conditional verbs were ex-
tracted. However, the finite verbs compiled
also comprised of compound and derivational
verbs, which cannot be separated from the fi-
nite list as there are no tags to identify them.
In addition 26,000 tokens which were marked
as nouns also extracted from the corpus to
evaluate the noun morphology. However, the
list had a significant number of compound
nouns, nominal complex (for instance, noun +
conjunction), personal names, and borrowed
words from Sanskrit. Table 1 shows the out-
come of the evaluations.

Derivational verbs, spelling mistakes, nom-
inal complex words, and personal names, as
well as errors in the tagging, were the primary
causes for the failure of the Tamil FSM. The
guesser provided an analysis for the compound
verbs and nouns.

7 Conclusion
We conclude that meta-morph rules are use-
ful for the acceleration of the development of
FSMs. At the same time, they allow the state-
ment of linguistic generalisations in a form
that is easily human readable and provides an
interface for computationally naive linguists to
interact with the FSM and to potentially help
extend and improve it.

The Tamil FSM outlined in this paper has
also been developed as a web-based system:
parsers.projects.uom.lk. The evaluation
in Table 1 shows that the Tamil FSM al-
ready provides a high accuracy for the anal-
ysis of verbs and a reportable accuracy for the

8http://www.au-kbc.org/nlp/corpusrelease.html
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Word type Found in the Corpus Analysed Percentage
Verbs - Finite 10,269 10,142 98.7
Verbs - Infinitive 1,615 1,540 95.4
Verbs - Relative participle 2,677 2,525 94.3
Verbs - Verbal participle 3,339 3,110 93.1
Nouns 26,000 19,990 76.5

Table 1: Evaluation results

analysis of nouns. Further, the system also
shows if there are multiple analyses for a word;
for instance, an analysis for a word ெசñÉð
(ceyyum) is shown in the Figure 2.

In future work, we intend to explore whether
the meta-morph rule interface can be further
generalised and used for other languages, at
least for other South Asian Languages. We
already have performed an initial work on this
for the Indo-Aryan language Sinhala and the
results are encouraging. We will also extend
the existing Tamil FSM by fully incorporating
derivational morphology.

Figure 2: Screenshot of the analysis from the web
interface
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Abstract

Weighted finite automata (WFA) are often
used to represent probabilistic models, such as
n-gram language models, since they are effi-
cient for recognition tasks in time and space.
The probabilistic source to be represented as
a WFA, however, may come in many forms.
Given a generic probabilistic model over se-
quences, we propose an algorithm to approx-
imate it as a weighted finite automaton such
that the Kullback-Leibler divergence between
the source model and the WFA target model is
minimized. The proposed algorithm involves a
counting step and a difference of convex opti-
mization, both of which can be performed effi-
ciently. We demonstrate the usefulness of our
approach on some tasks including distilling n-
gram models from neural models.

1 Introduction

Given a sequence of symbols x1, x2, . . . , xn−1,
where symbols are drawn from the alphabet Σ, a
probabilistic model S assigns to the next symbol
xn ∈ Σ the conditional probability

ps[xn | xn−1 . . . x1].

Such a model might be Markovian, where

ps[xn | xn−1 . . . x1] = ps[xn | xn−1 . . . xn−k+1],

such as a k-gram language model (LM) (Chen and
Goodman, 1998) or it might be non-Markovian
such as a long short-term memory (LSTM) neu-
ral network language model (Sundermeyer et al.,
2012). Our goal is to approximate a probabilistic
model as a weighted finite automaton (WFA) such
that the weight assigned by the WFA is close to the
probability assigned by the source model. Specif-
ically, we will seek to minimize the Kullback-
Leibler (KL) divergence between the source S and
the target WFA model.

Representing the target model as a WFA has
many advantages including efficient use, compact

representation, interpretability, and composability.
WFA models have been used in many applications
including speech recognition (Mohri et al., 2008),
speech synthesis (Ebden and Sproat, 2015), opti-
cal character recognition (Breuel, 2008), machine
translation (Iglesias et al., 2011), computational
biology (Durbin et al., 1998), and image process-
ing (Albert and Kari, 2009). One particular prob-
lem of interest is language models for on-device
(virtual) keyboard decoding (Ouyang et al., 2017),
where WFA models are used due to space and time
constraints. However, storing the training data in
a centralized server and training k-gram or other
WFA models directly may not be feasible due to
privacy constraints (Hard et al., 2018). Alterna-
tively, an LSTM model can be trained by federated
learning (Konečnỳ et al., 2016; Hard et al., 2018),
then converted to a WFA at the server for fast on-
device inference. This not only may improve per-
formance, but also provide additional privacy.

We allow failure transitions (Aho and Corasick,
1975; Mohri, 1997) in the target WFA, which are
taken only when no immediate match is possible at
a given state, for compactness. For example, in the
WFA representation of a backoff k-gram model,
failure transitions can compactly implement the
backoff (Katz, 1987; Chen and Goodman, 1998;
Allauzen et al., 2003; Novak et al., 2013; Hellsten
et al., 2017). The inclusion of failure transitions
will complicate our analysis and algorithms but is
highly desirable in applications such as keyboard
decoding. Further, to avoid redundancy that leads
to inefficiency, we assume the target model is de-
terministic, which requires at each state there is at
most one transition labeled with a given symbol.

The approximation problem can be divided into
two steps: (1) select an unweighted automaton A
that will serve as the topology of the target automa-
ton and (2) weight the automaton A to form our
weighted approximation Â. The main goal of this
paper is the latter determination of the automaton’s
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Figure 1: 3-gram topology example derived from the
corpus aab. States are labeled with the context that is
remembered, ∧ denotes the initial context, ε the empty
context, $ the final context (and terminates accepted
strings), and matches any symbol in a context. Fail-
ure transitions, labeled with ϕ, implement backoff from
histories xy to y to ε.

weighting in the approximation.
In some applications, the topology may be un-

known. In such cases, one choice is to build a k-
gram deterministic finite automaton (DFA) topol-
ogy from a corpus drawn from S (Allauzen et al.,
2003). This could be from an existing corpus
or from random samples drawn from S. Fig-
ure 1 shows a trigram topology for the very sim-
ple corpus aab. This representation makes use of
failure transitions. These allow modeling strings
unseen in the corpus (e.g., abab) in a compact
way by failing or backing-off to states that corre-
spond to lower-order histories. Such models can
be made more elaborate if some transitions rep-
resent classes, such as names or numbers, that are
themselves represented by sub-automata. As men-
tioned previously, we will mostly assume we have
a topology either pre-specified or inferred by some
means and focus on how to weight that topology
to best approximate the source distribution.

In previous work, there have been various ap-
proaches for estimating weighted automata. Meth-
ods include state merging and weight estima-
tion from a prefix tree data representation (Car-
rasco and Oncina, 1994, 1999), the EM algorithm
(Dempster et al., 1977) applied to fully connected
HMMs or specific topologies (Eisner, 2001) and
spectral methods applied to automata (Balle and
Mohri, 2012; Balle et al., 2014). For approximat-
ing neural network (NN) models as WFAs, meth-
ods have been proposed to build n-gram models
from RNN samples (Deoras et al., 2011), from
DNNs trained at different orders (Arisoy et al.,
2014; Adel et al., 2014), and from RNNs with
quantized hidden states (Tiño and Vojtek, 1997;
Lecorvé and Motlicek, 2012).

Our paper is distinguished in several respects

from previous work. First, our general approach
does not depend on the form the source distribu-
tion. Second, our targets are a wide class of deter-
ministic automata with failure transitions. Third,
we search for the minimal KL divergence between
the source and target distributions, given a fixed
target topology.

We remark that if the source probabilistic model
is represented as a WFA, our approximation will
in general give a different solution than forming
the finite-state intersection with the topology and
weight-pushing to normalize the result (Mohri,
2009; Mohri et al., 2008). Our approximation has
the same states as the topology whereas a weight-
pushed intersection could have many more states
and and is not an approximation, but an exact rep-
resentation, of the source distribution.

Before presenting and validating algorithms for
a minimum KL divergence approximation when
either the source itself is finite-state or not (in
which case sampling is involved), we next present
the theoretical formulation of the problem and the
minimum KL divergence approximation.

2 Theoretical analysis

2.1 Probabilistic models

Let Σ be a finite alphabet. Let xni ∈ Σ∗ denote the
string xixi+1 . . . xn and xn , xn1 . A probabilistic
model p over Σ is a probabilistic distribution over
the next symbol xn, given the previous symbols
xn−1, such that1

∑

x∈Σ

p(xn = x|xn−1) = 1 ∧

∀x ∈ Σ, p(xn = x|xn−1) ≥ 0.

Without loss of generality, we assume that the
model maintains an internal state q and updates
it after observing the next symbol.2 Furthermore,
the probability of the subsequent state just depends
on the state q

p(xni+1|xi) = p(xni+1|q(xi)),

for all i, n, xi, xni+1, where q(xi) is the state the
model has reached after observing sequence xi.
Let Q(p) be the set of possible states. Let the lan-
guage L(p) ⊆ Σ∗ defined by the distribution p be

1We define x0 , ε, the empty string, and adopt p(ε) = 0.
2In the most general case, q(xn) = xn.
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L(p) , {xn ∈ Σ∗ : p(xn) > 0,

xn = $ ∧ xi 6= $ , i < n}. (1)

The symbol $ is used as a stopping criterion. Fur-
ther for all xn ∈ Σ∗, p(xn|xn−1 : xn−1 = $ ) = 0.

The KL divergence between two models ps and
pa is given by

D(ps||pa) =
∑

xn

ps(x
n) log

ps(x
n)

pa(xn)
, (2)

where for notational simplicity, we adopt the no-
tion 0/0 = 1 and 0 log(0/0) = 0 throughout the
paper. Note that for the KL divergence to be fi-
nite, we need L(ps) ⊆ L(pa). We first reduce
the KL divergence between two models as follows
(cf. Carrasco, 1997; Cortes et al., 2008). In the fol-
lowing, let q∗ denote the states of the probability
distribution p∗.

Lemma 1. If L(ps) ⊆ L(pa), then

D(ps||pa) =
∑

qa∈Qa

∑

x∈Σ

c(x, qa) log
ps(x|qs)
pa(x|qa)

(3)

where c(x, qa) is given by

∑

qs∈Qs

∞∑

i=0

∑

xi:qs(xi)=qs,qa(xi)=qa

ps(x
i) ps(x|qs) (4)

and does not depend on pa.

Proof is omitted due to space limitations.

2.2 Weighted finite automata
A weighted finite automaton A = (Σ, Q,E, i, f)
over R+ is given by a finite alphabet Σ, a finite set
of statesQ, a finite set of transitionsE ⊆ Q×Σ×
R+ × Q, an initial state i ∈ Q and a final state
f ∈ Q. A transition e = (p[e], `[e], w[e], n[e]) ∈
E represents a move from the source or previous
state p[e] to the destination or next state n[e] with
the label `[e] and weightw[e]. The transitions with
source state q are denoted by E[q] and the labels
of those transitions as L[q].

A deterministic WFA has at most one transi-
tion with a given label leaving each state. An un-
weighted (finite) automaton is a WFA that satisfies
w[e] = 1,∀e ∈ E. A probabilistic (or stochastic)
WFA satisfies
∑

e∈E[q]

w[e] = 1 and w[e] ≥ 0, ∀q ∈ Q− {f}.

Transitions e1 and e2 are consecutive if n[ei] =
p[ei+1]. A path π = e1 · · · en ∈ E∗ is a finite
sequence of consecutive transitions, the source
and destination states of which we denote by p[π]
and n[π], respectively. The label of a path is
the concatenation of its transition labels `[π] =
`[e1] · · · `[en]. The weight of a path is obtained by
multiplying its transition weights w[π] = w[e1]×
· · · ×w[en]. For a non-empty path, the i-th transi-
tion is denoted by πi.
P (q, q′) denotes the set of all paths in A from

state q to q′. We extend this to sets in the obvi-
ous way: P (q,R) denotes the set of all paths from
state q to q′ ∈ R and so forth. A path π is success-
ful if it is in P (i, f) and in that case the automaton
is said to accept the input string α = `[π].

The language accepted by an automaton A is
the regular set L(A) = {α ∈ Σ∗ : α = `[π], π ∈
P (i, f)}. The weight of α ∈ L(A) assigned by
the automaton is A(α) = Σπ∈P (i,f): `[π]=αw[π].
Similar to Equation 1, we assume a symbol $ ∈ Σ
such that

L(A) ⊆ {xn ∈ Σ∗ : xn = $ and xi 6= $ , i < n}.
Thus all successful paths are terminated by the
symbol $ .

For a symbol x ∈ Σ and a state q ∈ Q of a
deterministic, probabilistic WFA A, define a dis-
tribution pa(x|q) , w if (q, x, w, q′) ∈ E and
pa(x|q) , 0 otherwise. Then pa is a probabilis-
tic model over Σ as defined in the previous sec-
tion. If A = (Σ, Q,E, i, f) is an unweighted de-
terministic automaton, we denote by P(A) the set
of all probabilistic models pa representable as a
weighted WFA Â = (Σ, Q, Ê, i, f) with the same
topology as A where Ê = {(q, x, pa(x|q), q′) :
(q, x, 1, q′) ∈ E}.

2.3 Weighted finite automata with failure
transitions

A weighted finite automaton with failure transi-
tions (ϕ-WFA) A = (Σ, Q,E, i, f) is a WFA ex-
tended to allow a transition to have a special fail-
ure label denoted byϕ. ThenE ⊆ Q×(Σ∪{ϕ})×
R+ ×Q.

A ϕ transition does not add to a path label;
it consumes no input. However it is followed
only when the input can not be read immediately.
Specifically, a path e1 · · · en in a ϕ-WFA is dis-
allowed if it contains a subpath ei · · · ej such that
`[ek] = ϕ for all k, i ≤ k < j, and there is an-
other transition e ∈ E such that p[ei] = p[e] and
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qi

qx/ω

qi+1

φ/ωi

qj
φ/ωi+1...φ/ωj-1 qj+1

x/ωj

Figure 2: The (dashed red) path ei = (qi, ϕ, ωi, qi+1)
to ej = (qj , x, ωj , qj+1) is disallowed since x can be
read already on e = (qi, x, ω, q).

`[ej ] = `[e] ∈ Σ (see Figure 2). Since the label
x = l[ej ] can be read on e, we do not follow the
failure transitions to read it on ej as well.

We use P ∗(q, q′) ⊆ P (q, q′) to denote the set
of (not dis-) allowed paths from state q to q′ in a
ϕ-WFA. This again extends to sets in the obvious
way. A path π is successful in a ϕ-WFA if π ∈
P ∗(i, F ) and only in that case is the input string
α = `[π] accepted.

The language accepted by the ϕ-automatonA is
the regular set L(A) = {α ∈ Σ∗ : α = `[π], π ∈
P ∗(i, f)}. The weight of α ∈ Σ∗ assigned by the
automaton is A(α) = Σπ∈P ∗(i,f): `[π]=αw[π]. We
assume each string in L(A) is terminated by the
symbol $ as before. We also assume there are no
ϕ-labeled cycles and there is at most one exiting
failure transition per state.

We express the ϕ-extended transitions leaving q
as

E∗[q] =
{

(q, x, ω, q′) : π ∈ P ∗(q,Q), ω = w[π],

x = `[π] = `[π|π|] ∈ Σ, q′ = n[π]
}
.

This is a set of (possibly new) transitions
(q, x, ω, q′), one for each allowed path from
source state q to destination state q′ with optional
leading failure transitions and a final x-labeled
transition. Denote the labels of E∗[q] by L∗[q].

A probabilistic (or stochastic) ϕ-WFA satisfies
∑

e∈E∗[q]
w[e] = 1 and w[e] ≥ 0, ∀q ∈ Q− {f}.

A deterministic ϕ-WFA is backoff-complete if a
failure transition from state q to q′ implies L[q] ∩
Σ ⊆ L[q′] ∩ Σ. Further, if ϕ /∈ L[q′], then the
containment is strict: L[q] ∩ Σ ⊂ L[q′] ∩ Σ. In
other words, if a symbol can be read immediately
from a state q it can also be read from a state fail-
ing (backing-off) from q and if q′ does not have a
backoff arc, then at least one additional label can
be read from q′ that cannot be read from q. For ex-
ample, the topology depicted in Figure 1 has this

property. We restrict our target automata to have a
topology with the backoff-complete property since
it will simplify our analysis, make our algorithms
efficient and is commonly found in applications.

For a symbol x ∈ Σ and a state q ∈ Q
of a deterministic, probabilistic ϕ-WFA A, de-
fine p∗a(x|q) , w if (q, x, w, q′) ∈ E∗[q] and
p∗a(x|q) , 0 otherwise. Then p∗a is a proba-
bilistic model over Σ as defined in Section 2.1.
Note the distribution p∗a at a state q is defined
over the ϕ−extended transitions E∗[q] where pa
in the previous section is defined over the transi-
tions E[q]. It is convenient to define a companion
distribution pa ∈ P (A) to p∗a as follows:3 given
a symbol x ∈ Σ ∪ {ϕ} and state q ∈ Q, define
pa(x|q) , p∗a(x|q) when x ∈ L[q]∩Σ, pa(ϕ|q) ,
1 −∑x∈L[q]∩Σ p

∗
a(x|q), and pa(x|q) , 0 other-

wise. The companion distribution is thus defined
solely over the transitions E[q].

When A = (Σ, Q,E, i, f) is an unweighted
deterministic, backoff-complete ϕ-WFA, we de-
note by P∗(A) the set of all probabilistic mod-
els p∗a representable as a weighted ϕ-WFA Â =
(Σ, Q, Ê, i, f) of same topology as A with

Ê ={(q, x, pa(x|q), q′) : (q, x, 1, q′) ∈ E, x ∈ Σ}
∪ {(q, ϕ, α(q, q′), q′) : (q, ϕ, 1, q′) ∈ E}

where pa ∈ P (A) is the companion distribution to
p∗a and α(q, q′) = pa(ϕ|q)/d(q, q′) is the weight
of the failure transition from state q to q′ with

d(q, q′) = 1−
∑

x∈L[q]∩Σ

pa(x|q′). (5)

Note we have specified the weights on the automa-
ton that represents p∗a ∈ P ∗(A) entirely in terms
of the companion distribution pa ∈ P (A), thanks
to the backoff-complete property.

Conversely, each distribution pa ∈ P(A) can
be associated to a distribution p∗a ∈ P∗(A) given
a deterministic, backoff-complete ϕ-WFAA. First
extend α(q, q′) to any failure path as follows. De-
note a failure path from state q to q′ by πϕ(q, q′).
Then define

α(q, q′) =
∏

e∈πϕ(q,q′)

pa(ϕ|p[e])
d(p[e], n[e])

(6)

where this quantity is taken to be 1 when the fail-

3The meaning of P (A) whenA is a ϕ-WFA is to interpret
it as a WFA with the failure labels as regular symbols.

90



ure path is empty (q = q′). Finally define

p∗a(x|q) =

{
α(q, qx)pa(x|qx), x ∈ L∗[q]
0, otherwise

(7)
where for x ∈ L∗[q], qx signifies the first state q′

on a ϕ-labeled path in A from state q for which
x ∈ L[q′].

For (6) to be well-defined, we need
d(p[e], n[e]) > 0. To ensure this condition,
we restrict P(A) to contain distributions such
that pa(x|q) ≥ ε for each x ∈ L[q].4

Given an unweighted deterministic, backoff-
complete, automaton A, our goal is to find the tar-
get distribution p∗a ∈ P∗(A) that has the mini-
mum KL divergence from our source probability
model ps. We can restate our goal in terms of the
companion distribution pa ∈ P(A). Let Bn(q)
be the set of states in A that back-off to state q in
n failure transitions and let B(q) =

⋃|Qa|
n=0Bn(q).

Lemma 2. If L(ps) ⊆ L(A) then

argmin
p∗a∈P∗(A)

D(ps||p∗a) = (8)

argmax
pa∈P(A)

∑

q∈Qa

{ ∑

x∈L[q]

C(x, q) log pa(x|q)

−
∑

q0∈B1(q)

C(ϕ, q0) log d(q0, q)

}
,

where

C(x, q) =
∑

qa∈B(q)

c(x, qa)1q=qxa , x ∈ Σ (9)

C(ϕ, q) =
∑

qa∈B(q)

∑

x∈Σ

c(x, qa)1x/∈L[q] (10)

and do not depend on pa.

Proof is omitted due to space limitations.
The quantity in braces in the statement of

Lemma 2 depends on the distribution pa only at
state q so the minimum KL divergence D(ps||p∗a)
can be found by maximizing that quantity inde-
pendently for each state.

3 Algorithms

Approximating a probabilistic source algorith-
mically as a weighted finite automaton requires
two steps: (1) compute the quantity C(x, q) in
Lemma 2 and (2) use this quantity to find the

4For brevity, we do not include ε in the notation of P(A).

minimum KL divergence solution. The first step,
which we will refer to as counting, is covered in
the next section and the KL divergence minimiza-
tion step is covered afterwards.

3.1 Counting
How the counts are computed will depend on the
source model form. We divide this into two cases.

3.1.1 ϕ-WFA source and target
When the source and target models are represented
as ϕ-WFAs we compute C(x, qa) from Lemma 2.
From Equation 9 this can be written as

C(x, q) =
∑

qa∈B(q)

∑

qs∈Qs

γ(qs, qa)ps(x|qs)1q=qxa

(11)
with x ∈ Σ and

γ(qs, qa) =
∞∑

i=0

∑

xi

ps(x
i : qs(x

i)=qs, qa(x
i)=qa).

The quantity γ(qs, qa) can be computed as

γ(qs, qa) =
∑

π∈P ∗S∩A((is,ia),(qs,qa))

w[π]

where S ∩ A is the weighted intersection of au-
tomata S and A formed using an efficient ϕ-WFA
intersection that compactly retains failure transi-
tions in the result, as described in Allauzen and
Riley (2018). The quantity γ(qs, qa) is the (gen-
eralized) shortest distance from the initial state
to a specified state computed over the positive
real semiring (Mohri, 2002; Allauzen and Riley,
2018). Equation 11 is the weighted count of the
paths in S ∩ A allowed by the failure transitions
that begin at the initial state and end in any transi-
tion leaving a state (qs, q) labeled with x.

This computation can be simplified by the fol-
lowing transformation. First we convert S ∩ A to
an equivalent WFA by replacing each failure tran-
sition with an epsilon transition and introducing a
negatively-weighted transition to compensate for
formerly disallowed paths (Allauzen and Riley,
2018). The result is then promoted to a transducer
T with the output label used to keep track of the
source state inA of the compensated positive tran-
sition (see Figure 3).5

5The construction illustrated in Figure 3 is sufficient when
S ∩ A is acyclic. In the cyclic case a slightly modified con-
struction is needed to ensure convergence in the shortest dis-
tance calculation (Allauzen and Riley, 2018).
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S ∩A
(qs,qa)

x/ω

(qs',qa')

φ/α

x/ν

T

(qs,qa)

x:qa/ω

(qs',qa')ε:-/α

x:qa'/-α ν

x:qa'/ν

Figure 3: A ϕ-WFA is transformed into an equiva-
lent WFA by replacing each failure transition by an ε-
transition. To compensate for the formerly disallowed
paths, new (dashed red) negatively-weighted transi-
tions are added. The result is promoted to a transducer
T with the output label used to keep track of the source
state in A of the compensated positive transition.

Then, for x ∈ Σ,

C(x, q) =
∑

((qs,qa),x,q,w,(q′s,q′a))∈ET

γT (qs, qa)w

(12)
where e = (p[e], il[e], ol[e], w[e], n[e]) is a tran-
sition in T and γT (qs, q) is the shortest distance
from the initial state to (qs, qa) in T computed over
the real semiring as described in Allauzen and Ri-
ley (2018). Equation 12 is the weighted count of
all paths in S ∩A that begin at the initial state and
end in any transition leaving a state (qs, q) labeled
with x minus the weighted count of those paths
that are disallowed by the failure transitions.

Finally, we compute C(ϕ, q) as follows. The
count mass entering a state must equal the count
mass leaving a state

∑

(qa,x,1,q)∈A
C(x, q) =

∑

(q,x′,1,qa)∈A
C(x′, q).

Thus

C(ϕ, q) =
∑

(qa,x,1,q)∈A
C(x, q)−

∑

(q,x′,1,qa)∈A,
x′∈Σ

C(x′, q).

This quantity can be computed iteratively in the
topological order of states with respect to the ϕ-
labeled transitions.

3.1.2 Arbitrary source and ϕ-WFA target
In some cases, the source is a distribution with
possibly infinite states, e.g., LSTMs. For these
sources, computing C(x, q) can be computa-
tionally intractable as (11) requires a summa-
tion over all possible states in the source ma-
chine, Qs. We propose to use a sampling ap-
proach to approximate C(x, q) for these cases.
Let x(1), x(2), . . . , x(m) be independent random
samples from ps. Instead of C(x, q), we propose
to use

Ĉ(x, q) =
∑

qa∈B(q)

∑

qs∈Qs

γ̂(qs, qa)ps(x|qs)1q=qxa

with x ∈ Σ and where

γ̂(qs, qa) =
1

m

m∑

j=1

∑

i≥0

1qs(xi(j))=qs,qa(xi(j))=qa .

Observe that the expectation E[γ̂(qs, qa)] is given
by

1

m

m∑

j=1

∑

i≥0

E[1qs(xi(j))=qs,qa(xi(j))=qa ]

=
∑

i≥0

ps(x
i : qs(x

i) = qs, qa(x
i) = qa),

hence γ̂(qs, qa) is an unbiased, asymptotically
consistent estimator of γ(qs, qa). Given Ĉ(x, q),
we compute C(ϕ, q) similarly to the previous sec-
tion.

3.2 KL divergence minimization

As noted before, the quantity in braces in the state-
ment of Lemma 2 depends on the distribution pa
only at state q so the minimum KL divergence
D(ps||p∗a) can be found by maximizing that quan-
tity independently for each state.

Fix a state q and let yx , pa(x|q) for x ∈ L[q]
and let y , [yx]x∈L[q]

6. Then our goal reduces to

argmax
y

∑

x∈L[q]

C(x, q) log yx− (13)

∑

q0∈B1(q)

C(ϕ, q0) log
(
1−

∑

x∈L[q0]∩Σ

yx
)

subject to the constraints yx ≥ ε for x ∈ L[q] and∑
x∈L[q] yx = 1.

6We fix some total order on Σ ∪ {ϕ} so that y is well-
defined.
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Algorithm KL-MINIMIZATION
Notation:
• yx = pa(x|q) for x ∈ L(q) • lb = maxx∈L[q] f(x, q,yn) + C(x, q)
• C(x, q) from Equations 9 and 10 • ub = maxx∈L[q] f(x, q,yn) + C(q)
• C(q) =

∑
x′∈L[q] C(x′, q) • k = |L[q]|

• f(x, q,yn) from Equation 15 • ε = lower bound on yx

Trivial case: If C(q) = 0, output y given by yx = 1/k for all x.
Initialization: Initialize:

y0x =
C(x, q)

C(q)
(1− kε) + ε.

Iteration: Until convergence do:
yn+1
x = max

(
C(x, q)

λ− f(x, q,yn)
, ε

)
,

where λ ∈ [lb, ub] is chosen (in a binary search) to ensure
∑

x∈L(q) yx = 1.

Figure 4: KL-MINIMIZATION Algorithm

This is a difference of two concave functions in
y since log(f(y)) is concave for any linear func-
tion f(y), the C(x, q) are always non-negative
and the sum of concave functions is also concave.
We give a DC programming solution to this opti-
mization (Horst and Thoai, 1999). Let

Ω = {y : ∀x, yx ≥ ε,
∑

x∈L(q)

yx ≤ 1},

be the function domain. The DC programming
solution for such a problem uses an iterative pro-
cedure that linearizes the subtrahend in the con-
cave difference about the current estimate and then
solves the resulting concave objective for the next
estimate. Using this procedure on Equation 13
gives yn+1 as

argmax
y∈Ω

∑

x∈L[q]

{
C(x, q) log yx + yxf(x, q,yn)

}

(14)

where

f(x, q,yn) =
∑

q0∈B1(q)

C(ϕ, q0)1x∈L[q0]∩Σ

1−∑x′∈L[q0]∩Σ y
n
x′
. (15)

Observe that 1−∑x′∈L[q0]∩Σ y
n
x′ ≥ ε as the au-

tomaton is backoff-complete and yn ∈ Ω.
Let C(q) be defined as:

C(q) =
∑

x′∈L[q]

C(x′, q)

The following lemma provides the solution to
the optimization problem in (14) which leads to a
stationary point of the objective.

Lemma 3. Solution to (14) given by

yn+1
x = max

(
C(x, q)

λ− f(x, q,yn)
, ε

)
, (16)

where λ is chosen so that
∑

x y
n
x = 1 and lies in

[
max
x∈L[q]

f(x, q,yn) + C(x, q), max
x∈L[q]

f(x, q,yn) + C(q)

]
.

Proof is omitted due to space limitations.
From this, we form the KL-MINIMIZATION al-

gorithm in Figure 4. Observe that if all the counts
are zero, then any solution is an optimal solution
and the algorithm returns a uniform distribution
over labels. In other cases, we initialize the model
based on counts such that y0 ∈ Ω. We then repeat
the DC programming algorithm iteratively until
convergence. Since Ω is a convex compact set
and both the functions are continuous and differ-
entiable in Ω, the KL-MINIMIZATION converges
to a stationary point (Sriperumbudur and Lanck-
riet, 2009, Theorem 4).

4 Experiments

We now provide experimental evidence of the the-
ory’s validity and show its usefulness in various
applications. For the ease of notation, we use
WFA-APPROX to denote the exact counting al-
gorithm described in Section 3.1.1 followed by
the KL-MINIMIZATION algorithm of Section 3.2.
Similarly, we use WFA-SAMPLEAPPROX(N) to
denote the sampled counting described in Section
3.1.2 with N sampled sentences followed by KL-
MINIMIZATION.
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We first give experimental evidence that sup-
ports the theory in Section 4.1. We then show how
to approximate neural models as WFAs in Sec-
tion 4.2. We also use the proposed method to pro-
vide lower bounds on the perplexity given a target
topology in Section 4.3.

For all the experiments we use the 1996 CSR
Hub4 Language Model data, LDC98T31 from the
Broadcast News (BN) task. We use the processed
form of the corpus and further process it to down-
case all the words and remove punctuation. The
resulting dataset has 132M words in the train-
ing set, 20M words in the test set, and has 240K
unique words. From this, we create a vocabu-
lary of approximately 32K words consisting of all
words that appeared more than 50 times in the
training corpus. Using this vocabulary, we create
a trigram Katz model and prune it to contain 2M
n-grams using entropy pruning (Stolcke, 2000),
which we use as a baseline in all our experiments.
We use Katz smoothing since it is amenable to
pruning (Chelba et al., 2010). The perplexity of
this model on the test set is 144.4.7 All algo-
rithms were implemented using the open-source
OpenFst and OpenGrm n-gram and stochas-
tic automata (SFst) libraries8 with the last li-
brary including these implementations (Allauzen
et al., 2007; Roark et al., 2012; Allauzen and Ri-
ley, 2018).

4.1 Empirical evidence of theory

Recall that our goal is to find the distribution on
a target DFA topology that minimizes the KL di-
vergence to the source distribution. However, as
shown in Section 3.2, when the target topology
has failure transitions, the optimization objective
is not convex so the stationary point solution may
not be the global optimum. We now show that the
model indeed converges to a good solution in var-
ious cases empirically.
Idempotency: When the target topology is the
same as the source topology, we show that the
performance of the approximated model matches
the source model. Let ps be the pruned Katz
word model described above. We approximate

7For all perplexity measurements we treat the unknown
word as a single token instead of a class. To compute the per-
plexity with the unknown token being treated as class, multi-
ply the perplexity by k0.0115, where k is the number of tokens
in the unknown class and 0.0115 is the out of vocabulary rate
in the test dataset.

8These libraries are available at www.openfst.org
and www.opengrm.org
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Figure 5: Test set perplexity for Katz baseline and var-
ious approximations of that baseline and of an LSTM
model trained on the same data. Note that the Katz
baseline and Katz WFA-Approx plots are identical.

ps onto the same topology using WFA-APPROX

and WFA-SAMPLEAPPROX(·) and then compute
perplexity on the test corpus. The results are
presented in Figure 5. The test perplexity of
the WFA-APPROX model matches that of the
source model and the performance of the WFA-
SAMPLEAPPROX(N) model approaches that of
the source model as the number of samples N in-
creases.
Comparison to greedy pruning: Recall that en-
tropy pruning (Stolcke, 2000) greedily removes n-
grams such that the KL divergence to the origi-
nal model ps is small. Let pgreedy be the resulting
model andAgreedy be the topology of pgreedy. If the
KL-MINIMIZATION converges to a good solution,
then approximating ps onto Agreedy would give a
model that is at least as good as pgreedy. We show
that this is indeed the case; in fact, approximating
ps ontoAgreedy performs better than pgreedy. In par-
ticular, let ps again be the 2M n-gram Katz model
described above. We prune it to have 1M n-grams
and obtain pgreedy, which has a test perplexity of
157.4. We then approximate ps on Agreedy and
the resulting model has test perplexity of 155.6,
which is smaller than the test perplexity of pgreedy.
This shows that the approximation algorithm in-
deed finds a good solution.

4.2 Neural models to WFA conversion

Since neural models such as LSTMs give im-
proved performance over n-gram models, we in-
vestigated if an LSTM distilled onto a WFA model
can obtain better performance than the baseline
WFA trained directly from Katz smoothing. As
stated in the introduction, this could then be used
together with federated learning for fast and pri-
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vate on-device inference.
To explore this, we trained an LSTM language

model on the training data. The model has 2
LSTM layers with 1024 states and embedding size
of 1024. The resulting model has a test perplexity
of 60.5. We approximate this model as an WFA in
two ways from samples drawn from the LSTM.

The first way is to construct a Katz n-
gram model on N LSTM samples and entropy-
prune to 2M n-grams, which we denote by
WFA-SAMPLEKATZ(N). The second way is
is to approximate onto the baseline Katz 2M
n-gram topology described above using WFA-
SAMPLEAPPROX(N). The results are in-
cluded in Figure 5. It shows that the WFA-
SAMPLEKATZ(N) model performs significantly
worse than the baseline Katz model even at 32M
samples, while the WFA-SAMPLEAPPROX(N)
models have better perplexity than the baseline
Katz model with as little as 1M samples. With
32M samples this way of approximating the
LSTM model as a WFA is 3.6 better in perplex-
ity than the baseline Katz.

4.3 Lower bounds on perplexity
The neural model in Section 4.2 has a perplexity of
60.5, but the best perplexity for the approximated
model is 140.8. Is there a better approximation
algorithm for the given target topology? We place
bounds on that next, in our final experiment.

Let T be the set of test sentences. The test-set
log-perplexity of a model p can be written as

1

|T |
∑

x∗∈T
log

1

p(x∗)
=
∑

x∗
p̂t(x

∗) log
1

p(x∗)
,

where p̂t is the empirical distribution of test sen-
tences. Observe that the best model with topology
A can be computed as

p′a = argmin
pa∈P(A)

∑

x∗
p̂t(x

∗) log
1

pa(x∗)
,

which is the model with topology A that has min-
imal KL divergence from the test distribution p̂t.
This can be computed using WFA-APPROX . If
we use this approach on the BN test set with the
2M n-gram Katz model, the result has a perplex-
ity of 121.1. This demonstrates that, under the as-
sumption that the algorithm finds the global KL
divergence minimum, the test perplexity with this
topology cannot be improved beyond 121.1, irre-
spective of the method.

What if we approximate the LSTM onto the best
trigram topology? To test this, we build a tri-
gram model from the test data and approximate
the LSTM on the trigram topology. This approxi-
mated model has 11M n-grams and a perplexity of
81. This shows that for large datasets, the shortfall
of n-gram models in the approximation is in the
n-gram topology.

5 Summary

In this paper, we have presented an algorithm for
minimizing the KL-divergence between a proba-
bilistic source model over sequences and a WFA
target model. Our algorithm is general enough
to permit source models of arbitrary form (e.g.,
RNNs) and a wide class of target WFA models,
importantly including those with failure transi-
tions, such as n-gram models. We provide some
experimental validation of our algorithm, includ-
ing demonstrating that it is well-behaved in com-
mon scenarios and that it yields improved per-
formance over baseline n-gram models using the
same WFA topology. Additionally, we use our
methods to provide lower bounds on how well a
given WFA topology can model a given test set.
All of the algorithms reported here are available
in the open-source OpenGrm libraries at http:

//www.opengrm.org.
In addition to the above-mentioned results, we

also demonstrated that optimizing the WFA topol-
ogy for the given test set yields far better perplexi-
ties than were obtained using WFA topologies de-
rived from training data alone, suggesting that the
problem of deriving an appropriate WFA topology
– something we do not really touch on in this paper
– is particularly important.
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Abstract

Modeling sequence data using probabilistic fi-
nite state machines (PFSMs) is a technique
that analyzes the underlying dynamics in se-
quences of symbols. Hidden semi-Markov
models (HSMMs) and hierarchical hidden
Markov models (HHMMs) are PFSMs that
have been successfully applied to a wide va-
riety of applications by extending HMMs to
make the extracted patterns easier to interpret.
However, these models are independently de-
veloped with their own training algorithm,
so that we cannot combine multiple kinds of
structures to build a PFSM for a specific appli-
cation. In this paper, we prove that silent hid-
den Markov models (silent HMMs) are flex-
ible models that have more expressive power
than HSMMs and HHMMs. Silent HMMs
are HMMs that contain silent states, which
do not emit any observations. We show that
we can obtain silent HMM equivalent to given
HSMMs and HHMMs. We believe that these
results form a firm foundation to use silent
HMMs as a unified representation for PFSM
modeling.

1 Introduction

Probabilistic finite state machines (PFSMs) are
widely used for modeling non-deterministic be-
haviors in languages (Wang and Manning, 2012).
One of the powerful applications of PFSMs is au-
tomatic (unsupervised) induction of language pat-
terns (Stratos et al., 2016). The automatic induc-
tion of finite state models can potentially impact
the direction that research takes on finite state ma-
chines, which have been applied to natural lan-
guage processing such as morphological modeling
(Ehsani et al., 2017), word transduction between
different languages (Sharma and Singh, 2017), di-
alog action (Torres, 2013), etc.

Hidden Markov models (HMMs) are the sim-
plest and most well-known probabilistic finite
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Figure 1: A hidden state sequence of silent HMM. zt
corresponds to multiple hidden states that constitute a
silent Markov chain.

state machines. However, the unsupervised train-
ing of HMMs usually does not produce good finite
state machines like the ones crafted by human ex-
perts because of the complexity of reconstructing
language patterns from a finite number of obser-
vations. Human experts can build finite state ma-
chines that are comprehensible because they have
intuition about the latent structure of languages.

This discussion suggests that we need to in-
corporate prior knowledge into the model struc-
ture of HMMs, which is a basic idea that per-
vades the recent methods of automatic induction
of language patterns (Stratos et al., 2016; Jin et al.,
2018). Several kinds of PFSMs, such as hid-
den semi-Markov models (HSMMs) (Moore and
Savic, 2004; Yu, 2010) and hierarchical hidden
Markov models (Fine et al., 1998; Wakabayashi
and Miura, 2012), reflect several different addi-
tional structural assumptions. Each model comes
with a specialized training algorithm that has to
be implemented separately. This requirement pre-
vents us from trying several models; more im-
portantly, we cannot easily combine multiple as-
sumptions that are implemented in different PF-
SMs. To move the research of automatic finite
state machine induction forward, we need to de-
velop a more flexible way to incorporate our prior
knowledge into the PFSMs.
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In this paper, we propose silent hidden Markov
models (silent HMMs) as a generalized represen-
tation of other PFSMs that at least can express the
structure that is assumed in HSMMs and HHMMs.
A silent HMM is an HMM that contains silent
states, which do not emit any observations. We
prove that the expressive power of silent HMMs is
better than HSMMs and HHMMs, and we propose
a method that obtains a silent HMM that is equiv-
alent to an HSMM and an HHMM. This result in-
dicates that we can combine and/or customize the
structural assumptions of HSMMs and HHMMs in
the unified framework of silent HMMs, potentially
leading us to more precise and flexible automatic
induction of finite state machines.

The rest of the paper is organized as follows. In
Section 2, we dfine silent HMMs. In Sections 3
and 4, we detail the HSMMs and HHMMs respec-
tively and prove the expressivity of silent HMMs
is better than these models. In Section 5, we dis-
cuss an inference algorithm of silent HMMs. In
Section 6, we conclude the discussion and men-
tion future work.

2 Silent HMMs

The concept of the silent states, also known as
“null emission” in HMMs, has been used in speech
recognition (Bahl et al., 1983; Rabiner, 1989) and
DNA modeling in bioinformatics (Krogh et al.,
1994; Eddy, 1998) to express optional sounds or
letters in sequences that are implicitly dropped
from observations. Recently, Wakabayashi (2018)
applied a silent HMM to natural language sen-
tences to extract phrase structures in an unsuper-
vised manner. However, surprisingly few descrip-
tions exist in literature that define silent HMMs in
a formal way. In this section, we formally define
silent HMMs.

Let x1:T = x1, . . . , xT be the sequence of
observations and X be the domain of each ob-
servation (xt ∈ X ). We denote the states
that correspond to each observation xt by zt =
zt,1, . . . , zt,|zt|. In silent HMMs, zt can be a se-
ries of states that contain multiple silent states
that precede a normal state producing xt. Fig-
ure 1 illustrates the relationship between xt and
zt. zt,1, . . . , zt,|zt|−1 are all silent states and zt,|zt|
is a normal state.

A silent HMM is defined by a tuple
(X , Q,C,R,π, A,Θ). Q is a finite set of
states. Silence assignment C : Q → {0, 1} is

a mapping that designates silent states. Each
state is either a silent state or a normal state.
C(q) = 1 indicates that the state q ∈ Q is a
silent state and C(q) = 0 means q is a normal
state. The set of normal states is denoted by
Qn = {q ∈ Q|C(q) = 1} and the set of silent
states is denoted by Qs = {q ∈ Q|C(q) = 0}.
R is a predicate that defines a transition topol-

ogy. The domain of R is Q × Q. If R(q1, q2) is
true, the transition from q1 to q2 is allowed. In the
rest of the paper, we also use q1

R−→ q2 to indicate
R(q1, q2) is true.

The joint likelihood of x1:T and z1:T is de-
scribed as follows.

p(x1:T , z1:T ) =

T∏

t=1

p(zt|zt−1)p(xt|zt,|zt|). (1)

Since zt = zt,1, . . . , zt,|zt|, p(zt|zt−1) is the joint
probability given as below.

p(zt|zt−1) = p(zt,1|zt−1,|zt−1|)
|zt|∏

τ=1

p(zt,τ |zt,τ−1).

(2)

When t = 1, the first term in Eq (2), p(z1,1|z0,|z0|),
is defined as an initial state probability. π is a
|Q| dimensional vector that represents the initial
state distribution. A is a |Q|× |Q|matrix of which
Aq1,q2 indicates the transition probability from q1

to q2; e.g., p(zt,τ = q2|zt,τ−1 = q1) = Aq1,q2 .
For q1, q2 such that R(q1, q2) is false, Aq1,q2 is re-
stricted to being zero. Θ = {θq}q∈Qn is param-
eters of the emission distribution p(xt|zt,|zt|) for
each normal state.
X , Q,C,R are meta-parameters of silent

HMMs, which are not trainable from data. These
meta-parameters reflect prior knowledge of a
structure of sequence data. In the following
sections, we show that there is a set of meta-
parameters that makes the likelihood function of
silent HMM identical to the likelihood function of
HSMMs and HHMMs.

3 Hidden Semi-Markov Models

3.1 Model Definition
A hidden semi-Markov model (HSMM) is a prob-
abilistic automaton that allows a state to emit mul-
tiple observations. Figure 2 illustrates a hidden
state sequence of HSMMs. HSMMs explicitly
consider a probabilistic distribution of the dura-
tion. For example, in Figure 2, the duration of the
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Figure 2: Example of a hidden state sequence of
HSMM

first state z1 = 2 is d1 = 3, meaning the state
keeps emitting three observations (x1, x2, and x3)
following the i.i.d. distribution of p(x|z = 2). The
duration of each state is stochastically determined
depending on the state. While multiple ways to de-
fine the distribution of duration p(d|z) have been
proposed (Yu, 2010), we use categorical distribu-
tions with D possible classes to represent p(d|z)
where D ∈ N is the maximum duration.

An HSMM is defined by a tuple
(X , Q′, D,π′, A′,Φ,Θ′). X is a domain of
observations, Q′ is a set of states, and D ∈ N is a
maximum duration. A′ is a transition probability
matrix where the transition probability from the
state i to j is A′i,j . π

′ is an initial probability vec-
tor where the initialization probability of the state
i is π′i. Φ = {φi}i∈Q′ is a set of parameters of
duration distribution where p(d|z) = φz,d. Θ′ is a
set of parameters for the emission distributions.

Let x = x1, . . . , xT be a sequence of obser-
vations, z = z1, . . . , zn be a sequence of hidden
states, and d = d1, . . . , dn be a sequence of dura-
tion variables. We use n to indicate the length of
the hidden state sequence, which is not necessarily
equal to T . Instead,

∑n
τ=1 dτ must be equal to T .

The likelihood function of an HSMM is defined as
follows;

p(x1:T , z1:n,d1:n) =

π′z1

n∏

τ=2

A′zτ−1,zτ

n∏

τ=1

φzτ ,dτ

T∏

t=1

p(xt|θzc(t)), (3)

where c(t) is a function that returns the index of
the hidden state that corresponds to the observa-
tion xt.

X , Q′, D are meta-parameters of HSMMs that
are not trainable from data. In the next section,
we demonstrate how an HSMM that has meta-
parameters X , Q′, D can be equivalently repre-
sented as a silent HMM.
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Figure 3: (Top) Hidden state sequence of the silent
HMM that is equivalent to the state sequence of the
HSMM in Figure 2 (Bottom) State transition diagram

3.2 Expressivity of HSMMs and Silent
HMMs

Given an HSMM that has meta-parameters
X , Q′, D, we can obtain an equivalent silent
HMM that has meta-parameters (X , Q,C,R).
Figure 3 depicts the representation of the transi-
tion dynamics of an HSMM by a silent HMM.
The duration of each state is represented explic-
itly by a transition throughout “countdown states.”
A countdown state qi,d only changes to qi,d−1. The
state of the last count qi,1 changes to bj , which in-
dicates a silent state that represents the beginning
of the state j in HSMM. The transition probabili-
ties from bj correspond to the duration probability
p(d|z = j).

Here, we explain the proposed mapping from a
tuple of meta-parameters (Q′, D) of HSMMs to a
tuple of meta-parameters (Q,C,R) of the equiv-
alent silent HMMs. First, Q is constructed as a
union of a set of countdown states Qc and a set
of beginning states Qb. We define Qc and Qb as
follows.

Qc = {qi,d}i∈Q′,1≤d≤D
Qb = {bi}i∈Q′ .

The whole set of states in the silent HMM is de-
fined asQ = Qb∪Qc. The elements inQc are nor-
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mal states and the elements in Qb are silent states.

C(q) =

{
0 q ∈ Qc
1 q ∈ Qb.

The transition topologyR is defined as depicted in
Figure 3 (Bottom). More formally:

∀i, d(bi
R−→ qi,d)

∀i, j(qi,1 R−→ bj)

∀i, d > 1(qi,d
R−→ qi,d−1).

To show the equivalency of the given HSMM
and the obtained silent HMM, we also specify
a surjective mapping from the distributions in
the silent HMM parameterized by (π, A,Θ) to
the distributions in the HSMM parameterized by
(π′, A′,Φ,Θ′).

• The D-dimensional categorical distribution
in the silent HMM for transition from the
state bi ∈ Qb parameterized by Abi is
mapped into the categorical distribution in
the HSMM for the duration of the state i pa-
rameterized by φi.

• The |Q|-dimensional categorical distribution
in the silent HMM for transition from the
state qi,1 parameterized by Aqi,1 is mapped
into the categorical distribution in the HSMM
for the transition from the state i parameter-
ized by A′i.

• The emission distribution of the state qi,d in
the silent HMM is mapped into the emission
distribution of the state i in the HSMM for
any d ∈ D.

Note that the destination of the transition from qi,d
is only qi,d−1 for any d > 1; therefore, the transi-
tion probability from qi,d to qi,d−1 is always one.
Lemma 1. The likelihood function of the silent
HMM constructed in the way described above is
equivalent to the likelihood function of the given
HSMM.

This lemma can be proved straightforwardly by
mapping random variables as shown in Figure 3
(Top) and putting mapped parameters in Eqs. (1)
and (2).
Theorem 1. The expressivity of silent HMMs is
better than the expressivity of HSMMs. In other
words, the mapping from an HSMM to a silent
HMM that makes the likelihood function equiva-
lent is injective and not surjective.

Proof of being injective is easy: We can con-
firm that different HSMMs have different likeli-
hood functions. If the mapping is not injective,
two HSMMs with different likelihood functions
are mapped into the same silent HMM. This con-
tradicts the Lemma 1. Being not surjective is ob-
vious; for silent HMMs, we can set different meta-
parameters from ones explained above.

This result is useful in practice because we can
use an implementation of the silent HMMs when
we want to use HSMMs. We do not need to im-
plement the training algorithm and the Viterbi al-
gorithm just for HSMMs.

4 Hierarchical HMMs

4.1 Model Definition
A hierarchical HMM (HHMM) is a probabilistic
automaton that simulates multiple Markov chains
that have a hierarchical relationship. Figure 4 il-
lustrates the dynamics of an HHMM that has three
hierarchy levels. A hidden state sequence is in
each level. Each state sequence can be terminated
probabilistically when the sequence reaches a spe-
cial End state. The state at level d is allowed to
change to another state at time step t only when
the state sequences at all the lower levels are ter-
minated. If a state sequence at level d is terminated
at time step t, a state sequence is initialized again
at the next time step t + 1. Only the states at the
bottom level emit the observation. The probabilis-
tic distribution of state transitions and observation
emissions depend on the combination of the states
at all the upper levels1. For example, the state tran-
sition from the bottom state 2 to state 1 at time step
t = 1 in Figure 4 depends on all the upper states,
namely, state 2 at the top level d = 1 and state 1 at
the middle level d = 2.

An HHMM is defined by a tuple
(X , N, L,π′′, A′′,Θ′′) where N is the num-
ber of states in each Markov chain and L is the
number of levels. The HHMM in Figure 4 has
N = 2 and L = 3. When the states at level 1 to
d − 1 are k = (k1, . . . , kd−1), the state transition
probability from the state i to the state j at level
d is denoted by A′′ki,j and the state initialization
probability of the state i at level d is represented
by π′′ki . We consider a special symbol End as

1Another version of HHMMs shares the probabilistic dis-
tributions among the states that have different upper states
(Bui et al., 2004). Although we could extend the discussion
in this section to adapt to this version, we do not go into detail
due to the length limitations.
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Figure 4: Example of a hidden state sequence of hier-
archical HMM

another destination of state transition, which
triggers the termination of the state sequence at
that level. The transition parameters A′′ satisfy
the following condition for all i and k.

∑

j∈N≤N∪{End}
A′′ki,j = 1,

where N≤N is a set of natural numbers that are less
than or equal toN (representing the set of states on
the Markov chain at that level).

The formulation of the likelihood function of
HHMMs is complicated because the length of
state sequence is different at each level. To sim-
plify the situation, we apply a variable conversion
proposed by (Murphy and Paskin, 2002) that ex-
plicitly considers random variables that represent
the state at each time step for all levels. Formally,
we define zd = zd1 , . . . , z

d
T as a sequence of hidden

states at level d. For example, the state sequences
in Figure 4 are represented as z1 = 2, 2, 2, 2, 1, 1,
z2 = 1, 1, 2, 2, 1, 1, and z3 = 2, 1, 1, 2, 1, 2.
We also consider a set of binary auxiliary vari-
ables {fdt } that indicate if the state sequence at
level d is terminated at time step t. For exam-
ple, f1:L

1 = 0, 0, 0, f1:L
2 = 0, 0, 1, f1:L

3 = 0, 0, 0,
f1:L
4 = 0, 1, 1. fdt has to be 0 whenever fd+1

t = 0
because the state does not change at level d if the
state sequence at the lower level d + 1 is not ter-
minated.

Using this representation, we can formulate the
likelihood function of HHMMs as Eq. (4). For
simplicity, we define fL+1

t = 1. The first factor
(a) corresponds to an initialization of the state se-
quences at time step t = 1. The second factor (b)
indicates a product of termination probabilities, a
transition probability, and initialization probabili-
ties for each time step. For example, consider the
case of t = 4 for the state sequences in Figure 4.
Since f1:L

4 = 0, 1, 1, we calculate the product of
two termination probabilities A′′(2,2)

2,End, A
′′(2)
2,End (for

d = 3 and d = 2), one transition probability A′′2,1
(for d = 1), and two initialization probabilities
π
′′(1)
1 , π

′′(1,1)
1 (for d = 2, d = 3). The third factor

(c) is a product of emission probabilities for all
observations.

Since the dynamics of HHMMs are complex, an
inference algorithm needs to be reformulated as a
specialized algorithm. Several inference methods
have been proposed, such as a modified inside-
outside algorithm (Fine et al., 1998), an inference
based on dynamic Bayesian network (Murphy and
Paskin, 2002), a method based on a variable con-
version (Wakabayashi and Miura, 2012), etc. The
unsupervised training of HHMMs produces finite
state machines that reflect hierarchical sequential
patterns on letter sequences in natural language
text (Fine et al., 1998), musical pitch structure
(Weiland et al., 2005), etc.

4.2 Expressivity of HHMMs and Silent
HMMs

Given an HHMM that has meta-parameters
X , N, L, we show a method of obtaining a silent
HMM that has the equivalent likelihood function.
First, we represent the combination of the states in
a tree structure as shown in Figure 6 because the
probabilistic behaviors in HHMMs depend on the
combination of states in all the upper levels. We
denote the set of nodes in this tree, excluding the
special ROOT node by Ω. Let parent : Ω →
Ω ∪ {ROOT} be a function that maps a node to
its parent node. We denote the children of the node
ω ∈ Ω by child(ω) = {v|parent(v) = ω} and
the siblings by sib(ω) = child(parent(ω)). We
also denote the set of leaf nodes by Ωl = {v ∈
Ω|child(v) = φ} and the set of non-leaf nodes by
Ωn = Ω− Ωl.

Figure 7 shows an equivalent representation of
the hidden states of the HHMM in Figure 4, which
illustrates the basic idea for obtaining a silent
HMM that has an identical likelihood function.
Each state in the silent HMMs corresponds to a
node in Figure 6. A leaf node is represented as
a normal state denoted by q, and a non-leaf node
is represented as a silent state. Termination of a
state sequence is represented by a state transition
to a silent state denoted by e at an upper level. A
state transition at an upper level is represented by
a state transition from a silent state denoted by e to
another silent state denoted by b. An initialization
of a state at a lower level is represented by a state
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p(x1:T , z
1:L
1:T , f

1:L
1:T ) =

L∏

d=1

π
′′z1:d−1

1

zd1

︸ ︷︷ ︸
(a)

T−1∏

t=1

L∏

d=1

(
A
′′z1:d−1
t

zdt ,End

)fdt (
A
′′z1:d−1
t

zdt ,z
d
t+1

)fd+1
t (1−fdt )(

π
′′z1:d−1
t+1

zdt+1

)fdt

︸ ︷︷ ︸
(b)

T∏

t=1

p(xt|θ′′z1:Lt )

︸ ︷︷ ︸
(c)

(4)

Figure 5: Likelihood function of HHMMs
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Figure 6: Tree structure that expresses the combination
of states in the HHMM with N = 2, L = 3.

transition from a silent state denoted by b to a state
at a lower level.

We propose a mapping from a tuple of meta-
parameters (N,L) of HHMMs to a tuple of meta-
parameters (Q,C,R) of silent HMMs to make
equivalent likelihood functions. First, we con-
struct the tree structure shown in Figure 6 from
N and L and obtain the sets of nodes Ω,Ωl, and
Ωn. We define a set of production states Qq, a set
of beginning states Qb, and a set of ending states
Qe as follows:

Qq = {qω}ω∈Ωl

Qb = {bω}ω∈Ωn

Qe = {eω}ω∈Ωn .

The whole set of states in the silent HMM is Q =
Qq ∪ Qb ∪ Qe. The elements in Qb and Qe are
silent states and elements in Qp are normal states.

C(q) =

{
1 q ∈ Qb ∪Qe
0 q ∈ Qq

The transition topology R is designed like in Fig-
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Figure 7: (Top) Hidden state sequence of the silent
HMM that is equivalent to the state sequence of the hi-
erarchical HMM in Figure 4. (Bottom) State transition
diagram.

ure 7 (Bottom). More formally:

∀ω ∈ Ωn, ∀ω′ ∈ child(ω)(ω′ ∈ Ωn =⇒ bω
R−→ bω′)

∀ω ∈ Ωn, ∀ω′ ∈ child(ω)(ω′ ∈ Ωl =⇒ bω
R−→ qω′)

∀ω ∈ Ωl, ∀ω′ ∈ sib(ω)(qω
R−→ qω′)

∀ω ∈ Ωl(qω
R−→ eparent(ω))

∀ω ∈ Ωn, ∀ω′ ∈ sib(ω)(eω
R−→ bω′)

∀ω ∈ Ωn(eω
R−→ eparent(ω)).

The transition from bω corresponds to the initial-
ization of the lower state sequence. The transition
from qω or eω to eparent(ω) indicates the termina-
tion of the state sequence at that level.

To show the equivalency of the likelihood func-
tion, we also specify a mapping from the distribu-
tions in the silent HMM parameterized by π, A,Θ
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to the distributions in the given HHMM parame-
terized by π′′, A′′,Θ′′.

• The N -dimensional categorical distribution
in the silent HMM for transition from the
state b(i1,...,id) ∈ Qb is mapped into the cat-
egorical distribution in the HHMM for state
initialization parameterized by π′′(i1,...,id).

• The (N + 1)-dimensional categorical distri-
bution in the silent HMM for the transition
from the state q(i1,...,id) ∈ Qq and e(i1,...,id) ∈
Qe is mapped into the categorical distribu-
tion in the HHMM for the state transition
from id parameterized by A

′′(i1,...,id−1)
id

. The
state transition to e(i1,...,id−1) is mapped into

A
′′(i1,...,id−1)
id,End

.

• The N -dimensional categorical distribution
in the silent HMM for initialization probabil-
ities parameterized by π is mapped into

Lemma 2. The likelihood function of the silent
HMM constructed in the way described above is
equivalent to the likelihood function of the given
HHMM.

Proof. The proof of this lemma is based on a
comparison between the likelihood function of the
silent state sequence in Eq. (1) (2) and factors
(a), (b), (c) in Eq. (4).

Factor (a) For t = 1, the length of the silent
state sequence is exactly L because the sequence
starts from a state inQb at the top level and follows
links to a state at the next lower level. As we de-
fined above, the distribution in the silent HMM for
the transition from the state in Qb is mapped into
the state initialization distribution in the HHMM
parameterized by π. This product is identical to
the first factor (a) in Eq. (4).

Factor (b) This factor depends on the values
ft. We can say that ft is a variable that indi-
cates the level that holds a state transition. Let
l(ft) be the level that holds a state transition.
For example, when f1:L

t = 0, 0, 1, the level 2
holds a state transition and l(ft) = 2. Given
ft, the silent state sequence for the time step t
is e(z1t ,...,z

L−1
t ), . . . , e(z1t ,...,z

l(ft)
t )

, b
(z1t+1,...,z

l(ft)
t+1 )

,

. . . , b(z1t+1,...,z
L−1
t+1 ), q(z1t+1,...,z

L
t+1). By putting the

mapped parameters into the product of the transi-
tion probabilities in this trajectory, we can confirm
that the probability is identical to the factor (b) in
Eq. (4) for any ft.

Factor (c) Factor
∏T
t=1 p(xt|q(z1t ,...,z

L
t )) in Eq.

(1) is identical to the factor (c).

Theorem 2. The expressivity of silent HMMs is
better than the expressivity of HHMMs.

The theorem can be proved in the same way as
Theorem 1. We emphasize again that this result is
useful because we can use an implementation of
the silent HMMs when we want to use HHMMs.
This generalization also brings more flexibility to
the modeling of PFSMs that will allow us to ex-
plore new useful classes of sequence models in fu-
ture work.

5 Inference of silent HMMs

5.1 Silent Circuit Constraint
In this section, we discuss an inference algorithm
used for EM training of silent HMMs. For infer-
ence of silent HMMs, we need to be careful of
an infinite length of state sequence that possibly
happen by an infinite loop of transitions between
silent states. Explicit consideration of an infinite
loop of state transitions obviously complicates an
inference algorithm. In this paper, we impose a
sufficient condition on meta-parameters (Q,C,R)
that ensures the length of a state sequence is finite.

To derive the condition, we consider silent tran-
sition topology, a directed graph representing pos-
sible silent state transitions. The graph is obtained
from the directed graph representation of R by
omitting outlinks from all the normal states. More
formally:

Definition 1 (Silent transition topology). LetQ be
a set of states, C be a mapping that indicates the
silence assignment, and R be a transition topol-
ogy. Let Rs be a set of edges defined as follows:

Rs = {(q1, q2) ∈ Qs ×Q|q1
R−→ q2}.

A directed graphGs = (Q,Rs) is silent transition
topology induced by (Q,C,R).

Figure 8 shows an example of a silent transition
topology. A silent transition topology represents
all the possible transitions allowed in a state se-
quence at a single time step, zt. Based on the set
of meta-parameters in Figure 8 (Left), we can say
a state sequence zt = q1, q3, q4 never happens at
a single time step because q3 is a normal state that
produces an observation. Therefore, the state se-
quence must split into zt = q1, q3 and zt+1 = q4.
The state transition topology (Figure 8 (Right))
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clearly expresses this property, since there is no
link from q3 to q4.

We can use the definition of silent transition
topology to derive a sufficient condition that en-
sures the length of state sequence at a single time
step to be finite.

Definition 2 (Silent circuit constraint). A set of
meta-parameters (Q,C,R) satisfies silent circuit
constraint if the silent transition topology induced
by (Q,C,R) does not contain any circuits.

Theorem 3. If a silent HMM has meta-parameters
satisfying the silent circuit constraint, p(zt|zt−1)
is always zero whenever |zt| > |Qs|+ 1 for any t
and zt−1.

Proof. p(zt|zt−1) is greater than 0 only when zt
is a path in the silent transition topology because
transition probabilities from q1 to q2 are restricted
to being zero when ¬q1

R−→ q2. Since the silent
transition topology contains no circuits and nor-
mal states have no outlinks, the length of a path in
the silent transition topology is at most |Qs| + 1.
From these facts, p(zt|zt−1) = 0 when |zt| >
|Qs|+ 1.

Silent HMMs that satisfy the silent circuit con-
straint form a subclass of general silent HMMs.
The following theorems show that the constrained
silent HMMs have more expressive power than
HSMMs and HHMMs.

Theorem 4. The silent HMM constructed from a
given HSMM by using the method explained in
Section 3.2 satisfies the silent circuit constraint.

Theorem 5. The silent HMM constructed from a
given HHMM by using the method explained in
Section 4.2 satisfies the silent circuit constraint.

These theorems are easily proven by checking
that the silent transition topologies contain no cir-
cuits. Based on these results, we can apply effi-
cient inference algorithms (explained in the next
section) to silent HMMs that are equivalent to
HSMMs and HHMMs.

5.2 Inference Algorithms
The inference of silent HMMs indicates a calcula-
tion of the expectations of hidden states z given
a sequence of observations x. We describe a
modified forward-backward algorithm for the in-
ference of silent HMMs. The forward-backward
algorithm is an inference algorithm for normal
HMMs based on efficient computation of forward
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Figure 8: (Left) A set of meta-parameters (Q,C,R)
that satisfies the silent circuit constraint. (Right) Silent
transition topology obtained omitting the outlinks from
the normal states.
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Figure 9: Propagation of the forward probabilities in
the silent HMM that has a transition topology in Fig-
ure 8. We can calculate the forward probabilities in
O(T |Q|2) with the same complexity as normal HMMs
by processing in the topologically sorted order of the
states.

and backward probabilities. In this paper, we ex-
plain the calculation of forward probabilities to
handle the existence of silent states to apply the
algorithm to silent HMMs. For details on the
forward-backward algorithm, please refer to (Ra-
biner, 1989).

The forward probability of state qi at time step
t is defined as the joint probability of the observa-
tions until the time step t. For silent HMMs, we
divide cases for silent states and normal states as
follows.

αt(q)=

{
p(zt = q, x1:t−1) C(q) = 1(silent)

p(zt = q, x1:t) C(q) = 0(normal).

While multiple transitions can be involved in a
single time step t in silent HMMs, the forward
probabilities can be efficiently calculated by fol-
lowing the topological order of states in the silent
transition topology. Given a silent HMM with
meta-parameters (Q,C,R), we obtain a silent
transition topology and apply the topological sort
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algorithm to the directed graph of the silent transi-
tion topology. The obtained topological order re-
flects the possible order of transitions throughout
the silent states at a single time step t. Figure 9
shows the flow of the computation of αt for the
silent HMM that has the transition topology ex-
pressed in Figure 8. By following the topologi-
cal order we decided in this way, the computation
of αt for each state can be done with the compu-
tational complexity O(|Q|2), which has the same
computational complexity as the normal HMMs.
The recursive formula is derived as follows:

αt(q) =
∑

q′∈Qn
αt−1(q′)Aq′,q

+
∑

q′∈T (q)∩Qs
αt(q

′)Aq′,q,

where T (q) is a set of states that are earlier than q
in the topological order imposed on R.

While we are omitting the case for the backward
probabilities due to length limitations, we can ef-
ficiently calculate the backward counterpart and
apply the forward-backward algorithm to ensure
the inference is the same computational complex-
ity as normal HMMs. We are not detailing the al-
gorithm that estimates the most likely hidden state
sequence, but we can obtain the Viterbi algorithm
straightforwardly by replacing the forward com-
putation in the Viterbi algorithm for HMMs (Ra-
biner, 1989) with the method we explained above.

6 Conclusion

In this paper, we provided formal descriptions
of silent HMMs and proposed methods to obtain
silent HMMs that are equivalent to given HSMMs
and HHMMs. We believe that our results establish
a firm foundation to use silent HMMs as a unified
framework for PFSM modeling.

Future work includes developing PFSMs for
modeling structures in natural language (e.g.,
morphological structure) by combining the struc-
tural assumptions in HSMMs and HHMMs in the
framework of silent HMMs. Other future work
is more advanced Bayesian extensions of silent
HMMs incorporating Dirichlet prior (Foti et al.,
2014) and nonparametric Bayesian prior (Beal
et al., 2002; Heller et al., 2009). These extensions
coule enable us to estimate the number of states
during the training process, offering more power-
ful PFSM modeling methods.
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Abstract
The use of the Latin script for text en-
try of South Asian languages is common,
even though there is no standard orthogra-
phy for these languages in the script. We
explore several compact finite-state archi-
tectures that permit variable spellings of
words during mobile text entry. We find
that approaches making use of transliter-
ation transducers provide large accuracy
improvements over baselines, but that sim-
pler approaches involving a compact rep-
resentation of many attested alternatives
yields much of the accuracy gain. This is
particularly important when operating un-
der constraints on model size (e.g., on inex-
pensive mobile devices with limited storage
and memory for keyboard models), and on
speed of inference, since people typing on
mobile keyboards expect no perceptual de-
lay in keyboard responsiveness.

1 Introduction
Many of the world’s writing systems present
challenges for machine readable text entry
compared with alphabetic writing systems
(such as the Latin script used for the English
in this paper). For example, a very large char-
acter set, such as that used for Chinese, can be
impractical to represent on a keyboard requir-
ing direct selection of characters; hence spe-
cialized encoding methods are generally used
based on smaller symbol sets. For example,
the well-known pinyin system for text entry
of Chinese relies on Latin alphabetic codes to
input Chinese characters. South Asian lan-
guages, such as Tamil and Hindi, also use
writing systems that, while lacking the thou-
sands of characters as in Chinese, are nonethe-
less challenging for direct typing (particularly
on mobile devices), and hence are frequently
entered using the Latin alphabet. In those
languages, however, unlike Chinese, there is

no single system that is used for romaniza-
tion, rather individuals typically provide a
rough phonetic transcription of the words in
the Latin script.

The use of pinyin for Chinese is gener-
ally part of a system for converting the text
into the native script, and this can also be
achieved for keyboards in South Asian lan-
guages (Hellsten et al., 2017). However, for
these languages, many individuals prefer to
simply leave the text in the Latin script rather
than converting to the native script. To pro-
vide full mobile keyboard functionality in such
a scenario – including, e.g., word prediction
and completion, and automatic correction of
so-called fat finger errors in typing – language
model support must be provided. Yet in the
absence of a standard orthography, encod-
ing word-to-word dependencies becomes more
complicated, since there may be many possible
versions of any given word.

In this paper, we examine a few practical
alternatives to address the lack of a conven-
tionalized Latin script orthography for use in a
finite-state keyboard decoder. We use several
different transducers that normalize input ro-
manizations to either a native script word form
or a “canonical” Latin script form1 in order to
combine with a word-based language model.
To produce Latin script after this normaliza-
tion, we must produce text from the input
tape of these transducers. We also present an
alternative method involving a compact rep-
resentation of a large supplementary lexicon
that covers highly likely romanizations of in-
vocabulary words. All of these methods pro-
vide accuracy improvements over the baseline

1We use canonical in quotes here and elsewhere be-
cause there is no standard orthography hence no true
canonical form; rather, for each native script word in
our lexicon, we choose one romanization as “canonical”.
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(fixed vocabulary) method.
In the next section, we give some back-

ground on the problem before outlining our
new methods. We then present experimental
results of keyboard entry simulation for Hindi,
in which we demonstrate over 50% relative re-
duction in error rate2 over existing baselines.

2 Background and preliminaries

2.1 South Asian romanization
Romanized text entry is widely used in lan-
guages, such as Hindi and Arabic, for which
there is no agreed-upon adherence to any
particular conventionalized representation in
the Latin script such as is found in Chi-
nese. South Asian languages written na-
tively in a Brahmic script, including Hindi,
Bengali, Tamil and many others, are heav-
ily romanized mainly due to the complex-
ity of typing the scripts. These scripts are
abugida (or alphasyllabary) writing systems
that are based on consonant/vowel “syllables”
(akṣara) that pair consonants with a default
vowel. Alternative vowels (as well as the lack
of a vowel) are designated through the use
of various diacritic marks that can appear
above, below, or on either side of the conso-
nant (or consonant cluster). This, along with
complex multi-consonant ligatures (known as
conjuncts), makes direct use of native script
keyboards relatively uncommon. An exem-
plar word in the Devanagari script contain-
ing such complex graphemes is given in Fig-
ure 1. Romanization is also used for Perso-
Arabic scripts in South Asia, such as that used
for Urdu, but not presumbably due to com-
plexities in representing such scripts on native
keyboards, but rather due to historical rea-
sons3 and perhaps the influence of other re-
gional languages.

As a result of having no conventionalized
romanization system, text in, say, romanized
Hindi has no standardized orthography, but
rather words are usually represented via rough

2Word-error rate in this setting means recovery of
the intended form typed by the user. We take the
romanized strings in the validation set as the intended
forms, despite spelling variation throughout.

3Languages using the Cyrillic script are also fre-
quently romanized. There, and perhaps also for Perso-
Arabic scripts, the issue is with historical lack of font
and encoding support in certain scenarios.

ब ⇒ ब /ba/
ब+ ◌् ⇒ ब् /b/
ब्+ र ⇒ ɕ /bra/
ɕ+◌ा ⇒ ɕा /brā/

ह+◌्+ म+◌ी ⇒ ʎी /hmī/
ɕा+ʎी ⇒ɕाʎी /brāhmī/

Figure 1: Demonstration of how the Hindi word ɕाʎी
/brāhmī/, meaning Brahmic, is decomposed into its
unicode codepoints as written in Devanagari. Pronun-
ciations are shown between slashes.

phonetic transcriptions in Latin script. For
example, the Hindi words संȭकृत and संपूणȁ are
commonly romanized as sanskrit and sampu-
ran, respectively. Both words begin in De-
vanagari with the grapheme सं which is /sa/
with a diacritic indicating a nasal consonant
(such as /n/) in the coda. Note that the
nasal becomes either /n/ or /m/ depending on
the following consonant,4 demonstrating how
these romanizations are driven by pronuncia-
tion rather than from the native orthography.
Urdu has the same words, written and

respectively in the Perso-Arabic script,
and they are romanized similarly to the Hindi
words, also demonstrating the role of pronun-
ciation rather than writing system in roman-
ization for these languages.5 In general, due
to this lack of a standardized spelling in the
Latin script, romanizations may vary due to
dialectal variation, regional accent, or simply
individual idiosyncrasies.

As a concrete example, a blog entry on the
general topic of political corruption on a site
run by the India Today Group from 2011 has
comments in (1) English; (2) Hindi written in
Devanagari (its native script and that is used
in the blog post itself); and also extensively in
(3) romanized Hindi.6 One comment begins:
“Bhrashtachar aam aadmi se chalu hota hai…”,
which presumably corresponds to the De-
vanagari: ɖʊाचार आम आदमी से चालू होता है and
roughly translates to: “Corruption starts with
the common man…” Given that corruption is
the overall topic of the blog post, it is unsur-

4This is a process known as assimilation.
5Note that unlike in Devanagari, Perso-Arabic

script Urdu does in fact graphically differentiate these
phonetically differentiated onsets, spelling them re-
spectively as ⟨sn⟩ and ⟨sm⟩.

6http://blogs.intoday.in/index.php?option=
com_myblog&contentid=62323&show=Removal-of-
corruption-from-the-beginning-itself&blogs=2
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prising that the Hindi word for this shows up
in many comments. It is, however, variously
romanized. By our count: 16 times it is ro-
manized as “bhrastachar”; 7 times as “bhrash-
tachar”; and once each as “barashtachaar”,
“bharastachar”, “bharstachar”, “bhastachar”
and “bhrstachar”. Google Translate provides
both a translation and a romanization of the
word (“bhrashtaachaar”7), a form which inter-
estingly is not found in our (admittedly small)
example blog comment sample.

2.2 Transliteration and romanized text
The need to transliterate between writing sys-
tems comes up in many application scenar-
ios, but early work on the topic was largely
focused on the needs of machine translation
and information retrieval due to loanwords
and proper names (Knight and Graehl, 1998;
Chen et al., 1998; Virga and Khudanpur, 2003;
Li et al., 2004). These approaches either
explicitly modeled pronunciation in the lan-
guages (Knight and Graehl, 1998) or more di-
rectly modeled correspondences in the writ-
ing systems (Li et al., 2004). Models for ma-
chine transliteration have continued to im-
prove, through the use of improved mod-
eling methods including many-to-many sub-
string alignment-based modeling, discrimi-
native decoding, and multilingual multitask
learning (Sherif and Kondrak, 2007; Cherry
and Suzuki, 2009; Kunchukuttan et al., 2018),
or by mining likely transliterations in large
corpora (Sajjad et al., 2017). Transliteration
models are also being deployed in increasingly
challenging use scenarios, such as mixed-script
information retrieval (Gupta et al., 2014) or
for mobile text entry (Hellsten et al., 2017).

The volume of romanized text in languages
that use other writing systems is an acknowl-
edged issue, one which has grown in impor-
tance with the advent of SMS messaging and
social media, due to the prevalence of roman-
ized input method editors (IMEs) for these
languages (Ahmed et al., 2011). The lack of
standard orthography and resulting spelling
variation found in romanization is also found
in other natural language scenarios, such as
OCR of historical documents (Garrette and
Alpert-Abrams, 2016) and writing of dialectal

7translate.google.com/#en/hi/Corruption

Arabic (Habash et al., 2012).
For this study, we make use of Wikipedia

data originally written in the native script
that has been romanized, and our task is to
permit accurate text entry on mobile key-
boards, rather than transliteration to the na-
tive script or normalization for use in other
downstream tasks. In this case “accurate
text entry” means fidelity to the intended
text, even if that intended text is writ-
ten without consistent spelling. If the user
noisily types “bgrashtachsr” while intending
“bhrashtachar”, the keyboard should produce
“bhrashtachar” not another romanization such
as “bhrastachar”. Given annotator-romanized
Wikipedia text, we evaluate our ability to cor-
rectly recognize the actual romanizations used.

2.3 Mobile keyboard decoding
Virtual keyboards of the sort typically used
on mobile devices convert a temporal sequence
of interactions with the touchscreen (taps or
continuous gestures) into text. Like speech
recognition or optical character recognition,
the mapping of noisy, continuous input sig-
nals to discrete text strings involves stochastic
inference; further, given the low required la-
tency during typing, models must be compact
enough to run on the local device and inference
with them must be fast. For this reason, the
kinds of finite-state methods that have been
used for speech recognition and OCR have also
been used for this task (Ouyang et al., 2017).
The work we present here will be in the con-
text of such an FST-based keyboard decoder.

For touch typing, where the input consists of
a sequence of taps, we designate with the term
literal the string corresponding to the actual
keys touched. The intended string may dif-
fer, due to such phenomena as so-called “fat
finger” errors, i.e., hitting a neighboring key,
omitting a key or including an extra tap.

Analogous to the acoustic model in speech
recognition, which assigns probabilities to
the continuous waveform given a sequence of
phones, such a decoder makes use of a spatial
model, assigning probabilities to the sequence
of taps (or gestures) given a sequence of letters.
Taps, for example, are modeled in Ouyang
et al. (2017) with Gaussians centered on the
middle of each key. Costs are thus assigned to
alternative possible intended character strings
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which may have substitutions, deletions and
insertions relative to the literal string.

In speech recognition, phones are typically
split in the acoustic model based on the sur-
rounding context, in order to capture co-
articulation effects and other influences on
the acoustics associated with a particular in-
tended phone. Similarly, in the spatial model,
keys are typically split based on the previous
touched key, which we will term bikey repre-
sentation. So, at the start of a word, the letter
‘b’ will be represented as ‘_b’, whereas after
the letter ‘a’, it would be represented as ‘ab’.
Later we will have methods that must be aware
of the input representation.

The spatial model cost and the language
model cost are combined by the decoder to
score competing output strings. Typically
these scored string alternatives will be com-
pared to the literal string and only selected
if the difference in score is above some thresh-
old, to avoid spurious changes to what the user
typed (Ouyang et al., 2017). To accept any
string (including any possible literal string), a
loop transition for every character with some
fixed cost can be included at the unigram
state (the base of the smoothing recursion, see
Roark et al., 2012), so that every string in Σ∗

has non-zero probability.
In addition to decoding for auto-correction,

the language model may also be used for word
prediction and completion, i.e., showing sug-
gestions in a small dynamic portion of the key-
board. In this paper, we do not have much to
say about this part of the process, other than
to point out when its demands make certain
approaches more complicated than others.

Such an architecture has also been used
for transliteration from Latin script input to
native script output (Hellsten et al., 2017),
by interposing a finite-state transducer (FST)
between the spatial model (defined over the
Latin script) and the language model (defined
over native script words). Some of our meth-
ods are related to these, although the output
of the keyboard does not change script.

3 Methods

3.1 Word transliteration models
For both off-line model training and on-line
transliteration-based decoding methods, we

make use of pair n-gram (also known as
“joint multi-gram”) modeling methods (Bisani
and Ney, 2008), which Hellsten et al. (2017)
also use to train their transliteration mod-
els. Given a lexicon with words in the na-
tive script and possible romanizations of those
words (see §4.1 for specifics on our data), ex-
pectation maximization is used to derive pair-
wise symbol alignments. For example, ɖʊाचार
and “bhrashtachar” may yield a pairwise sym-
bol alignment of:

भ:b ◌्:h र:r ϵ:a ष:s ◌्:h ट:t ◌ा:a च:c ϵ:h ◌ा:a र:r
where each symbol is composed of an input
(native script) unicode codepoint (or ϵ, denot-
ing the empty string) and an output (Latin
script) unicode codepoint (or ϵ). These sym-
bol pairs then become tokens in an n-gram
language model encoded as an automaton. Fi-
nally, the automaton is converted to a trans-
ducer with native script on one side and Latin
script on the other.

This model provides a joint probability dis-
tribution over input:output sequence pairs,
e.g., for a word ɖʊाचार and a romanization
“bhrashtachar”, i.e., P (ɖʊाचार, bhrashtachar).
As Hellsten et al. (2017) note, within most de-
coding settings that combine with a language
model on the native script side, a conditional
probability is actually what is needed:
P (bhrashtachar | ɖʊाचार). We refer readers to
that paper for details on how to incorporate
the appropriate normalization into an FST-
based decoder. We use similar methods, per-
mitting the model to be used in both on-line
and off-line scenerios.

Note that it is trivial to swap the input and
output symbols for such a model, either by
changing the ordering of the pair symbols in
the training data or simply inverting the re-
sulting WFST. The same model can thus be
used for transliteration from input Latin script
to native script forms; or from input native
script to romanizations.

For example, suppose T is a transliteration
transducer (Latin script on the input side and
native script on the output side) and S is an
automaton that accepts a single native script
word w for which we wish to find likely roman-
izations. If we compose T ◦ S, this yields a
transducer encoding alternative Latin/native
script string relations with w as the output
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string. We can convert this transducer into
an automaton accepting alternative romaniza-
tions of w by projecting all transitions onto
their input labels, i.e., preserving only the in-
put label on every transition. Some transi-
tions in this acceptor of alternative romaniza-
tions might be epsilons, so we can remove ep-
silon transitions (Mohri, 2002), then select the
n most likely paths (Mohri and Riley, 2002).
All of these operations are general operations
supported by the OpenFst library (Allauzen
et al., 2007). The n unique shortest paths in
RmEpsilon(ProjectInput(T ◦S)) are the n
most likely romanizations of w.

3.2 Baseline fixed-vocabulary system
Our baseline system relies on automatic ro-
manization of native script language model
training data. Using a transliteration trans-
ducer, trained as described in §3.1, each word
in our fixed vocabulary is assigned a “canon-
ical” (i.e., best scoring) romanization as its
Latin script representation. We then replace
the native script words in our language model
training corpus with their canonical romaniza-
tions and retrain the model, yielding a lan-
guage model over strings in the Latin script.

If the distribution over romanized alterna-
tives for ɖʊाचार in the blog comments that
were mentioned in §2.1 represented the dis-
tribution provided by our model, then “bhras-
tachar” would become its canonical romaniza-
tion. Alternative spellings (e.g., bhrashtachar)
would only match that word via the character
loop method (mentioned in §2.3) permitting
the omitted letter, generally with a cost.

3.3 Compact supplemental unigram
Not every substituted, inserted or omitted tap
is created equal when it comes to likely ro-
manization variants. For example, as we have
seen in our running example, the use of ‘h’
to indicate aspiration for consonants such as
भ may or may not be used in romanizations.
Similarly long vowels and geminates are some-
times represented by doubling of Latin sym-
bols, but often not. These variants are not
random in the way that a character loop model
would score them. One method for adding
likely alternative romanizations is to simply
add them as alternative word forms to the
language model. These romanizations can be

computed using the method outlined in §3.1.
However, adding many alternative roman-

izations of the same word can become space
prohibitive, particulary for on-device methods,
where storage and active memory usage are
both at a premium. It is possible, however, to
provide a very compact encoding specifically
of the words stored exclusively in the unigram,
i.e., words that are neither prefixes nor suffixes
of any higher order n-grams in the language
model. We achieve this in two steps. First, we
build two automata that accept all and only
this set of words: a weighted automaton W ,
which weights the path for each word with the
appropriate cost for that word within the lan-
guage model; and an unweighted automaton A
which encodes the same set of words as W and
has been determinized and minimized. Next
we create a weighted automaton Wm that has
the same topology as A, but which is weighted
to minimize the KL-divergence (Kullback and
Leibler, 1951) between W and Wm, using
methods from Suresh et al. (2019). This is
an approximation of the distribution repre-
sented in W over a much more compact topol-
ogy. The methods to perform this approxi-
mation are part of the open-source OpenGrm
stochastic automata (SFst) library (available
at http://www.opengrm.org). We then inte-
grate Wm into the larger language model au-
tomaton, with the unigram state of the lan-
guage model serving as both the start and fi-
nal state for the paths corresponding to those
in Wm. This can be straightforwardly accom-
plished by using the Replace operation in the
OpenFst library (http://www.openfst.org).

3.4 Transducer to canonical form
As we noted in §3.1, we build pair n-gram
transliteration models between native script
and romanized forms. In a similar way, we
can build a transducer between canonical ro-
manized forms and alternative romanizations.
To re-use our example, if “bhrastachar” is the
canonical romanization, and “bhrashtachar” is
another attested form, we can use expectation
maximization to derive an alignment:

b:b h:h r:r a:a s:s ϵ:h t:t a:a c:c h:h a:a r:r
A pair n-gram model built from this would al-
low weighted transduction from input roman-
izations to the canonical form, which corre-
sponds to tokens in the language model. We
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…_b:b bh:h hr:r ra:a as:s st:t

bϵ:h br:r rϵ:a rs:s sh:ϵ ht:t

(a) bikey input to canonical romanization lattice

…_b:भ bh:◌् hr:र ra:ϵ as:ष

rs:ष

sϵ:◌् st:ट

bϵ:◌् br:र sh:◌् ht:ट

(b) bikey input to native script lattice

Figure 2: Lattices illustrating how reading from the input tape rather than the output tape can provide support
for varied romanized input, for either native script or “canonical” romanized output.

can thus use a transducer much in the way
described in Hellsten et al. (2017) to translit-
erate8 between variant romanizations and the
chosen canonical romanizations.

There is, however, a complication with us-
ing this method within the keyboard, in con-
trast to the earlier described methods. If
the keyboard actually performed the transduc-
tion from input romanization to the canonical
Latin script form, then it would enforce a nor-
malization on the user’s spelling of the word.
If the user types “bhrashtachar”, this system,
as it has been described, will output “bhras-
tachar” (without the ‘h’), since that is our cho-
sen canonical form. However, there is no stan-
dard orthography in the Latin script for Hindi,
i.e., there is no correct spelling. Our canoni-
cal form is chosen for convenience to be the
highest scoring romanization from the model.
Even if we were to choose some kind of gen-
erally common version as our canonical form,
however, for any given individual we may end
up coercing the output of a form that they dis-
prefer. Instead, we would like to allow them to
maintain their preferred form, i.e., they should
be able to type their intended string.

Because the decoder is based on WFSTs, we
have a particularly straightforward solution to
this: output the string from the input tape
rather than the output tape. That is, we use
the transducer within the decoder just as is
done in Hellsten et al. (2017), however we out-
put the string on the input side corresponding
to the best scoring solution. In this way, we
derive the modeling benefit from the language

8Note this isn’t quite transliteration in the usual
sense since the strings stay in the same writing system,
but we co-opt the term since Hellsten et al. (2017) used
an identical architecture for transliteration.

model without imposing a canonical roman-
ization on the user. Note that it would be
possible to perform this large composition and
project onto input labels off-line rather than
on-the-fly, but the size of the off-line composi-
tion is prohibitively large for on-device opera-
tion, for reasons similar to those discussed in
Hellsten et al. (2017). The output labels are
thus preserved in one of the transducers used
during on-the-fly composition.

Figure 2a shows a WFST lattice represent-
ing alternative paths through the decoder,
with bikey inputs and canonical romanization
outputs.9 For convenience, bikey representa-
tions of outputs with no corresponding input
display the previous key followed by an ep-
silon, e.g., ‘bϵ’ signifies an omitted key follow-
ing a ‘b’. Note that every path through this
lattice has an output string corresponding to
“bhrast”, the prefix of the canonical romaniza-
tion of our running example. Different paths
represent different input string variations cor-
responding to this word.

To read a string off of the input side of such a
lattice, we take the last symbol of the bikey at
each transition, with ϵ representing the empty
string. In such a way, the presented lattice
encodes the alternatives bhrast, brast, bhrsht,
bhrasht, etc. Whichever path has the lowest
cost during decoding would be the version that
is produced by the keyboard.

3.5 Transducer to native script
If, as discussed in the previous section, we out-
put from the input tape of our WFSTs, then

9Note that, during decoding, partial results may
be displayed to the user to improve responsiveness, so
these figures should be taken as an illustration not a
depiction of the decoding process.
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there is no strong reason10 to have Latin script
on the output tape. Instead, we use a native
script language model and the same sort of
pair n-gram transducer as used in a translit-
erating keyboard, then simply read the result
from the input tape.

Figure 2b has a set of paths, all of which
produce the native script word prefix (ɖʊ) on
the output side. As with the other lattice, the
paths represent different input romanizations
corresponding to this string, which can be re-
covered from the transition labels.

3.6 Native script OOV modeling
One question we have only briefly touched
upon is how to deal with out-of-vocabulary
(OOV) items when using a transliteration
transducer, i.e., words not in the language
model being used for decoding. The simple
default method is to have a character loop at
the unigram state of the language model that
accepts each character. That loop then gets
an approximated language model cost from
the transliteration transducer, to the extent
that that model provides a joint probability
of input and output strings. Alternatively, we
can build a character language model, or even
more complicated data structures, to assign
probabilities to OOV words.

We opt to follow an approach that provides
flexibility to move between two extremes, the
most permissive but least accurate being the
character loop, and the most restrictive but
most accurate being a weighted character trie.
The trade-off is controlled by a single param-
eter N , which is the number of states we wish
to use to represent the OOV model. We start
with a large collection of native script words
and their unigram probabilities. We first build
a weighted character trie representing these
words. The trie is weight-pushed so that the
probability mass of a state is seen as early as
possible by the decoder. Next we rank each
state of the trie by the total probability mass
of all words reachable from that state. Fi-
nally we remove any state beyond the first N

10This is not strictly speaking true, since, as is
pointed out in §2.3, the models may also be used for
word prediction and completion. In order to seamlessly
integrate with such processes, predicted and completed
words would have to be presented in the Latin script,
hence some additional information would need to be
provided for each word in the vocabulary.

states in the ranking. All transitions from re-
tained states to removed states are redirected
to a state with the original character loop. In
this way, we provide a mechanism to smoothly
scale between a full trie representation (no
states removed) down to a single-state charac-
ter loop (all states removed), and everything
in between. This approach, like the character
loop baseline, permits arbitrary word-forms to
be typed, but it does so in a way that bet-
ter captures the distribution of word forms in
the language. The pruned trie provides an ap-
proximation to the distribution in the full trie,
which permits a graceful tradeoff between the
size of the encoding and the quality of the ap-
proximation.

4 Experiments

4.1 Data
Transliteration models were trained from a
proprietary lexicon of Hindi words and at-
tested romanizations, consisting of approxi-
mately 110,000 native script words and on
average 3.1 romanizations per word. These
aligned Devanagari–Latin word pairs were
used to build a WFST transliteration model
using methods detailed in §3.1. We built pair
3-gram models, pruned to contain just 110,000
n-grams prior to conversion to a transducer.

Language models, both in Devanagari and
canonical Latin forms, were trained on a large
and diverse set of Devanagari Hindi text col-
lected from the web, and were not trained for
any specific domain. The 150,000 most fre-
quent words in the training set were retained
in the language model, and trigram word-
based models were trained and then pruned to
retain just 750,000 n-grams, so as to fit within
on-device space limits.11 For a single exper-
iment, we additionally considered a language
model containing 1,500,000 n-grams, double
the n-gram count of the others.

For methods using a transducer to native
script within decoding, the language model
is in the native script; whereas in other con-
ditions, the language model is in the Latin
script. To train the Latin script language

11Our work as targeted South Asian languages,
where inexpensive smartphones are the norm, hence,
as mentioned in Hellsten et al. (2017) we have gener-
ally targeted total model sizes around 10MB.
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Word error Tap Avg active Model size
Method rate (%) avg ms states arcs (MB)
Literal 45.0 - - - -
Fixed vocabulary (canonical only) 22.6 0.95 164.8 417.9 4.9
Fixed vocab + supplemental unigram 12.4 1.00 122.3 404.4 10.6
Fixed vocab + transducer to canonical 12.9 1.01 75.6 225.6 9.3
Transducer to native script 13.1 0.95 66.7 184.7 11.0
Transducer to native + OOV model 10.5 1.08 67.5 181.8 11.2

(a) An operating point of approximately 1.0ms per tap

Literal 45.0 - - - -
Fixed vocabulary (canonical only) 22.5 0.59 71.8 202.5 4.9
Fixed vocab + supplemental unigram 12.1 0.53 38.1 132.0 10.6
Fixed vocab + transducer to canonical 14.1 0.54 24.4 80.9 9.3
Transducer to native script 14.0 0.60 31.8 91.6 11.0
Transducer to native + OOV model 12.3 0.54 19.7 54.9 11.2

(b) An operating point of approximately 0.55ms per tap

Table 1: The word error rate for the decoding of noisy touchpoints into Latin script strings at two operating
points along the speed–accuracy tradeoff. The average number of milliseconds required per character as well as
the average number of states and transitions active during decoding and the model size in megabytes are listed.
The best performing (lowest) word error rate method for each operating point is bolded.

model for Hindi, each word in the vocabu-
lary (each of which is in Devanagari), is re-
placed with its “canonical” romanization, i.e.,
the highest probability romanization accord-
ing to the trained transliteration model.

Devanagari script sentences from Hindi
Wikipedia were manually romanized by na-
tive speakers, and 4,000 of these (for a total
of 36,027 word tokens) were used as our de-
velopment set for validation of the methods
presented above.

4.2 Evaluation
To evaluate our methods, we simulate touch
points of a tapping keyboard as follows. For
each symbol in the (Latin script) input strings,
we sample a touch point from Gaussian distri-
butions in two dimensions, with mean value at
the center of the key. To establish how much
noise is introduced by this method, we evalu-
ate the error rate of simply emitting the literal
sequence, i.e., the symbols associated with the
keys that our noisy touch points actually fall
within. Improvements over the literal baseline
are due to decoder auto-correction.

The resulting touchpoints are then fed into
the decoder under each of our conditions, and
the strings output from the decoder are then
compared with the original text strings, which
are taken to be the intended strings. As men-
tioned elsewhere in the paper, the goal is to al-
low users to type their intended strings, with-
out normalizing away their versions of the ro-
manized words. Thus we measure word-error

rate versus the reference version in the roman-
ized string. Note that the keyboard decoder
has various meta-parameters that can impact,
e.g., the speed–accuracy trade-off. In addition
to sweeping over such parameters for a given
method, as shown in Figure 3, we compare per-
formance across the methods at comparable
operating points (in terms of average millisec-
onds per character) in Tables 1a and 1b.

Note that the absolute numerical values of
the latencies are not meaningful, just the com-
parisons between the latencies. As discussed
in Hellsten et al. (2017) and mentioned ear-
lier, latencies must be low enough that no lag
in keyboard responsiveness is perceived, and
target values on device are often around 20ms
per tap. However this must be the case also for
inexpensive devices with low processing power,
and the decision to deploy a model would de-
pend on device trials. For the purposes of this
paper, however, we just report values on a sin-
gle device that can be used for comparison pur-
poses. The operating points chosen for the Ta-
bles are two that are plausible candidates for
use on such inexpensive devices.

4.3 Results
While analyzing the entire operating curve as
shown in Figure 3 gives us an idea of the
full potential of any particular model, in a
resource-constrained scenario such as a mo-
bile keyboard, we are ultimately restricted to
working at a particular operating point on the
speed–accuracy tradeoff. At a higher operat-
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Figure 3: Word error rate versus latency for the models presented in §3 as evaluated on simulated touchpoints
for Latin Hindi text. Various decoding-time parametrizations were explored to demonstrate the word error rate–
latency tradeoff. The literal baseline shows how accurate the decoding procedure would be without a model at
all on this data set.

ing point of 1.0ms per tap (as in Table 1a),
the native script transducer with OOV model
is the best option, bringing the WER down
from 22.6% for the fixed vocabulary to 10.5%,
a substantial 54% relative decrease. This does
come at the cost of model size, with the model
taking up 2.3x as much space. For the case
where one chooses a lower operating point such
as 0.55ms per tap (as in Table 1b), the supple-
mental unigram wins out providing a 46% rel-
ative decrease in word error rate compared to
the fixed vocabulary baseline’s WER of 22.5%;
all in a relatively compact model taking up
only 2.2x more space than the baseline. Addi-
tionally, we note that at all operating points,
a doubly-sized fixed-vocabulary system (de-
scribed in §4.1) in fact achieves a slightly worse
WER compared with a commensurately sized,
otherwise identical language model. We take
this as evidence that this model’s inability to
capture the variant orthographic forms found
in this domain is not corrected by simply in-
creasing the model’s n-gram count.

Looking at Figure 3, in the limit as latency
increases, we find that while the supplemen-
tal unigram, fixed vocabulary with transducer
to canonical, and transducer to native script
converge to similar word error rates of about
12.4 ∼ 12.8%, the transducer to native with
OOV model can reach even 10.3% WER.

5 Summary

We have presented results for various ap-
proaches for handling romanized text entry for
South Asian languages within an FST-based
mobile keyboard decoder. Compared to base-
line methods that naïvely rely upon a single
canonical romanization for each word in the
vocabulary, we can achieve 54% relative error
rate reduction by making use of a translitera-
tion transducer and reading the output from
the input tape. Even at very constrained op-
erating points, our best method cuts the error
rate nearly in half.

Further, we have demonstrated that an al-
ternative of compactly encoding a large sup-
plemental lexicon in the language model, con-
sisting of alternative romanizations of words,
is competitive to the transducer-based normal-
ization, at some space savings. This method
has the further virtue of relatively straightfor-
ward support for other parts of the keyboard
application – such as word prediction and com-
pletion, as well as personalization mechanisms
– since the decoder outputs from its output
tape as in typical operation. Deploying meth-
ods presented here that read from the input
tape into a keyboard app requires additional
integration with these other modules.
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Abstract
Transition-based parsing of natural lan-
guage uses transition systems to build di-
rected annotation graphs (digraphs) for
sentences. In this paper, we define, for
an arbitrary ordered digraph, a unique de-
composition and a corresponding linear en-
coding that are associated bijectively with
each other via a new transition system.
These results give us an efficient and suc-
cinct representation for digraphs and sets
of digraphs. Based on the system and our
analysis of its syntactic properties, we give
structural bounds under which the set of
encoded digraphs is restricted and becomes
a context-free or a regular string language.
The context-free restriction is essentially a
superset of the encodings used previously
to characterize properties of noncrossing
digraphs and to solve maximal subgraphs
problems. The regular restriction with a
tight bound is shown to capture the Uni-
versal Dependencies v2.4 treebanks in lin-
guistics.

1 Introduction
Transition systems have been a widely used
mechanism in language understanding, cog-
nitive modelling of natural language process-
ing and syntactic and semantic parsing of
sentences. The combination of high parsing
speed of transition systems with the accu-
racy of the attached statistical models have
paved the way for practical applications of
parsing and similar data transformations en-
abled by these systems (Yamada and Mat-
sumoto, 2003; Nivre and Scholz, 2004; Zhang
and Nivre, 2011; Chen and Manning, 2014;
Dyer et al., 2015; Andor et al., 2016; Kiper-
wasser and Goldberg, 2016; Shi et al., 2017).
Transition systems may also be used to encode
dependency trees, DAGs and other ordered

digraphs, and to connect these to the classi-
cal formal language theory and to the prob-
lems of graph representation (Turán, 1984;
Farzan and Munro, 2013; Yli-Jyrä, 2019),
graph enumeration (Pólya, 1937; Conte et al.,
2018; Yli-Jyrä, 2019), integer sequence dis-
covery (Hoppe and Petrone, 2016; Yli-Jyrä
and Gómez-Rodríguez, 2017), maximum sub-
graph inference (Conte et al., 2019; Yli-Jyrä
and Gómez-Rodríguez, 2017), algebraic repre-
sentations of graph queries (Courcelle, 1990;
Ogawa, 2004; Yli-Jyrä and Gómez-Rodríguez,
2017), encoder-decoder parsing (Vinyals et al.,
2015; Strzyz et al., 2019) and parsing as
sequence labeling (Gómez-Rodríguez and Vi-
lares, 2018).

The study of transition systems in gen-
eral ranges from Turing complete transi-
tion systems (Woods, 1970; Goldin et al.,
2004; Thomas, 2002) to well-understood tran-
sition systems that build projective depen-
dency structures, context-free parse trees and
noncrossing graphs (Nivre, 2003, 2004; Gold-
berg and Elhadad, 2010; Kuhlmann et al.,
2011; Sagae and Tsujii, 2008; Honnibal and
Johnson, 2015). The need to model non-
local dependencies and crossing edges in parses
have motivated the study of transition sys-
tems that balance the computational com-
plexity and the coverage of the possible out-
puts. Many of these systems are exten-
sions of stack-based transition systems (At-
tardi, 2006; Nivre, 2009; Gómez-Rodríguez
and Nivre, 2013; de Lhoneux et al., 2017; Qi
and Manning, 2017; Gómez-Rodríguez et al.,
2018) but there are also some proposals for
transition systems that are based, solely or ad-
ditionally, on some other memory model, such
as a shack, a list, registers, a set, or a cache
(Kornai and Tuza, 1992; Covington, 2000;
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Choi and McCallum, 2013; Pitler and McDon-
ald, 2015; Fernández-González and Gómez-
Rodríguez, 2018; Gildea et al., 2018; Vilares
and Gómez-Rodríguez, 2018; Coavoux and Co-
hen, 2019).

In this paper, we present a transition sys-
tem that implements an efficient, invertible
function between its action sequences and ar-
bitrary ordered digraphs. The action se-
quences of the system can also viewed as
strings of balanced brackets, constituting for-
mal languages that have elegant Chomsky-
Schützenberger representations and many de-
sirable characteristics of input-driven lan-
guages. The transition-based transformation
between the relational and sequential repre-
sentations of digraphs opens a possibility to
apply classical formal language theory of sub-
sets of free monoids to the classes of digraphs.

Our transition system takes advantage of a
new kind of decomposition of a digraph: the
rope decomposition views the underlying graph
as a union of subgraphs what we call ropes.
The longest edge of a rope shares exactly one
endpoint with each of the other edges in it.

The theoretical notions of rope decomposi-
tions and the new transition system are intro-
duced in Sections 3-4. The action sequences
of the transition system are related to formal
languages in Sections 5-6. Sections 7-8 con-
tain corpus-based empirical evaluation and a
discussion that argues that the developed en-
coding for digraphs contributes to the work in
some related and important research areas in
graph theory and computer science.

2 Basic Definitions

Denote the empty string with ϵ. Denote trans-
pose of a binary relation X as XT . Define the
composition of two binary relations X, Y as
X ◦ Y = {(x, z) | (x, y) ∈ X, (y, z) ∈ Y }.
Abbreviate an assignment S ← S ∪ T as
S

∪← T . Let Vn denote the finite set of integers
{1, ..., n}. Let the parameter d ∈ {<,>, <>}
indicate the choice between leftward, right-
ward and bidirectional orientation of arcs in
actions that produce these arcs.

A (finite ordered) graph is a pair (Vn, E)
where Vn is a finite set of ordered vertices
and E ⊆ {(u, v) ∈ Vn × Vn | u < v} is
a set of edges. For each edge (i, j) ∈ E,

we call i the left index and j the right in-
dex of the edge. A (finite ordered) digraph
is a pair (Vn, A) where Vn is a set of ver-
tices and A ⊆ {(u, v) ∈ Vn × Vn | u ̸= v}
is a set of arcs. The underlying graph of a
digraph (Vn, A) is the graph (Vn, EA), where
EA = {(i, j) | (i, j) ∈ A ∪AT , i < j}.

3 New Notions

3.1 Rope Cover
Definition 3.1. Let (Vn, E) be an ordered
graph. In this graph, edge (h, k), where h < k,
is a (properly-longer shared-endpoint) covering
edge for a shorter edge (i, j) if either h = i and
i < j < k, or j = k and h < i < j. Denote
this situation by (h, k) : (i, j).
Definition 3.2. A subset R ⊆ E is a rope
cover of the graph (Vn, E) if, for every edge
e ∈ E\R, there is an edge c ∈ R such that c : e.
Moreover, R is a proper rope cover (PRC) if is
there is no edges c1, c2 ∈ R s.t. c1 : c2.
Proposition 3.1. Any element in a PRC can
be identified by specifying either its left index
or its right index.
Proposition 3.2. Every graph has a PRC.
Theorem 3.3. The PRC is unique.

Proof. Let (Vn, E) be an arbitrary graph
and let R, R′ ⊆ E be two PRCs of the
graph. Assuming that R ̸= R′ and that
there is (x0, y0) ∈ R\R′, we show, by in-
duction, that there is an infinite sequence
of distinct edges (x0, y0), (x2, y2), (x4, y4), ... ∈
R\R′ and (x1, y1), (x3, y3), (x5, y5), ... ∈ R′\R
where (xi+1, yi+1) : (xi, yi) for every i ≥
0. To prove the required induction steps,
there is, by the definition of a PRC, a cov-
ering edge (xi+1, yi+1) in R′\R for every edge
(xi, yi) ∈ R\R′, and there is a covering edge
(xi+1, yi+1) ∈ R\R′ for every edge (xi, yi) ∈
R′\R. Such an infinite sequence of distinct
edges requires E to be infinite. By contradic-
tion, the PRC of the graph is unique.

Definition 3.3. For graph (Vn, E) with a
PRC R, the rope-thickness of a vertex i ∈ Vn−1

is the number of edges (h, j) ∈ R satisfying
h ≤ i < j. The rope-thickness of the graph is
the maximum over the rope-thicknesses of all
vertices i ∈ Vn−1 in the graph.
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Lemma 3.4. For any graph of n vertices, its
PRC is constructed in O(n3).

Proof. Let (Vn, E) be a graph. To construct
the PRC, start with R0 = ∅ and E0 = E.
Given Ri and Ei, i ≥ 0, construct Ri+1 as
the set all edges in Ei that do not have a cov-
ering edge in Ei, and Ei+1 as the set of all
edges in Ei that do not have a covering edge
in Ri+1. Each such iteration is computed in
O(n2). Clearly, Ei+1 ⊊ Ei unless Ei = ∅, and
E⌊n/2⌋ = ∅. The PRC of the graph is the set
R = R1∪R2∪ ...∪R⌊n/2⌋, and it is constructed
in O(n3) time.

Corollary 3.5. The rope thickness of a graph
can be computed in cubic time.

Example (4) is a graph ([6], {(1, 6), (1, 5),
(2, 5), (3, 5), (4, 5)}) for which we obtain sets

R0 = {} E0 = E (1)
R1 = {(1, 6)} E1 = {(2, 5), (3, 5), (4, 5)} (2)
R2 = {(2, 5)} E2 = {} (3)

1 2 3 4 5 6

(4)

Convention 3.4 (“Left Index”). We will
sometimes refer to the edges in a PRC by their
left indices (see Proposition 3.1).
Convention 3.5 (“Indirect Edges”).
When an edge (i, j) has a covering edge (h, j),
h < i < j, we refer to the edge (i, j) indirectly,
via the pair (i, h) where h is the left index
of the covering edge.

The PRC of the graph (4) comprises the
edges {(1, 6), (2, 5)}, while the remaining edges
are covered by these. Edge (1, 5) is a usual
edge, and there are indirect edges, (3, 2)
and (4, 2), that we draw under the vertices.
The rope thickness of vertices 2 – 4 is two,
which is also the maximum for the whole
graph.

3.2 Ropes
Definition 3.6. An ordered graph (Vn, E) is
called a rope if n = 1 or the PRC of the graph
is {(1, n)}. This is complete if E = {(i, n) |
1 ≤ i < n} ∪ {(1, j) | 1 < j ≤ n}.

Ropes can be used in algorithms that con-
struct graphs while processing vertices. Ex-
ample (5) shows a digraph whose underly-
ing graph is a complete rope. Some of its
edges would cross one another if the edges were
drawn above a line containing the vertices.

1 2 3 4 5 (5)

Two-way algorithms can build a complete
rope in two passes with a vertex counter and
one memory unit that contains a reference to
one index of the covering edge. After memoriz-
ing the left index of the covering edge to vari-
able x, such an algorithm processes vertices 2
to 5 in Example (5) and builds edges (x, 2),
(x, 3), (x, 4) and (x, 5). During the backward
pass over the vertices, the algorithm saves the
right index of the covering edge to variable x
and builds edges (4, x), (3, x), and (2, x).

One-way algorithms process each vertex
only once as their output can represent the
edges (i, n), 2 ≤ i ≤ n − 1, in Example (5)
indirectly, by a reference to the left index of
the respective covering edge. In the output,
the edge (2, 5) is represented as an indirect
edge (2, 1) where 1 identifies the left in-
dex of the covering edge (1, 5). After process-
ing the vertices, the composition of (2, 1) and
(1, 5) is computed to obtain the actual edge
(2, 5).

3.3 Rope Assignment
Theorem 3.6. There are graphs where an
edge has two distinct covering edges in the
PRC.

Proof. The PRC of the graph of Example (6)
is {(1, 3), (2, 4)}.

1 2 3 4

(6)

The edge (2, 3) is covered by the edge (1, 3)
with which it shares the right index, and by
the edge (2, 4) with which it shares the left
index.

When an edge has two covering edges, we
need a consistent policy for treating them. In
(6), we can assign the edge (2, 3) to either of
the covering edges (1, 3), (2, 4), or both.
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Convention 3.7 (“Earliest”). We adopt a
convention according to which the ambiguity
between two possible covering edges is resolved
by assigning the edge to the earliest available
covering edge.

By Convention 3.7, the arc (2, 3) in Example
(6) will be assigned to the Earliest covering
edge (1, 3), which can be identified by its left
index 1, by Convention 3.4. The covered arc
(2, 3) is thus represented as an indirect edge
(2, 1) by Convention 3.5.

3.4 Rope Decomposition
This section introduces a new representation
for digraphs. The idea is to start from the
PRC of the underlying graph, and then assign
the remaining arcs to covering edges.
Definition 3.8. A rope decomposition of
an (ordered) digraph (Vn, A) is a tuple
(Vn, R, A

<
, A

>
, I

<
, I

>
) satisfying the following

conditions:

1. edges R ⊆ EA constitute a PRC of the
underlying graph (Vn, EA),

2. A
<
⊆ {(i, j)∈AT |(i, k)∈R, i<j≤k} and

A
>
⊆ {(i, j)∈A|(i, k)∈R, i<j≤k} are,

respectively, left and right arcs whose
left index coincides with the left index of
the covering edge,

3. I
<
⊆{(i, h)|(i, j)∈AT , (h, j)∈R, h<i<j}

and I
>
⊆{(i, h)|(i, j)∈A, (h, j)∈R, h<i<j}

are, respectively, indirect representations
for arcs whose right index coincides
with the respective covering edge but is
represented indirectly, via the left index
of the respective covering edge.

4. The four sets of arcs represent together
the original set of arcs: A = A

<

T ∪ ( I
<
◦

R)T ∪ A
>
∪ ( I

>
◦R).

Lemma 3.7. Under the “Earliest” conven-
tion, the relation between digraphs and rope
decompositions is a bijection.

Proof. (⇒): Let G = (Vn, A) be a digraph
and G′ = (Vn, EA) its underlying graph. By
Theorem 3.3, G′ has a unique PRC R ⊆ EA.
By the “Earliest” convention, we choose the

earliest available covering edge for each edge
and first construct the sets of indirect arcs
I
<

= {(i, h) | (i, j)∈AT , (h, j)∈R, h<i<j} and
I
>

= {(i, h) | (i, j)∈A, (h, j)∈R, h<i<j}. Af-
ter this, we construct the sets of arcs whose left
index coincides with the covering edges: A

<
=

{(i, j)∈AT \( I
<
◦R)|(i, k)∈R, i<j≤k} and A

>
⊆

{(i, j)∈(A\( I
>
◦R) | (i, k)∈R, i<j≤k}.

(⇐): Let (G = Vn, R, A
<
, A

>
, I

<
, I

>
) be a rope

decomposition. We obtain the corresponding
graph as (Vn, A

<

T ∪ ( I
<
◦R)T ∪A

>
∪ ( I

>
◦R)).

4 A New Transition System
By Lemma 3.7, there is a bijection between
(a class of) rope decompositions and digraphs.
We complement this result by relating each
rope decomposition bijectively to a sequence
of actions. The actions are controlled by a
transition system.

Our transition system has a buffer β ∈ N,
a main stack σ ∈ N∗ and an auxiliary stack
τ ∈ N∗, each containing vertex indices. The
tuple (σ, τ, β) of these three structures forms
the core of the configurations between which
the transition system moves. As an input, the
system takes a sequence of actions that tell
how to build a rope decomposition in an incre-
mental manner. The possible types of actions
of the transition system are listed in Table 1.

Initially, both the stacks are empty and the
buffer β consists of the list of positive integers.
The final configurations of the system con-
sists of all those configurations (ϵ, ϵ, β) where
both stacks are empty, and β contains a suf-
fix [n, n + 1, ...] of the list of positive inte-
gers. When the system reaches a final con-
figuration, it has produced a relational struc-
ture (Vn, R, A

<
, A

>
, I

<
, I

>
) of a rope decomposi-

tion. By doing so, the transition system maps
the input sequence of actions to a rope decom-
position that represents a digraph. It is not
too difficult to define the inverse of this func-
tion, but we suppress the details in the interest
of space.

4.1 Main Actions
The most important actions of the transition
system create the set of edges in the PRC R.
By a shift (sh) action, the system removes a
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Table 1: Transition system for rope decompositions.

action transition between configurations effect on the decomposition
sh σ, ϵ, iβ, [_, _, _] ⇒ σi, ϵ, β, [−ins,− re,− pass

0
]

nx σ, ϵ, iβ, [_, _, _] ⇒ σ , ϵ, β, [−ins,− re,− pass
0

]

re
d

σi, ϵ, jβ, [−ins,− re, _] ⇒ σ , ϵ, jβ, [−ins, + re,− pass
0

] R
∪← {(i, j)}, A

d

∪← {(i, j)}
pass

0
σi, τ, jβ, [−ins, α re, _] ⇒ σ, iτ, jβ, [−ins, α re, + pass

0
]

pass
d

σi, τ, jβ, [−ins, _, _] ⇒ σ, iτ, jβ, [−ins, + re,− pass
0

] A
d

∪← {(i, j)}
ins

0
σ, iτ, jβ, [_, _,− pass

0
] ⇒ σi, τ, jβ, [+ins, + re,− pass

0
]

ins
d

σ, iτ, jβ, [_, _, _] ⇒ σi, τ, jβ, [+ins, + re,− pass
0

] I
d

∪← {(j, i)}

vertex index i from the front of the buffer and
places it to the top of the stack in order to
prepare for a future situation where the index
i is the left index of an edge in the PRC, i.e.,
∃j.R(i, j). When the index j becomes avail-
able in the front of the buffer, the system cre-
ates the edge (i, j) ∈ R by a reduce (re) action
and removes the index i from the stack. The
specifier d ∈ {<,>, <>} of the action tells
whether the corresponding arc (i, j) is to be
added to A

<
, A

>
or both. Only one reduce ac-

tion is allowed in a row. By a next (nx) action,
the system removes an index i from the front
of the buffer to secure the situation where no
covering edge has vertex i as its left index, i.e.,
¬∃j.R(i, j).

Example (7) is a digraph whose underlying
graph is a complete graph with an edge be-
tween every pair of vertices. The PRC of this
graph is {(1, 7), (2, 6), (3, 5)}.

1 2 3 4 5 6 7 (7)

The PRC R, and the corresponding arcs in A
<

and A
>

of the rope decomposition of this di-
graph are created by the action sequence:

(ϵ, ϵ, [1..])
sh⇒ ([1], ϵ, [2..])

sh⇒ ([1, 2], ϵ, [3..])
sh⇒

([1..3], ϵ, [4..])
nx⇒ ([1..3], ϵ, [5..])

re
>
⇒ ([1, 2], ϵ, [5..])

nx⇒

([1, 2], ϵ, [6..])

re
>
⇒ ([1], ϵ, [6..])

nx⇒ ([1], ϵ, [7..])

re
>
⇒ (ϵ, ϵ, [7..])

(8)

The main actions involved in this example do
not use the auxiliary stack. The edges in R
and the corresponding arcs are created by the
reduce actions as follows:
configuration action effect
([1..3], ϵ, [5..]) re

>
R

∪← {(3, 5)}, A
>

∪← {(3, 5)}
([1, 2], ϵ, [6..]) re

>
R

∪← {(2, 6)}, A
>

∪← {(2, 6)}
([1], ϵ, [7..]) re

>
R

∪← {(1, 7)}, A
>

∪← {(1, 7)}

(9)

4.2 Intermediate Actions
In order to create arcs whose underlying edges
do not belong to the PRC, some additional,
intermediate actions are needed. Such inter-
mediate actions allow the front of the buffer to
form arcs with non-top elements of the main
stack.

For instance, the first visit to configuration
([1..3], ϵ, [4..]) allows actions that move the el-
ements of the main stack temporarily to the
auxiliary stack before restoring the original
configuration:

... ⇒ ([1..3], ϵ, [4..])

pass
>
⇒ ([1, 2], [3], [4..])

pass
>
⇒ ([1], [2, 3], [4..])

pass
>
⇒ (ϵ, [1..3], [4..])

ins
>
⇒ ([1], [2, 3], [4..])

ins
>
⇒ ([1, 2], [3], [4..])

ins
>
⇒ ([1..3], ϵ, [4..]) ⇒ ... (10)

The pass (pass) and insert (ins) actions create
arcs whose underlying edges do not belong to
the PRC:

configuration action effect
([1..3], ϵ, [4..]) pass

>
A
>

∪← {(3, 4)}
([1, 2], [3], [4..]) pass

>
A
>

∪← {(2, 4)}
([1], [2, 3], [4..]) pass

>
A
>

∪← {(1, 4)}
(ϵ, [1..3], [4..]) ins

>
I
>

∪← {(4, 1)}
([1], [2, 3], [4..]) ins

>
I
>

∪← {(4, 2)}
([1, 2], [3], [4..]) ins

>
I
>

∪← {(4, 3)}

(11)

To prevent multiple re-entry to the same con-
figuration and repeating the intermediate ac-
tions, the detailed configurations of the tran-
sition system include control variables that re-
strict the available actions in different phases
of the transition system. As the insert actions
set +ins, the reduce and pass astions become
blocked until the next shift/next action.

Some intermediate actions do not create
arcs. These intermediate actions have an im-
portant role in allowing other actions to access
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the non-top elements of the main stack. Yet
the sequence pass

0
ins
0

is blocked by the con-
trol variable pass

0
as a useless sequence.

A reduce action can be immediately pre-
ceded by several pass

0
actions. Example

(6) has a PRC {(1, 3), (2, 4)} that is created
through a sequence that involves intermediate
actions. The preceding pass and the following
insert actions allow the first reduce action to
get access to a non-top element of the main
stack and to remove it from the stack:

(ϵ, ϵ, [1..])
sh⇒ ([1], ϵ, [2..])

sh⇒ ([1, 2], ϵ, [3..])

pass
0
⇒

([1], [2], [3..])

re
>
⇒ (ϵ, [2], [3..])

ins
0
⇒ ([2], ϵ, [3..])

nx⇒

([2], ϵ, [4..])

re
>
⇒ (ϵ, ϵ, [4..])

(12)

The configuration ([1], ϵ, [2..]) allows a combi-
nation of a pass and insert actions. The insert
action puts, to I

<
, the pair (2, 1) representing

the arc (3, 2) in Example (6).

...
sh⇒ ([1], ϵ, [2..])

pass
0
⇒ (ϵ, [1], [2..])

ins
<
⇒ ([1], ϵ, [2..])

sh⇒ ... (13)

4.3 Correctness
Lemma 4.1. For every digraph, there is a
unique action sequence that creates the edges
of its PRC.

Proof sketch. By Proposition 3.1, no ver-
tex needs to start or finish more than one edge
in the PRC. The transition system allows to
start one covering edge per vertex with a shift
action and finish any previously started cover
edge with a reduce action. A crossing cover
edge can be finished by accessing the non-
topmost stack elements with pass

0
and ins

0

actions in their appropriate time.
Theorem 4.2. The transition system is able
to produce every possible rope decomposition,
capturing every digraph.

Proof sketch. By Lemma 4.1, we have a
way to create the PRC and the corresponding
arcs. The set of arcs is extended to represent
the rest of the arcs via pass and insert actions
that create the arcs that are properly covered
by the edges in the PRC.

5 Linear Encoding
The action sequences of the transition system
can be seen as linearisations for the digraphs.

In particular, the undirected graph in Exam-
ple (6) is encoded as the action sequence in
(14). To make the linearisation more conve-
nient for eyes, we replace actions with brackets
and other symbols in (15).

sh pass
0

ins
<>

sh pass
0

re
<>

ins
0

nx re
<>

(14)

[[ • ]
0

[
<>

[[ • ]
0

]]
<>

[
0

• ]]
<>

(15)

Convention 5.1. By convention, the brack-
eting scheme renames the actions of the tran-
sition system as follows:

nx sh pass
0

pass
d

ins
0

ins
d

re
d

• [[ • ]
0

]
d

[
0

[
d

]]
d

(16)

The convention improves the readabil-
ity of action sequence and gives com-
pact action sequences: especially, the
digraph in Example (7) is encoded as string
[[ • ]

>
[
<
[[ • ]

>
]
>
[
<
[
<
[[ • ]

>
]
>
]
>
[
<
[
<
[
<

• ]]
>
]
>
]
>
[
<
[
<

• ]]
>
]
>
[
<

• ]]
>

.

Example (17) demonstrates how the bracket(s)
now correspond almost iconically to the rep-
resented arcs.

[[ • ]
>
[
0
[[ • ]

0
]]
>
[
0
[[ • ]

0
]]
>
[
0
[[ • ]

0
]
>
[
0
[
0

• ]
0
]]
>
[
0

• ]]
> (17)

Convention 5.1 benefits us when we anal-
yse the formal, language theoretic properties
of such action sequences altough the encoding
is not otherwise meant for human inspection
and its direct manipulation by hand is prone
to errors. The convention borrows ideas from
Yli-Jyrä (2017) but differs from it in four im-
portant aspects:

1. The vertices are separated with a bullet
symbol ( • ) instead of curly brackets ({}).

2. The left brackets {[[,[,[
0
} match the

right brackets {]],],]
0
}.

3. Weak brackets may be stacked (like in
]]][[[) in order to deal with stacked
pass and insert actions.

4. A strong closing bracket may occur inside
a stack of weak brackets (like in ]

0
]
0
]][[).

These changes are necessary to deal with cross-
ing arcs and the actions that operate on two
stacks.
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5.1 Syntactic Properties
In order to analyse the formal properties of
the transition system, we need to understand
how the actions, or the corresponding brack-
ets, form strings that correspond to ordered
graphs in a bijective manner. We induce the
following principles:

1. Each vertex corresponds to a sequence of
closing brackets followed by a sequence of
opening brackets.

2. Between “]]” and the closest preceding
“ • ”, there can be only “]

0
”-brackets.

This corresponds to the convention 3.7
that always chooses the “earliest” cov-
ering edge in the PRC of the underlying
graph. We do not need “]”-brackets to
produce arcs as we have an opportunity
to produce same arcs with “[”-brackets
earlier.

3. The unnecessary pair of pass and insert
actions, marked with bracket substring
“]

0
[
0
” do not occur in the strings.

4. The strong opening bracket “[[” always
occurs right before the vertex boundary
“ • ”.

5. The maximum number of brackets per
vertex is n− 1.

6. Left brackets BL = {[[,[
0
,[

d
} match right

brackets BR = {]]
d
,]

0
,]

d
}.

7. The rope thickness of the (di)graph is the
maximum number of momentarily open
brackets in its encoding.

According to the principles 1-4, the bracket
substrings that correspond to different vertices
constitute a context-free language W that is
generated by the grammar GW :

S → T ? | T ? [[ T ? → T | ϵ

R′ → ]]
<
| ]]

>
| ]]

<>
L′ → L | [

0

R → ]
<
| ]

>
| ]

<>
L → [

<
| [

>
| [

<>

T → R′ T ? | R T ? L′ | ]
0

T ? L | ]
0

T[
0

(18)

Lemma 5.1. The action sequences that con-
form to the seven principles allow only one way
to represent each ordered digraph.

Proof. The strong brackets are crucial for en-
coding all arcs of the digraph and the PRC of
its underlying graph in particular. Every di-
graph (Vn, A) has a unique PRC, and, due to
the principles 1-4, it is not possible to build the
same PRC with the correct arc orientations
in two different ways. By the second princi-
ple, all non-PRC arcs are assigned to a unique
covering edge. There is thus only one moment
when the right combination of indices is avail-
able in the configuration for constructing each
arc, and there is only one action sequence that
can construct any given digraph.

We also observe that string concatenation of
two action sequences gives an action sequence
that produces a digraph concatenation of two
ordered digraphs with one shared vertex.
Proposition 5.2. The encoding from digraphs
to strings is a mapping that preserves the
structure of the digraph concatenation monoid
and sends it the structure of a string concate-
nation monoid.

6 Formal Language Theory
Chomsky-Schützenberger (CS) parsing (Yli-
Jyrä, 2005, 2012; Hulden, 2009; Yli-Jyrä
and Gómez-Rodríguez, 2017; Ruprecht and
Denkinger, 2019) combines a particular kind
of language representations with weighted au-
tomata techniques. A prototypical CS style
language representation h(L ∩ D) involves a
homomorphic mapping (h) applied to an inter-
section of a a regular language component L
and a Dyck language D. Yli-Jyrä and Gómez-
Rodríguez (2017) used this kind of language
representations to show that their encoding
for the noncrossing digraphs (LNC-DIGRAPH)
is a context-free language and admits an ef-
ficient algorithm for finding maximal con-
strained subdigraphs in a weighted complete
digraph.

This section gives a CS style representa-
tion for the language of all encoded digraphs
(LDIGRAPH) by relaxing the requirement that
the L component of the language representa-
tion is a regular language. The represented
language is then not context-free, but the
representation is loosely speaking of “the CS
style”. The similarity becomes more obvious
when we derive a context-free approximation
of it.
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Lemma 6.1. There is a CS style representa-
tion for the language LDIGRAPH.

Proof. We start by defining a Dyck language
D that checks for balanced bracketing. Let
the internal alphabet of the representation be
Σ = {{, }}∪{[(l,r),](l,r) | l ∈ BL, r ∈ BR}. Let
D be the language generated by the grammar

S → ϵ | SS | {S} | [(l,r)S](l,r) (19)

where l ∈ BL and r ∈ BR. Let h : Σ∗ →
({ • }∪BL∪BR)∗ be a homomorphism defined
in such a way that, for all l ∈ BL, r ∈ BR,

h(ab) = h(a)h(b) h(ϵ) = ϵ

h([(l,r)) = l h({) = ϵ

h(](l,r)) = r h(}) = • . (20)

Instead of the usual regular component of CS
representations, we use a marked concatena-
tion closure of a context-free language: let
L be the context-free language W ( • W )n−1,
whose inverse homomorphims h−1(L) is also a
marked concatenation closure of a context-free
language.

The set of encoded digraphs is now given as
LDIGRAPH = h(h−1(L) ∩ D) = L ∩ h(D).

Lemma 6.2. The subset of the encoded di-
graphs LDIGRAPH, where the number of brack-
ets per vertex is bounded by k, is context-free.

Proof. We start from the CS style representa-
tion (the proof of lemma 6.1) for LDIGRAPH
and replace the context-free language L, with
a regular approximation L<k = W<k( • W<k)

∗

where W<k is a finite subset of W restricted
to contain at most k nested brackets in the
strings. This gives a more prototypical CS rep-
resention LDIGRAPH,k = h(h−1(L<k) ∩ D) =
L<k ∩h(D), which yields a context-free subset
of LDIGRAPH.

Lemma 6.3. The subset of encoded graphs
LDIGRAPH, where the rope thickness of the en-
coded digraphs is bounded by t, is regular.

Proof. As the rope thickness is bounded by t,
the number of brackets per vertex is bounded
by 2t. Thus, we start from the CS style rep-
resentation (the proof of Lemma 6.2) for en-
coded graphs where the number of brackets
per vertex is bounded. By the bound t for

the rope thickness, we replace the context-free
language D with a regular subset Dt ⊂ D
that can contain t levels of nested brackets.
The 2t, t-bounded set of encoded graphs is
given by LDIGRAPH,2t,t = h(h−1(L<2t)∩Dt) =
L<2t ∩h(Dt). By the closure properties of reg-
ular languages, LDIGRAPH,2t,t is regular.

7 Evidence for Linguistic Relevance

To assess the linguistic relevance of the cur-
rently presented encoding, we carried out
a small experiment where we computed the
rope-thickness of dependency trees in the Uni-
versal Dependencies v 2.4 treebanks (Nivre
et al., 2019). The compacted results are pre-
sented in Table 2. The results indicate that
a very high proportion of the observations is
captured when rope-thickness is 4 or higher.

According to our preliminary experiments
on graph banks, a very similar distribution of
rope-thickness is observed in more general an-
notation graphs.

8 Discussion

Among the earliest encoding schemes for
graphs are the Prüfer sequences for labeled
trees (Prüfer, 1918) that have been extened to
DAGs (Steinsky, 2003). More recently, Turán
(1984) introduced the problem of graph rep-
resentation given an adjacency matrix. There
are now some efficient representations for un-
labled and labeled graphs (Turán, 1984; Naor,
1990; Farzan and Munro, 2013). Our repre-
sentation for digraphs is also efficient: it has a
cubic-time encoder and a linear-time decoder.

The currently presented encoding for di-
graphs is a generalisation of an earlier rep-
resentation (Yli-Jyrä, 2017, 2019) that is it-
self an optimized alternative for the balanced
bracketing proposed for weighted dependency
parsing in (Yli-Jyrä, 2012). Several edge-
weighted parsing algorithms have been pre-
sented earlier (Dixon et al., 1992; Charniak
et al., 1998; Sasano et al., 2000; Kuhlmann and
Jonsson, 2015), but these newer methods ap-
ply to up to 50 families of dependency graphs
and the currently presented encoding is ex-
pected to help in their generalization. It would
be also interesting to study how rope graphs
relate to 1-endpoint crossing graphs (Pitler
et al., 2013; Kurtz and Kuhlmann, 2017).
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language trees rope-thickness 1 2 3 4 5 6 7 8
Arabic 28,402 4.9% 20.5% 63.5% 94.0% 99.64% 99.986% 100.000% 100.000%
Czech 127,507 13.3% 48.3% 89.3% 98.8% 99.91% 99.992% 100.000% 100.000%
Dutch 20,735 21.3% 63.4% 92.9% 98.9% 99.92% 99.986% 100.000% 100.000%
English 34,601 15.6% 54.9% 92.3% 99.3% 99.98% 99.997% 100.000% 100.000%
Finnish 34,641 37.0% 78.7% 96.8% 99.6% 99.97% 99.994% 100.000% 100.000%
German 191,757 10.1% 49.2% 90.5% 99.2% 99.96% 99.997% 100.000% 100.000%
Hindi 19,545 2.9% 44.4% 85.3% 98.3% 99.87% 99.980% 100.000% 100.000%
Italian 34,057 5.6% 49.9% 90.3% 98.8% 99.89% 99.997% 100.000% 100.000%
Korean 34,702 15.5% 65.6% 94.7% 99.5% 99.95% 99.994% 100.000% 100.000%
Latvian 12,558 12.7% 50.0% 89.8% 98.8% 99.90% 99.992% 99.992% 100.000%
Russian 87,377 15.0% 55.5% 90.7% 98.9% 99.91% 99.994% 99.999% 100.000%
Chinese 18,628 46.1% 73.7% 91.9% 98.6% 99.89% 99.989% 100.000% 100.000%
all 83 languages 1,232,262 15.1% 54.8% 90.5% 99.0% 99.93% 99.995% 100.000% 100.000%

Table 2: The cumulative coverage of bounded rope-thickness in the UD v2.4 dataset from which we
purged the trees containing ellipsis.

The languages of encoded graphs have ap-
plications to constrained graph enumeration
problems. Hoppe and Petrone (Hoppe and
Petrone, 2016) have exhaustively enumerated
all simple, connected graphs of a finite order
and computed a selection of invariants over
the sets in order to discover and add 141 new
integer sequences to the Online Encyclope-
dia of Integer Sequences (OEIS). Our previ-
ous encoding scheme (Yli-Jyrä and Gómez-
Rodríguez, 2017) gave context-free characteri-
sations for some graph properties. This led to
the discovery of dozens of known and new in-
teger sequences by graph enumeration. These
new computational methods complement the
research that spans from the “Abzählsatz” of
(Pólya, 1937) to more recent work on graph
enumeration (Wormald, 1979; Mckay, 1983;
Kapoor and Ramesh, 2000; Acuña et al., 2012;
Conte et al., 2018; Equi et al., 2019).

The language LDIGRAPH is not only context-
sensitive but even an indexed language (Aho,
1968): it is possible to construct an in-
dexed grammar that generates the same set
of strings. However, the existence of a sim-
ple transition system, a finite representation,
and a finite indexed grammar for the encoded
digraphs should not be confused with condi-
tion under which digraphs themselves become
finitely generated. Ogawa (2004) has pre-
sented a complete, infinite set of generators for
the graphs. We also need an infinite set of gen-
erators for the language LDIGRAPH, because
the the paths that take the transition system
from one final configuration to another final
configuration constitute an infinite set of code
words over which the encoded digraphs are
generated. This set remains infinite even for
digraphs with bounded rope thickness, but the
context-free and regular subsets of LDIGRAPH

may have some other ways to motivate finite
algebraic axiomatisations.

9 Conclusion
This paper contributes to the research on
graph representations (Turán, 1984) by de-
veloping a linear-time decodable encoding
for arbitrary labeled digraphs that we pre-
ferred to call ordered digraphs. The partic-
ular design of our linear encoding is moti-
vated by the success of similar representations
(Yli-Jyrä, 2005, 2012; Yli-Jyrä and Gómez-
Rodríguez, 2017) in the characterisations of
several families of noncrossing digraphs and
by the effectiveness of the recently improved
representation (Yli-Jyrä, 2017, 2019). Evi-
dently, both kinds of graph representations
have potential applications in graph enumer-
ation (Yli-Jyrä and Gómez-Rodríguez, 2017)
and weighted Chomsky-Schützenberger pars-
ing (Yli-Jyrä, 2005, 2012; Hulden, 2009; Yli-
Jyrä and Gómez-Rodríguez, 2017; Ruprecht
and Denkinger, 2019).

More specifically, the paper contributes a
general transition system that decodes arbi-
trary digraphs from linear action sequences.
Crucial notions – the proper rope cover (PRC)
and the related rope decomposition – are de-
fined and used in this transition system. The
first PRC-based measure for the complexity
of the graphs is introduced. Context-free and
regular approximations of the encoded graphs
are defined and shown to contain the depen-
dency annotations of the UD 2.4 treebanks.
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