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Abstract

Readmission after discharge from a hospital
is disruptive and costly, regardless of the rea-
son. However, it can be particularly prob-
lematic for psychiatric patients, so predicting
which patients may be readmitted is critically
important but also very difficult. Clinical nar-
ratives in psychiatric electronic health records
(EHRs) span a wide range of topics and vo-
cabulary; therefore, a psychiatric readmission
prediction model must begin with a robust and
interpretable topic extraction component. We
created a data pipeline for using document
vector similarity metrics to perform topic ex-
traction on psychiatric EHR data in service of
our long-term goal of creating a readmission
risk classifier. We show initial results for our
topic extraction model and identify additional
features we will be incorporating in the future.

1 Introduction

Psychotic disorders typically emerge in late ado-
lescence or early adulthood (Kessler et al., 2007;
Thomsen, 1996) and affect approximately 2.5-4%
of the population (Perälä et al., 2007; Bogren et al.,
2009), making them one of the leading causes of
disability worldwide (Vos et al., 2015). A sub-
stantial proportion of psychiatric inpatients are
readmitted after discharge (Wiersma et al., 1998).
Readmissions are disruptive for patients and fami-
lies, and are a key driver of rising healthcare costs
(Mangalore and Knapp, 2007; Wu et al., 2005).
Reducing readmission risk is therefore a major un-
met need of psychiatric care. Developing clini-
cally implementable machine learning tools to en-
able accurate assessment of risk factors associated
with readmission offers opportunities to inform
the selection of treatment interventions and imple-
ment appropriate preventive measures.

In psychiatry, traditional strategies to study
readmission risk factors rely on clinical observa-

tion and manual retrospective chart review (Olf-
son et al., 1999; Lorine et al., 2015). This ap-
proach, although benefitting from clinical exper-
tise, does not scale well for large data sets, is
effort-intensive, and lacks automation. An effi-
cient, more robust, and cheaper NLP-based alter-
native approach has been developed and met with
some success in other medical fields (Murff et al.,
2011). However, this approach has seldom been
applied in psychiatry because of the unique char-
acteristics of psychiatric medical record content.

There are several challenges for topic extraction
when dealing with clinical narratives in psychi-
atric EHRs. First, the vocabulary used is highly
varied and context-sensitive. A patient may report
“feeling ‘really great and excited’” – symptoms of
mania – without any explicit mention of keywords
that differ from everyday vocabulary. Also, many
technical terms in clinical narratives are multiword
expressions (MWEs) such as ‘obsessive body im-
age’, ‘linear thinking’, ‘short attention span’, or
‘panic attack’. These phrasemes are comprised of
words that in isolation do not impart much infor-
mation in determining relatedness to a given topic
but do in the context of the expression.

Second, the narrative structure in psychiatric
clinical narratives varies considerably in how the
same phenomenon can be described. Hallucina-
tions, for example, could be described as “the pa-
tient reports auditory hallucinations,” or “the pa-
tient has been hearing voices for several months,”
amongst many other possibilities.

Third, phenomena can be directly mentioned
without necessarily being relevant to the patient
specifically. Psychosis patient discharge sum-
maries, for instance, can include future treatment
plans (e.g. “Prevent relapse of a manic or major
depressive episode.”, “Prevent recurrence of psy-
chosis.”) containing vocabulary that at the word-
level seem strongly correlated with readmission
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risk. Yet at the paragraph-level these do not in-
dicate the presence of a readmission risk factor in
the patient and in fact indicate the absence of a risk
factor that was formerly present.

Lastly, given the complexity of phenotypic as-
sessment in psychiatric illnesses, patients with
psychosis exhibit considerable differences in
terms of illness and symptom presentation. The
constellation of symptoms leads to various diag-
noses and comorbidities that can change over time,
including schizophrenia, schizoaffective disorder,
bipolar disorder with psychosis, and substance use
induced psychosis. Thus, the lexicon of words and
phrases used in EHRs differs not only across diag-
noses but also across patients and time.

Taken together, these factors make topic extrac-
tion a difficult task that cannot be accomplished by
keyword search or other simple text-mining tech-
niques.

To identify specific risk factors to focus on,
we not only reviewed clinical literature of risk
factors associated with readmission (Alvarez-
Jimenez et al., 2012; Addington et al., 2010),
but also considered research related to functional
remission (Harvey and Bellack, 2009), forensic
risk factors (Singh and Fazel, 2010), and con-
sulted clinicians involved with this project. Seven
risk factor domains – Appearance, Mood, Inter-
personal, Occupation, Thought Content, Thought
Process, and Substance – were chosen because
they are clinically relevant, consistent with liter-
ature, replicable across data sets, explainable, and
implementable in NLP algorithms.

In our present study, we evaluate multiple ap-
proaches to automatically identify which risk fac-
tor domains are associated with which paragraphs
in psychotic patient EHRs.1 We perform this study
in support of our long-term goal of creating a read-
mission risk classifier that can aid clinicians in tar-
geting individual treatment interventions and as-
sessing patient risk of harm (e.g. suicide risk,
homicidal risk). Unlike other contemporary ap-
proaches in machine learning, we intend to create
a model that is clinically explainable and flexible
across training data while maintaining consistent
performance.

To incorporate clinical expertise in the identi-
fication of risk factor domains, we undertake an
annotation project, detailed in section 3.1. We
identify a test set of over 1,600 EHR paragraphs

1This study has received IRB approval.

which a team of three domain-expert clinicians
annotate paragraph-by-paragraph for relevant risk
factor domains. Section 3.2 describes the results
of this annotation task. We then use the gold stan-
dard from the annotation project to assess the per-
formance of multiple neural classification mod-
els trained exclusively on Term Frequency – In-
verse Document Frequency (TF-IDF) vectorized
EHR data, described in section 4. To further im-
prove the performance of our model, we incor-
porate domain-relevant MWEs identified using all
in-house data.

2 Related Work

McCoy et al. (2015) constructed a corpus of
web data based on the Research Domain Criteria
(RDoC)(Insel et al., 2010), and used this corpus to
create a vector space document similarity model
for topic extraction. They found that the ‘neg-
ative valence’ and ‘social’ RDoC domains were
associated with readmission. Using web data (in
this case data retrieved from the Bing API) to train
a similarity model for EHR texts is problematic
since it differs from the target data in both struc-
ture and content. Based on reconstruction of the
procedure, we conclude that many of the informa-
tive MWEs critical to understanding the topics of
paragraphs in EHRs are not captured in the web
data. Additionally, RDoC is by design a general-
ized research construct to describe the entire spec-
trum of mental disorders and does not include do-
mains that are based on observation or causes of
symptoms. Important indicators within EHRs of
patient health, like appearance or occupation, are
not included in the RDoC constructs.

Rumshisky et al. (2016) used a corpus of EHRs
from patients with a primary diagnosis of ma-
jor depressive disorder to create a 75-topic LDA
topic model that they then used in a readmission
prediction classifier pipeline. Like with McCoy
et al. (2015), the data used to train the LDA
model was not ideal as the generalizability of the
data was narrow, focusing on only one disorder.
Their model achieved readmission prediction per-
formance with an area under the curve of .784
compared to a baseline of .618. To perform clini-
cal validation of the topics derived from the LDA
model, they manually evaluated and annotated the
topics, identifying the most informative vocabu-
lary for the top ten topics. With their training
data, they found the strongest coherence occurred
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in topics involving substance use, suicidality, and
anxiety disorders. But given the unsupervised na-
ture of the LDA clustering algorithm, the topic
coherence they observed is not guaranteed across
data sets.

3 Data

Our target data set consists of a corpus of dis-
charge summaries, admission notes, individual en-
counter notes, and other clinical notes from 220
patients in the OnTrackTM program at McLean
Hospital. OnTrackTM is an outpatient program,
focusing on treating adults ages 18 to 30 who are
experiencing their first episodes of psychosis. The
length of time in the program varies depending on
patient improvement and insurance coverage, with
an average of two to three years. The program
focuses primarily on early intervention via indi-
vidual therapy, group therapy, medication evalu-
ation, and medication management. See Table
1 for a demographic breakdown of the 220 pa-
tients, for which we have so far extracted approx-
imately 240,000 total EHR paragraphs spanning
from 2011 to 2014 using Meditech, the software
employed by McLean for storing and organizing
EHR data.

These patients are part of a larger research co-
hort of approximately 1,800 psychosis patients,
which will allow us to connect the results of this
EHR study with other ongoing research studies
incorporating genetic, cognitive, neurobiological,
and functional outcome data from this cohort.

We also use an additional data set for training
our vector space model, comprised of EHR texts
queried from the Research Patient Data Registry
(RPDR), a centralized regional data repository of
clinical data from all institutions in the Partners
HealthCare network. These records are highly
comparable in style and vocabulary to our target
data set. The corpus consists of discharge sum-
maries, encounter notes, and visit notes from ap-
proximately 30,000 patients admitted to the sys-
tem’s hospitals with psychiatric diagnoses and
symptoms. This breadth of data captures a wide
range of clinical narratives, creating a comprehen-
sive foundation for topic extraction.

After using the RPDR query tool to extract EHR
paragraphs from the RPDR database, we created a
training corpus by categorizing the extracted para-

2The vast majority of patients in our target cohort are
dependents on a parental private health insurance plan.

Mean Age (2014) 20.7
Gender (Male) 79%
Race

Asian 6%
Black 7%
Caucasian 77%
Latino 5%
Multiracial 5%

Insurance (Public)2 5.5%
30-day Inpatient Readmission
Rate

14%

Table 1: Demographic breakdown of the target cohort.

graphs according to their risk factor domain using
a lexicon of 120 keywords that were identified by
the clinicians involved in this project. Certain do-
mains – particularly those involving thoughts and
other abstract concepts – are often identifiable by
MWEs rather than single words. The same clin-
icians who identified the keywords manually ex-
amined the bigrams and trigrams with the highest
TF-IDF scores for each domain in the categorized
paragraphs, identifying those which are conceptu-
ally related to the given domain. We then used
this lexicon of 775 keyphrases to identify more
relevant training paragraphs in RPDR and treat
them as (non-stemmed) unigrams when generating
the matrix. By converting MWEs such as ‘short-
ened attention span’, ‘unusual motor activity’,
‘wide-ranging affect’, or ‘linear thinking’ to non-
stemmed unigrams, the TF-IDF score (and there-
fore the predictive value) of these terms is magni-
fied. In total, we constructed a corpus of roughly
100,000 paragraphs consisting of 7,000,000 to-
kens for training our model.

3.1 Annotation Task

In order to evaluate our models, we annotated
1,654 paragraphs selected from the 240,000 para-
graphs extracted from Meditech with the clinically
relevant domains described in Table 2. The anno-
tation task was completed by three licensed clini-
cians. All paragraphs were removed from the sur-
rounding EHR context to ensure annotators were
not influenced by the additional contextual infor-
mation. Our domain classification models con-
sider each paragraph independently and thus we
designed the annotation task to mirror the infor-
mation available to the models.

The annotators were instructed to label each
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Domain Description Example Paragraph Example Keywords
Appearance Physical appearance, gestures, and

mannerisms
“A well-appearing, clean young woman
appearing her stated age, pleasant and
cooperative. Eye contact was good.”

disheveled, clothing,
groomed, wearing,
clean

Thought
Content

Suicidal/homicidal ideation,
obsessions, phobias, delusions,
hallucinations

“No SI3, No HI4, No hallucinations,
Ideas of reference, Paranoid delusions”

obsession, delusion,
grandiose, ideation,
suicidal, paranoid

Interpersonal Family situation, friendships, and
other social relationships

“Pt. overall appears to be functioning
very well despite this conflict with a
romantic interest of hers.”

boyfriend,
relationship, peers,
family, parents, social

Mood Feelings and overall disposition “Pt. indicates that his mood is becoming
more ‘depressed.’”

anxious, calm,
depressed, labile,
confused, cooperative

Occupation School and/or employment “Pt. followed through with decision to
leave college at this point in time.”

boss, employed, job,
school, class,
homework, work

Thought
Process

Pace and coherence of thoughts.
Includes linear, goal-directed,
perseverative, tangential, and flight of
ideas

“Disorganized (Difficult to
communicate with patient.), Paucity of
thought, Thought-blocking.”

linear, tangential,
prosody, blocking,
goal-directed,
perseverant

Substance Drug and/or alcohol use “Patient used marijuana once which he
believes triggered the current episode.”

cocaine, marijuana,
ETOH5, addiction,
narcotic

Other Any paragraph that does not fall into
any of the other seven domains

“Maintain mood stabilization, prevent
future episodes of mania, improve
self-monitoring skills.”

–

Table 2: Annotation scheme for the domain classification task.

paragraph with one or more of the seven risk fac-
tor domains. In instances where more than one do-
main was applicable, annotators assigned the do-
mains in order of prevalence within the paragraph.
An eighth label, ‘Other’, was included if a para-
graph was ambiguous, uninterpretable, or about a
domain not included in the seven risk factor do-
mains (e.g. non-psychiatric medical concerns and
lab results). The annotations were then reviewed
by a team of two clinicians who adjudicated col-
laboratively to create a gold standard. The gold
standard and the clinician-identified keywords and
MWEs have received IRB approval for release to
the community. They are available as supplemen-
tary data to this paper.

3.2 Inter-Annotator Agreement

Inter-annotator agreement (IAA) was assessed us-
ing a combination of Fleiss’s Kappa (a variant of
Scott’s Pi that measures pairwise agreement for
annotation tasks involving more than two anno-
tators) (Fleiss, 1971) and Cohen’s Multi-Kappa
as proposed by Davies and Fleiss (1982). Table
3 shows IAA calculations for both overall agree-
ment and agreement on the first (most important)
domain only. Following adjudication, accuracy
scores were calculated for each annotator by eval-
uating their annotations against the gold standard.

Overall agreement was generally good and

aligned almost exactly with the IAA on the first
domain only. Out of the 1,654 annotated para-
graphs, 671 (41%) had total agreement across all
three annotators. We defined total agreement for
the task as a set-theoretic complete intersection of
domains for a paragraph identified by all anno-
tators. 98% of paragraphs in total agreement in-
volved one domain. Only 35 paragraphs had total
disagreement, which we defined as a set-theoretic
null intersection between the three annotators. An
analysis of the 35 paragraphs with total disagree-
ment showed that nearly 30% included the term
“blunted/restricted”. In clinical terminology, these
terms can be used to refer to appearance, affect,
mood, or emotion. Because the paragraphs be-
ing annotated were extracted from larger clinical
narratives and examined independently of any sur-
rounding context, it was difficult for the annotators
to determine the most appropriate domain. This
lack of contextual information resulted in each
annotator using a different ‘default’ label: Ap-
pearance, Mood, and Other. During adjudication,
Other was decided as the most appropriate label
unless the paragraph contained additional content
that encompassed other domains, as it avoids mak-
ing unnecessary assumptions.

3Suicidal ideation
4Homicidal ideation
5Ethyl alcohol and ethanol
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Labels Fleiss’s Kappa Cohen’s Multi-Kappa Mean Accuracy
Overall 0.575 0.571 0.746
First Domain Only 0.536 0.528 0.805

Table 3: Inter-annotator agreement

Network MLP RBF

Input Layer
Nodes 100 100
Dropout 0.2 0.2
Activation ReLU6 ReLU

Hidden Layer
Nodes 100 350
Dropout 0.5 0.0
Activation ReLU RBF

Output Layer
Nodes 7 7
Activation Sigmoid Linear

Optimizer Adam7 Adam
Loss Function Categorical

Cross
Entropy

Mean
Squared
Error

Training
Epochs

30 50

Batch Size 128 128

Table 4: Architectures of our highest-performing MLP
and RBF networks.

A Fleiss’s Kappa of 0.575 lies on the boundary
between ‘Moderate’ and ‘Substantial’ agreement
as proposed by Landis and Koch (1977). This
is a promising indication that our risk factor do-
mains are adequately defined by our present guide-
lines and can be employed by clinicians involved
in similar work at other institutions.

The fourth column in Table 3, Mean Accuracy,
was calculated by averaging the three annotator
accuracies as evaluated against the gold standard.
This provides us with an informative baseline of
human parity on the domain classification task.

4 Topic Extraction

Figure 1 illustrates the data pipeline for generat-
ing our training and testing corpora, and applying
them to our classification models.

6Rectified Linear Units, f(x) = max(0, x) (Nair and
Hinton, 2010)

7Adaptive Moment Estimation (Kingma and Ba, 2014)

We use the TfidfVectorizer tool included in the
scikit-learn machine learning toolkit (Pedregosa
et al., 2011) to generate our TF-IDF vector space
models, stemming tokens with the Porter Stemmer
tool provided by the NLTK library (Bird et al.,
2009), and calculating TF-IDF scores for uni-
grams, bigrams, and trigrams. Applying Singular
Value Decomposition (SVD) to the TF-IDF ma-
trix, we reduce the vector space to 100 dimen-
sions, which Zhang et al. (2011) found to improve
classifier performance.

Starting with the approach taken by McCoy et
al. (2015), who used aggregate cosine similarity
scores to compute domain similarity directly from
their TF-IDF vector space model, we extend this
method by training a suite of three-layer multi-
layer perceptron (MLP) and radial basis function
(RBF) neural networks using a variety of param-
eters to compare performance. We employ the
Keras deep learning library (Chollet et al., 2015)
using a TensorFlow backend (Abadi et al.) for this
task. The architectures of our highest performing
MLP and RBF models are summarized in Table 4.
Prototype vectors for the nodes in the hidden layer
of our RBF model are selected via k-means clus-
tering (MacQueen et al., 1967) on each domain
paragraph megadocument individually. The RBF
transfer function for each hidden layer node is as-
signed the same width, which is based off the max-
imum Euclidean distance between the centroids
that were computed using k-means.

To prevent overfitting to the training data, we
utilize a dropout rate (Srivastava et al., 2014) of
0.2 on the input layer of all models and 0.5 on the
MLP hidden layer.

Since our classification problem is multiclass,
multilabel, and open-world, we employ seven
nodes with sigmoid activations in the output layer,
one for each risk factor domain. This allows us
to identify paragraphs that fall into more than one
of the seven domains, as well as determine para-
graphs that should be classified as Other. Unlike
the traditionally used softmax activation function,
which is ideal for single-label, closed-world clas-
sification tasks, sigmoid nodes output class like-
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Figure 1: Data pipeline for training and evaluating our risk factor domain classifiers.

lihoods for each node independently without the
normalization across all classes that occurs in soft-
max.

We find that the risk factor domains vary in
the degree of homogeneity of language used, and
as such certain domains produce higher simi-
larity scores, on average, than others. To ac-
count for this, we calculate threshold similar-
ity scores for each domain using the formula
min=avg(sim)+α*σ(sim), where σ is standard de-
viation and α is a constant, which we set to
0.78 for our MLP model and 1.2 for our RBF
model through trial-and-error. Employing a gen-
eralized formula as opposed to manually identify-
ing threshold similarity scores for each domain has
the advantage of flexibility in regards to the target
data, which may vary in average similarity scores
depending on its similarity to the training data. If a
paragraph does not meet threshold on any domain,
it is classified as Other.

5 Results and Discussion

Table 5 shows the performance of our models on
classifying the paragraphs in our gold standard. To
assess relative performance of feature representa-
tions, we also include performance metrics of our
models without MWEs. Because this is a multil-
abel classification task we use macro-averaging to
compute precision, recall, and F1 scores for each
paragraph in the testing set. In identifying do-
mains individually, our models achieved the high-
est per-domain scores on Substance (F1≈ 0.8) and
the lowest scores on Interpersonal and Mood (F1
≈ 0.5). We observe a consistency in per-domain
performance rankings between our MLP and RBF
models.

The wide variance in per-domain performance
is due to a number of factors. Most notably,
the training examples we extracted from RPDR –
while very comparable to our target OnTrackTM

Precision Recall F1
Aggregate Cosine
Similarity Scores

0.602 0.563 0.574

MLP Baseline
(No MWEs)

0.611 0.567 0.579

RBF Baseline
(No MWEs)

0.603 0.618 0.606

MLP
(w/ MWEs)

0.717 0.666 0.681

Appearance 0.886 0.414 0.564
Interpersonal 0.548 0.453 0.496
Mood 0.691 0.430 0.530
Occupation 0.826 0.461 0.592
Substance 0.920 0.703 0.797
Thought Content 0.926 0.590 0.721
Thought Process 0.654 0.617 0.635
Other 0.632 0.798 0.710

RBF
(w/ MWEs)

0.684 0.630 0.645

Appearance 0.670 0.490 0.566
Interpersonal 0.410 0.493 0.448
Mood 0.655 0.399 0.496
Occupation 0.720 0.501 0.598
Substance 0.866 0.730 0.792
Thought Content 0.892 0.547 0.678
Thought Process 0.569 0.691 0.624
Other 0.651 0.650 0.651

Table 5: Overall and domain-specific Precision, Recall,
and F1 scores for our models. The first row computes
similarity directly from the TF-IDF matrix, as in (Mc-
Coy et al., 2015). All other rows are classifier outputs.

data – may not have an adequate variety of con-
tent and range of vocabulary. Although using key-
word and MWE matching to create our training
corpus has the advantage of being significantly
less labor intensive than manually labeling every
paragraph in the corpus, it is likely that the ho-
mogeneity of language used in the training para-
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Figure 2: 2-component linear discriminant analysis of the RPDR training data.

graphs is higher than it would be otherwise. Addi-
tionally, all of the paragraphs in the training data
are assigned exactly one risk factor domain even if
they actually involve multiple risk factor domains,
making the clustering behavior of the paragraphs
more difficult to define. Figure 2 illustrates the
distribution of paragraphs in vector space using 2-
component Linear Discriminant Analysis (LDA)
(Johnson and Wichern, 2004).

Despite prior research indicating that similar
classification tasks to ours are more effectively
performed by RBF networks (Scheirer et al., 2014;
Jain et al., 2014; Bendale and Boult, 2015), we
find that a MLP network performs marginally bet-
ter with significantly less preprocessing (i.e. k-
means and width calculations) involved. We can
see in Figure 2 that Thought Process, Appearance,
Substance, and – to a certain extent – Occupation
clearly occupy specific regions, whereas Interper-
sonal, Mood, and Thought Content occupy the
same noisy region where multiple domains over-
lap. Given that similarity is computed using Eu-
clidean distance in an RBF network, it is diffi-
cult to accurately classify paragraphs that fall in

regions occupied by multiple risk factor domain
clusters since prototype centroids from the risk
factor domains will overlap and be less differen-
tiable. This is confirmed by the results in Table
5, where the differences in performance between
the RBF and MLP models are more pronounced
in the three overlapping domains (0.496 vs 0.448
for Interpersonal, 0.530 vs 0.496 for Mood, and
0.721 vs 0.678 for Thought Content) compared to
the non-overlapping domains (0.564 vs 0.566 for
Appearance, 0.592 vs 0.598 for Occupation, 0.797
vs 0.792 for Substance, and 0.635 vs 0.624 for
Thought Process). We also observe a similarity
in the words and phrases with the highest TF-IDF
scores across the overlapping domains: many of
the Thought Content words and phrases with the
highest TF-IDF scores involve interpersonal rela-
tions (e.g. ‘fear surrounding daughter’, ‘father’,
‘family history’, ‘familial conflict’) and there is
a high degree of similarity between high-scoring
words for Mood (e.g. ‘meets anxiety criteria’,
‘cope with mania’, ‘ocd’8) and Thought Content
(e.g. ‘mania’, ‘feels anxious’, ‘feels exhausted’).

8Obsessive-compulsive disorder
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MWEs play a large role in correctly identifying
risk factor domains. Factoring them into our mod-
els increased classification performance by 15%,
a marked improvement over our baseline model.
This aligns with our expectations that MWEs com-
prised of a quotidian vocabulary hold much more
clinical significance than when the words in the
expressions are treated independently.

Threshold similarity scores also play a large
role in determining the precision and recall of our
models: higher thresholds lead to a smaller num-
ber of false positives and a greater number of false
negatives for each risk factor domain. Conversely,
more paragraphs are incorrectly classified as Other
when thresholds are set higher. Since our classi-
fier will be used in future work as an early step
in a data analysis pipeline for determining read-
mission risk, misclassifying a paragraph with an
incorrect risk factor domain at this stage can lead
to greater inaccuracies at later stages. Paragraphs
misclassified as Other, however, will be discarded
from the data pipeline. Therefore, we intention-
ally set a conservative threshold where only the
most confidently labeled paragraphs are assigned
membership in a particular domain.

6 Future Work and Conclusion

To achieve our goal of creating a framework for
a readmission risk classifier, the present study per-
formed necessary evaluation steps by updating and
adding to our model iteratively. In the first stage
of the project, we focused on collecting the data
necessary for training and testing, and on the do-
main classification annotation task. At the same
time, we began creating the tools necessary for
automatically extracting domain relevance scores
at the paragraph and document level from patient
EHRs using several forms of vectorization and
topic modeling. In future versions of our risk fac-
tor domain classification model we will explore
increasing robustness through sequence modeling
that considers more contextual information.

Our current feature set for training a machine
learning classifier is relatively small, consisting
of paragraph domain scores, bag-of-words, length
of stay, and number of previous admissions, but
we intend to factor in many additional features
that extend beyond the scope of the present study.
These include a deeper analysis of clinical nar-
ratives in EHRs: our next task will be to extend
our EHR data pipeline by distinguishing between

clinically positive and negative phenomena within
each risk factor domain. This will involve a series
of annotation tasks that will allow us to generate
lexicon-based and corpus-based sentiment analy-
sis tools. We can then use these clinical sentiment
scores to generate a gradient of patient improve-
ment or deterioration over time.

We will also take into account structured data
that have been collected on the target cohort
throughout the course of this study such as
brain based electrophysiological (EEG) biomark-
ers, structural brain anatomy from MRI scans
(gray matter volume, cortical thickness, cortical
surface-area), social and role functioning assess-
ments, personality assessment (NEO-FFI9), and
various symptom scales (PANSS10, MADRS11,
YMRS12). For each feature we consider adding,
we will evaluate the performance of the classifier
with and without the feature to determine its con-
tribution as a predictor of readmission.
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Partonen, Annamari Tuulio-Henriksson, Jukka Hin-
tikka, Tuula Kieseppä, et al. 2007. Lifetime preva-
lence of psychotic and bipolar i disorders in a gen-
eral population. Archives of general psychiatry,
64(1):19–28.

A Rumshisky, M Ghassemi, T Naumann, P Szolovits,
VM Castro, TH McCoy, and RH Perlis. 2016. Pre-
dicting early psychiatric readmission with natural

https://keras.io
https://keras.io


138

language processing of narrative discharge sum-
maries. Translational psychiatry, 6(10):e921.

Walter J Scheirer, Lalit P Jain, and Terrance E Boult.
2014. Probability models for open set recognition.
IEEE transactions on pattern analysis and machine
intelligence, 36(11):2317–2324.

Jay P Singh and Seena Fazel. 2010. Forensic risk as-
sessment: A metareview. Criminal Justice and Be-
havior, 37(9):965–988.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

PH Thomsen. 1996. Schizophrenia with childhood and
adolescent onseta nationwide register-based study.
Acta Psychiatrica Scandinavica, 94(3):187–193.

Theo Vos, Ryan M Barber, Brad Bell, Amelia Bertozzi-
Villa, Stan Biryukov, Ian Bolliger, Fiona Charlson,
Adrian Davis, Louisa Degenhardt, Daniel Dicker,
et al. 2015. Global, regional, and national inci-
dence, prevalence, and years lived with disability for
301 acute and chronic diseases and injuries in 188
countries, 1990–2013: a systematic analysis for the
global burden of disease study 2013. The Lancet,
386(9995):743–800.

Durk Wiersma, Fokko J Nienhuis, Cees J Slooff, and
Robert Giel. 1998. Natural course of schizophrenic
disorders: a 15-year followup of a dutch incidence
cohort. Schizophrenia bulletin, 24(1):75–85.

Eric Q Wu, Howard G Birnbaum, Lizheng Shi,
Daniel E Ball, Ronald C Kessler, Matthew Moulis,
and Jyoti Aggarwal. 2005. The economic burden of
schizophrenia in the united states in 2002. Journal
of Clinical Psychiatry, 66(9):1122–1129.

RC Young, JT Biggs, VE Ziegler, and DA Meyer.
1978. A rating scale for mania: reliability, validity
and sensitivity. The British Journal of Psychiatry,
133(5):429–435.

Wen Zhang, Taketoshi Yoshida, and Xijin Tang. 2011.
A comparative study of tf* idf, lsi and multi-words
for text classification. Expert Systems with Applica-
tions, 38(3):2758–2765.


