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Abstract

Phonological features can indicate word class
and we can use word class information to
disambiguate both homophones and homo-
graphs in automatic speech recognition (ASR).
We show Danish stød can be predicted from
speech and used to improve ASR. We discover
which acoustic features contain the signal of
stød, how to use these features to predict stød
and how we can make use of stød and stød-
predictive acoustic features to improve over-
all ASR accuracy and decoding speed. In the
process, we discover acoustic features that are
novel to the phonetic characterisation of stød.

1 Introduction

Stød ([?] in IPA notation) is usually described
as (a kind of) creaky voice or as laryngealisa-
tion (Hansen, 2015; Grønnum et al., 2013). Stød
can distinguish homophones and homographs and
can identify word class by its presence. Danish
vi?ser is a noun that translates to clock dial, but
pronounced without stød - viser - it can also be a
verb that means to show. The presence of stød can
change the meaning of an utterance, e.g. de kendte
folk can mean the famous people if kendte is pro-
nounced as [kEn?d@] and can also mean they knew
people if kendte is pronounced as [kEnd@]. Stød
is robust against some types of reduction and is an
acoustic cue that can help distinguish one vs. none
in colloquial Danish: [e?n] and [eN].

Phonological features can often be determined
from grammar and morphology (Grønnum, 2005)
but stød may not occur in read-aloud or spon-
taneous speech when predicted by morphology
and grammar, and stød can be difficult to per-
ceive in both visualisations of spectrograms and
in speech (Hansen, 2015).

Stød is not highly frequent in either read-
aloud or spontaneous speech, but stød and similar

phonological features like e.g. tones are interest-
ing for two main reasons:

1. Relatively small languages like Nordic lan-
guages do not have large speech corpora
available like English, Chinese etc. We
should exploit all signals in the data to im-
prove ASR performance for these languages.

2. The semantic disambiguation at both sen-
tence and lexical level is appealing because
ASR errors that disturb the meaning of an
utterance are less acceptable for human con-
sumers of ASR output (Mishra et al., 2011).

Our contributions are to:

• Show that stød annotation is reliable when
annotated by trained phoneticians and can be
the basis of statistical analyses.

• Discover novel audio features that are predic-
tive of stød in speech.

• Demonstrate we can predict stød in speech as
phone variant discrimination.

• Integrate stød in ASR and improve WER on
read-aloud and spontaneous speech.

2 Related work

Henrichsen and Christiansen (2012) found a cor-
relation between fundamental frequency (F0) and
spectral tilt, and discrimination between content
words and function words. We also investigate
these features for their ability to predict stød.

Stød, stress and schwa-assimilation were stud-
ied in Kirkedal (2013) in an ASR context. The
study found that WER improved when stød, stress,
schwa and duration annotation were removed from
the lexicon. However, the ASR system was trained
on a single speaker corpus with read-aloud speech
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Dataset Speech genre Location Speakers Duration Types Tokens
Språkbanken-train Read Office 560 316h 65667 2366183
Språkbanken-test Read Office 56 77h 72978 185049
JHP Spontaneous High-school 2 1 min 178† 995†

PAROLE48 Read Speech lab 1 48 min 181 4705
DanPASS Spontaneous Speech lab 18 2h 51 min 1075 21170

Table 1: Summary table for the corpora used. † indicate that type/token counts are based on counts of phones
instead of words.

and evaluated on a test set from the same corpus
and we demonstrate that the findings do not gen-
eralise to a multi-speaker setting.

No single feature extracted from audio of spo-
ken Danish can predict the presence of stød like F0
estimation can predict pitch (Fischer-Jørgensen,
1989). Because stød is related to irregular vibra-
tion of the vocal folds, previous research has fo-
cused on harmonics-to-noise (HNR) ratio, the dif-
ference between the first two harmonics in a spec-
trum (H1:H2) and diplophony (H1:H11

2
1) as well

as F0 and intensity (Hansen, 2015), but this is the
first large scale quantitative study of stød.

Stød can be audibly heard yet not be vis-
ible in a spectrogram to an experienced re-
searcher (Hansen, 2015). Consequently, the an-
notation of stød is subject to annotator perception.
Annotators need a considerable amount of training
to be able to annotate stød and the high cost of an-
notation in terms of training and annotation time
coupled with potential bias from annotator train-
ing or the specific annotator has been a barrier to
quantitative studies of stød. We show that expert
stød is reliable in Section 4.

Like stød in Danish, Tone 1 and Tone 2
in Norwegian and Swedish are the only differ-
ence between some homographs and homophones.
Swedish and Norwegian are pitch accent lan-
guages that use tones to distinguish lexical items
that would otherwise be homophones and homo-
graphs, e.g. tanken1 vs. tanken2 (the tank vs.
the thought - subscript indicates Tone 1 and Tone
2) (Lahiri et al., 2005). Some theories suggest
that stød originated from tones and the distribu-
tion of stød and Tone 1 & 2 also show similari-
ties (Grønnum et al., 2013). Riad (2000) describe
stød as a tonal pattern but this is refuted in a reply
in Grønnum et al. (2013).

In tonal languages like Mandarin Chinese,

1The ratio between the first harmonic H1 and the har-
monic signal at F0 ∗ 1.5. F0 is the frequency of H1.

tones or tonal contours disambiguate monosyl-
labic words as in the famous example of ma
which has five different meanings depending on
the tonal contour. ASR for tonal languages add
suprasegmental information to ASR models ei-
ther by extending the acoustic feature input (em-
bedded) or rescoring word lattices (explicit) (wen
Li et al., 2011). Embedded modelling requires
that tones are modelled in the lexicon either as
tonal variations of the same phoneme (Metze
et al., 2013; Yoon et al., 2006) or as separate
phonemes (Adams et al., 2018). Stød is related
to irregular vibration of the vocal folds which oc-
curs frequently in Danish with no connection to
stød and we do not explore explicit modelling.

The duration of the stød-bearing (semi-)vowel
or syllable has been considered important in pre-
vious literature. We do not consider duration in
this paper for 2 reasons: 1) HMM-based ASR is
the target application and implicitly model dura-
tion with self-loops in the HMM and 2) the investi-
gations of duration where conducted in lab condi-
tions with elicited speech in the Standard Copen-
hagen dialect. We use several corpora that cover
most Danish dialects, also dialects that typically
do not use stød.

The rest of the paper is structured as follows:
Section 3 presents the data used and Section 4
presents the study of stød annotation. In Section
5 we discover novel acoustic features that are pre-
dictive of stød. We test and evaluate how well
acoustic features predict stød in Section 6 and
perform phone variant discrimination where we
jointly predict phone and stød. In Section 7, we
adapt an ASR recipe for Danish and train several
ASR systems to determine the best way to use stød
to improve ASR.

3 Data

Table 1 shows the corpus statistics for all corpora
used in the rest of this paper.
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We use an interview with a high school student
in real-world conditions, denoted as JHP2 to study
the reliability of stød annotation. We use this short
sample of speech because it is the only sample that
is annotated by four Danish-speaking expert pho-
neticians trained in stød annotation. Another ex-
pert phonetician aligned and time-coded the four
transcriptions.

We also use the monologues from Dan-
PASS (Grønnum, 2006) and speech from
PAROLE-DK3 (Henrichsen, 2007). To compen-
sate for the unequal corpus sizes, we sample only
48 minutes and refer to this subset as PAROLE48.
We separate a random subset that contains speech
from both DanPASS and PAROLE48 as a test set.

Nasjonalbiblioteket4 hosts a language repos-
itory called Språkbanken. In the repository
is a multilingual speech corpus also known as
Språkbanken. The Danish 16 kHz part of
Språkbanken contains recordings of phonetically-
balanced utterances and covers 7 regions of Den-
mark and ages ranging from 18-70. The Swedish
part was used in Vanhainen and Salvi (2014) to
create an ASR recipe.

Språkbanken-test is 15 times larger than stan-
dard test sets from the Linguistic Data Consor-
tium (LDC) such as HUB5 which is 5 hours long.5

We decided to split Språkbanken-test into a de-
velopment set SPDEV (ca. 9 hours) and test set
SPTEST (ca. 17 hours). The remaining 51 hours
are included in the training data (ca. 367 hours)
while making sure that neither speakers nor utter-
ances in SPDEV and SPTEST appear in the train-
ing set.

We create pronunciation lexicons with eS-
peak (Duddington, 2010) from the training tran-
scripts because the pronunciation lexicon dis-
tributed with Språkbanken has low coverage and
eSpeak was found to produce transcriptions that
are good enough for ASR (Kirkedal, 2014).

4 Stød annotation study

The data we use for training and testing needs to be
reliable, i.e. if stød is annotated, we need to be sure
that stød occurs. To test how reliable our data is,
we calculate inter-annotator agreement measured

2The JHP sample was made available by Jan Heegård Pe-
tersen, Copenhagen University.

3This corpus was used in Kirkedal (2013).
4The Norwegian National Library service.
5See https://catalog.ldc.upenn.edu/

LDC2002S13.

IPA1 IPA2 IPA3 IPA4
Phone avg. 0.82 0.80 0.81 0.85
Stød avg. 0.72 0.74 0.76 0.76

Table 2: Average κ inter-annotator agreement on stød-
bearing items.

by Cohen’s κ and an annotator competence score
(ACS) with MACE (Hovy et al., 2013). ACS is
based on an item-response model that assumes an
annotator will produce the correct phone sequence
if he tries to which is valid in this scenario. An
item is a unit in the phone sequence and in this
study each unit is labelled by 4 annotators. We use
both κ and ACS because κ is a measure of the an-
notation whereas ACS is an estimate of annotator
proficiency. For both κ and ACS, higher scores are
better. 7.8% of the items in JHP are annotated with
phones with stød (stød-bearing) and the phones
without stød (stød-less) will dominate κ because
the distribution of phones in JHP is Zipfian and all
stød-bearing phones are in the long tail. To focus
specifically on stød, we report κ computed over
stød-bearing items in two conditions:

1. Items that are labelled with stød by at least
one annotator e.g. [D?], [A?], [n?] etc.

2. The same items as in 1. but binarised such
that e.g. [D?], [A?], [n?]→ 1 and [D], [A], [n]
→ 0.

We compute ACS over all phones and over the
binarised stød annotation in 2.

We discovered 10 errors in the data, e.g. one
label was [?n], but should have been [n] and stød
should have been annotated on the previous phone
as [D?]. There were 7 alignment errors that was
caused by the interpretation of a syllable nucleus
as either two short vowels or a long vowel. This
has an impact on the alignment because stød is an-
notated on a syllable rather than a phone and the
data is aligned at the phone level.

We corrected the errors before calculating the
κ scores based on phones and binary stød in Ta-
ble 2. Average κ is a an average over all pairwise
κ scores where the specific annotator is involved.
The annotators are referred to as IPA1, IPA2, IPA3
and IPA4.

The κ scores in Table 2 and the ACS scores in
Table 3 both indicate that stød annotation is reli-
able and we can base statistical models on stød

https://catalog.ldc.upenn.edu/LDC2002S13
https://catalog.ldc.upenn.edu/LDC2002S13
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Annotator # labels Phone # stød Stød
IPA1 107 0.760 53 0.770
IPA2 99 0.813 58 0.840
IPA3 94 0.823 62 0.894
IPA4 107 0.833 59 0.856

Table 3: Annotator competence scores for all items and
stød-bearing items.

annotation. The high κ scores show that the an-
notation in JHP is high quality and the ACS scores
show that the annotators are able to annotate stød
consistently and accurately.

5 Acoustic correlates of stød

Because we can rely on expert stød annotation,
we can discover acoustic features that signal stød
with statistical models. We use DanPASS and PA-
ROLE48 as training and test data because they
are also manually annotated and there is annotator
overlap with JHP. We use the toolkits Kaldi (Povey
et al., 2011), Covarep (Degottex et al., 2014) and
Praat (Boersma, 2002) to extract features that may
contain information that signals the occurrence of
stød. The number of features extracted by the dif-
ferent toolkits can be seen in Table 4.

We sample the audio every 10 milliseconds and
extract features over a context window the size
which depends on the feature. Mel-feature cep-
stral coefficients (MFCC) and perceptual linear
prediction (PLP) features use a 25 ms window
while pitch estimation uses a 1.5 second window
to extract robust features. Each 10 ms, we ex-
tract MFCC features, PLP features, Phase Distor-
tion Mean (PDM) features, Phase Distortion De-
viation (PDD) features, the Maxima Dispersion
Quotient (MDQ), Peak slope (PS), Quasi-Open
Quotient (QOQ), Normalised Amplitude Quotient
(NAQ), Parabolic Spectral Parameter (PSP), the
difference between first and second harmonic (H1-
H2), Fant’s basic shape parameter (Rd

6), HNR
and Intensity7. The first coefficient (C0) is re-
placed by an energy feature in both MFCC and
PLP extraction and we choose to discard the en-
ergy feature from MFCC extraction and keep the
log-energy feature with derivatives from PLP ex-
traction. When referring to 1st and 2nd deriva-
tives, we will suffix the feature name with -d and

6See (Fant, 1995) for a description.
7We use amplitude and intensity interchangeably, but we

are aware that amplitude is the acoustic correlate of intensity.

Toolkit Dimension Feature
Kaldi 39 PLP*

3 PoV*
3 log-pitch*
3 ∆-pitch*

Covarep 24 MFCC/MCEP
25 PDM
13 PDD
1 MDQ
1 PS
1 QOQ
1 NAQ
1 PSP
1 H1-H2
1 Rd

Praat 1 HNR
1 Intensity
1 Pitch

Table 4: Acoustic features. Features marked with *
also include 1st order and 2nd order derivatives.

-dd, respectively. ∆-pitch is a derivative on the
raw unnormalised pitch estimate in log space com-
puted over 5 frames and log-pitch is mean sub-
tracted by an average pitch value over a 151 frame
context window that is weighted by a probability
of voicing feature (PoV). We also estimate pitch
with Praat because Praat and Kaldi behave differ-
ently in unvoiced speech: Kaldi interpolates the
pitch estimate across unvoiced regions and Praat
sets it to 0.

We align each 120-dimensional feature vector
to a single phone by first segmenting syllable and
word level annotation to phone level and relying
on the existing time-coding.

5.1 Ranking acoustic features

We want to rank the 120 features by how well
they predict stød with Extremely-Randomised
Trees (Geurts et al., 2006) which trains an ensem-
ble of decision trees. Decision trees can use fea-
tures without standardisation and the input is not
assumed to be normally distributed, which is not
the case for e.g. HNR which becomes undefined
if the harmonic component of the speech signal
becomes too noisy. The estimation of relative fea-
ture importance will also be less affected by dif-
ferences between the toolkits.

The algorithm creates fully grown trees top-
down by splitting nodes. To split a node, a random
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Figure 1: Feature salience for stød prediction (task 1).
PLP are called plp pitch and energy refers to C0 ex-
tracted with PLP features.

Figure 2: Feature salience for stød-bearing and stød-
less phone variant discrimination (task 2).

subset K =
√
N of all features N in the current

node is selected as candidates for splitting crite-
rion. For each kj in K, a random cut-point aj is
chosen. The feature kj with cut-point aj which
most improves entropy after a split is used to split
the data in the node. Each decision tree is esti-
mated on a random subset of the training data and
we use sub-sampling with replacement to mitigate
the under-representation of samples labelled with
stød-bearing phones.

Relative feature importance can be ranked by
the depth at which a feature is used to split a
node because features used as splitting criterion
closer to the root node contribute to the predic-
tion of a larger fraction of samples. Final predic-
tion is achieved by majority voting across all trees
(1024). The samples are not weighted and classes
are represented by an equal number of samples.
This balancing is necessary to prevent the tree
growing algorithm to favour features that predict
a majority class.

5.1.1 Rankings
We rank features according to salience measured
as mean reduction in entropy across the ensem-
ble in two tasks: 1) binary stød prediction and 2)
multi-class discrimination between stød-less and
stød-bearing phone variants (e.g. [a?] vs. [a], [m?]
vs. [m]) at sample level. Figures 1 and 2 show the
40 most salient features for each task.

A common set of features that are salient for
phone discrimination and stød prediction emerges
from studying Figures 1 and 2. The top 17 features
are PLP 1-4, MFCC 1-4, PDD 10-13, PDM 13-14,
PS, POV and log-pitch. In the following sections,
SELECT will refer to this feature set and ALL will
denote a set with all 120 features.

PDM and PDD are novel features in stød char-
acterisation. That phase information is salient for
stød prediction is to our knowledge a novel in-
sight and interesting because PDM and PDD rank
higher than many ASR-related features such as
PLP-d, PLP-dd and some MFCC features. If this
finding can be corroborated in the analysis of other
corpora, phase features might be useful informa-
tion to add to acoustic models in ASR.

6 Predicting stød from acoustic input

With acoustic features that are predictive of stød
and reliable annotation, we can train classifiers
that predict stød directly from acoustics with su-
pervised training. The features in SELECT were
also chosen for their ability to discriminate be-
tween stød-bearing and stød-less phone variants
and in an ASR context, discriminating these phone
variants will be sufficient to identify word class.
Yoon et al. (2006) conducted a similar experiment
for American English with creak to improve WER
and they achieve an overall phone classification
accuracy of 69.23% on 25 minimal phone pairs.

Following the same methodology, we train an
SVM classifier with an RBF kernel and do not per-
form any optimisation of parameter values. We
compare classifiers trained on ALL and SELECT to
a baseline trained on PLP features in a balanced8

1v1 evaluation where the phone variants are only
distinguished by the presence or absence of stød.
We evaluate on JHP and do 5-fold cross validation
on the training set because we cannot meaning-
fully separate a test set when we reduce the train-
ing data to 1/10th the original size.

We can see from Table 5 that the classification
accuracy is much better than chance. The variance
increases for all feature sets on JHP because it is
much harder data, but all feature sets contain in-
formation that can help discriminate between stød-
bearing and stød-less variants of the same phone,
including standard PLP features.

8Balanced in terms of training data.
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Train ± JHP ±
PLP 0.769 0.144 0.713 0.266
ALL 0.781 0.168 0.685 0.220
SELECT 0.803 0.176 0.600 0.104

Table 5: 5-fold cross validation on the training data
across 40 phone variant pairs and mean classification
accuracy on JHP across 5 pairs.

ID Standard features +stød +pitch
1 PLP × ×
2 PLP X ×
3 PLP X X
4 MFCC × ×
5 MFCC X ×
6 MFCC X X

Table 6: The 6 conditions we test in this set of experi-
ments.

7 Stød in ASR

We have discovered that acoustic features nor-
mally used in ASR contain information that sig-
nal the occurrence of stød and can then annotate
stød in the pronunciation lexicon used in lexicon-
based ASR systems to create a baseline with stan-
dard ASR feature input. We can then add stød-
related features to ASR features to improve stød
modelling and performance further. We split this
set of experiments because adding more features
to the training data could also have an adverse ef-
fect: we could be improving stød prediction at the
expense of other speech sounds and because stød
is relatively infrequent this could increase WER.

We trained several ASR systems with features
where we augment MFCCs with features from SE-
LECT and also tried to train AMs with SELECT

and ALL as input. Training on ALL worsened
performance and was a very expensive experi-
ment, SELECT did not consistently perform better
or worse and we have chosen to report on exper-
iments where we observed performance improve-
ments over more than one training run. The fea-
tures log-pitch and POV from SELECT are good
predictors of stød and are standard features to in-
clude in ASR for tonal languages together with ∆-
pitch. These pitch features and modelling stød in
the lexicon will be investigated in Section 7.1. Re-
sults with other features from SELECT that are not
standard ASR features will be reported in Section
7.2.

We will no longer train on manually annotated
data because we need more data than is available
in DanPASS, PAROLE48 and JHP. We will train
AMs and an LM on data from Språkbanken which
is much larger and designed for ASR tasks.

7.1 Modelling stød in the lexicon

To train AMs, we use a pronunciation lexicon
to convert text sequences to phone sequences.
Phones are further subdivided to triphones and to
state-tied HMM states or senones. The lexicon is
central to state-of-the-art ASR and to test if stød
can actually improve WER, we will use both a lex-
icon with stød annotation and without stød anno-
tation. eSpeak generates phonetic transcriptions
with stød by default and we simply remove the an-
notation in the first case.

We want to see if adding pitch features improve
WER in ASR systems where stød is in the lexicon,
so we test the six conditions in Table 6.

We base our recipe on the Wall Street Journal
and Librispeech recipes in the Kaldi repository
which trains a series of GMM models and a DNN
model from scratch. We use IRSTLM (Federico
et al., 2008) to train a language model (LM) on
the training transcripts. We also tried to train a
LM on ngram frequency lists calculated over 290
million words from Danish newspapers, but the
performance degraded when we used the newspa-
per LM both on it’s own and interpolated with the
transcript LM and we conclude that the text genre
is too different from our data sets. We use Matched
Pairs Sentence-Segment Word Error (MAPSSWE)
from the SCTK toolkit (Fiscus, 2007) to calculate
statistical significance.

We train a GMM-based ASR system where we
stack features in an±5 frame context and use LDA
to project to 40 dimensions followed by a GMM
with speaker-adaptive training using feature space
MLLR (fMLLR) on top of LDA. The DNN is
a 4-layer feed-forward network with 1024 nodes
per layer and tanh-nonlinearities that we train on
the same LDA+fMLLR transformed features. The
learning rate starts at 0.01 and is decayed linearly
to 0.001 over 15 epochs and trains for an addi-
tional 5 epochs at 0.001.

In Table 7, we see the impact on WER when we
add stød annotation in the lexicon and add pitch
features to the feature input (denoted +pitch) and
evaluate on SPTEST. Adding stød consistently im-
proves WER, but is not always statistically sig-
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PLP MFCC
AM Baseline +stød +pitch Baseline +stød +pitch
GMM+LDA 17.61 17.55 17.07‡ 17.72 17.54 16.88‡

GMM+LDA+SAT 16.85 16.64* 16.49 17.14 16.81† 16.17‡

DNN 13.50 13.33 13.17 13.28 13.08† 13.38

Table 7: %WER performance on SPTEST. The best performance for each AM is in bold. Statistical significance
over the condition in the column to the left is denoted by * if p < 0.05, † if p < 0.01 and ‡ if p < 0.001.

Figure 3: Beam parameters sweep on SPTEST. The optimal beam size is 12.

nificant. We found that adding stød annotation
resolves many homophonic entries in the lexicon
e.g. hver, værd, vejr and vær are transcribed as
[vE5] but stød resolves the ambiguity such that
værd, hver and vejr transcribes as [vE?5] and vær
as [vE5?]. Table 8 shows the impact of stød anno-
tation on homophony in the pronunciation lexicon.
The proportion of affected tokens in SPTEST, PA-
ROLE48 and DanPASS are 27%, 26.7% and 7%,
respectively and suggest that modelling stød can
have a significant impact even though it appears
infrequently.

Polygraphy -stød +stød difference
4x 5 0 -5
3x 54 27 -27
2x 930 662 -268

Table 8: 2x denote the number of phonetic transcrip-
tions that can be mapped to two words, 3x denotes the
number of phonetic transcriptions that can be mapped
to three words, etc.

Only when we evaluate the DNN AM trained
in condition 6 do we not observe improved WER
when we add pitch features. We also see that
in general MFCC-based models outperform PLP-

based models and that adding stød and pitch fea-
tures gives a larger performance improvement in
MFCC-based GMM AMs. The best performance
is achieved with the DNN trained in condition 5.

We observe an interesting interaction between
stød and pitch features in decoding speed. When
we add stød and use the same decoder parameters,
the real-time factor (RTF) becomes larger which
means the ASR system takes more time to recog-
nise a sentence. If we add pitch features to the
acoustic input, decoding speed increases.

We encode stød-bearing phones as variants of
stød-less phones when we estimate phonetic de-
cision trees (PDT) and stød-bearing phones could
become just an alias of the stød-less phone during
state-tying because we do not increase the num-
ber of estimated probability density functions or
leaves of the PDTs. We observe that state-tying
tends to cluster together word position-dependent
phones more often than stød variants such that
clusters contain [e?E , e?B], but not [eB]9. There are
43-45 clusters of stød-bearing phones and 15-19
clusters of mixed stød-bearing and stød-less vari-
ants which indicate that stød often is a more im-
portant feature than word position.

9Subscripts denote word position
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We can conclude that modelling stød explicitly
in the pronunciation lexicon improves WER for
both GMM and DNN AMs. There is a statistically
significant overall WER improvement and we can
conclude that there was no adverse effect on per-
formance despite of the infrequent occurrence of
stød. In all cases but one we also observe improve-
ment from adding pitch features.

We find expert annotation is not necessary to
take advantage of stød in ASR. We used a g2p-
system to generate the pronunciation lexicon and
can observe consistent performance improvements
when we add stød annotation to the lexicon.

7.2 Stød-related acoustic features in ASR

We further investigate several features from SE-
LECT: PDD 10-13, PDM 13-14 and Peak slope.
Early experiments with GMM AMs showed sig-
nificantly worse empirical results with Peak Slope
and we chose to discard that feature from the rest
of the experiments. We bin together PDD 10-13
and PDM 13-14 and denote them as phase fea-
tures.

Abbr. MFCC Pitch Extra
M X × ×
MP X X ×
MPH X X HRF

MPP X X
PDD10-13
PDM13-14

Table 9: Feature combinations and their abbreviations.

Harmonic Richness Factor (HRF) is a measure
of harmonicity in the speech signal that Fernan-
dez et al. (2014) use to improve ASR for Zulu and
Lao and we expect a relevant measure to include in
our study. We discard PLP features because AMs
trained on MFCC features generally perform bet-
ter than the PLP counterparts both in WER and
RTF. We also include pitch features because they
tend to improve performance and decoding speed
and we need to estimate F0 to estimate both phase
features and HRF.

The feature combinations we use are in Table 9
and we use early feature integration before LDA
because it gave better performance in Metze et al.
(2013) and worked well in previous experiments.

We will depart from standard test methodol-
ogy and optimise one set of decoder parameters
on SPTEST, DanPASS, and PAROLE48 which we
also use as test sets. We could not find a method

to completely isolate the impact the new acous-
tic features have on WER, but this is our best ef-
fort to reduce the impact from other factors. We
randomly choose to optimise decoder parameters
with the MP model. We will do a second evalu-
ation where we sweep the decoder beam size and
visualise the impact on RTF.

Table 1010 shows that we can get better per-
formance by adding HRF and phase features to
the feature input. The improvement is significant
on the multispeaker test sets, but not PAROLE48,
where the MFCC baseline shows the best perfor-
mance. The RTF constraint does not affect WER
on SPTEST and Figure 3 shows that increasing the
beam will have no effect, but we could increase the
beam to 17 when we decode with MPH and MPP,
but only to 14 with M or MP.

On PAROLE48, we see that M takes a small
performance hit to maintain real-time decoding
capabilities, but on DanPASS we can further im-
prove MPP and MPH performance because the
faster decoding speed allows us to use a larger de-
coding beam. For MPP, the improvement is signif-
icant at p < 0.01. The speed up in Figures 3 and
4 is constant for MPP and MPH compared to M.
The MP RTF varies considerably and we cannot
draw conclusions on the relationship to MPP and
MPH based on these experiments.

We can conclude that HRF, PDD10-13 and
PDM 13-14 are beneficial acoustic features to
use in Danish ASR. WER decreases and decod-
ing speed increases when we add these features.
While phase features seem to provide the best im-
provements, the phase feature extraction method is
slower than real-time and our current recommen-
dation is to use HRF. Notes in the Covarep source
code suggest that real-time phase feature extrac-
tion is possible at the cost of precision, but imple-
menting real-time phase feature extraction is be-
yond the scope of this research.

8 Conclusion

We discovered that stød annotation is reliable
when it is annotated by expert phoneticians and
used this insight to discover predictive acoustic
features that are novel in the phonetic character-
isation of stød.

We also discovered that we do not need ex-
pert annotation to use stød in ASR to improve

10See Table 1 for summaries of the corpora used as test
sets.
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Features SPTEST PAROLE48 DanPASS
M 12.94 29.78 (29.89) 53.83
MP 13.10 30.38 54.73
MPH 12.58‡ 30.38 51.06 (50.46)
MPP 12.16‡ 30.05 49.02* (48.79*)

Table 10: WER performance using the same decoder parameters for each test set. WER under the RTF < 1
constraint are in parentheses if different. Statistical significance is compared to M. These numbers are not directly
comparable to Table 7.

Figure 4: Beam parameter sweep on DanPASS.

performance. The harmonic richness factor and
the phase features PDD10-13, PDM13-14 also
improve ASR performance and this indicates we
have successfully modelled stød explicitly in the
lexicon and implicitly with predictive acoustic fea-
tures without degrading overall performance. We
believe that these features can improve perfor-
mance in absence of stød annotation.

We tried to predict stød as a binary classifi-
cation task, i.e. predict the presence or absence
of stød regardless of the co-occurring phone, but
this was not possible because creaky voice, laryn-
gealisation and other acoustic signals that corre-
late with stød also occur when there is no stød-
bearing phone. In future work, we want to experi-
ment with pronunciation variants based on stød to
accurately model the optional nature of stød and
do an ablation study where we use more features
from SELECT, and do not include pitch features in
the feature input. We also need to investigate what
impact these features have in the absence of stød
annotation.

We used open source software and features
from ASR and speech analytics so our experi-
ments can be reproduced and reapplied to Swedish

and Norwegian. Språkbanken also includes
Swedish and Norwegian and eSpeak can generate
pronunciations with tones for both languages.

There are no previously published results
on Språkbanken or any of the test sets and
this was state-of-the-art performance in early
2016. New state-of-the-art performance on
Språkbanken-test11 also model stød in the lexi-
con.12
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