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Abstract

Stack Long Short-Term Memory (StackL-
STM) is useful for various applications such
as parsing and string-to-tree neural machine
translation, but it is also known to be notori-
ously difficult to parallelize for GPU training
due to the fact that the computations are de-
pendent on discrete operations. In this paper,
we tackle this problem by utilizing state access
patterns of StackLSTM to homogenize compu-
tations with regard to different discrete opera-
tions. Our parsing experiments show that the
method scales up almost linearly with increas-
ing batch size, and our parallelized PyTorch
implementation trains significantly faster com-
pared to the Dynet C++ implementation.

1 Introduction

Tree-structured representation of language has been
successfully applied to various applications includ-
ing dependency parsing (Dyer et al., 2015), sen-
timent analysis (Socher et al., 2011) and neural
machine translation (Eriguchi et al., 2017). How-
ever, most of the neural network architectures used
to build tree-structured representations are not able
to exploit full parallelism of GPUs by minibatched
training, as the computation that happens for each
instance is conditioned on the input/output struc-
tures, and hence cannot be naïvely grouped together
as a batch. This lack of parallelism is one of the ma-
jor hurdles that prevent these representations from
wider adoption practically (e.g., neural machine
translation), as many natural language processing
tasks currently require the ability to scale up to very
large training corpora in order to reach state-of-the-
art performance.

We seek to advance the state-of-the-art of this
problem by proposing a parallelization scheme for
one such network architecture, the Stack Long
Short-Term Memory (StackLSTM) proposed in
Dyer et al. (2015). This architecture has been

successfully applied to dependency parsing (Dyer
et al., 2015, 2016; Ballesteros et al., 2017) and
syntax-aware neural machine translation (Eriguchi
et al., 2017) in the previous research literature,
but none of these research results were produced
with minibatched training. We show that our paral-
lelization scheme is feasible in practice by showing
that it scales up near-linearly with increasing batch
size, while reproducing a set of results reported in
(Ballesteros et al., 2017).

2 StackLSTM

StackLSTM (Dyer et al., 2015) is an LSTM archi-
tecture (Hochreiter and Schmidhuber, 1997) aug-
mented with a stack H that stores some of the
hidden states built in the past. Unlike traditional
LSTMs that always build state ht from ht−1, the
states of StackLSTM are built from the head of the
state stack H, maintained by a stack top pointer
p(H). At each time step, StackLSTM takes a real-
valued input vector together with an additional dis-
crete operation on the stack, which determines what
computation needs to be conducted and how the
stack top pointer should be updated. Throughout
this section, we index the input vector (e.g. word
embeddings) xt using the time step t it is fed into
the network, and hidden states in the stack hj using
their position j in the stack H, j being defined as
the 0-base index starting from the stack bottom.

The set of input discrete actions typically con-
tains at least Push and Pop operations. When
these operations are taken as input, the correspond-
ing computations on the StackLSTM are listed be-
low:1

• Push: read previous hidden state hp(H), per-
form LSTM forward computation with xt and

1To simplify the presentation, we omitted the updates on
cell states, because in practice the operations performed on
cell states and hidden states are the same.
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Transition Systems Transition Op Stack Op Buffer Op Composition Op

Arc-Standard
Shift push pop none
Left-Arc pop, pop, push hold S1← g(S0, S1)
Right-Arc pop hold S1← g(S1, S0)

Arc-Eager

Shift push pop none
Reduce pop hold none
Left-Arc pop hold B0← g(B0, S0)
Right-Arc push pop B0← g(S0, B0)

Arc-Hybrid
Shift push pop none
Left-Arc pop hold B0← g(B0, S0)
Right-Arc pop hold S1← g(S1, S0)

Table 1: Correspondence between transition operations and stack/buffer operations for StackLSTM, where g de-
notes the composition function as proposed by (Dyer et al., 2015). S0 and B0 refers to the token-level representa-
tion corresponding to the top element of the stack and buffer, while S1 and B1 refers to those that are second to the
top. We use a different notation here to avoid confusion with the states in StackLSTM, which represent non-local
information beyond token-level.

hp(H), write new hidden state to hp(H)+1 , up-
date stack top pointer with p(H)← p(H)+1.

• Pop: update stack top pointer with p(H) ←
p(H)− 1.

Reflecting on the aforementioned discussion on
parallelism, one should notice that StackLSTM
falls into the category of neural network architec-
tures that is difficult to perform minibatched train-
ing. This is caused by the fact that the computation
performed by StackLSTM at each time step is de-
pendent on the discrete input actions. The follow-
ing section proposes a solution to this problem.

3 Parallelizable StackLSTM

Continuing the formulation in the previous section,
we will start by discussing our proposed solution
under the case where the set of discrete actions
contains only Push and Pop operations; we then
move on to discussion of the applicability of our
proposed solution to the transition systems that are
used for building representations for dependency
trees.

The first modification we perform to the Push
and Pop operations above is to unify the pointer
update of these operations as p(H)← p(H) + op,
where op is the input discrete operation that could
either take the value +1 or -1 for Push and Pop
operation. After this modification, we came to the
following observations:

Observation 1 The computation performed for
Pop operation is a subset of Push operation.

Now, what remains to homogenize Push and
Pop operations is conducting the extra computa-
tions needed for Push operation when Pop is fed
in as well, while guaranteeing the correctness of
the resulting hidden state both in the current time
step and in the future. The next observation points
out a way for this guarantee:

Observation 2 In a StackLSTM, given the current
stack top pointer position p(H), any hidden state
hi where i > p(H) will not be read until it is
overwritten by a Push operation.

What follows from this observation is the guar-
antee that we can always safely overwrite hidden
states hi that are indexed higher than the current
stack top pointer, because it is known that any read
operation on these states will happen after another
overwrite. This allows us to do the extra computa-
tion anyway when Pop operation is fed, because
the extra computation, especially updating hp(H)+1,
will not harm the validity of the hidden states at
any time step.

Algorithm 1 gives the final forward computation
for the Parallelizable StackLSTM. Note that this
algorithm does not contain any if-statements that
depends on stack operations and hence is homoge-
neous when grouped into batches that are consisted
of multiple operations trajectories.

In transition systems (Nivre, 2008; Kuhlmann
et al., 2011) used in real tasks (e.g., transition-based
parsing) as shown in Table 1, it should be noted that
more than push and pop operations are needed
for the StackLSTM. Fortunately, for Arc-Eager and
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Algorithm 1: Forward Computation for Paral-
lelizable StackLSTM
Input: input vector xt

discrete stack operation op
Output: current top hidden state hp(H)

h_prev← hp(H);
h← LSTM(xt, h_prev);
hp(H)+1 ← h;
p(H)← p(H) + op;
return hp(H);

Arc-Hybrid transition systems, we can simply add
a hold operation, which is denoted by value 0 for
the discrete operation input. For that reason, we
will focus on parallelization of these two transition
systems for this paper. It should be noted that both
observations discussed above are still valid after
adding the hold operation.

4 Experiments

4.1 Setup

We implemented2 the architecture described above
in PyTorch (Paszke et al., 2017). We implemented
the batched stack as a float tensor wrapped in a
non-leaf variable, thus enabling in-place operations
on that variable. At each time step, the batched
stack is queried/updated with a batch of stack head
positions represented by an integer vector, an op-
eration made possible by gather operation and
advanced indexing. Due to this implementation
choice, the stack size has to be determined at ini-
tialization time and cannot be dynamically grown.
Nonetheless, a fixed stack size of 150 works for all
the experiments we conducted.

We use the dependency parsing task to evaluate
the correctness and the scalability of our method.
For comparison with previous work, we follow
the architecture introduced in Dyer et al. (2015);
Ballesteros et al. (2017) and chose the Arc-Hybrid
transition system for comparison with previous
work. We follow the data setup in Chen and Man-
ning (2014); Dyer et al. (2015); Ballesteros et al.
(2017) and use Stanford Dependency Treebank
(de Marneffe et al., 2006) for dependency parsing,
and we extract the Arc-Hybrid static oracle using
the code associated with Qi and Manning (2017).
The part-of-speech (POS) tags are generated with
Stanford POS-tagger (Toutanova et al., 2003) with

2https://github.com/shuoyangd/hoolock
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Figure 1: Training speed at different batch size. Note
that the x-axis is in log-scale in order to show all the
data points properly.

a test set accuracy of 97.47%. We use exactly the
same pre-trained English word embedding as Dyer
et al. (2015).

We use Adam (Kingma and Ba, 2014) as the opti-
mization algorithm. Following Goyal et al. (2017),
we apply linear warmup to the learning rate with an
initial value of τ = 5× 10−4 and total epoch num-
ber of 5. The target learning rate is set by τ multi-
plied by batch size, but capped at 0.02 because we
find Adam to be unstable beyond that learning rate.
After warmup, we reduce the learning rate by half
every time there is no improvement for loss value
on the development set (ReduceLROnPlateau).
We clip all the gradient norms to 5.0 and apply a
L2-regularization with weight 1× 10−6.

We started with the hyper-parameter choices in
Dyer et al. (2015) but made some modifications
based on the performance on the development set:
we use hidden dimension 200 for all the LSTM
units, 200 for the parser state representation before
the final softmax layer, and embedding dimension
48 for the action embedding.

We use Tesla K80 for all the experiments, in or-
der to compare with Neubig et al. (2017b); Dyer
et al. (2015). We also use the same hyper-parameter
setting as Dyer et al. (2015) for speed comparison
experiments. All the speeds are measured by run-
ning through one training epoch and averaging.

4.2 Results

Figure 1 shows the training speed at different batch
sizes up to 256.3 The speed-up of our model is

3At batch size of 512, the longest sentence in the training
data cannot be fit onto the GPU.
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b
dev test
UAS LAS UAS LAS

1* 92.50* 89.79* 92.10* 89.61*

8 92.93 90.42 92.54 90.11

16 92.62 90.19 92.53 90.13

32 92.43 89.89 92.31 89.94

64 92.53 90.04 92.22 89.73

128 92.39 89.73 92.55 90.02

256 92.15 89.46 91.99 89.43

Table 2: Dependency parsing result with various train-
ing batch size b and without composition function.
The results marked with asterisks were reported in the
Ballesteros et al. (2017).

close to linear, which means there is very little over-
head associated with our batching scheme. Quan-
titatively, according to Amdahl’s Law (Amdahl,
1967), the proportion of parallelized computations
is 99.92% at batch size 64. We also compared
our implementation with the implementation that
comes with Dyer et al. (2015), which is imple-
mented in C++ with DyNet (Neubig et al., 2017a).
DyNet is known to be very optimized for CPU com-
putations and hence their implementation is reason-
ably fast even without batching and GPU accelera-
tion, as shown in Figure 1.4 But we would like to
point out that we focus on the speed-up we are able
to obtain rather than the absolute speed, and that
our batching scheme is framework-universal and
superior speed might be obtained by combining our
scheme with alternative frameworks or languages
(for example, the torch C++ interface).

The dependency parsing results are shown in Ta-
ble 2. Our implementation is able to yield better
test set performance than that reported in Balles-
teros et al. (2017) for all batch size configurations
except 256, where we observe a modest perfor-
mance loss. Like Goyal et al. (2017); Keskar et al.
(2016); Masters and Luschi (2018), we initially
observed more significant test-time performance
deterioration (around 1% absolute difference) for
models trained without learning rate warmup, and
concurring with the findings in Goyal et al. (2017),
we find warmup very helpful for stabilizing large-
batch training. We did not run experiments with
batch size below 8 as they are too slow due to

4Measured on one core of an Intel Xeon E7-4830 CPU.

Python’s inherent performance issue.

5 Related Work

DyNet has support for automatic minibatching
(Neubig et al., 2017b), which figures out what com-
putation is able to be batched by traversing the
computation graph to find homogeneous compu-
tations. While we cannot directly compare with
that framework’s automatic batching solution for
StackLSTM5, we can draw a loose comparison
to the results reported in that paper for BiLSTM
transition-based parsing (Kiperwasser and Gold-
berg, 2016). Comparing batch size of 64 to batch
size of 1, they obtained a 3.64x speed-up on CPU
and 2.73x speed-up on Tesla K80 GPU, while our
architecture-specific manual batching scheme ob-
tained 60.8x speed-up. The main reason for this
difference is that their graph-traversing automatic
batching scheme carries a much larger overhead
compared to our manual batching approach.

Another toolkit that supports automatic mini-
batching is Matchbox6, which operates by analyz-
ing the single-instance model definition and deter-
ministically convert the operations into their mini-
batched counterparts. While such mechanism elim-
inated the need to traverse the whole computation
graph, it cannot homogenize the operations in each
branch of if. Instead, it needs to perform each op-
eration separately and apply masking on the result,
while our method does not require any masking.
Unfortunately we are also not able to compare with
the toolkit at the time of this work as it lacks sup-
port for several operations we need.

Similar to the spirit of our work, Bowman et al.
(2016) attempted to parallelize StackLSTM by us-
ing Thin-stack, a data structure that reduces the
space complexity by storing all the intermediate
stack top elements in a tensor and use a queue to
control element access. However, thanks to Py-
Torch, our implementation is not directly depen-
dent on the notion of Thin-stack. Instead, when
an element is popped from the stack, we simply
shift the stack top pointer and potentially re-write
the corresponding sub-tensor later. In other words,
there is no need for us to directly maintain all the in-
termediate stack top elements, because in PyTorch,
when the element in the stack is re-written, its un-
derlying sub-tensor will not be destructed as there

5This is due to the fact that DyNet automatic batching
cannot handle graph structures that depends on runtime input
values, which is the case in StackLSTM.

6https://github.com/salesforce/matchbox



5

are still nodes in the computation graph that point
to it. Hence, when performing back-propagation,
the gradient is still able to flow back to the ele-
ments that are previously popped from the stack
and their respective precedents. Hence, we are
also effectively storing all the intermediate stack
top elements only once. Besides, Bowman et al.
(2016) didn’t attempt to eliminate the conditional
branches in the StackLSTM algorithm, which is
the main algorithmic contribution of this work.

6 Conclusion

We propose a parallelizable version of StackLSTM
that is able to fully exploit the GPU parallelism
by performing minibatched training. Empirical
results show that our parallelization scheme yields
comparable performance to previous work, and our
method scales up very linearly with the increasing
batch size.

Because our parallelization scheme is based on
the observation made in section 1, we cannot incor-
porate batching for neither Arc-Standard transition
system nor the token-level composition function
proposed in Dyer et al. (2015) efficiently yet. We
leave the parallelization of these architectures to
future work.

Our parallelization scheme makes it feasible to
run large-data experiments for various tasks that
requires large training data to perform well, such as
RNNG-based syntax-aware neural machine trans-
lation (Eriguchi et al., 2017).
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