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Introduction

The International Workshop on Health Text Mining and Information Analysis (LOUHI) provides
an interdisciplinary forum for researchers interested in automated processing of health documents.
Health documents encompass electronic health records, clinical guidelines, spontaneous reports for
pharmacovigilance, biomedical literature, health forums/blogs or any other type of health-related
documents. The LOUHI workshop series fosters interactions between the Computational Linguistics,
Medical Informatics and Artificial Intelligence communities. The eight previous editions of the
workshop were co-located with SMBM 2008 in Turku, Finland, with NAACL 2010 in Los Angeles,
California, with Artificial Intelligence in Medicine (AIME 2011) in Bled, Slovenia, during NICTA
Techfest 2013 in Sydney, Australia, co-located with EACL 2014 in Gothenburg, Sweden, with EMNLP
2015 in Lisbon, Portugal, with EMNLP 2016 in Austin, Texas; and in 2017 was held in Sydney, Australia.
This year the workshop is co-located with EMNLP 2018 in Brussels, Belgium.

The aim of the LOUHI 2018 workshop is to bring together research work on topics related to health
documents, particularly emphasizing multidisciplinary aspects of health documentation and the interplay
between nursing and medical sciences, information systems, computational linguistics and computer
science. The topics include, but are not limited to, the following Natural Language Processing techniques
and related areas:

• Techniques supporting information extraction, e.g. named entity recognition, negation and
uncertainty detection

• Classification and text mining applications (e.g. diagnostic classifications such as ICD-10 and
nursing intensity scores) and problems (e.g. handling of unbalanced data sets)

• Text representation, including dealing with data sparsity and dimensionality issues

• Domain adaptation, e.g. adaptation of standard NLP tools (incl. tokenizers, PoS-taggers, etc) to
the medical domain

• Information fusion, i.e. integrating data from various sources, e.g. structured and narrative
documentation

• Unsupervised methods, including distributional semantics

• Evaluation, gold/reference standard construction and annotation

• Syntactic, semantic and pragmatic analysis of health documents

• Anonymization/de-identification of health records and ethics

• Supporting the development of medical terminologies and ontologies

• Individualization of content, consumer health vocabularies, summarization and simplification of
text

• NLP for supporting documentation and decision making practices

• Predictive modeling of adverse events, e.g. adverse drug events and hospital acquired infections

The call for papers encouraged authors to submit papers describing substantial and completed work
but also focus on a contribution, a negative result, a software package or work in progress. We also
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encouraged to report work on low-resourced languages, addressing the challenges of data sparsity and
language characteristic diversity.

This year we received a high number of submissions (49), therefore the selection process was very
competitive. Due to time and space limitations, we could only choose a small number of the submitted
papers to appear in the program.

Each submission went through a double-blind review process which involved three program committee
members. Based on comments and rankings supplied by the reviewers, we accepted 23 papers. Although
the selection was entirely based on the scores provided by the reviewers, we regretfully had to set a
relatively high threshold for acceptance. The overall acceptance rate is 46%. During the workshop, 13
papers will be presented orally, and 10 papers will be presented as posters.

Our special thanks go to Goran Nenadic for accepting to give an invited talk.

Finally, we would like to thank the members of the program committee for providing balanced reviews
in a very short period of time, and the authors for their submissions and the quality of their work.

iv



Organizers:

Alberto Lavelli, FBK, Trento, Italy
Anne-Lyse Minard, IRISA, CNRS, Rennes, France
Fabio Rinaldi, University of Zurich, Switzerland & FBK, Trento, Italy

Program Committee:

Sophia Ananiadou, University of Manchester, UK
Georgeta Bordea, Université de Bordeaux, France
Leonardo Campillos Llanos, LIMSI, CNRS, France
Wendy Chapman, University of Utah, USA
Vincent Claveau, IRISA, CNRS, France
Kevin B Cohen, University of Colorado/School of Medicine, USA
Francisco Couto, University of Lisbon, Portugal
Hercules Dalianis, Stockholm University, Sweden
Martin Duneld, Stockholm University, Sweden
Filip Ginter, University of Turku, Finland
Natalia Grabar, CNRS UMR 8163, STL Université de Lille3, France
Gintaré Grigonyté, Stockholm University, Sweden
Cyril Grouin, LIMSI, CNRS, Université Paris-Saclay, Orsay, France
Thierry Hamon, LIMSI, CNRS, Université Paris-Saclay, Orsay, France & Université Paris 13,
Villetaneuse, France
Aron Henriksson, Stockholm University, Sweden
Rezarta Islamaj-Dogan, NIH/NLM/NCBI, USA
Antonio Jimeno Yepes, IBM Research, Australia
Yoshinobu Kano, Shizuoka University, Japan
Jin-Dong Kim, Research Organization of Information and Systems, Japan
Dimitrios Kokkinakis, University of Gothenburg, Sweden
Martin Krallinger, Spanish National Cancer Research Centre (CNIO)
Michael Krauthammer, Yale University, USA
Ivano Lauriola, University of Padova and FBK, Trento, Italy
Analia Lourenco, Universidade de Vigo, Spain
David Martinez, University of Melbourne and MedWhat.com, Australia
Sérgio Matos, University of Aveiro, Portugal
Marie-Jean Meurs, UQAM & Concordia University, QC, Canada
Timothy Miller, Harvard Medical School, USA
Hans Moen, University of Turku
Diego Molla, Maquaire University, Australia
Roser Morante, VU Amsterdam, Netherlands
Danielle L Mowery, University of Utah, USA
Henning Müller, University of Applied Sciences Western Switzerland, Switzerland
Goran Nenadic, University of Manchester, UK
Aurélie Névéol, LIMSI, CNRS, Université Paris-Saclay, Orsay, France
Mariana Lara Neves, German Federal Institute for Risk Assessment, Germany
Richard Nock, CSIRO, Australia
Øystein Nytrø, NTNU, Norway

v



Naoaki Okazaki, Tokyo Institute of Technology, Japan
Jong C. Park, KAIST Computer Science, Korea
Thomas Brox Røst, Norwegian University of Science and Technology, Norway
Patrick Ruch, SIB Swiss Institute of Bioinformatics, Switzerland
Tapio Salakoski, University of Turku, Finland
Sanna Salanterä, University of Turku, Finland
Stefan Schulz, Graz General Hospital and University Clinics, Austria
Isabel Segura-Bedmar, Universidad Carlos III de Madrid, Spain
Maria Skeppstedt, Linneus University, Sweden, and Potsdam University, Germany
Manfred Stede, University of Potsdam, Germany
Hanna Suominen, CSIRO, Australia
Sumithra Velupillai, KTH, Royal Institute of Technology, Sweden, and King’s College London,
UK
Özlem Uzuner, MIT, USA
Pierre Zweigenbaum, LIMSI, CNRS, Université Paris-Saclay, Orsay, France

Invited Speaker:

Goran Nenadic, University of Manchester, UK

vi



Table of Contents

Detecting Diabetes Risk from Social Media Activity
Dane Bell, Egoitz Laparra, Aditya Kousik, Terron Ishihara, Mihai Surdeanu and Stephen Kobourov

1

Treatment Side Effect Prediction from Online User-generated Content
Hoang Nguyen, Kazunari Sugiyama, Min-Yen Kan and Kishaloy Halder . . . . . . . . . . . . . . . . . . . . . 12

Revisiting neural relation classification in clinical notes with external information
Simon Suster, Madhumita Sushil and Walter Daelemans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Supervised Machine Learning for Extractive Query Based Summarisation of Biomedical Data
Mandeep Kaur and Diego Molla. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

Comparing CNN and LSTM character-level embeddings in BiLSTM-CRF models for chemical and dis-
ease named entity recognition

Zenan Zhai, Dat Quoc Nguyen and Karin Verspoor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38

Deep learning for language understanding of mental health concepts derived from Cognitive Behavioural
Therapy

Lina M. Rojas Barahona, Bo-Hsiang Tseng, Yinpei Dai, Clare Mansfield, Osman Ramadan, Stefan
Ultes, Michael Crawford and Milica Gasic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Investigating the Challenges of Temporal Relation Extraction from Clinical Text
Diana Galvan, Naoaki Okazaki, Koji Matsuda and Kentaro Inui . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

De-identifying Free Text of Japanese Dummy Electronic Health Records
Kohei Kajiyama, Hiromasa Horiguchi, Takashi Okumura, Mizuki Morita and Yoshinobu Kano . 65

Unsupervised Identification of Study Descriptors in Toxicology Research: An Experimental Study
Drahomira Herrmannova, Steven Young, Robert Patton, Christopher Stahl, Nicole Kleinstreuer and

Mary Wolfe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Identification of Parallel Sentences in Comparable Monolingual Corpora from Different Registers
Rémi Cardon and Natalia Grabar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Evaluation of a Prototype System that Automatically Assigns Subject Headings to Nursing Narratives
Using Recurrent Neural Network

Hans Moen, Kai Hakala, Laura-Maria Peltonen, Henry Suhonen, Petri Loukasmäki, Tapio Salakoski,
Filip Ginter and Sanna Salanterä . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Automatically Detecting the Position and Type of Psychiatric Evaluation Report Sections
Deya Banisakher, Naphtali Rishe and Mark A. Finlayson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Iterative development of family history annotation guidelines using a synthetic corpus of clinical text
Taraka Rama, Pål Brekke, Øystein Nytrø and Lilja Øvrelid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

CAS: French Corpus with Clinical Cases
Natalia Grabar, Vincent Claveau and Clément Dalloux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Analysis of Risk Factor Domains in Psychosis Patient Health Records
Eben Holderness, Nicholas Miller, Kirsten Bolton, Philip Cawkwell, Marie Meteer, James Puste-

jovsky and Mei Hua-Hall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

vii



Patient Risk Assessment and Warning Symptom Detection Using Deep Attention-Based Neural Networks
Ivan Girardi, Pengfei Ji, An-phi Nguyen, Nora Hollenstein, Adam Ivankay, Lorenz Kuhn, Chiara

Marchiori and Ce Zhang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Syntax-based Transfer Learning for the Task of Biomedical Relation Extraction
Joël Legrand, Yannick Toussaint, Chedy Raïssi and Adrien Coulet . . . . . . . . . . . . . . . . . . . . . . . . . . 149

In-domain Context-aware Token Embeddings Improve Biomedical Named Entity Recognition
Golnar Sheikhshabbafghi, Inanc Birol and Anoop Sarkar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Self-training improves Recurrent Neural Networks performance for Temporal Relation Extraction
Chen Lin, Timothy Miller, Dmitriy Dligach, Hadi Amiri, Steven Bethard and Guergana Savova165

Listwise temporal ordering of events in clinical notes
Serena Jeblee and Graeme Hirst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Time Expressions in Mental Health Records for Symptom Onset Extraction
Natalia Viani, Lucia Yin, Joyce Kam, Ayunni Alawi, André Bittar, Rina Dutta, Rashmi Patel, Robert

Stewart and Sumithra Velupillai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183

Evaluation of a Sequence Tagging Tool for Biomedical Texts
Julien Tourille, Matthieu Doutreligne, Olivier Ferret, Aurélie Névéol, Nicolas Paris and Xavier

Tannier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Learning to Summarize Radiology Findings
Yuhao Zhang, Daisy Yi Ding, Tianpei Qian, Christopher D. Manning and Curtis P. Langlotz . . 204

viii



Workshop Program

October 31, 2018

9:00–10:30 Session 1

9:00 Introduction

9:05 Detecting Diabetes Risk from Social Media Activity
Dane Bell, Egoitz Laparra, Aditya Kousik, Terron Ishihara, Mihai Surdeanu and
Stephen Kobourov

9:30 Treatment Side Effect Prediction from Online User-generated Content
Hoang Nguyen, Kazunari Sugiyama, Min-Yen Kan and Kishaloy Halder

9:55 Poster booster

10:15 Poster session

Revisiting neural relation classification in clinical notes with external information
Simon Suster, Madhumita Sushil and Walter Daelemans

Supervised Machine Learning for Extractive Query Based Summarisation of
Biomedical Data
Mandeep Kaur and Diego Molla

Comparing CNN and LSTM character-level embeddings in BiLSTM-CRF models
for chemical and disease named entity recognition
Zenan Zhai, Dat Quoc Nguyen and Karin Verspoor

Deep learning for language understanding of mental health concepts derived from
Cognitive Behavioural Therapy
Lina M. Rojas Barahona, Bo-Hsiang Tseng, Yinpei Dai, Clare Mansfield, Osman
Ramadan, Stefan Ultes, Michael Crawford and Milica Gasic

Investigating the Challenges of Temporal Relation Extraction from Clinical Text
Diana Galvan, Naoaki Okazaki, Koji Matsuda and Kentaro Inui

De-identifying Free Text of Japanese Dummy Electronic Health Records
Kohei Kajiyama, Hiromasa Horiguchi, Takashi Okumura, Mizuki Morita and
Yoshinobu Kano

ix



October 31, 2018 (continued)

Unsupervised Identification of Study Descriptors in Toxicology Research: An Ex-
perimental Study
Drahomira Herrmannova, Steven Young, Robert Patton, Christopher Stahl, Nicole
Kleinstreuer and Mary Wolfe

Identification of Parallel Sentences in Comparable Monolingual Corpora from Dif-
ferent Registers
Rémi Cardon and Natalia Grabar

Evaluation of a Prototype System that Automatically Assigns Subject Headings to
Nursing Narratives Using Recurrent Neural Network
Hans Moen, Kai Hakala, Laura-Maria Peltonen, Henry Suhonen, Petri Loukasmäki,
Tapio Salakoski, Filip Ginter and Sanna Salanterä

Automatically Detecting the Position and Type of Psychiatric Evaluation Report
Sections
Deya Banisakher, Naphtali Rishe and Mark A. Finlayson

10:30–11:00 Break

11:00–12:30 Session 2

11:00 Iterative development of family history annotation guidelines using a synthetic cor-
pus of clinical text
Taraka Rama, Pål Brekke, Øystein Nytrø and Lilja Øvrelid

11:25 CAS: French Corpus with Clinical Cases
Natalia Grabar, Vincent Claveau and Clément Dalloux

11:40 Analysis of Risk Factor Domains in Psychosis Patient Health Records
Eben Holderness, Nicholas Miller, Kirsten Bolton, Philip Cawkwell, Marie Meteer,
James Pustejovsky and Mei Hua-Hall

12:05 Patient Risk Assessment and Warning Symptom Detection Using Deep Attention-
Based Neural Networks
Ivan Girardi, Pengfei Ji, An-phi Nguyen, Nora Hollenstein, Adam Ivankay, Lorenz
Kuhn, Chiara Marchiori and Ce Zhang

x



October 31, 2018 (continued)

12:30–14:00 Lunch

14:00–15:30 Session 3

14:00 Invited Talk - Distributed text mining in healthcare: linking data, methods and peo-
ple
Goran Nenadic

14:50 Syntax-based Transfer Learning for the Task of Biomedical Relation Extraction
Joël Legrand, Yannick Toussaint, Chedy Raïssi and Adrien Coulet

15:15 In-domain Context-aware Token Embeddings Improve Biomedical Named Entity
Recognition
Golnar Sheikhshabbafghi, Inanc Birol and Anoop Sarkar

15:30–16:00 Break

16:00–17:30 Session 4

16:00 Self-training improves Recurrent Neural Networks performance for Temporal Rela-
tion Extraction
Chen Lin, Timothy Miller, Dmitriy Dligach, Hadi Amiri, Steven Bethard and Guer-
gana Savova

16:25 Listwise temporal ordering of events in clinical notes
Serena Jeblee and Graeme Hirst

16:40 Time Expressions in Mental Health Records for Symptom Onset Extraction
Natalia Viani, Lucia Yin, Joyce Kam, Ayunni Alawi, André Bittar, Rina Dutta,
Rashmi Patel, Robert Stewart and Sumithra Velupillai

16:55 Evaluation of a Sequence Tagging Tool for Biomedical Texts
Julien Tourille, Matthieu Doutreligne, Olivier Ferret, Aurélie Névéol, Nicolas Paris
and Xavier Tannier

17:10 Learning to Summarize Radiology Findings
Yuhao Zhang, Daisy Yi Ding, Tianpei Qian, Christopher D. Manning and Curtis P.
Langlotz

xi





Proceedings of the 9th International Workshop on Health Text Mining and Information Analysis (LOUHI 2018), pages 1–11
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

Detecting Diabetes Risk from Social Media Activity

Dane Bell1, Egoitz Laparra2, Aditya Kousik3, Terron Ishihara3,
Mihai Surdeanu3, and Stephen Kobourov3

1Department of Linguistics, University of Arizona
2School of Information, University of Arizona

3Department of Computer Science, University of Arizona
{dane,laparra,adityak,tishihara,msurdeanu,kobourov}@email.arizona.edu

Abstract
This work explores the detection of individu-
als’ risk of type 2 diabetes mellitus (T2DM)
directly from their social media (Twitter) ac-
tivity. Our approach extends a deep learning
architecture with several contributions: fol-
lowing previous observations that language
use differs by gender, it captures and uses gen-
der information through domain adaptation; it
captures recency of posts under the hypoth-
esis that more recent posts are more repre-
sentative of an individual’s current risk status;
and, lastly, it demonstrates that in this scenario
where activity factors are sparsely represented
in the data, a bag-of-word neural network
model using custom dictionaries of food and
activity words performs better than other neu-
ral sequence models. Our best model, which
incorporates all these contributions, achieves a
risk-detection F1 of 41.9, considerably higher
than the baseline rate (36.9).

1 Introduction

The prevalence of diabetes is increasing in the US,
mounting to 30.3 million cases in 2015, of whom
7.2 million were undiagnosed (Centers for Disease
Control and Prevention, 2017). Diabetes caused
over 79 thousand US deaths in 2015, in addition to
$245 billion in economic costs in 2012 (American
Diabetes Association, 2013). Along with genetic
factors, lifestyle factors such as diet and physical
activity are one of the important drivers of risk
for Type 2 Diabetes Mellitus (T2DM), the most
common type of diabetes. At the same time, the
widespread use of social media has produced a
digital record of these factors, offering potential
insight into how these factors interact to contribute
to health risk over time. These publicly available
data present an opportunity to detect diabetes risk
and similar health risks at scale.

This work shows that the detection of individ-
uals’ diabetes risk solely from their public Twit-

ter activity is possible, demonstrating that at-risk
individuals use language differently from less at-
risk individuals. Importantly, this detection is a
first, crucial component in a larger battery of so-
cial media-based, public-health intervention tools
that will work toward disease prevention on a large
scale. Specifically, our contributions are:

(1) We introduce a process that creates a novel
dataset, which pairs individuals’ T2DM risk with
their social media activity. We measured individu-
als’ T2DM risk using a well-established, validated
questionnaire (Bang et al., 2009), and aligned the
result with the corresponding Twitter accounts. To
our knowledge, this is the first dataset that directly
links T2DM risk with social media activity.

(2) We introduce the first machine learning (ML)
approach for classifying individuals’ T2DM risk
based solely on their Twitter activity. Our deep
learning approach has several novel contributions:
(a) following previous observations that language
use differs by gender, it captures and uses gender
information through domain adaptation1 (Daumé,
2007); (b) it captures recency of posts under the
hypothesis that more recent posts are more rep-
resentative of an individual’s current risk status;
and, lastly (c) it demonstrates that in this sce-
nario where words representing real-life risk fac-
tors are sparsely represented in the data, a bag-of-
word (BOW) model that uses custom dictionaries
of food and physical activity words is a better so-
lution than recurrent neural networks (RNN). Our
best model, which incorporates all these contribu-
tions, achieves a risk-detection F1 of 41.9, consid-
erably higher than the baseline rate (36.9). In com-
parison, a realistic ceiling model based on the true
age, gender, and Body Mass Index (BMI, kg

m2 ) of
each respondent, achieves only 62.7 on this task.

1In our experiments, domain adaptation for age did not
improve performance.
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Figure 1: Histogram of respondents’ risk scores, with
labels as assigned based on Bang et al. (2009).

(3) We provide a feature analysis based on Lay-
erwise Relevance Propagation (Bach et al., 2015;
Binder et al., 2016; Arras et al., 2016, 2017), re-
vealing that relevance aligns, albeit inconsistently,
to expected food and activity values on average.

2 Data

We collected the dataset used in this work on a vol-
untary basis through a Qualtrics survey.2 Partici-
pants self-selected by following an URL in an in-
vitation tweet, and after consenting to participate,
provided their Twitter handles, demographic infor-
mation, and answers to an established question-
naire that estimates T2DM risk (Bang et al., 2009).
The questionnaire provides an easy-to-understand
measure of diabetes risk from data such as age and
physical activity level, ranging from 0 to 10, with
a score of 5 or higher representing elevated risk.
Each participant received a risk assessment, in-
cluding a summary of the sources of their risk, an
explanation of how to get diagnosed (i.e., through
a blood test), and a link to further information.

Of the 3,612 respondents who completed sur-
veys, 736 (20.4%) supplied a Twitter handle. After
removing respondents who provided no handle, an
obviously false handle,3 or a handle with no pub-
lic tweets, 604 (16.7%) respondents with handles
remained. The relatively modest dataset size is a
natural consequence of the complexity of the data
and the sensitivity of its collection. The distribu-
tion of risk scores among respondents is summa-
rized in Fig. 1.

The complex relationship between height,
weight, and risk score is illustrated in Fig. 2. Al-

2The collection and analysis was approved by an institu-
tional research board (IRB).

3These were inspected manually. Some examples of
excluded handles are @jack (the example handle given),
@realdonaldtrump, and @no.

less-risk at-risk

accounts 467 137
tweets (mean) 893 K (1,912) 282 K (2,059)
tokens (mean) 15.2 M (32.5 K) 5.1 M (37.0 K)
# women (%) 312 (67%) 73 (53%)
mean age 36.4 51.1
mean BMI 25.6 34.8

Table 1: A summary of the size and qualities of the less-risk
and at-risk accounts in the dataset collected for this work.
BMI: Body Mass Index, kg

m2 .

though BMI is a major risk factor for diabetes, the
existence of other factors means that there is con-
siderable risk variation within BMI categories, and
the discretization of BMI into categories necessar-
ily obscures variation within categories. Many re-
spondents would change BMI categories if an inch
were added to or subtracted from their height, for
example.

We used the Twitter API to collect the tweet
and profile text for each handle. The tweets and
profile descriptions were tokenized and part-of-
speech tagged using ARK Tweet NLP (Owoputi
et al., 2013). Each account was labeled at-risk
if the owner’s questionnaire risk score was 5 or
greater, or less-risk otherwise. A summary of ac-
count statistics is shown in Table 1.

3 Approach

We predict individual-level T2DM risk from
individual-level data (i.e., individual Twitter ac-
counts), as opposed to transferring from commu-
nity level statistics (e.g., county diabetes rate as
dependent variable; all tweets in that region as in-
put). Intuitively, using a community-level model
should be a viable strategy: much more data is
available for training; previous work has shown
that exploring this data leads to good community-
level estimations (Fried et al., 2014). However,
our initial experiments showed that individual
variation within communities was considerable,
overshadowing the variation across communities
and limiting the effectiveness of such methods. In
our preliminary experiments the community-level
model did not perform better than chance for esti-
mating individual risk.

As a result of this initial analysis, in this work
we focus on predicting T2DM risk from individual
Twitter accounts. To this end, we propose a neu-
ral network (NN) architecture tailored to T2DM
risk estimation, which relies on the following re-
sources.

2



Figure 2: An illustration of the relationship between height, weight, BMI, and risk score for respondents who pro-
vided a valid Twitter handle. The BMI categories (underweight, healthy, overweight, etc.) are assigned according
to boundaries set by the World Health Organization. The marginal histograms denote the distribution of height
(top) and weight (right) in the sample. This figure is best viewed in color.

3.1 Resources

Custom dictionaries: In early experiments, we
observed that no model that trained on the posts’
entire content outperformed a simple baseline. We
explain this result by the fact that indicators of risk
factors (e.g., diet or activity words) are sparsely
represented in this data, and the models cannot
reliably identify them. To mitigate this prob-
lem, we created domain-specific dictionaries of
words and hashtags indicating foods (pizza), exer-
cise (#5k), chain restaurant names (#mcdonalds),
and hashtags related to being overweight (#fatguy-
problems). The food words were derived from
a domain-specific Spanish-English glossary4 and
food vocabulary set5, following Fried et al. (2014).
Exercise words and restaurant names were adapted

4
www.lingolex.com/spanishfood/a-b.htm

5
www.enchantedlearning.com/wordlist/food.shtml

from Wikipedia lists of sports6 and restaurants7.
The smaller list of 13 overweight-related terms
were hand-chosen based on Twitter searches.

To adapt the food dictionary to Twitter, we au-
tomatically expanded it using semantic vectors.
We trained the word2vec algorithm (Mikolov
et al., 2013) over an independent dataset of 12.3 M
food-related tweets8, creating 200-dimension vec-
tors for each word. From each existing dictio-
nary term, we found the 5 closest candidate words,
as measured by cosine distance. Each candidate
could appear in multiple lists (e.g. #breakfastbur-
rito is similar to both burrito and taco), so we cal-
culated the softmax of the distances for each can-
didate. We then expanded our dictionary with the
top 500 candidates, which included words such as

6
en.wikipedia.org/wiki/List_of_sports

7
en.wikipedia.org/wiki/List_of_the_largest_fast_

food_restaurant_chains
8Collected automatically using a set of seven diet-related

hashtags such as #breakfast and #lunch.
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halloumi, muesli, and sriracha. After these addi-
tions, there was a total of 2,871 features.

Gender: It is well established that language use
differs by gender (Rao et al., 2010; Burger et al.,
2011; Volkova et al., 2013; Johannsen et al., 2015).
On the hypothesis that conditioning classifica-
tion on these secondary variables would maxi-
mize the informativeness of other features9, we
automatically annotated each account for gender.
We predicted gender using a SVM model trained
on a separate corpus of 1,000 Twitter accounts
hand-annotated with gender information (man or
woman).10 This gender classifier used solely uni-
gram features extracted from the account descrip-
tion and its tweets. The macro-averaged F1 of this
model is 75.79 on the T2DM dataset (c.f. human
annotators, who averaged 71% accuracy on a sim-
ilar task (Nguyen et al., 2014)).

3.2 Neural network architecture
We propose a feedforward neural network with
one hidden layer, which captures both post re-
cency (by weighing each input word by the re-
cency of the corresponding post) and gender in-
formation (captured through domain adaptation).
The proposed architecture is depicted and summa-
rized in Fig. 3. This network uses pre-trained word
embeddings of 200 dimensions generated using
word2vec (Mikolov et al., 2013) on the above cor-
pus of food-related tweets. The tanh layer has 128
neurons, and was trained under a 40% dropout.
Importantly, this network uses only account words
that matched entries in the above custom dictio-
naries.11

Recency weighting: Our preliminary analysis
indicated that more recent tweets are more rele-
vant for classification. We attribute the effect of
recency to transitions from high to low risk or vice
versa due to lifestyle changes, in which case more
recent tweets are more representative. To capture
recency, we introduce a simple attention mecha-
nism where each word is weighted by its recency,
defined as normalized tweet position in the cor-
responding account. More formally, the recency

9We additionally tested this hypothesis, classifying par-
ticipants’ ages into 5 classes (0-20, 21-30, 31-40, 51-60,
61+). Although the age classifier itself performed better than
chance, initial experiments showed that age provided no ben-
efit in classifying diabetes risk, and so the influence of age
was left to future work.

10Non-binary individuals represented< 1% of our dataset.
11Implemented in PyTorch: http://pytorch.org/.

weight (ri) of a word wi is defined as:

ri =
position of tweet containing wi

#tweets in account

where the newest tweet in an account has the high-
est position. The average embedding (x) is calcu-
lated as:

xi = wiri, x =
∑n

i=1 xi∑n
i=1 ri

Domain adaptation: We capture gender infor-
mation using the domain adaptation method of
Daumé (2007), adapted to neural networks. As
shown in Figure 3, we replicate the output of
the tanh layer 〈t〉 to have a domain-independent
version, and one version specific to each domain
modeled. For example, the concatenated vector
for a female account is 〈t, t, 0〉, where 0 is the zero
vector corresponding to the male-account domain.
This routing process is automatically implemented
using the gender classifier described in the pre-
vious subsection. All in all, this allows the top
sigmoid layer to detect information that general-
izes across all domains, in which case the domain-
independent vector (tg) receives a larger update
during backpropagation, or is specific to a domain,
in which case the corresponding domain-specific
vector (td1 or td2) is updated more.

3.3 Baselines
We implemented three baselines:

(1) All at risk: This baseline assumes all individu-
als are at risk, i.e., they have a score 5 or higher.

(2) Support vector machines (SVM): This base-
line model uses a linear SVM with unigram fea-
tures from words and hashtags that match our cus-
tom dictionaries.12 Similarly, following the do-
main adaption method of Daumé (2007), we in-
corporate gender information by prepending each
feature name with the account’s gender annota-
tion (in addition to keeping the original feature).
For example, an account annotated as a woman
who used the word coffee 16 times would yield
an unigram feature coffee in all models, and
additionally a feature gender:woman coffee,
both with a feature value of 16. (The accounts fea-
ture gender:man coffee would have a value
of 0.) This allows these models to discover the
best generalization for this task, e.g., if coffee is
an important classification word for women only,
the models will put the greatest weight on the gen-
der:woman coffee feature; conversely, if coffee is

12Other kernels, larger n-grams, and using all words did
not improve performance.
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Figure 3: An illustration of the proprosed NN architecture. The bag of words from a user’s account matching our custom
dictionaries is translated into a set of word embeddings w1, w2, ..., wn. The embeddings are multiplied by recency weights
r1, r2, ..., rn. The resulting vectors are averaged (x) and passed to the tanh hidden layer. The output of this layer is replicated,
producing copies for the general domain, tg , and for each of the domains, td1 and td2, e.g., d1 = female, and d2 = male. If an
account belongs to domain d1, the copy td2 is set to the zero vector, and vice versa. The copies are then concatenated and fed
to the top sigmoid (σ) layer.

always important, the generic unigram feature cof-
fee will be assigned greater weight.

(3) Convolutional neural networks (CNN): For this
baseline, we apply a CNN layer to the sequence of
embeddings of dictionary words that occur in the
corresponding account, followed by a rectified lin-
ear operator (ReLU). We implement domain adap-
tation for gender by augmenting the output of the
ReLU layer, similarly to the tanh layer in Figure
3. The resulting vector feeds a top sigmoid layer
that makes the prediction.13

3.4 Ceiling models

We also developed two ceiling models against
which to compare our text-based approaches. The
first model (Ceiling) is an SVM trained with all
the risk assessment variables collected in the sur-
vey mentioned in Section 2. This dataset is maxi-
mally informative, because these are precisely the
variables that determine the risk score (Bang et al.,
2009). However, it is not realistic, because most
of these features are not available in social me-
dia, neither directly nor through machine learn-
ing techniques. For this reason, we also imple-
mented an alternative and more realistic version of
the ceiling system (Realistic Ceiling) that incorpo-

13We also experimented with gated recurrent units,
and with using all words instead of just dictionary
words/hashtags. None outperformed this CNN configuration.

Realistic
Feature Type Ceiling Ceiling

age Integer X X
gender Boolean X X
BMI Float X X
diabetic relatives Boolean X
high blood pressure Boolean X
little physical activity Boolean X
gestational diabetes Boolean X

Table 2: Features available to each ceiling system.

rates only those features that have previously been
predicted by automatic systems through social me-
dia text or images (see Section 5). The features are
summarized in Table 2.

4 Results

We used 10-fold cross-validation to train and eval-
uate each model on the binary classes at-risk and
less-risk (see Section 2), using the same folds
across all models. For each of the 10 runs, we
reserve one fold for development, to tune hy-
perparameters such as classifier confidence cut-
off, one fold for testing, and the rest for train-
ing. Table 3 summarizes the results of the pro-
posed models, compared against the baselines de-
scribed in Section 3. In the table, -R marks mod-
els that have recency information (models with-
out recency used uniform ri weights), -GG marks
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models that used the gold gender information col-
lected during the questionnaire, and -PG marks
models that used predicted gender information.
The SVM-U is an SVM model using all available
words except a stoplist of closed-class words.

The table underlines several observations:

(1) The proposed NN models outperform all base-
lines, demonstrating that our NNs generalize bet-
ter on this task dominated by sparse signals. Im-
portantly, most of the strong baselines we include
are below the performance of the simple “all at
risk” baseline, highlighting again the difficulty of
the task. The only baseline that outperformed “all
at risk” is CNN-GG, which uses gold gender in-
formation, which would not be available in real-
world deployments. Interestingly, our approach,
which essentially relies on a (recency-weighted)
bag-of-word model outperforms all the baselines
that rely on sequence models. Similar observa-
tions about bag-of-word models outperforming se-
quence models on complex NLP tasks have been
made in the past (Iyyer et al., 2015; Wang and
Manning, 2012, inter alia).

(2) Both recency and gender information help.
Our best model includes both, validating our orig-
inal hypotheses. Surprisingly, models using pre-
dicted gender performed slightly better than mod-
els using gold gender information, but this differ-
ence was not statistically significant.

(3) This bag-of-word NN that uses only
words/hashtags from relevant dictionaries
outperforms considerably other complex NN
sequence models that had access to the entire
account texts (CNN-all). This highlights the
importance of task-specific information (food and
activity dictionaries in our case), which, in turn,
emphasizes the need of collaboration between
NLP researchers and domain (i.e., nutritional
science and health care) experts.

(4) Even the Ceiling and Realistic Ceiling clas-
sifiers have considerably less than perfect perfor-
mance at 68.1 and 62.7, respectively. Better per-
formance would be likely with a larger dataset,
which would likely also improve the performance
of the proposed classifiers.

4.1 Feature analysis
To understand the influence of individual features
(tokens) to the classification of an account by the
best-performing neural net (using predicted gen-
der and recency-weighted averaging), we adapted

Model P R F1

All at-risk baseline 22.59 100.00 36.86
Ceiling 67.14 69.12 68.12**
Realistic Ceiling 62.96 62.50 62.73**

SVM-U 32.82 31.62 32.21
SVM 28.90 36.77 32.36
SVM-GG 27.95 33.09 30.30
SVM-PG 30.91 37.50 33.89

CNN-GG 26.67 76.47 39.54
CNN-PG 24.17 75.00 36.56

NN 28.10 63.24 38.91
NN-R 30.94 60.29 40.90
NN-GG-R 29.39 71.32 41.63*
NN-PG-R 29.38 72.79 41.86**

Table 3: The precision, recall, and F1 score of each model
in predicting the at-risk label. See Section 3 for a descrip-
tion of the models. The ∗s indicate that the difference in F1

score between the corresponding model and the best baseline
is statistically significant (∗ indicates p < 0.05, and ∗∗ in-
dicates p < 0.01). All significance values were determined
through a one-tailed bootstrap resampling test with 100,000
iterations.

the Layerwise Relevance Propagation (Bach et al.,
2015; Binder et al., 2016; Arras et al., 2016, 2017)
technique. LRP has the advantage of maintain-
ing both positive and negative relevances, repre-
senting in this case contribution to the at-risk and
less-risk class scores, respectively. In contrast, the
commonly used Sensitivity Analysis (Dimopoulos
et al., 1995; Gevrey et al., 2003; Simonyan et al.,
2013; Li et al., 2015) measures relevance to the de-
cision, rather than to a given class’s score, and is
therefore always non-negative. LRP assigns rele-
vance to each neuron (including input values) as a
function of how much they contribute to the final
layer’s values, as a share of its layer’s contribu-
tion. To accomplish this, the neuron’s activation
must be divided by the sum of whole layer’s acti-
vation, which can lead to unbounded values when
a layer’s activations sum to near zero. For this rea-
son, we employ Bach et al. (2015)’s equation 58,
which applies a small smoothing constant to the
layer’s summed activation to the avoid this value
explosion.

Examples of accounts’ most recent words
marked with their relevances according to the NN-
PG-R model are shown in Table 4. As the table
shows, the health value of words broadly aligns
to relevance scores. However, because of the
recency weighting of this model, making older
tweets’ words progressively less relevant, and be-
cause of variance in the training of different cross-
validation folds, these relevance scores are highly
variable. The result is that sometimes a given
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Figure 4: Precision and recall in the NN-PG-R ensem-
ble model, as a function of classifier confidence. The
dots mark a threshold of 0.55, at which precision is
100%, and recall is 1.47%. Note that no accounts meet
the highest confidence thresholds, leading to a preci-
sion and recall of 0, which explains the steep drop of
precision for high confidence thresholds.

token is counted as relevant to one classification
(e.g., at-risk), and other times another (e.g., less-
risk). This is likely due to both the modest dataset
size and to the indirectness of the connection be-
tween language use and health.

4.2 Real-world deployment using a
high-precision model

The practical application of this risk detection sys-
tem would involve pointing high-risk individuals
toward the Bang et al. (2009) survey, and, if at-
risk, to further medical diabetes screening (Rains
et al., 2018). To mitigate the drawbacks of false
positives (i.e., unnecessary and stressful medical
testing), it is likely that in real-world deployments
of this technology a high-precision variant of the
learned model would be used.

In Figure 4, we show the classification perfor-
mance at different thresholds for the classifier con-
fidence. In this experiment, in order to increase
stability, we have built an ensemble of models
through bagging (Breiman, 1996): we generated
50 different versions of the training set by re-
sampling it with replacement, and we trained a dif-
ferent model of the NN-PG-R architecture on each
sampled training set. The final predictions are ob-
tained averaging the outputs of the resulting mod-
els. As shown in Fig. 4, a threshold of 0.55, for
example, yields a precision of 100% and a recall
of 1.47%.

Despite the modest recall of such a high-

precision model, this classifier would detect a
large number of individuals at risk, if applied to
the all of Twitter. Assuming the 28.2% predia-
betes rate of (Rowley et al., 2017), and the 11%
prediabetes diagnosis rate of Li et al. (2013), there
are approximately 62 million undiagnosed predia-
betic individuals in the US. If we further assume
a lower-than-average Twitter adoption of 15%—
compared to (Pew Research Center, 2018)’s es-
timate of approximately 25%—there are roughly
9.2 million Americans who use Twitter and have
undiagnosed prediabetes. A similar application to
the estimated 7.2 million Americans with undiag-
nosed diabetes (National Center for Health Statis-
tics, 2017) produces an estimate of 1.1 million un-
knowingly diabetic Americans on Twitter. There-
fore, the successful application of this classfier
would identify an estimated 16,000 diabetic and
140,000 prediabetic Americans. Of course, ex-
panding to other English-using Twitter users, and
other languages14 further increases this estimate.

5 Related work

Analysis of social media content for health has
been a topic of wide interest (Aramaki et al., 2011;
Bian et al., 2012; Prier et al., 2011; Culotta, 2014;
Nguyen et al., 2017). Similarly, the literature on
detecting user attributes and the effects of those
attributes on language use is extensive.

Rao et al. (2010) predict individuals’ demo-
graphic characteristics of gender, age, and politi-
cal affiliation based on their tweets. Burger et al.
(2011) construct a multilingual dataset of over
100K Twitter accounts, and classify gender better
than human annotators, based on account text. Jo-
hannsen et al. (2015) study cross-linguistic varia-
tion in syntax (part-of-speech and dependency pat-
terns) according to age and gender in online re-
views (chosen over tweets for ease of parsing and
richer metadata).

Age and gender, while much studied, are not
the only available latent characteristics. Mow-
ery et al. (2016) and Vedula and Parthasarathy
(2017), for example, predict depressive symptoms
in tweet text, a long-term health-variable detec-
tion task similar to ours. Similarly, De Choudhury
et al. (2013) predict postpartum depression from
tweets and Twitter social network structure. Shuai
et al. (2016) gather a rich, multi-network feature

14
https://www.npr.org/sections/goatsandsoda/2017/04/05/

522038318/how-diabetes-got-to-be-the-no-1-killer-in-mexico
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Correct Label Predicted Label Relevance

less-risk less-risk . . .

less-risk at-risk . . .

at-risk less-risk . . .

at-risk at-risk . . .

Table 4: Examples of relevance displays for words used to assess accounts (most recent tweets first). The red words
are relevant to the less-risk category, and the blue words to the at-risk category, with greater saturation indicating
greater relevance.

set to detect social network mental disorders with
symptoms such as excessive use of social network
sites, measured against gold-data questionnaires.
Likewise, Schwartz et al. (2013) predict not only
age and gender from the text of Facebook mes-
sages, but also the Big Five personality traits (ex-
traversion, emotional stability, agreeableness, con-
scientiousness, and openness to experience) (Dig-
man, 1990). Moreover, these sometimes-latent
user characteristics can inform other classifica-
tion tasks. For example, Volkova et al. (2013)
demonstrate an improvement in the sentiment
classification of tweets in a language-independent
rule-based model when sentiment vocabulary is
adapted for gender-dependent language. Our work
continues this direction: here we show that gender
information, even when predicted automatically,
considerably improves the accuracy of T2DM risk
detection.

Much of the previous work on diabetes and
weight detection on social media has been at the
level of communities. Fried et al. (2014) pre-
dict population characteristics such as diabetes
and overweight prevalence using location-tagged,
food-related tweets. Abbar et al. (2015) analyze
correlations between county-level obesity preva-
lence and food mentions. Again the focus is on
predicting dietary choices on a large scale. Relat-
edly, Eichstaedt et al. (2015) detect heart disease
mortality at the county level from tweet text.

There is no known work on detecting individ-
ual diabetes risk from social media text. How-
ever, Farseev and Chua (2017) capitalize on mul-
tiple social media inputs (e.g., a workout tracker)
to predict individuals’ Body Mass Index category.
Wen and Guo (2013) and Kocabey et al. (2017)
predict body mass index from images similar to
profile pictures, the former from booking pho-
tographs and the latter from an internet forum for
sharing fitness progress. Of these, only Farseev

and Chua (2017) classify solely from text, which
is often the only data available from a social me-
dia account. Their classification’s F1 is low (17.8)
–understandable given the difficulty of this task–
which limits its use for realistic T2DM risk predic-
tion. In contrast, our approach obtains a F1 score
that is over 2 times higher, on a task that is ar-
guably more complex.

6 Conclusions

We introduced an approach to the detection of in-
dividuals’ diabetes risk from their Twitter posts.
To this end, we collected a novel dataset linking
Twitter activity to a validated, survey-based mea-
sure of T2DM risk (Bang et al., 2009). Using this
dataset, we proposed the first machine learning
approach to predict the T2DM risk of a Twitter
account holder using only her tweets. This task
is challenging because the data tends to be very
sparse, and there are many latent contributing vari-
ables (such as genetic predisposition). Our analy-
sis indicates that reducing noise with relevant dic-
tionaries, modeling gender, and modeling posts’
temporal recency are valuable in predicting T2DM
risk. All in all, our best model achieves an F1 of
41.9 (vs. the 36.9 “all at risk” baseline and 39.5 of
a strong sequence model).

We estimate that if a high-precision variant of
this approach were to be deployed at large, e.g., on
the public posts of all American Twitter users, it
would identify 16,000 diabetic and 140,000 predi-
abetic Americans that are currently not diagnosed.

Continuing this work, we envision a larger bat-
tery of social media-based tools for public-health
intervention that focus on the early identification
of multiple health risks such as heart disease and
various cancers at scale.
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7 Release

The system is available as open-source soft-
ware at github.com/clulab/releases/tree/

master/louhi2018-t2dmrisk.
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Leila Arras, Grégoire Montavon, Klaus-Robert Müller,
and Wojciech Samek. 2017. Explaining recurrent
neural network predictions in sentiment analysis.
EMNLP 2017, page 159.

Sebastian Bach, Alexander Binder, Grégoire Mon-
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Abstract
With Health 2.0, patients and caregivers in-
creasingly seek information regarding possi-
ble drug side effects during their medical treat-
ments in online health communities. These are
helpful platforms for non-professional medi-
cal opinions, yet pose risk of being unreliable
in quality and insufficient in quantity to cover
the wide range of potential drug reactions. Ex-
isting approaches which analyze such user-
generated content in online forums heavily
rely on feature engineering of both documents
and users, and often overlook the relationships
between posts within a common discussion
thread. Inspired by recent advancements, we
propose a neural architecture that models the
textual content of user-generated documents
and user experiences in online communities to
predict side effects during treatment. Exper-
imental results show that our proposed archi-
tecture outperforms baseline models.

1 Introduction
Seeking medical opinions from online health com-
munities has become commonplace: 71% of age
18–29 (equivalent to 59% of all U.S. adults) re-
ported consulting online health opinion (Fox and
Duggan, 2013). These opinions come from an es-
timated twenty to one hundred thousand health-
related websites (Diaz et al., 2002), inclusive of
online health communities that network patients
with each other to provide information and social
support (Johnston et al., 2013). Platforms such
as HealthBoards1 and MedHelp2 feature users re-
porting their own health experiences, inclusive
of their self-reviewed drugs and medical treat-
ments. Hence, they are valuable sources for re-
searchers (Leyens et al., 2017; Martin-Sanchez
and Verspoor, 2014).

Although readers use these platforms to get
valuable information about potential drug reac-
tions during treatment, this is not without poten-
tially serious problems. There is lexical variation:

1
https://www.healthboards.com/

2
https://medhelp.ord/

users do refer side effects differently: “dizziness”
can be expressed as “giddiness” or “my head is
spinning”. More concern is that discussions rarely
cover all possible prescribed drugs and their side
effects during a treatment, and some topics refer
to a condition without mentioning any particular
drug. Relying on such information could lead to
adverse reactions.

It is important to note that a tool that looks
up mentioned drugs’ side effects from a static
database would not return answers with sufficient
coverage. There are also common concerns re-
garding credibility of user-generated contents –
(Impicciatore et al., 1997) have shown that online
health information is of variable quality and ap-
proached with caution.

Having these caveats in mind though, experi-
enced users can provide valuable expertise. For
instance, while reporting expected side effects for
a specific treatment, patients with long-term use of
certain drugs can be valuable authorities. E.g.:

While my experience of 10 years is with Paxil, I expect
that Zoloft will be the same. You should definitely feel better
within 2 weeks. One way I found to make it easier to sleep
was to get lots of exercize. Walk or run or whatever to burn
off that anxiety. – User 3690.

This is an answer to a thread asking for ex-
pected side effects for depression treatment with
Zoloft. User 3690’s history of actively discussing
about other anti-depressants such as Lexapro and
Xanax gives insights in predicting potential drug
reactions during the treatment of depression. Ta-
ble 1 shows that Zoloft (mentioned in the thread)
shares many common side effects with the other
two anti-depressants: “changed behavior,” “dry
mouth,” and “sleepiness or unusual drowsiness.”

A method that could differentiate trustworthy
user-generated content would be valuable, allow-
ing us to macroscopically harness a large amount
of online information that would pave the way
to many critical tasks such as digital pharma-
covigilance (Salathé, 2016) and disease monitor-
ing (St Louis and Zorlu, 2012). Even on the micro-
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Drugs Side effects
Lexapro chills, constipation, cough, decreased appetite, decreased sexual desire, diarrhea, dry mouth, joint pain,

muscle ache, tingling feeling, sleepiness or unusual drowsiness, unusual dream, sweating, ...
Xanax abdominal or stomach pain, muscle weakness , changed behavior, chills, cough, decreased appetite, decreased

urine, diarrhea, difficult bowel movement, cough, dry mouth, tingling feeling, sleepiness or unusual drowsi-
ness, slurred speech, sweating, yellow eye...

Zoloft changed behavior, decreased sexual desire, diarrhea, dry mouth, heartburn, sleepiness or unusual drowsi-
ness, sweating...

Table 1: Side effects of anti-depressants.

scopic level of individual posts, such a tool offers
users’ suggestions for drug reactions and improves
the quality of user-generated content.

We address this need in our work. We build
a neural architecture that models each post’s tex-
tual content and its author’s experience to pre-
dict expected side effects during treatments. Cru-
cially, our supervised neural approach jointly
learns posts’ content and users’ experience level
within a thread. A key observation we make is
that users can be grouped into clusters that share
the same expertise or interest in certain drugs, pos-
sibly due to their common treatment or medical
history. We leverage this expertise by embedding
it into a low dimensional vector learned by the
model, and subsequently predict side effects that
are unmentioned in the discussion. We believe
that our model represents trustworthiness more ro-
bustly when compared with representations such
as a single weights (Li et al., 2016) and tradi-
tional drug side effect extraction (Aramaki et al.,
2010). Furthermore, inspired by (Halder et al.,
2018), we train a cluster-sensitive attention mech-
anism that allows our model to emphasize varied
parts of the post. We also follow general definition
of truth discovery and let the model learn a credi-
bility score that is unique to every user and reflec-
tive of her trustworthiness. Our experimental re-
sults show that integrating the above components
outperforms baseline text classification models.

The contributions of our work are summarized
as follows:
• We propose a neural network architecture

that can capture user expertise, user credibil-
ity, individual post’s and overall thread’s se-
mantic content.
• We formulate the task of side effect predic-

tion during treatment as supervised multi-
label classification and apply our proposed
method to the task of side effect prediction
during treatment.
• We record and analyze the performance of

our proposed model through a set of progres-
sively designed experiments. Additionally,
we compare the obtained results with tradi-
tional text encoding algorithms.

2 Related Work

Our approach learns the representation of posts,
threads and users, and then integrates them to ap-
ply to the task of drug side effect prediction during
treatment. We thus review works on the represen-
tation of fundamental objects in online communi-
ties, and the discovery of drug side effects.

2.1 Modeling Objects in Online Communities

Post content modeling. In statement credibility
prediction, linguistic features of a post are strong
indicators for reliability. Stylistic features – i.e.,
the number of strong/weak modals, conditionals
or negations – and affective features – i.e., words
that depict an author’s attitude and emotion – are
adopted to represent a post’s content (Mukherjee
et al., 2014). Such feature engineering requires
a great amount of correlation analysis when ap-
plied to a novel problem or dataset. Linguistic fea-
tures also often fail to fully capture document con-
tent, as most do not account for distinctive words
in exchange of scalability. Its counter parts, bag
of words and per-vocabulary features loosely cap-
ture textual content but disregard semantics and
suffer scalability with sparsity issues. To address
this, state-of-the-art architectures feature complex
modeling to model subtle dependencies and rely
on word embeddings to address scalability issues,
achieving robust results in text classification (Kim,
2014), neural machine translation (Luong et al.,
2016), among others.

Inspired by the success of their approaches, we
adopt the recurrent neural network architecture
(RNN) for post content modeling. Coupled with
an attention mechanism, our approach adaptively
weights the importance of parts in each post (Lu-
ong et al., 2015).

Thread content modeling. Most research
working on thread-level modeling usually obtain
thread content representation by aggregating each
content of its posts (Yang et al., 2014). However,
we hypothesize that each post has different contri-
bution to thread content and should be variously
weighted to reflect specific factors, such as its au-
thor’s level of credibility.
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User ID Post Drug men-
tioned

Aggregated side ef-
fects

3690 While my experience of 10 years is with Paxil, I expect that Zoloft will
be the same. You should definitely feel better within 2 weeks. One way
I found to make it easier to sleep was to get lots of exercize. Walk or
run or whatever to burn off that anxiety.

Zoloft changed behavior,
decreased sexual
desire, diarrhea,
dry mouth, heart-

26521 I’ve heard of people going “cold turkey” and having withdrawal at 6
months! Please, get in contact with a doctor ASAP! “common symp-
toms include dizziness, electric shock-like sensations, sweating, nausea,
insomnia, tremor, confusion, nightmares and vertigo”

burn, sleepiness or
unusual drowsi-
ness,...

Table 2: A sample thread, including its list of post–user pairs, mentioned drugs, and side effects.

User modeling. Statement credibility predic-
tion often represents users by a single scalar
that indicates their trustworthiness. The intuition
is that users who provide trustworthy informa-
tion frequently will be assigned high reliability
scores (Li et al., 2017). Such representation is ef-
fective yet insufficient. Recent work have shown
that encoding users into high-dimensional embed-
dings can improve system performance (Yu et al.,
2016), which we have adopted in our model.

2.2 Side Effect Discovery
Most drug reaction discovery methods focus on
extracting mentioned side effects. A common
technique is to apply Named Entity Recogni-
tion (NER) and Relation Extraction (RE) systems
in a supervised manner. (Sampathkumar et al.,
2014) demonstrates its effectiveness in detecting
drugs and side effects that appear in a target doc-
ument (in-context), and predicting if they are re-
lated.

However, in our side effect prediction during
treatment, our model is required to cover poten-
tially encountered reactions, many of which are
not explicitly mentioned in the given post (out-
of-context). Hence, we do not identify our task
with traditional task of adverse drug side effect
extraction (Leaman et al., 2010). Our approach
overcomes the limitations of the existing works by
modeling user experience, and credibility during
post and thread encoding, then subsequently pre-
dicting both in- and out-of-context side effects.

3 Preliminaries

Basic Terminologies. To ensure a consistent rep-
resentation, let us first define some terminology:

• A drug d has a set of side effects,
Sd = {s1, s2, . . . , sk}
• A post p is the most basic document, contain-

ing a sequence of sentences. It is written by a
user u, and belongs to a thread t.

• A user u is a member of an online commu-
nity. She participates in certain threads, i.e.,

Tu = {t1, t2, . . . , tl} by writing at least one
post in each thread. We use the terms user
and author, as well as user experience and
user expertise interchangeably.
• A thread t (see Table 2) is an ordered collec-

tion of post–user pairs,
Qt = [(p1, u1) , (p2, u2) , . . . , (pn, un)].
Every thread discusses the treatment of a
particular condition and entails a list of
prescribed drugs Dt = {d1, d2, . . . , dm}.
Hence, every thread has a list of aggregated
side effects defined as St = Sd1 ∪ Sd2 · · · ∪
Sdm , which is also the list of potential side
effects experienced during the treatment.

Task Definition. Drug side effect prediction
during treatment is the task of assigning the most
relevant subset of side effects to threads discussing
certain treatment, from a large collection of poten-
tial side effects. We view the drug side effect pre-
diction problem as a multi-label classification task.
In our setting, an instance of item–label is a tuple
(xt,y) where xt is the feature vector of thread t
derived from its list of post–user pairs Qt and y
is the side effect label vector i.e., y ∈ {0, 1}S ,
where S is the number of possible side effect la-
bels. Given training instances, we train our clas-
sifier to predict the list of treatment side effects in
unseen threads.

Formal Hypothesis. Given a thread t with
Qt, we hypothesize that considering the credibility
and experience of user u ∈ (p, u) ∈ Qt improves
the quality of feature representation in thread t, re-
sulting in better treatment side effect prediction.

4 Proposed Method
Figure 1 shows the detailed network architecture
of our model. It has several components which
we shall detail sequentially. Ablation of certain
components will serve as baseline systems for
comparative evaluation later.

User Expertise Representation (UE): We em-
bed each user u ∈ U as a vector vu so that the vec-
tor captures user u’s experience with certain drugs.
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Figure 1: Full model architecture: (l, 1st half) word embeddings and cluster sensitive attention,
(r, 2nd half) thread representation and multi label side effect prediction.

As each user u participates in the threads Tu, en-
tailing a list of experienced drugs, we derive user
drug experience vector v∗

u ∈ R|D| where D is the
set of all possible drugs and v∗ui

= nui where user
u has mentioned ith drug in nui threads. We ob-
tain a user drug experience matrix M∗ ∈ R|U |×|D|
where jth row of M∗ denotes user drug experi-
ence vector of jth user uj ∈ U . Since the av-
erage number of drugs experienced per user is
much fewer than the total number of drugs (see Ta-
ble 3), M∗ suffers from data sparsity and limited
scalability. Without dimensionality reduction, the
model learns at least |D| parameters for every user,
amounting to |D| × |U | when aggregated for all
users. Data sparsity leads to a large number of in-
sufficiently tuned parameters, which significantly
increases training time, storage, and reduces the
system’s robustness.

We apply Principal Component Analysis (PCA)
(Jolliffe, 1986) to M∗ obtained from training set.
Figure 2 shows percentage of variance explained
versus number of included principal components
(PCs) to determine the number of PCs g. Since our
PCA plots do not show added explanation percent-
age beyond 50 components, we use g = 50 com-

ponents, reducing our original M∗ ∈ R|U |×|D| to
user expertise matrix M ∈ R|U |×g.

User Clustering: To model per-user expertise,
in a naı̈ve setting, we would train ≈ |U | × g pa-
rameters. Given limited data, this is infeasible as
it faces sparsity issues. We make a second, key as-
sumption that our set of users U can be grouped
into a set of meaning clusters C of size k where
k � |U |. Users within a cluster would have
experience with similar drugs, and hence repre-
sentable using a single vector, reducing the num-
ber of learned parameters to k × g.

We apply K-means clustering algorithm (Mac-
Queen, 1967) to cluster the users into k groups.
To determine the number of clusters k, we analyze
the total distance to the nearest centroid versus the
number of potential clusters in set C – as in Figure
3, where D(C) is defined as follows:

D(C) =

∑
c∈C

∑
u∈c dist(vc,vu)

argmaxD(C)
, (1)

where argmaxD(C) is the maximum total dis-
tance obtained when |C| = 1.

Since clustering does not gain significant reduc-
tion in total distance beyond 100 clusters, we sort
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Figure 2: Principal component analysis.

each user to a cluster c ∈ C where |C| = k = 100.
For each user, we consider the vector of her as-
signed cluster’s centroid to be her expertise vector.

Post Content Encoding: The network takes
the content of a thread t as input, which is
a list of post–user pairs Qt. Post pi of pair
(pi, ui) ∈ Qt consists of a sequence of words
(w1, . . . , wn). We seek to represent a post pi
as vector vp that effectively captures its seman-
tics. We embed each word into a low dimensional
vector and transform the post into a sequence of
word vectors {vw1 ,vw2 , . . . ,vwn}. Each word
vector is initialized using Google’s pre-trained
word2vec (Mikolov et al., 2013). Additionally,
while each out-of-vocabulary word vector is ini-
tialized randomly, we keep it tunable during train-
ing to capture domain-specific meanings. Such
model adaptation is necessary, as the model needs
to learn the embeddings for the drug names, most
of which are not included in the pre-trained em-
beddings but are critical to predict the side effects.

We employ Long-Short Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997)
to encode the textual content. A bi-directional
LSTM encodes the word vector sequence, out-
putting two sequences of hidden states: a forward
sequence, Hf = hf

1 ,h
f
2 , . . . ,h

f
n that starts

from the beginning of the text; and a backward
sequence, Hb = hb

1,h
b
2, . . . ,h

b
n that starts from

the end of the text. For many sequence encoding
tasks, knowing both past (left) and future (right)
contexts has proven to be beneficial (Dyer et al.,
2015). The states hfi and hbj in the forward and
backward sequences are computed as follows:

hf
i = LSTM(hf

i−1,w
i), hb

j = LSTM(hb
j+1,w

j),

where hf
i ,h

b
j ∈ Re, and e are the number of en-

coder units.

Figure 3: K-means analysis.

# Users # Threads Avg. # of words per post
14,388 99,682 73.65
Avg. # of posts per thread Avg. # of threads per user

8.16 26.21
# Side effects (SE) Avg. # of SEs per thread

1,500 90.47
# Drugs Avg. # of drugs per user

1869 19.72

Table 3: Dataset statistics.

Cluster-sensitive Attention (CA): Inspired by
(Halder et al., 2018), we initialize an attention vec-
tor, vai ∈ Re for each cluster ci. Given a for-
ward sequence Hf = hf

1 ,h
f
2 , · · · ,hf

n and back-
ward sequence Hb = hb

1,h
b
2, · · · ,hb

n of hidden
post states p written by user u belonging to clus-
ter ci, the corresponding wj weights each hidden
state hf

j and hb
j of both sequences based on their

similarity with the attention vector are:

waj =
exp(vaihj)∑n
l=1 exp(vaihj)

. (2)

The intuition behind Equation (2), inspired by
(Luong et al., 2015), is that hidden states which
are similar to the attention vector vai should be
paid more attention to; hence are weighted higher
during document encoding. vai is adjusted dur-
ing training to capture hidden states that are sig-
nificant in forming the final post representation.
waj is then used to compute forward and backward
weighted feature vectors:

hf =

n∑

j

wajh
f
j , hb =

n∑

j

wajh
b
j . (3)

We concatenate the forward and backward vectors
to obtain a single vector, following previous bi-
directional RNN practice (Ma and Hovy, 2016).
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Thread Content Encoding with Credibility
Weights (CW): For every post–user pair (pi, ui)
of thread t, we first compute post pi feature vec-
tor vpi . It is then concatenated with user ui’s ex-
pertise vector vui to form post–user complex vec-
tor vp

ni
. This user-post complex is weighted by a

user credibility score wui , which is initially ran-
domized and updated while training, to obtain fi-
nal post–user pair representation vp∗

ni
. This fol-

lows the general intuition from the truth discov-
ery literature that users providing high quality an-
swers should assign higher credibility scores, and
answers from credible users are more significant.
Thus, the thread content representation can be de-
fined as the weighted sum of each post–user com-
plex vector:

vt =

n∑

i=1

vp∗
ni

=

n∑

i=1

wuiv
p
ni
. (4)

Multi-label Prediction: We feed the thread
content representation vt through a fully con-
nected layer which outputs can be computed as:

st = W tanh(vt) + b, (5)

where W and b are weights and biases of the
layer. The output vector st ∈ R|S| is finally passed
through a sigmoid activation function, and trained
using cross-entropy loss as defined by L:

L =
1

T

T∑

t=1

(yt · log(σ(st))

+ (1− yt) · log(1− σ(st))) + λ
∑

u

vu
2

(6)
We adopt regularization that penalizes the train-

ing loss with the user experience matrix’sL2 norm
by a factor of λ = 0.0065, obtained via hypertun-
ing. The loss function is differentiable, thus train-
able with Adam (Kingma and Ba, 2015). During
our gradient-based learning, user credibility score
wui of user ui can be updated by calculating ∂L

∂wui

by back-propagation:

∂L

∂wui

=
∂L

∂st

∂st
∂vt

∂vt
∂wui

=
∂L

∂st
W (1− tanh2(vt))vp

ni

(7)

5 Experiments
We conduct experiments to validate the effective-
ness of our proposed model. In specific, (1) we
want to compare our architecture with text encod-
ing baselines, (2) highlight performance improve-
ments incrementally, and (3) evaluate and analyze

the obtained results, both at the macroscopic and
microscopic levels.

5.1 Baselines
As a competitive baseline from prior work, CNN-
KIM (Kim, 2014) constructs a document matrix
that incorporates word embeddings, then applies
a convolution filter to obtain feature maps. These
feature maps are passed through a max-pooling fil-
ter to construct a document representation. Dur-
ing prediction, the representation is fed through a
fully connected layer. We replace the final soft-
max layer of the author’s model with sigmoid to
make it work in a multi-label prediction setting.

The following baselines are used to perform an
ablation study of our model.

• RNN: We implement a bi-directional LSTM
baseline, which is equivalent to our proposed
method without CA, UE and CW.

• Weighted Post Encoder (WPE): We con-
struct thread representation by summing each
of its post–user complex vector weighted by
user credibility. This is equivalent to our pro-
posed methodology without CA and UE.

• Weighted Post Encoder with User Exper-
tise (WPEU): We concatenate user expertise
with post vector to create post–user complex
vector. This is equivalent to our proposed
method without CA.

5.2 Dataset
We conduct our experiments on the same dataset
as (Mukherjee et al., 2014) including 15,000 users
and 2.8 million posts extracted from 620,510
HealthBoards1 threads.

Ground truth possible side effects experienced
during treatment are defined as the side effects of
drugs mentioned in the discussion. As annotating
such amount of posts is expensive, drug side ef-
fects are extracted from Mayo Clinic’s Drugs and
Supplements portal3 and are used as surrogates for
potential reactions of treatments.

5.3 Experimental Settings
We applied a standard natural language prepro-
cessing — Snowball stemming (Porter, 1980) and
stop-word elimination — before representation
modeling. From the original dataset, we only ex-
tract threads that are annotated with drugs and
their side effects, along with the lists of contained
posts and corresponding users. Table 3 shows
the dataset statistics. We divide our data into 10

3
https://www.mayoclinic.org/drugs-supplements
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System Components Experiment 1 Experiment 2
CW UE CA Pre. Rec. F1 Pre. Rec. F1

1. CNN-KIM 0.818 0.677 0.751 0.813 0.503 0.614
2. RNN 0.810 0.657 0.735 0.808 0.484 0.599
3. WPE X 0.873 0.678 0.773 0.859 0.507 0.638
4. WPEU X X 0.865 0.705 0.781 0.819 0.537 0.643
5. Our model X X X 0.844 0.730 0.793 0.788 0.573 0.659

Table 4: Experimental results with both actual (Experiment 1) and Strict (Experiment 2) settings. In the
Component columns, “CW”, “UE”, “CA” denote “Credibility Weights”, “User Expertise” and “Cluster
Attention module components”, respectively.

folds to perform cross-validation (8,1,1 folds for
training, validation, and testing respectively). We
perform PCA and K-means clustering on train-
ing set, using scikitlearn’s built-in modules (Pe-
dregosa et al., 2011), with g = 50 principal com-
ponents and k = 100 clusters.

For CNN-KIM, we experiment with filters with
varying window sizes from 2 to 5, and set the
number of feature maps for each filter to 256 and
dropout to 0.5. For our proposed model and base-
line models using the RNN architecture, when per-
forming post content encoding, we set the number
of units in the LSTM cell to 128. Dropout rates
of 0.2 and 0.5 are used in our LSTM cells and FC
layers, respectively. Cluster attention vectors and
user credibility values are initialized with values
ranging from -1.0 to 1.0. For each user u, we ini-
tialize her expertise vector with the value of vu ob-
tained in Section 4 and allow training to fine-tune.
All models are trained using Tensorflow4 library.

We conducted two separate experiments:

• Experiment 1: We keep the text as-is.
Any mentioned drugs are retained inside the
thread.

• Experiment 2: We remove all mentions of
any drug in our drug list. This is a more
aggressive experiment which asks the model
to predict the treatment’s side effects without
any mention of the experienced drugs.

6 Results and Evaluation

Table 4 shows the precision, recall, and F1 ob-
tained by our method and the four baselines.

Macroscopic Analysis: Firstly, all of the three
models that apply credibility weighting (CW) –
WPE, WPEU and our model – outperform both
RNN and CNN baselines in both experiments.
Specifically, weighting each post by its author
credibility improves the performance of naive post
encoder by 6.32%, 2.15% and 3.86% on precision,

4
https://www.tensorflow.org/

recall and F1 respectively for Experiment 1. Re-
sults for Experiment 2 are similar. This demon-
strates the effectiveness of accounting for author
credibility when encoding thread content, improv-
ing side effect prediction.

Improvements by incorporating user experience
(UE) are less pronounced. In Experiment 1,
adding UE (WPEU vs. WPE) improves recall
by 2.65% and 0.8% in F1. Again, the stricter
Experiment 2 shows similar performance trends.
On a macro scale, these statistics indicate that our
model successfully learns to include more side ef-
fects in its prediction, where many are relevant
to the ground truth. This is consistent with our
hypothesis that considering author experience of
each post is effective in predicting out-of-context
side effects.

Applying cluster-sensitive attention (CA) in
combining RNN’s hidden states also improves the
performance. In Experiment 1, we observe that
adding CA (our model vs. WPEU) also improves
recall and F1, where again, Experiment 2 demon-
strates similar but slightly more pronounced per-
formance changes. These indicate that the atten-
tion mechanism is more effective when the drugs
are present since the drug names in our documents
are the phrases that receive greater emphasis.

As settings in Experiment 1 start with more in-
formation compared with those in Experiment 2,
the task is easier and thus performance is improved
(12.7% to 14.15% inF1). The margin for improve-
ment for Experiment 2 is larger, which explains
why absolute score improvements are larger in Ex-
periment 2. When measuring relative improve-
ment, the gains are comparable.

Generally, according to the macroscopic anal-
ysis of results in Table 4, we conclude that all of
the three components in our proposed architecture,
namely, CW, UE, and CA have a positive impact
on the overall performance of the model. We ob-
serve consistent improvements in F1 after adding
each component is consistent with our stated hy-
potheses, in both experimental settings.
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User ID Posts Output side effects
CNN-KIM RNN WPE WPEU Our model Ground truth

24296
(cred-
ibility:
0.11)

[...] little red rashes all over my body
that resembled vasculitis. [...] I was di-
agnosed and treated with the ”standard
treatment” twice, to not much effect), a
very stiff neck, really bad brain fog and
confusion. [...]

diarrhea,
skin rash

skin
rash

headache,
diarrhea,
skin rash

headache,
diarrhea,
unusual
tiredness and
weakness,
dizziness,
sleepiness

headache,
diarrhea, un-
usual tiredness
and weak-
ness, dizziness,
sleepiness,
fever, nausea,

headache, diar-
rhea, unusual
tiredness and
weakness,
dizziness, fever,
nausea, loss
appetite, chills,

1537
(cred-
ibility:
0.32)

[...] now last month my symptoms
including joint pains, twitching and
tremors and bug crawling under my
skalp sensations reappeared [...]

fever, nau-
sea, bad
breath

heartburn,
belching, in-
digestion,
acid stomac,
difficult bowel

heartburn,
belching, in-
digestion,
acid stomach,
confusion,

5232
(cred-
ibility:
0.36)

[...] I don’t know about cysts in the
brain per se [...]

movement, bad
breath, bone
joint pain

skin rash,
weight loss,
difficult bowel
movement,

16248
(cred-
ibility:
0.21)

[...] I’ve been growing increasingly sen-
sitive to more foods over the last year
[...] How do you know that you had
damage to your intestines from Lyme?
[...] I’m curious because I am in the pro-
cess of getting a Lyme work up and my
intestines are messed up, but all GI tests
came back negative.

shakiness

Table 5: A sample thread in the test set, mentioning drugs Flagyl, Tinidazole, Plaquentil, and Vitamins.

User ID Experienced drugs Top common experienced side effects
24296 rifampin, vitamin, clarithromycin, aciphex, a zithro-

max, plaquenil, flagyl, minocycline, levaquin, tetra-
cycline, tinidazole, advil

diarrhea, bad breath, headache, heartburn, unusual
tiredness and weakness, nausea, fever

1537 vitamin, rocephin, hydroquinone, plaquenil, flagyl,
minocycline, levaquin, tinidazole

diarrhea, skin rash, headache, dizziness, heart-
burn, bad breath, sleepiness

5232 doxycycline, prozac, vitamin, norvasc, tylenol,
flagyl, questran, biotin, cefuroxime, plaquenil

bad breath, diarrhea, nausea, dizziness, unusual
tiredness and weakness

16248 celexa, prilosec, vitamin, rocephin, klonopin, nex-
ium, fumarate, elidel, citrate, prozac

diarrhea, sneezing, nausea, excessive gas, body pain,
loss voice, heart burn

Table 6: Experienced drugs and common side effects among users.

Microscopic Analysis: We also analyze our
model performance at per-sample level to check
whether they are consistent with the macroscopic
results. We aim to confirm three hypotheses: (1)
Considering author expertise improves prediction
on out-of-context side effects. (2) Considering au-
thor credibility improves the extraction of both in-
and out-of-context side effects from trustworthy
users’ content. (3) Placing attention on different
parts of the document enhances the performance
of in-context side effect extraction. Tables 5 and 6
show a sample testing thread, its users’ commonly
experienced drugs, and its side effects.

We observe that CNN-KIM and the simple,
RNN-based post encoding can capture side effects
that are mentioned both directly (e.g.,“skin rash”)
as well as indirectly (e.g., “diarrhea”), but fail to
capture the remaining symptoms, many of which
are out-of-context.

Considering User 1537’s credibility shows per-
formance improvements. In her posts, User 1537
indirectly refers to “headache” by mention-
ing “bug crawling under my skalp sensations”.
The calculated higher credibility score weights
User 1537 experiences with “sleepiness” higher in
the WPEU (CW + UE) baseline prediction, which
is correct. These observations are consistent with

our hypothesis about user credibility.

User experience is effective in predicting out-
of-context symptoms. In the illustrated sample
training set, all of the four users have experience
with similar drugs with common side effects such
as “unusual tiredness and weakness”, “nausea”,
and “fever”. As “bad breath” is also a shared side
effect, it is comprehensible that the model outputs
“bad breath”. Nonetheless, it is intuitive for the
model to pick up such commonness among users
and compute relevant results. These observations
are consistent with our hypothesis on user experi-
ence.

Finally, the model with CA can learn dif-
ferent parts of the documents. Especially for
User 16248’s posts that mentioned digestive prob-
lems, hidden states encode phrases such as “in-
creasingly sensitive to more foods”, and “dam-
age to your intestines” receive higher attention,
resulting in the prediction of “heartburn”, “belch-
ing”, “indigestion”, “acid stomach’’, and “difficult
bowel movement”. This functionality is consis-
tent with our original purpose and expectation for
adding attention to the post encoder architecture.
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7 Conclusion

We have addressed the importance of user experi-
ence and credibility in modeling thread contents of
online communities, specifically through the task
of drug side effect prediction during treatment.
We suggest a subset of side effects relevant to the
mentioned treatment in the given discussion, tak-
ing into account the each post content and its au-
thor expertise in certain treatments. Mainstream
models for online communities fail to fully cap-
ture post content semantically and user experience
with previous drugs.

We model users’ expertise by examining their
experience with different drugs, then group users
with similar experience into clusters that share a
common experience vector representation. Ex-
perimental results show that our proposed thread
content encoder outperforms state-of-the-art doc-
ument encoders, and that our neural components
play a significant role in improving task perfor-
mance.

We believe that our model is adaptable to other
domains. We aim to use it for downstream applica-
tion in online health community such as credibility
analysis and thread recommendation in the future.
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Abstract

Recently, segment convolutional neural net-
works have been proposed for end-to-end rela-
tion extraction in the clinical domain, achiev-
ing results comparable to or outperforming the
approaches with heavy manual feature engi-
neering. In this paper, we analyze the errors
made by the neural classifier based on confu-
sion matrices, and then investigate three sim-
ple extensions to overcome its limitations. We
find that including ontological association be-
tween drugs and problems, and data-induced
association between medical concepts does
not reliably improve the performance, but that
large gains are obtained by the incorporation
of semantic classes to capture relation triggers.

1 Introduction

The extraction of relations from clinical notes is
a fundamental clinical NLP task, crucial to sup-
port automated health care systems and to enable
secondary use of clinical notes for research (Wang
et al., 2017). In clinical relation extraction, the
2010 i2b2/VA challenge dataset has been by far the
most widely used. Three categories of relations are
annotated in discharge summaries: those between
medical treatments and problems (TrP)1, between
tests and problems (TeP)2 and between pairs of
problems (PP)3 (Uzuner et al., 2011). Many sys-
tems participating in the shared task used carefully
crafted syntactic and semantic features, sometimes
in combination with rules (Grouin et al., 2010; Rink
et al., 2011). Recently, neural network approaches
have been applied to this task, where they serve as
feature extractors, with a softmax layer for classifi-
cation. In this case, human-engineered or external
features are usually not included. Two examples

1Tr[A|C|I|NA|W]P: treatment {administered for, causes,
improves, not administered because of, worsens} a problem.

2Te[C|R]P: test {conducted for, revealed} a problem.
3PIP: problem indicates a medical problem.

on which we base our work are Sahu et al. (2016)
and Luo et al. (2017), who achieve results sim-
ilar to or better than the best-scoring approaches
participating in the i2b2 challenge. They use convo-
lutional neural networks, in which a convolutional
unit processes a piece of text segment (SegCNN) in
a sliding window manner, and then applies a max-
pooling operation to provide the hidden features.
In Sahu et al. (2016), the unit of text is simply a
sentence, and the CNN constructs a global repre-
sentation. On the other hand, Luo et al. (2017)
argue that since multiple relations can occur in a
single sentence, one representation is not sufficient.
Therefore, they break the sentence into segments,
so the encoding and the pooling operations apply
to one segment at a time. Each sentence consists of
five segments: tokens preceding the first concept
c1; c1 itself; tokens between c1 and c2; concept c2;
and the tokens following it. This idea is related to
dynamic pooling, known from previous event ex-
traction work on the ACE 2005 dataset (Chen et al.,
2015). More generally, the extension of neural
networks with background information have been
studied, inter alia, for text categorization, natural
language inference, and entity and event extraction
(K. M. et al., 2018; Yang and Mitchell, 2017).

In our work, we aim to boost the performance of
a SegCNN classifier by first identifying its weak-
est points in a confusion matrix analysis, and then
addressing these with external linguistic and do-
main features. We observe as much as a 6 point
improvement in % F1 by a simple addition of se-
mantic classes; a modest improvement with PMI
features for PP relations; and no effect when adding
association information between drugs and prob-
lems. We make the code, which is a modification of
Luo et al. (2017)’s implementation of segment con-
volutional neural networks, available at https:
//github.com/SimonSuster/seg_cnn.

22



g\s N
on

e

Tr
A

P

Tr
C

P

Tr
IP

Tr
N

A
P

Tr
W

P

None 980 86 15 3 7 0
TrAP 139 423 5 3 3 0
TrCP 48 27 69 0 0 0
TrIP 11 12 1 16 0 0
TrNAP 11 24 3 0 7 0
TrWP 11 16 5 4 1 4

(a) TrP relations.
g\s None TeCP TeRP
None 575 17 294
TeCP 41 52 36
TeRP 89 9 612

(b) TeP relations.
g\s None PIP
None 2544 135
PIP 122 343

(c) PP relations.

Table 1: Confusion matrices for different relation cat-
egories of the base SegCNN. The first diagonal repre-
sents the number of correctly classified relations, and
is shown in bold. The colored cells highlight low sensi-
tivity (blue), hallucinating relations (green) and confus-
able relations (orange).

2 Analysis of limitations

To better understand the limitations of a SegCNN
extractor, we analyze its results with confusion ma-
trices. In Table 1, we use color coding to point
to three types of challenges: a) poor sensitivity
(blue cells), which are errors due to the classifier’s
conservativeness in proclaiming a relation; b) “hal-
lucinating” relations (green), which are precision
errors where relations should not be identified; and
c) confusable relations (orange), where we see
that the TrCP relation is often classified as TrAP
(27/69 times), and similarly for the other treatment-
problem relations. This is especially true for the
less frequent relations TrNAP and TrWP, where the
correct predictions are outnumbered by the cases
wrongly predicted as TrAP. The TrAP predictions
by the system account for the most mistakes. We
can see from the number of a) and b) errors on
the TrP relations—76% of all mistakes made by
the model—that identifying the presence of a rela-
tion is more challenging than type classification of
relations, cf. Rink et al. (2011). Similar observa-
tions can be made about the test-problem relations.
For example, TeCP is frequently confused with

TeRP (36), and the TeRP type is often hallucinated
(294). Overall, determining the presence of a rela-
tion is more difficult than discriminating between
TeCP and TeRP as 91% of mistakes are only due
to detection. This number is higher here than for
TrP relations since we are dealing with a smaller
number of relation types, which causes less con-
fusion in class assignment. For problem-problem
relations, the matrix shows the model is somewhat
more likely to predict the relation spuriously than
to miss the relation.

In a qualitative analysis, we find that relations
are often unrecognized in sentences with several
(coordinated) concepts:

(1) she also had climbing bilirubin [. . . ] and
was started on zosyntr for suspected biliary
obstruction and ascending cholangitispr
coverage . (gold: TrAP)

Relations can be hallucinated especially when two
concepts may seem to be associated, but the knowl-
edge of syntax or the domain tells us they are not:

(2) the patient was treated with tylenol orallytr
as well as ativan for anxietypr that she had
about going home (gold: none)

Here, medical knowledge of compatibility between
drugs and problems could help, e.g. that tylenol
is not indicated for anxiety, but ativan is. In the
following example, the classifier wrongly predicts
TeCP, although there is a clear cue for the correct
relation TeRP in the predicate (“found”):

(3) during initial evaluationte for a coronary
artery bypass graft , 80% to 90% of the
right coronary artery stenosispr was found

3 Addressing the limitations

To deal with poor sensitivity and hallucinated re-
lations mentioned above, we introduce simple do-
main knowledge in the form of association between
a pair of concepts. We collect the association infor-
mation either from an ontology (§ 3.1) or induce it
from the data (§ 3.2). To increase the discrimina-
tory power of the extractor to differentiate between
the relations, we incorporate a semantic class fea-
ture which could give the classifier an explicit cue
about the presence of a relation (§ 3.3).
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Figure 1: Results per relation category in percentage F1. The reported scores are averaged over 20 runs, and the
95% confidence intervals are shown.

3.1 Drug-problem association (Drugbank)

We use Drugbank (Wishart et al., 2017) to obtain a
compatibility score between a drug treatment and
a problem. We create a mapping from all drug
names, synonyms and product names, to their indi-
cations. We also extract a mapping between drugs
and their adverse reactions. In this way, we obtain
71,683 drug names, 3108 indications and 1163 ad-
verse reactions. If there is a match for an observed
treatment-problem pair in the drug-indication map-
ping, we simply assign a value of 1 (and scale it, as
explained in Appendix) and -1 otherwise. Consider
the example where we consider creating a relation
between neurontintr and seizure historypr. In the
indication for neurontin from Drugbank, seizures
are mentioned as a possible medical problem, so
this type of information could serve as background
evidence for the classifier. The adverse drug ef-
fects represent a separate feature and are included
in the same way. Due to low coverage of the drug-
problem features for the treatment-problem concept
pairs in the data (416 pairs are found, out of 7699),
we also investigate a more general, data-induced
approach, described next.

3.2 Concept-concept association (PMI)

We obtain association scores for concept pairs in
all relation types by estimating a pointwise mutual
information (PMI) model on a large corpus. We
use the MIMIC-III corpus (Johnson et al., 2016) to
compute the PMI for the co-occurring concepts.
We first recognize clinical concepts in MIMIC-
III using CLAMP (Soysal et al., 2017), and use
Ucto (Van Gompel et al., 2012) for preprocess-
ing. We then collect the counts, where two con-
cepts are taken as co-occurring if they are men-
tioned in the same sentence, irrespective of the
ordering. If found, we remove any determiners

and pronouns. The concept type identified by
CLAMP is appended to its mention. For a con-
cept pair in our data, we perform a type-sensitive
and order-insensitive lookup. In case of no match,
we back-off by gradually removing up to two left-
most tokens. We find that the coverage lies be-
tween 68–82% depending on the relation category
and the dataset split, and that the highest coverage
applies for PP relations. The concept-concept as-
sociation for relation extraction has been studied
previously by Demner-Fushman et al. (2010) and
de Bruijn et al. (2011), who used Medline R© as the
resource, whereas we achieved better results and
coverage on the development set with MIMIC-III
than Medline R©.

3.3 Semantic classes

The semantic classes can provide cues about the
relation types present in the sentence and facilitate
distinguishing between different TrP and TeP rela-
tions4. We obtain the classes with WordNet (Miller,
1995) and an online thesaurus5. This was a man-
ual process, in which we looked up the synonyms
for all relation type names. For the seven TrP and
TeP relation types, a hundred lexical triggers were
obtained in total. For example, {show, reveal, dis-
play. . .} belong to the “revealing” class indicative
of the TeRP relation. Lexical triggers are matched
to their semantic classes if they occur in the non-
concept sentence segments. We find that for TrP
relations, matching only with the middle segment
works best, but for TeP, the preceding, middle and
succeeding segments work best.

4We do not use semantic classes for PP since there is only
one relation type, PIP.

5en.oxforddictionaries.com
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Figure 2: A comparison of counts between a SegCNN
and a model using either semantic classes or PMI fea-
tures, for different relation categories.

4 Results

In our experiments, we use different data splits
from those used in Luo et al. (2017) to increase

the size of the training part and to also create a
development set. The details, including the experi-
mental setting, can be found in the Appendix. For
the results using the vanilla SegCNN, we retrain
the original models by Luo et al. (2017) and report
their performance on our data splits. This gives
us the results which are a few points lower on TrP
and TeP relations, but also few points higher on PP
relations, than the results reported in their paper.

We show the results in Figure 1, where % F1
is reported for different relation categories. Over-
all, the highest scores are achieved on TeP rela-
tions. The addition of semantic classes helps the
most, with an improvement of almost 7 points over
SegCNN for TrP, and 6 points for TeP relations. We
think the advantage comes from the fact that the
relation triggers are represented explicitly as the in-
put to the classifier, whereas in the case of the base
SegCNN, the classifier can only rely on a dense
vectorial representation, which captures the trigger
words more fuzzily. The contribution of the associa-
tion features is less pronounced. The drug-problem
(SemClass) and concept-concept (PMI) features
have a small positive effect for TrP relations, with
PMI working best (+0.5) for PP relations, where
the coverage is the highest.

We now have a detailed look at the effect of
the individual features. For this, we contrast the
confusion matrix obtained from the base SegCNN
with the confusion matrix of an extended model,
where these matrices represent counts averaged
over 20 runs. We obtain a new, contrasted matrix
by subtracting the SegCNN matrix from that of the
extended model, and display it as a heat map. An
extension works well when the counts in the first di-
agonal are positive, and all the remaining counts are
negative. In Figures 2a and 2b, we see an increase
in correct classifications for semantic class features
across all relation types, which speaks about the
generality of this feature. The sensitivity for all
relations has also increased (first column) as there
are fewer true relations that remained unidentified.
However, the counts of the less frequent relations
(TrIP, TrNAP and TrWP) have shifted to incorrect
relations (note the pale-red cells in the lower left
corner of 2a). The improvements are the most ob-
vious for the most frequent relations (TrAP and
TeRP), with a clear increase in sensitivity, and a re-
duction in the number of unrelated (None) concepts
classified as either TrAP or TeRP. The confusion
matrix comparison for the problem-problem asso-
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ciation (PMI) feature is shown in Figures 2c and
2d.6 For TeP relations, we see that the addition of
this feature type helps in reducing the number of
hallucinated relations (first row), but at the expense
of sensitivity—note that several relations are left
unidentified (the counts in the TeCP and TeRP in
the first column increased). A slight positive effect
of PMI features can be seen for the PP relation,
where the model becomes less prone to proclaim
unrelated concepts as related (first row). Based on
these figures, we can conclude that the PMI feature
helps in deciding whether a pair of concepts should
be linked with a relation or not, but does not have
sufficient power to distinguish between different
relations.

In conclusion, results show that the SegCNN
model often misses, hallucinates or confuses rela-
tions, and that including semantic classes for rela-
tion triggers helps for different relation types.
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Yuan Luo, Yu Cheng, Özlem Uzuner, Peter Szolovits,
and Justin Starren. 2017. Segment convolutional
neural networks (Seg-CNNs) for classifying rela-
tions in clinical notes. Journal of the American Med-
ical Informatics Association, 25(1):93–98.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In ICLR Workshop Papers.

George A. Miller. 1995. WordNet: A Lexical Database
for English. Communications of the ACM, 38(11).

Bryan Rink, Sanda Harabagiu, and Kirk Roberts. 2011.
Automatic extraction of relations between medical
concepts in clinical texts. Journal of the American
Medical Informatics Association, 18(5):594–600.

Sunil Sahu, Ashish Anand, Krishnadev Oruganty, and
Mahanandeeshwar Gattu. 2016. Relation extraction
from clinical texts using domain invariant convolu-
tional neural network. In Proceedings of the 15th
Workshop on Biomedical Natural Language Process-
ing, pages 206–215. Association for Computational
Linguistics.

Ergin Soysal, Jingqi Wang, Min Jiang, Yonghui Wu,
Serguei Pakhomov, Hongfang Liu, and Hua Xu.
2017. CLAMP — a toolkit for efficiently build-
ing customized clinical natural language processing
pipelines. Journal of the American Medical Infor-
matics Association.
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A Supplemental Material

A.1 Experimental setup
Luo et al. (2017) used a part of the i2b2/VA dataset
that is no longer available to those requesting the
dataset. We therefore only have 170 documents for
training and 256 documents for testing. Since our
goal is to build an accurate relation extractor, we
re-balance the dataset by increasing the size of the
training corpus, reducing the size of the test set and
creating a small development set. The sizes of the
final splits are shown in Table 2. In all our exper-
iments, we use the gold-standard concept annota-
tions, and train one classifier per relation category.

Hyper-parameters We use the same set of
hyper-parameters as Luo et al. (2017), except that
we turn off the drop out on the final layer of the
classifier network, which harmed the performance
in our experiments on the development set. We also
noticed that scaling of the added features positively
affected the results, so we tuned the scaling factor
as well.
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Figure 3: A comparison of counts between a base
SegCNN and a model extended with PMI features, for
different relation categories.

Embeddings We trained the word embeddings
on a combination of PubMed abstracts, open-
access PMC articles (Hakala et al., 2016) and
MIMIC-III intensive care notes (Johnson et al.,
2016), all segmented and tokenized, totaling
around 9 billion tokens. We induce the embed-
dings using word2vec’s CBOW model (Mikolov
et al., 2013) and the default parameters, except for
dimensionality, which we set to 200 for TrP rela-
tions, 500 for TeP and 400 for PP relations, as in
Luo et al. (2017).

A.2 Supplementary results
The additional results from a contrastive confusion
matrix analysis are shown in Figure 3 for the PMI
extension, and in Figure 4 for the model with the
added drug-treatment association feature.
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Abstract

The automation of text summarisation of
biomedical publications is a pressing need due
to the plethora of information available on-
line. This paper explores the impact of sev-
eral supervised machine learning approaches
for extracting multi-document summaries for
given queries. In particular, we compare
classification and regression approaches for
query-based extractive summarisation using
data provided by the BioASQ Challenge. We
tackled the problem of annotating sentences
for training classification systems and show
that a simple annotation approach outperforms
regression-based summarisation.

1 Introduction

Text summarisation is a task of abridgement full
text into a compact version while preserving the
crucial information of the original text that is rel-
evant to a user. The continuous increase of vol-
ume of digital text over the internet has reached
such tremendous magnitude that a plethora of on-
line text is available in regard to a topic. Conse-
quently, manual skimming of text faces paramount
obstacles like information overload (Das and Mar-
tins, 2007). This problem is particularly impor-
tant for medical practitioners who need to analyse
all the relevant information to diagnose and deter-
mine the best course of action for a particular pa-
tient. For example, there are cases in which med-
ical practitioners fail to pursue answers to their
queries (Ely et al., 2005). Moreover, manually
searching the information is an extremely time-
consuming and expensive task. Therefore, there
is a strong motivation for building text processing
systems that can automate some of the processes
involved in this practice.

Our focus is to perform query-focused sum-
marisation, also known as user-focused summari-
sation, of biomedical publications, by extracting

and summarising the content relevant to the query
given by the practitioner. The extraction sys-
tem used in our experiments takes into account a
specific query written as a question in plain En-
glish and tries to identify the information within
a set of retrieved documents that is relevant to the
query. Motivated by the success of machine learn-
ing in automatic text summarisation, we address
the task of automatic query-based summarisation
of biomedical text by using supervised machine
learning techniques. We generate summaries by
identifying the most significant content from the
input text within the context of a query and gener-
ating a final summary by utilising that content.

In addition, this research also deals with a burn-
ing issue of availability of annotated corpora for
supervised learning. In computational linguistics,
labelled corpora are used to train machine learn-
ing algorithms and assess the performance of au-
tomatic summarisation methods. The employment
of annotated corpora to the field of summarisa-
tion dates back to the late 1960s. These anno-
tations typically consist of human-produced sum-
maries, and it is not trivial to determine how to
convert this information into the specific anno-
tations required for supervised machine learning
approaches to summarisation. Getting this data
manually labelled is quite expensive and time-
consuming; automatic annotation of data is still an
active research question.

The contributions of this paper include:

1. A comparison of supervised approaches to
query-focused extractive text summarisation
of biomedical data.

2. A comparison of annotation approaches for
classification-based approaches to query-
focused extractive summarisation of biomed-
ical data.
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The rest of the paper is organised as follows.
Section 2 provides a brief review of related work
on the topic of extractive summarisation, with ref-
erences to systems using biomedical text. Sec-
tion 3 discusses the BioASQ Challenge, whose
data are used in our experiments, and how it re-
lates to query-focused summarisation. Section 4
presents the details of our summarisation frame-
work. Section 5 discusses various annotation ap-
proaches used to train classifiers for supervised
machine learning. Section 6 illustrates the results
of our experiments for regression and classifica-
tion approaches, along with an analysis of the out-
put from our classification models using different
annotation approaches. Finally, Section 7 con-
cludes the paper with remarks on our future direc-
tion.

2 Related Work

Text summarisation has a rich background of re-
search algorithms starting form late 1950’s. The
earliest works on text summarisation used sen-
tence extraction as a primary component of a text
summarisation system and the classic extractive
approaches applied to extract summaries used sta-
tistical features for selecting significant content
from the source text. The text features utilised
by these approaches were based on bag-of-words
(BOW) approaches. BOW models including word
frequency and tf-idf are the most frequently used
methods to discover the important content (Wu
et al., 2008). More recently, word embeddings
generated by deep learning approaches have also
been shown to be useful for text summarisation
(Malakasiotis et al., 2015; Mollá, 2017).

In recent years, the main focus of research in
the summarisation field has been directed towards
the application of machine learning to generate
better summaries. Popular features such as mul-
tiple words, noun phrases, main verbs, named
entities and word embeddings (Barzilay and El-
hadad, 1997; Filatova and Hatzivassiloglou, 2004;
Harabagiu and Lacatusu, 2002; Malakasiotis et al.,
2015; Mollá, 2017) have been heavily exploited
for summarisation.

In contrast to other domains, research on au-
tomatic text processing in the medical domain
is still very much in its infancy. In the recent
past, there has been steady ongoing research in
biomedical text processing (Zweigenbaum et al.,
2007). Factors such as the requirement of large

volume of data, highly complex domain-specific
terminologies and domain-specific format, and ty-
pology of questions (Athenikos and Han, 2010)
makes it complex to process biomedical text. Most
of the researchers working on summarisation for
the medical domain apply the same kinds of tech-
niques developed in other domains.

Three main supervised machine learning ap-
proaches have been used for text summarisation:
classification, regression, and learning to rank.

Classification: The concept of summarising text
by using supervised classification approaches was
pioneered by Kupiec et al. (1995). They cate-
gorised each sentence as worthy of extraction or
not by a classification function, using a Naı̈ve
Bayes classifier. In this classification approach the
sentences are treated individually. At first, most
machine learning systems assumed feature inde-
pendence and relied on Naı̈ve Bayes methods (Das
and Martins, 2007). However, later models shifted
the focus towards breaking the assumption that
features are independent of each other (Lin and
Chin-Yew, 1999).

Classification approaches have also been ap-
plied for summarisation of biomedical text. A
work proposed by Chuang and Yang (2000) used
decision trees and Naı̈ve Bayes classifiers to train
the summariser to extract important sentence seg-
ments based on feature vectors in order to gener-
ate a final summary. Other work by Sarkar (2009)
and Sarkar et al. (2011) applied classification tech-
niques to extractive summarisation by classifying
individual sentences. The features used were term
frequency, sentence similarity to document title,
position of sentence, presence of domain specific
cue phrases, presence of novel terms, and sentence
length.

Regression: Regression approaches for sum-
marisation try to fit the predicted score of a sen-
tence as close as possible to the target score
instead of labelling the sentences. An early
work using regression for summarisation is by
Ouyang et al. (2011) using support vector regres-
sion (SVR). Support vector regression (SVR) has
also been used in conjunction with other tech-
niques like integer linear programming (ILP) for
generating summaries (Galanis et al., 2012) and
has achieved state-of-the-art results in comparison
to other competitive extractive summarisers.

A system named FastSum (Schilder and Kon-
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dadadi, 2008) used regression SVM for training
their data set by using the least computationally
expensive NLP techniques to generate the sum-
mary. The system used a set of clusters as input
data and simple pre-processing was performed on
the sentences. A comparison of this system with
MEAD (Radev et al., 2000) showed that it is more
than 4 times faster than MEAD.

Some of the recent work on biomedical data
(Malakasiotis et al., 2015) used BioASQ data
which is the data used in this paper. As in this
paper, their work addressed the task of multi-
document query focused summarisation. They
used SVR to assign relevance scores to the sen-
tences of the given relevant abstracts, and an alter-
native greedy strategy to select the most relevant
sentences avoiding redundant ones.

A system by Mollá (2017) also experimented
using BioASQ data in conjunction with SVR. The
feature set used was based on Malakasiotis et al.
(2015). In addition to SVR, Mollá (2017) used
other regression approaches with deep learning
architectures including convolutional neural net-
works (CNNs) and long-short term memory net-
works (LSTMs).

Learning to rank: Learning to rank transforms
the task into a simple problem of ranking ex-
tracts from an original text. Given sentences with
labelled importance scores, it is possible to get
learning to rank models to train a model capable
of assigning high rank to the most important sen-
tences.

Ranking SVMs are the most commonly used
approaches for learning to rank. When comparing
SVMs and ranking SVMs to model the relevance
of sentences to queries, Wang et al. (2007) show
that ranking SVMs outperform standard SVMs on
a small test collection. Learning to rank has also
been applied to the summarisation of XML docu-
ments with a goal of learning how to best combine
the sentence features such that within each docu-
ment, summary sentences get higher scores than
non-summary ones (Amini et al., 2007).

Another significant work done in this category
uses ranking SVM to combine features for extrac-
tive query focused multi-document summarisation
(Shen and Li, 2011). In order to do that, a graph-
based method was proposed for training data gen-
eration by utilizing the sentence relationships and
a cost sensitive loss was introduced to improve the
robustness of learning. The method outperformed

Query: Name synonym of Acrokeratosis parane-
oplastica.

Exact answer: Bazex syndrome.

Ideal answer: Acrokeratosis paraneoplastic
(Bazex syndrome) is a rare, but distinctive
paraneoplastic dermatosis characterized by
erythematosquamous lesions located at the
acral sites and is most commonly associated
with carcinomas of the upper aerodigestive
tract.

Figure 1: Example of query, exact answer, and ideal
answer from the BioASQ 5b Phase B shared task.

the baseline strategies.
We are not aware of any work on biomedical

summarisation using learning to rank techniques.

3 The BioASQ Challenge

We utilised a biomedical corpus provided by the
BioASQ Challenge1. The BioASQ Challenge or-
ganises shared tasks on aspects related to biomed-
ical semantic indexing and question answering
(Tsatsaronis et al., 2015). One of the tasks, Task B,
focuses on question answering, and Phase B of
Task B asks participants to respond to a query by
providing “exact answers” and “ideal answers”.
Whereas the exact answers are the usual output of
a factoid question answering system, the ideal an-
swers contain additional text such as explanations
and justifications, and can be viewed as examples
of query-focused summarisation. Figure 1 shows
an example of a question, its exact answer, and
its ideal answer, as provided in the training set of
BioASQ 5b.

In the BioASQ data set each question contains,
among other information, the text of the question,
the question type, and a list of source documents.
The list of documents has been extracted manually
by annotators and are relevant to the query. They
can be viewed as the ideal output of a text retrieval
system and are used as the input data of our ex-
periments. The training data set contains a total of
1306 questions.

4 Summarisation Model

Our system performs query-focused extractive
summarisation of biomedical data, and our model

1http://bioasq.org/
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Figure 2: The overall summarisation model.

is trained with data from the BioASQ 5b Chal-
lenge. We follow a three-stage summarisation
model for the generation of the summaries. In
the first stage, the question and input text are pre-
processed and transformed to an intermediate rep-
resentation. In the second stage, each sentence in
the input is assigned an importance score or label
depending on the approach applied. Finally, in the
final stage, the n most highly ranked sentences are
selected to generate a summary. Figure 2 outlines
the summarisation model.

4.1 Pre-processing

Pre-processing refers to the first stage of the
model. First, the data are partitioned into train-
ing and testing using 10-fold cross validation. Af-
ter partitioning the data, the sentences and ques-
tions are vectorised by computing the tf-idf of their
words.

We also incorporate a technique that compares
sentences with the associated queries. In partic-
ular, we compute the cosine similarity of each
candidate (Si) sentence with the associated query
(Qi), using the tf-idf vector representations for
each:

Sim(Si, Qi) =
Si ·Qi

‖Si‖ ‖Qi‖

4.2 Approaches for Extracting Summaries

Regression and classification-based techniques are
used for generating a summary for a given query.
To enable the comparison of all techniques, we

have used a common feature set. In our case the
feature set used is:

1. tf-idf vector of the candidate sentence.

2. Cosine similarity between the tf-idf vector of
the question and the tf-idf vector of the can-
didate sentence.

Since the intent of this work is to compare the
performance of regression and classification ap-
proaches, and not to obtain the best possible re-
sults, the feature set used is fairly simple and is
commonly used on the most popular supervised
approaches for query-based extractive summarisa-
tion.

For the regression approaches, each sentence of
the training data is annotated with the F1 ROUGE-
SU4 score of the sentence compared to the target
summary. ROUGE-SU4 considers skip bigrams
with a maximum distance of 4 words between the
words of each skip bigram (Lin, 2004). This mea-
sure has also been found to correlate well with
human judgements in extractive summarisation.
Other systems have used ROUGE for annotating
data and its application has been proved useful,
e.g the system by Galanis et al. (2012); Peyrard
and Eckle-Kohler (2016). We use Support Vector
Regression (SVR), which has performed well in
past regression approaches to summarisation.

For the classification approaches, we use
the standard two-class labelling approach where
class 1 indicates sentences that are selected for the
final summary, and class 0 indicates sentences that
are not selected. We use Support Vector Machine
(SVM), which has performed well in many other
classification problems.

5 Data Annotation for Classification

Supervised machine learning requires annotated
training data to generate summaries. Often the
summary annotations consist of sample reference
summaries, but it is not straightforward to trans-
late this information into the target labels 1 and 0
for classification. Although many researchers at-
tempted to tackle this issue by manually select-
ing the summary-worthy sentences for their ex-
periments (Ulrich et al., 2008), manual annotation
consumes a considerable amount of time.

We have experimented with several approaches
to determine when to assign a label 1 or 0 to an in-
put sentence for the training procedure. As men-
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tioned above, the inherent annotation of the sen-
tences for the regression approach is based on their
ROUGE score. Whereas it is straightforward to
use ROUGE for the regression approach, we need
to convert the ROUGE score into a binary value
for classification. We experimented with various
thresholds, and compared with a more complex
approach based on Marcu (1999)’s work.

5.1 ROUGE Annotation with Thresholds
We tried two thresholds to define the labels for
both the summary and the non-summary classes
so that, if the ROUGE-SU4 score of the sentence
is above the threshold, the sentence is labelled 1.
Otherwise the sentence is labelled 0. This is done
for every sentence associated with a query.

Firstly, we experimented by labelling the three
highest SU4 scoring sentences as summary (i.e.
label 1) for each query in the data. Secondly, we
tried a threshold of 0.1. We labelled the sentence
as 1 if its SU4 score is higher than 0.1 and labelled
the rest as 0.

5.2 Marcu Annotation
In addition to the above-mentioned ROUGE an-
notation approaches, we also experimented with a
greedy approach proposed by Marcu (1999) that
we call the Marcu annotation. The motivation be-
hind using this approach for our experiments is
that it takes into account the similarity between
the taget abstract and the entire set of sentences
selected for the summary.

This method, instead of selecting sentences
which are identical to those in the abstract, elim-
inates sentences which do not appear to be sim-
ilar to ones in the abstract. The rationale of the
methodology is that, if the similarity between the
document and its target abstract does not decrease
when a sentence is removed from the document,
then we can say that the sentence is not relevant
to the target abstract (Marcu, 1999). This elimi-
nation process continues while the similarity does
not decrease as we remove sentences.

The original algorithm by Marcu (1999) is di-
vided into two parts: generating the core extract
and cleaning-up the core extract. The first part of
the algorithm results in an extract through which
important sentences in the text can be identified
and annotated. In the second part, some cos-
metic procedures are performed to the generated
extract. In this second clean-up step Marcu em-
ployed some heuristics to further reduce the set of

sentences.
We only implemented the first part of the algo-

rithm. There are two reasons for not implementing
the second part of the algorithm. Firstly, some of
the heuristics require knowledge of the rhetorical
structure of the source to be able to apply them.
This information was not available, and could not
be easily obtained. In addition, for some of the
heuristics, the details were insufficient to know ex-
actly how to implement them.

Algorithm 1 shows the algorithm for generating
the extract. The input to the algorithm is a ref-
erence abstract and input text to summarise. In
step 1, the input text is broken into sentences.
Step 2 then pre-processes the abstract and text.
Pre-processing involves tokenising all the infor-
mation into words and then performing stemming
and removing stop words. We use NLTK for
steps 1 and 2 in contrast to Marcu (1999)’s ap-
proach, who used a shallow clause boundary and
discourse marker identification (CB-DM-I) algo-
rithm for this task. This algorithm is more com-
plex and considers the information related to vari-
ous textual units to perform pre-processing.

Initially, we assume the extract to be the whole
text (step 3 in Algorithm 1).

Steps 4 and 5 can be explained as follows: If we
delete from E a sentence S that is totally distinct
from the abstract A, we obtain a new extract E\S
whose similarity with A is higher than that of E.
We therefore apply a greedy approach and repeat-
edly delete sentences from E so that at each step
the resulting extract has maximum similarity with
the abstract. We eventually reach a state where we
can no longer delete sentences without decreasing
the similarity of E with the abstract. The resulting
E at this stage is considered the extract that we are
looking for.

The similarity operator Sim(X,Y ) is the co-
sine similarity between the tf-idf of X and Y .

6 Evaluation and Results

We evaluated all our approaches automatically us-
ing the ROUGE evaluation tool (Lin, 2004). Our
system-generated summaries are all evaluated by
comparing them with the associated gold standard
summaries which are the BioASQ ideal answers
in our case.

Figure 3 shows the results of the regression and
the following classification approaches described
in Section 5:
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Data:
Abstract (A): The reference summary.
Text (T ): Input text to summarise.
Result:
Extract (E): A set of sentences from text
which has maximum similarity to abstract

1 T1, · · · Tn = sentences from T
2 Stem and delete stop words from

A, T1, · · · Tn

3 E = T
4 S = argmaxS′∈E Sim(E\S′, A)
5 while Sim(E,A) < Sim(E\S,A) do

E = E\S
S = argmaxS′∈E Sim(E\S′, A)

end
Algorithm 1: Marcu’s greedy approach for the
generation of a core extract.

Figure 3: Comparison of the results of the regression
and three classification approaches. The results show
the mean of 10-fold cross-validation, and the error bars
show the standard deviation.

Figure 4: Comparison of classification (with 0.1 thresh-
old) and regression according to their ROUGE-SU4
(error bars refer to standard deviation) in 10-fold cross-
validation.

1. Label with 1 the three sentences with highest
ROUGE score per question.

2. Label with 1 all sentences with ROUGE
score higher than 0.1.

3. Label with 1 the sentences annotated accord-
ing to Algorithm 1.

6.1 Regression Versus Classification
To produce comparable results, we kept prepro-
cessing, feature extraction and number of sen-
tences (3 sentences) in the final summary constant.
The same data partition into training and testing
was used in all cases.

Figure 4 compares the F1 ROUGE-SU4 scores
of regression and the best classification approach.
We can observe that the average SU4 score of the
classification approach is higher than the score of
the regression approach. The classification ap-
proach mentioned in Figure 4 is the one with
threshold 0.1. The standard deviation for both ap-
proaches is indicated by the error bars.

To have a more precise evaluation, we analyse
the variation of SU4 at each cross-validation fold
for each approach to see whether classification is
performing better than regression at every fold of
cross-validation. In Figure fig:10folds, the varia-
tion of the SU4 score over each of the 10 folds for
both techniques is shown and classification SU4
can be seen on the higher side for all the folds ex-
cept for the last one.

6.2 Comparing Annotation Approaches
Figure 6 shows F1 ROUGE-SU4 scores of all of
the classification approaches: (i) using three sen-
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Figure 5: ROUGE SU4 variation over 10-Fold cross-
validation for classification and regression.

Figure 6: Comparison of various annotation ap-
proaches (error bars refers to standard deviation)

tences with highest SU4 as summary class, (ii) use
threshold 0.1, and (iii) use the approach based on
Marcu (1999)’s work.

The second approach (i.e. with threshold 0.1)
can be seen as outperforming all the other ap-
proaches. In contrast, the first approach produces
the lowest SU4 score among all the three. Whereas
Marcu’s approach is better than the approach with
the highest three, it is outperformed by the ap-
proach with threshold of 0.1. The standard de-
viations for all of the approaches through 10-fold
cross-validation are also presented as error bars in
Figure 6.

6.3 Comparison with Ouyang et al.

A similar work performed by Ouyang et al. (2011)
reported better results for regression than for clas-
sification in their experiments. They used dif-
ferent evaluation data, different features, and dif-
ferent approaches. In particular, they used data
provided by the Document Understanding Confer-
ences (DUC), and their annotation approach used
two thresholds. They positively annotated the sen-
tences with ROUGE score higher than 0.7 and

Figure 7: Classification with Ouyang et al. and our
annotation approach (0.1 as threshold).

negatively annotated those with score lesser than
0.3. Apparently, sentences with score between 0.3
and 0.7 were not used in their experiments.

We therefore replicated their annotation ap-
proach using the BioASQ data set and our fea-
tures so that we could compare with our other ex-
periments and obtained an average ROUGE-S4 of
0.09. This is lower than the results of our regres-
sion approach.

Our results are therefore compatible with the re-
sults provided by Ouyang et al. (2011) when we
use their annotation approach for classification.
We can consequently conclude that classification
can deliver better results than regression, but we
need to be careful with the approach used to anno-
tate the training sentences.

Figure 7 provides a comparison of our best per-
forming annotation with Ouyang et al. (2011)’s
approach by showing the variation of SU4 over all
cross-validation folds.

The results reported in this paper are not di-
rectly comparable with the official results of the
BioASQ runs for two reasons. First of all, the
system implemented in this paper uses the entire
source summaries as input. In contrast, systems
participating in BioASQ can use additional infor-
mation about what snippets from the source sum-
maries are most relevant. Second, Mollá (2017)
observed that the results of cross-validation with
the training data gave much poorer results than
the results evaluated using the BioASQ test set
and the BioASQ evaluation scripts. Of the runs
submitted by Mollá (2017), only the one labelled
RNN used as input the full summaries without in-
formation about relevant snippets. The average of
ROUGE-SU4 across all batches was 0.435. How-
ever, our (unpublished) experiments revealed that
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cross-validation of the same system achieved a
ROUGE-SU4 of 0.144. This is lower than our best
results using classification reported in this paper.

7 Conclusions

We have presented a comparison of two super-
vised machine learning techniques for extractive
query focused summarisation. In addition, we
have also explored the difficult phase of annotating
data for classification approaches for summarisa-
tion, drawing a comparison among several annota-
tion techniques.

To evaluate the model for both approaches, we
have conducted an automatic evaluation and com-
pared the performance of our system against hu-
man generated systems by using ROUGE. A series
of experiments have been conducted by labelling
data by different mechanisms for classification-
based approaches.

Our experiments revealed that classification
performs better than regression when a threshold
of 0.1 SU4 is applied for annotating data.

When comparing the different annotation tech-
niques for the classification approach, we ob-
served a considerable difference between the re-
sults when using threshold 0.1, using the highest
three SU4 scoring sentences, or using other an-
notation techniques such as the ones by Marcu
(1999) and Ouyang et al. (2011).

As part of future work, we plan to conduct fur-
ther experiments to determine the best annotation
techniques for classification-based approaches. In
particular, we plan to explore the impact of the
second part of Marcu’s greedy approach to see
any improvement in results, along with utilising
ROUGE as a similarity measure instead of cosine
similarity to generate the extract. In addition, we
will explore automatic approaches to determine
the best thresholds. We empirically tried several
thresholds and observed that 0.1 improved results
but ideally this part would be done automatically.

We also plan to conduct an analysis of experi-
ments by using learning to rank approaches. This
type of learning algorithms may help improve per-
formance.
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Abstract
We compare the use of LSTM-based and
CNN-based character-level word embeddings
in BiLSTM-CRF models to approach chem-
ical and disease named entity recognition
(NER) tasks. Empirical results over the
BioCreative V CDR corpus show that the use
of either type of character-level word em-
beddings in conjunction with the BiLSTM-
CRF models leads to comparable state-of-the-
art performance. However, the models using
CNN-based character-level word embeddings
have a computational performance advantage,
increasing training time over word-based mod-
els by 25% while the LSTM-based character-
level word embeddings more than double the
required training time.

1 Introduction

Bi-directional Long-Short Term Memory Condi-
tional Random Field models (BiLSTM-CRF), in
which a BiLSTM is coupled with a CRF layer to
connect output tags, have been shown to achieve
state-of-art performance in sequence tagging tasks
including part of speech (POS) tagging, chunking,
and NER (Huang et al., 2015). The combination
of word embeddings and character-level word em-
beddings has been explored in this context, with
Ma and Hovy (2016) using Convolutional Neu-
ral Networks (CNNs) to construct character-level
word embeddings and Lample et al. (2016) apply-
ing LSTM networks. This work showed that the
use of character-level word embeddings improves
the performance of the models, by contributing the
ability to recognize unseen words.

Biomedical Named Entity Recognition (BNER)
is a vital initial step for information extraction
tasks in the biomedical domain, including the
Chemical-Disease Relationship (CDR) extraction
task where both chemical and disease entities must
be identified (Li et al., 2016). Character-level
word embeddings could be particularly signifi-
cant in this context, given that new entity names

are frequently created, and may follow consistent
patterns including productive morphology such as
common prefixes (e.g., di-) or suffixes (e.g., -ase).
Features that capture word-internal characteristics
have been shown to be effective for BNER tasks
in CRF models (Klinger et al., 2008).

Lyu et al. (2017) applied a BiLSTM-CRF model
with LSTM-based character-level word embed-
dings to a gene and protein NER task, demonstrat-
ing state-of-art performance that outperformed tra-
ditional feature-based models. Luo et al. (2018)
further improved on this result on a chemical NER
task by adding an attention layer between the BiL-
STM and CRF layers (Att-BiLSTM-CRF).

In an experiment by Reimers and Gurevych
(2017b), optimal hyper-parameters for LSTM net-
works in sequence tagging tasks were explored,
with the finding that incorporation of character-
level word embeddings significantly improved
performance on NER tasks on general datasets
including CoNLL 2003 (Tjong Kim Sang and
De Meulder, 2003). However, the choice of
CNN-based (Ma and Hovy, 2016) or LSTM-based
character-level word embeddings (Lample et al.,
2016) did not affect the performance significantly.
Since the CNN has fewer parameters to train than
BiLSTM network, it is better in terms of training
efficiency, and was recommended as the preferred
approach.

In this paper, we implement and compare mod-
els with each type of word embedding to generate
empirical results for the tasks of chemical and dis-
ease NER, using the BioCreative V CDR corpus
(Li et al., 2016). These BNER categories are the
most searched entities in the biomedical literature
(Islamaj Dogan et al., 2009), and hence particu-
larly important to study.

The results show that models with CNN-based
character-level word embeddings achieve state-
of-the-art results comparable to LSTM-based
character-level word embeddings, while having
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the advantage of reduced training complexity,
demonstrating that the prior results also hold for
the BNER task.

2 Experimental methodology

This section presents our empirical approach to
comparing state-of-the-art neural network models
for chemical and disease NER.

2.1 Dataset
In our experiments, we use the BioCreative V
CDR corpus (Li et al., 2016). This corpus pro-
vides a set of 1000 manually-annotated abstracts
(9193 sentences) for training and development,
and another set of 500 manually-annotated ab-
stracts (4840 sentences) for test. In particular, we
used a pre-processed version of the CDR corpus
from Luo et al. (2018),1 which provides predicted
POS-, chunking- and gazetteer-based tags:

• POS and chunking tags are predicted by the
GENIA tagger (Tsuruoka et al., 2005).2

• Gazetteer tags are encoded in BIO tagging
scheme based on matching to the external
Jochem chemical dictionary (Hettne et al.,
2009).

Following Luo et al. (2018), we randomly sam-
ple 10% from the set of 1000 abstracts for devel-
opment, and use the remaining for training.

2.2 Models
We use the following BiLSTM-CRF-based se-
quence labeling models:

• Baseline BiLSTM model (Schuster and Pali-
wal, 1997; Hochreiter and Schmidhuber,
1997) which uses a softmax layer to predict
NER labels of input words.

• BiLSTM-CRF (Huang et al., 2015) extends
the BiLSTM model with a CRF layer which
allows the model to use sentence-level tag in-
formation for sequence prediction.

• BiLSTM-CRF + CNN-char (Ma and Hovy,
2016) extends the BiLSTM-CRF model with
character-level word embeddings. For each
word, its character-level word embedding is
derived by applying a CNN to the character
sequence in the word.

1https://github.com/lingluodlut/
Att-ChemdNER

2http://www.nactem.ac.uk/GENIA/tagger

Hyper-para. Value
Optimizer Nadam
Mini-batch size 32
Clipping τ = 1
Dropout [0.25, 0.25]

Table 1: Fixed hyper-parameter configurations.

CNN-based LSTM-based
Hyper-para. Value
charEmbedSize 30
Window size 3
# of filters 30
# of Params. 2,730

Hyper-para. Value
charEmbedSize 30
BiLSTM layer 1
LSTM size 25
# of Params. 11,200

Table 2: Hyper-parameters for learning character-
level word embedding. “charEmbedSize” and “# of
Params.” denote the vector size of character embed-
dings and the total number of parameters, respectively.

• BiLSTM-CRF + LSTM-char also extends
the BiLSTM-CRF model with character-level
word embeddings which are derived by ap-
plying a BiLSTM to the character sequence
in each word (Lample et al., 2016).

Following Luo et al. (2018), we also consider
the impact of extra features including syntactic
features such as POS and chunking tags, and a
chemical term feature based on matching to an ex-
ternal gazetteer. Figure 1 illustrates the general
BiLSTM-CRF model architecture with character-
level word embeddings and additional features,
while Figure 2 illustrates CNN-based and LSTM-
based architectures for learning the character-level
word embeddings.

2.3 Implementation details
We used a well-known implementation of
BiLSTM-CRF-based models from Reimers and
Gurevych (2017b).3 We used the training set
to learn model parameters, the development set
to select optimal hyper-parameters, and the test
set to report final results. Here, we tune the
model hyper-parameters using the performance
across both NER categories (“Overall”) on the
development set.

We employed pre-trained 50-dimensional word
vectors from Luo et al. (2018). These pre-trained
vectors were derived by training the Word2Vec
skip-gram model (Mikolov et al., 2013) on a large
text collection of 2 million MEDLINE abstracts.

3https://github.com/UKPLab/
emnlp2017-bilstm-cnn-crf
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Figure 1: Architecture of BiLSTM-CRF models with character-level word representations and additional features.
This figure is adapted from Reimers and Gurevych (2017a).

(CNN-based character-level word representation) (LSTM-based character-level word representation)

Figure 2: Character-level word representations. This figure is also adapted from Reimers and Gurevych (2017a).

Reimers and Gurevych (2017b) showed that the
BiLSTM-CRF model achieved best performance
with 2 BiLSTM layers. Therefore, in our exper-
iment, we only evaluated models up to 2 stacked
BiLSTM layers. The size of LSTM hidden states
in each layer was selected from [100, 150, 200,
250]. We achieved the highest F1 score on the de-
velopment set when using 250-dimensional LSTM
hidden states for all models.

By default, each of the additional features (POS,
chunking tags, gazetteer match tag) was incorpo-

rated into the model via a 10-dimensional embed-
ding. Other hyper parameters were also fixed as in
Reimers and Gurevych (2017b) during initializa-
tion. See tables 1 and 2 for more details.

In the training process, we used the score on de-
velopment set to assess model improvement. Early
stopping was applied if there was no improvement
after 10 epochs. The threshold for a word that was
not in the word embedding vocabulary to be added
into the embedding was set to 5. The average
training time for each epoch was also recorded.
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Model Chemical Disease Overall
P R F1 P R F1 P R F1

BiLSTM 87.48 91.61 89.50 78.22 83.54 80.80 83.26 87.97 85.55
BiLSTM + CNN-char 90.65 90.70 90.67 79.34 82.66 80.97 85.44 87.07 86.25
BiLSTM + LSTM-char 90.47 91.64 91.05 79.43 83.97 81.64 85.37 88.18 86.76
BiLSTM-CRF 90.75 90.96 90.86 80.74 83.75 82.21 86.15 87.71 86.92
BiLSTM-CRF + CNN-char 91.64 92.24 91.94 81.42 84.67 83.01 86.95 88.83 87.88
BiLSTM-CRF + LSTM-char 92.08 91.79 91.94 81.48 84.22 82.83 87.20 88.38 87.79
BiLSTM-CRF+Gazetteer 92.26 91.01 91.63 81.87 82.19 82.03 87.53 87.03 87.28
BiLSTM-CRF+Gazetteer+ CNN-char 92.62 92.03 92.32 80.72 85.28 82.94 87.07 88.99 88.02
BiLSTM-CRF+Gazetteer + LSTM-char 92.11 92.33 92.22 82.13 83.66 82.89 87.57 88.42 87.99
Att-BiLSTM-CRF (LSTM-char) (Luo et al., 2018) 92.88 91.07 91.96 - - - - - -
Att-BiLSTM-CRFPOS+Chunking+Gazetteer (LSTM-char) 93.49 91.68 92.57 - - - - - -
TaggerOne (Leaman and Lu, 2016) [♠] 94.2 88.8 91.4 85.2 80.2 82.6 - - -
tmChem (Leaman et al., 2015) [♠] 93.2 84.0 88.4 - - - - - -
Dnorm (Leaman et al., 2013) [♠] - - - 82.0 79.5 80.7 - - -

Table 3: Results (in %) on the test set. [♠] denotes results reported on a 950/50 training/development split rather
than our 900/100 split. As indicated, Att-BiLSTM-CRF used LSTM-char word embeddings.

3 Main results

3.1 Baseline results

Table 3 presents our empirical results. The first
three rows show the performance of baseline mod-
els without the CRF layer, the next three rows
show the performance of BiLSTM-CRF models
without additional features, and then the next three
rows show the results for BiLSTM-CRF models
with additional gazetteer features.

As the empirical results in Table 3 show,
the model with CNN character-level embeddings
(CNN-char) and the model with LSTM character-
level embeddings (LSTM-char) achieved similar
overall F1 scores (87.88% and 87.79%, respec-
tively), outperforming BiLSTM-CRF by approx-
imately 1% in absolute terms. In particular, on
chemical NER, both BiLSTM-CRF-based models
with character-level word embeddings obtained
the same F1 score (91.94%), while on disease
NER the model with CNN-char obtained slightly
higher performance (83.01%) than the model with
LSTM-char (82.83%). All models with the CRF
layer outperformed their respective baseline BiL-
STM models in F1 scores for all entity categories.

3.2 Effect of additional features

When incorporating additional POS and chunking
features into three baseline BiLSTM-CRF-based
models, we found that no performance improve-
ment based on the baseline models was observed.

On chemical NER, the additional gazetteer
feature improved the baseline BiLSTM-CRF by
about 0.8% while it only improved the baselines
BiLSTM-CRF + CNN-char and BiLSTM-CRF +

LSTM-char by about 0.3%, thus clearly indicat-
ing that character-level word embeddings can cap-
ture unseen word information. Considering both
NER categories together (“Overall”), the best per-
formance was also obtained when the gazetteer
feature was added, reaching overall F1 scores of
88.02% and 87.99%, respectively, for the two
CNN-based and LSTM-based character-level em-
bedding models.

3.3 Comparison with prior work
The performance comparison between our
BiLSTM-CRF-based models and other machine
learning approaches to the two studied NER tasks
is also shown in Table 3. The pattern of chemical
NER outperforming disease NER is consistent
across all tools.

The Att-BiLSTM-CRF model (Luo et al.,
2018) used a BiLSTM-CRF model with LSTM
character-level word embedding and an additional
attention layer. It achieved an F1 score of 91.96%
on chemical NER without additional features. The
positive effect of a gazetteer feature was also ob-
served in their results; the model with syntac-
tic and gazetteer features reached an F1 score of
92.57%. Note that the datasets used in this paper
might not be exactly the same as ours due to ran-
dom sampling.

The last three rows of Table 3 show the re-
sults presented in Leaman and Lu (2016), where
950 of the abstracts were used for training and 50
for development (cf. our 900/100 split). Dnorm
(Leaman et al., 2013) is a model based on pair-
wise learning to rank on disease name normaliza-
tion, which achieved F1 score of 80.7% on disease
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NER. The tmChem (Leaman et al., 2015) is based
on CRF; using numerous hand-crafted features it
reached an F1 score of 88.4% on chemical enti-
ties. As a semi-Markov model with a richer set of
features for NER tasks, TaggerOne (Leaman and
Lu, 2016) achieved F1 score of 91.4% and 82.6%
on chemical and disease entities, respectively.

Compared to previous non-deep-learning meth-
ods using CRFs, the BiLSTM-CRF models have
significant advantage on F1 score of both chemical
and disease entities, primarily due to improvement
on recall.

3.4 Discussion

In our experiment on the effect of additional fea-
tures, we found that syntactic features such as POS
and chunking information did not have clear pos-
itive effect on the performance. In contrast, the
match/partial match between words and entries in
the chemical gazetteer is a good indicator for the
presence of chemical entities. Since the Jochem
dictionary contains only chemical entities, it is not
surprising that the performance on diseases was
not substantially impacted by adding the gazetteer
feature, although some small variations in perfor-
mance can be observed, likely due to changed in-
fluences from neighboring terms.

The empirical results shown that models using
either CNN-char or LSTM-char achieve a similar
overall F1 score on chemical and disease NER.
The results are further comparable with other
state-of-the-art models. This indicates that these
character-level models have sufficient complexity
to learn the generalizable morphological and lexi-
cal patterns in biomedical named entity terms.

On the other hand, as shown by the substan-
tial differences in the number of parameters in Ta-
ble 2, CNN (LeCun et al., 1989) has the advan-
tage of reduced training complexity as compared
to the LSTM models (Hochreiter and Schmidhu-
ber, 1997) under similar experimental settings. In
our experimental environment, the execution time
of the model with LSTM-char increased 115% rel-
ative to the baseline BiLSTM-CRF model, while it
only increased by 25% for with CNN-char, as de-
tailed in Table 4. Therefore, consistent with prior
results on general NER, we conclude that CNN-
based embeddings are preferable to LSTM-based
embeddings for BNER.

We analyzed the error cases of the CNN-char
and LSTM-char models without additional fea-

Model Avg. Runtime per
Epoch (seconds)

∆

BiLSTM-CRF 106 0
+ CNN-char 134 +26%
+ LSTM-char 229 +115%

Table 4: Training time of best performing models (2
BiLSTM layers and 250 LSTM units), computed on a
Intel Core i5 2.9 GHz PC.

tures: 3326 and 3271 words were incorrectly pre-
dicted using CNN-char and LSTM-char, respec-
tively, with 2138 mistakes in common. In errors
which only was made by one of the two models,
we found that CNN-char made more false posi-
tive predictions and fewer false negative predic-
tions, while LSTM-char made approximately an
even number of the two kinds of false predictions.

The relationship between the length of words
and these errors was also explored. For words less
than 20 characters in length, the distribution of er-
rors is almost identical for the two models. How-
ever, for longer words, the model with LSTM-char
tends to make more mistakes. This supports prior
observations that LSTM can be difficult to apply to
long sequences of input (Bradbury et al., 2017). In
approximately 50% of error cases, the word length
is short, less than 5 characters. Short biomedical
named entities are usually abbreviations and tend
to be out-of-vocabulary terms, and are therefore
particularly difficult for the character-level word
embedding models to capture (Habibi et al., 2017).

4 Conclusion

We compared the performance of BiLSTM-
CRF models with CNN-based and LSTM-based
character-level word embeddings for biomedical
named entity recognition. We confirmed previ-
ously published results on chemical and disease
NER that demonstrate that character-level em-
beddings are helpful. We further show empiri-
cally, generalizing prior results for general NER
to the biomedical context, that there is little differ-
ence between the two approaches: both types of
character-level word embeddings achieved identi-
cal F1 score on the chemical NER task, and simi-
lar performance on disease NER (with CNN-char
showing a slight performance advantage). How-
ever, the CNN embeddings show a substantial ad-
vantage in reduced training complexity.
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Abstract

In recent years, we have seen deep learning
and distributed representations of words and
sentences make impact on a number of natural
language processing tasks, such as similarity,
entailment and sentiment analysis. Here we
introduce a new task: understanding of men-
tal health concepts derived from Cognitive Be-
havioural Therapy (CBT). We define a men-
tal health ontology based on the CBT princi-
ples, annotate a large corpus where this phe-
nomena is exhibited and perform understand-
ing using deep learning and distributed repre-
sentations. Our results show that the perfor-
mance of deep learning models combined with
word embeddings or sentence embeddings sig-
nificantly outperform non-deep-learning mod-
els in this difficult task. This understanding
module will be an essential component of a sta-
tistical dialogue system delivering therapy.

1 Introduction

Promotion of mental well-being is at the core of
the action plan on mental health 2013–2020 of the
World Health Organisation (WHO) (World Health
Organization, 2013) and of the European Pact on
Mental Health and Well-being of the European
Union (EU high-level conference: Together for
Mental Health and Well-being, 2008). The biggest
potential breakthrough in fighting mental illness
would lie in finding tools for early detection and
preventive intervention (Insel and Scholnick, 2006).
The WHO action plan stresses the importance of
health policies and programmes that not only meet
the need of people affected by mental disorders
but also protect mental well-being. The emphasis
is on early evidence-based non-pharmacological
intervention, avoiding institutionalisation and med-
icalisation. What is particularly important for suc-
cessful intervention is the frequency with which the
therapy can be accessed (Hansen et al., 2002). This

gives automated systems a huge advantage over
conventional therapies, as they can be used contin-
uously with marginal extra cost. Health assistants
that can deliver therapy, have gained great interest
in recent years (Bickmore et al., 2005; Fitzpatrick
et al., 2017). These systems however are largely
based on hand-crafted rules. On the other hand, the
main research effort in statistical approaches to con-
versational systems has focused on limited-domain
information seeking dialogues (Schatzmann et al.,
2006; Geist and Pietquin, 2011; Gasic and Young,
2014; Fatemi et al., 2016; Li et al., 2016; Williams
et al., 2017).

In this paper we introduce a new task: under-
standing of mental health concepts derived from
Cognitive Behavioural Therapy (CBT). We present
an ontology that is formulated according to Cog-
nitive Behavioural Therapy principles. We label a
high quality mental health corpus, which exhibits
targeted psychological phenomena. We use the
whole unlabelled dataset to train distributed repre-
sentations of words and sentences. We then investi-
gate two approaches for classifying the user input
according to the defined ontology. The first model
involves a convolutional neural network (CNN) op-
erating over distributed words representations. The
second involves a gated recurrent network (GRU)
operating over distributed representation of sen-
tences. Our models perform significantly better
than chance and for instances with a large number
of data they reach the inter-annotator agreement.
This understanding module will be an essential
component of a statistical dialogue system deliver-
ing therapy.

The paper is organised as follows. In Section 2
we give a brief background of the statistical ap-
proach to dialogue modelling, focusing on dialogue
ontology and natural language understanding. In
Section 3 we review related work in the area of au-
tomated mental-health assistants. The sections that
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follow represent the main contribution of this work:
a CBT ontology in Section 4, a labelled dataset in
Section 5, and models for language understanding
in Section 6. We present the results in Section 7
and our conclusion in Section 8.

2 Background

A dialogue system can be treated as a trainable
statistical model suitable for goal-oriented infor-
mation seeking dialogues (Young, 2002). In these
dialogues, the user has a clear goal that he or she is
trying to achieve and this involves extracting par-
ticular information from a back-end database. A
structured representation of the database, the ontol-
ogy is a central element of a dialogue system. It
defines the concepts that the dialogue system can
understand and talk about. Another critical com-
ponent is the natural language understanding unit,
which takes textual user input and detects presence
of the ontology concepts in the text.

2.1 Dialogue ontology

Statistical approaches to dialogue modelling have
been applied to relatively simple domains. These
systems interface databases of up to 1000 enti-
ties where each entity has up to 20 properties, i.e.
slots (Cuayáhuitl, 2009). There has been a signif-
icant amount of work in spoken language under-
standing focused on exploiting large knowledge
graphs in order to improve coverage (Tür et al.,
2012; Heck et al., 2013). Despite these efforts,
little work has been done on mental health ontolo-
gies for supporting cognitive behavioural therapy
on dialogue systems. Available medical ontologies
follow a symptom-treatment categorisation and are
not suitable for dialogue or natural language un-
derstanding (Bluhm, 2017; Hofmann, 2014; Wang
et al., 2018).

2.2 Natural language understanding

Within a dialogue system, a natural language un-
derstanding unit extracts meaning from user sen-
tences. Both classification (Mairesse et al., 2009)
and sequence-to-sequence (Yao et al., 2014; Mesnil
et al., 2015) models have been applied to address
this task.

Deep learning architectures that exploit dis-
tributed word-vector representations have been suc-
cessfully applied to different tasks in natural lan-
guage understanding, such as semantic role la-
belling, semantic parsing, spoken language un-

derstanding, sentiment analysis or dialogue belief
tracking (Collobert et al., 2011; Kim, 2014; Kalch-
brenner et al., 2014; Le and Mikolov, 2014a; Ro-
jas Barahona et al., 2016; Mrkšić et al., 2017).

In this work we consider understanding of men-
tal health concepts of as a classification task. To
facilitate this process, we use distributed represen-
tations.

3 Related work

The aim of building an automated therapist has
been around since the first time researchers at-
tempted to build a dialogue system (Weizenbaum,
1966). Automated health advice systems built
to date typically rely on expert coded rules and
have limited conversational capabilities (Rojas-
Barahona and Giorgino, 2009; Vardoulakis et al.,
2012; Ring et al., 2013; Riccardi, 2014; DeVault
et al., 2014; Ring et al., 2016). One particular sys-
tem that we would like to highlight is an affectively
aware virtual therapist (Ring et al., 2016). This
system is based on Cognitive Behavioural Ther-
apy and the system behaviour is scripted using
VoiceXML. There is no language understanding:
the agent simply asks questions and the user selects
answers from a given list. The agent is however
able to interpret hand gestures, posture shifts, and
facial expressions. Another notable system (De-
Vault et al., 2014) has a multi-modal perception
unit which captures and analyses user behaviour
for both behavioural understanding and interaction.
The measurements contribute to the indicator anal-
ysis of affect, gesture, emotion and engagement.
Again, no statistical language understanding takes
place and the behaviour of the system is scripted.
The system does not provide therapy to the user but
is rather a tool that can support healthcare decisions
(by human healthcare professionals).

The Stanford Woebot chat-bot proposed by (Fitz-
patrick et al., 2017) is designed for delivering CBT
to young adults with depression and anxiety. It has
been shown that the interaction with this chat-bot
can significantly reduce the symptoms of depres-
sion when compared to a group of people directed
to a read a CBT manual. The conversational agent
appears to be effective in engaging the users. How-
ever, the understanding component of Woebot has
not been fully described. The dialogue decisions
are based on decision trees. At each node, the user
is expected to choose one of several predefined
responses. Limited language understanding was in-
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troduced at specific points in the tree to determine
routing to subsequent conversational nodes. Still,
one of the main deficiencies reported by the trial
participants in (Fitzpatrick et al., 2017) was the in-
ability to converse naturally. Here we address this
problem by performing statistical natural language
understanding.

4 CBT ontology

To define the ontology we draw from principles of
Cognitive Behavioural Therapy (CBT). This is one
of the best studied psychotherapeutic interventions,
and the most widely used psychological treatment
for mental disorders in Britain (Bhasi et al., 2013).
There is evidence that CBT is more effective than
other forms of psychotherapy (Tolin, 2010). Unlike
other, longer-term, forms of therapy such as psy-
choanalysis, CBT can have a positive effect on the
client within a few sessions. Also, due to it being
highly structured, it is more easily amenable by
computer interpretation. This is why we adopted
CBT as the basis of our work.

Cognitive Behavioural Therapy is derived from
Cognitive Therapy model theory (Beck, 1976; Beck
et al., 1979), which postulates that our emotions
and behaviour are influenced by the way we think
and by how we make sense of the world. The idea
is that, if the client changes the way he or she thinks
about their problem, this will in turn change the
way he or she feels, and behaves.

A major underlying principle of CBT is the idea
of cognitive distortions, and the value in challeng-
ing them. In CBT, clients are helped to test their
assumptions and views of the world in order to
check if they fit with reality. When clients learn that
their perceptions and interpretations are distorted
or unhelpful they then work on correcting them.
Within the realm of cognitive distortion, CBT iden-
tifies a number of specific self-defeating thought
processes, or thinking errors. There is a core of
around 10 to 15 thinking errors, with their exact
titles having some fluidity. A strong component
of CBT is teaching clients to be able to recognize
and identify the thinking errors themselves, and
ultimately discard the negative thought processes
and ‘re-think’ their problems.

We consider the main analytical step in this ther-
apy: an adequate decoding of these ‘thinking error’
concepts, and the identification of the key emo-
tion(s) and the situational context of a particular
problem. Therefore, our ontology consists of think-

ing errors, emotions, and situations.

4.1 Thinking errors
Notwithstanding slight variations in number and
terminology, the list of thinking errors is fairly well
standardised in the CBT literature. We present one
such list in Table 1. However, it is important to note
that there is a fair degree of overlap between differ-
ent thinking errors, for example, between Jumping
to Negative Conclusions and Fortune Telling, or
between Disqualifying the Positives and Mental Fil-
tering. In addition, within the data used – and as is
likely to be the case in any data of spontaneous ex-
pressions of psychological upset – a single problem
can exhibit several thinking errors simultaneously.
Thus, the situation is much more challenging than
in simple information-seeking dialogues, where on-
tologies are typically clearly defined and there is
no or very little overlap between concepts.

4.2 Emotions
In addition to thinking errors, we define a set of
emotions. We mainly focus on negative emotions,
relevant to people in psychological distress. In
CBT, emotions tend to be divided into positive
and negative, or helpful/healthy and unhelpful/
unhealthy emotions (Branch and Willson, 2010).
The set of emotions for this work evolved over time
in the early days of annotation. Although we ini-
tally agreed to focus on ‘unhealthy’ emotions, as
defined by CBT, there seemed also to be a place
for the ‘healthy’ emotion Grief/sadness. Overall,
the list of emotions used was drawn from a number
of sources, including CBT literature, the annota-
tors’ own knowledge of what they work with in
psychological therapy, and the common emotions
that were seen emerging from the data early on
in the process. Note that more than one emotion
might be expressed within an individual problem
– for example Depression and Loneliness. The list
of emotions is given in Table 2.

4.3 Situations
While our main emphasis was on thinking errors
and emotions, we also defined a small set of situ-
ations. The list of situations again evolved during
the early days of annotation, with a longer original
list being reduced down, for simplicity. Again, it
is possible for more than one situation (for exam-
ple Work and Relationships) to apply to a single
problem. The considered situations are given in
Table 3.
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Thinking Error Frequency Exhibited by...

Black and white (or all or nothing) thinking 20.82%
Only seeing things in absolutes
No shades of grey

Blaming 8.05%
Holding others responsible for your pain
Not seeking to understand your own responsibility in situation

Catastrophising 11.87%
Magnifying a (sometimes minor) negative event
into potential disaster

Comparing 3.27% Making dissatisfied comparison of self versus others

Disqualifying the positive 6.15%
Dismissing/discounting positive aspects
of a situation or experience

Emotional reasoning 13.31% Assuming feelings represent fact.
Fortune telling 25.70% Predicting how things will be, unduly negatively

Jumping to negative conclusions 44.16%
Anticipating something will turn out badly,
with little evidence to support it

Labelling 10.51%
Using negative, sometimes highly coloured, language
to describe self or other
Ignoring complexity of people

Low frustration tolerance
”I can’t bear it”

16.03%
Assuming something is intolerable,
rather than difficult to tolerate or a temporary discomfort

Inflexibility
”should/need/ought”

8.08%
Having rigid beliefs
about how things or people must or ought to be

Mental filtering 5.50%
Focusing on the negative
Filtering out all positive aspects of a situation

Mind-reading 14.60%
Assuming others think negative things
or have negative motives and intentions

Over-generalising 12.69%
Generalising negatively,
using words like always, nobody, never, etc

Personalising 5.85%
Interpreting events as being related to you personally and
overlooking other factors

Table 1: Taxonomy for thinking errors and how they are exhibited.

Emotion Frequency Exhibited by ...

Anger (/frustration) 14.76%
Feelings of frustration, annoyance,
irritation, resentment, fury, outrage

Anxiety 63.12% Any expression of fear, worry or anxiety

Depression 20.72%
Feeling down, hopeless, joyless, negative
about self and/or life in general

Grief/sadness 5.70%
Feeling sad, upset, bereft
in relation to a major loss

Guilt 3.37%
Feeling blameworthy
for a wrongdoing or something not done

Hurt 19.88% Feeling wounded and/or badly treated

Jealousy 3.12%
Antagonistic feeling towards another
either wish to be like or to have what they have

Loneliness 7.41%
Feeling of alone-ness, isolation, friendlessness,
not understood by anyone

Shame 5.68%
Feeling distress, humiliation, disgrace
in relation to own behaviour or feelings

Table 2: Taxonomy for emotions and how they are exhibited.

Situation Frequency
Bereavement 2.65%
Existential 21.93%

Health 10.61%
Relationships 67.58%

School/College 8.28%
Work 6.10%
Other 5.53%

Table 3: Taxonomy for situations.

5 The corpus

The corpus consists of 500K written posts that
users anonymously posted on the Koko platform1.
This platform is based on the peer-to-peer therapy
proposed by (Morris et al., 2015). In this set-up, a
user anonymously posts their problem (referred to

1https://itskoko.com/

as the problem) and is prompted to consider their
most negative take on the problem (referred to as
the negative take). Subsequently, peers post re-
sponses that attempt to offer a re-think and give
a more positive angle on the problem. When first
developed, this peer-to-peer framework was shown
to be more efficacious than expressive writing, an
intervention that is known to improve physical and
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thinking errors

jumping to negative 
conclusions

disqualifying the positive

emotions

anxiety

shame

Problem: I agreed to go on a last-minute business trip to 
Seoul. Right now I'm overweight and feel gross. We're staying 
in a really fancy area, and I'm afraid people will think I'm fat 
and disgusting. 
Negative take: I’m afraid I will be the grossest, ugliest person 
there.

situations

work

health

Figure 1: An example of an annotated Koko post.

emotional well-being (Morris et al., 2015). Since
then, the app developed by Koko has collected
a very large number of posts and associated re-
sponses. Initially, any first-time Koko user would
be given a short introductory tutorial in the art of
‘re-thinking’/‘re-framing’ problems (based on CBT
principles), before being able to use the platform.
This however changed over time, as the age of
the users decreased, and a different tutorial, em-
phasizing empathy and optimism, was used (less
CBT-based than the ‘re-thinking’). Most of the data
annotated in this study was drawn from the earlier
phase. Figure 1 gives an annotated post example.

5.1 Annotation

A subset of posts was annotated by two psycholog-
ical therapists using a web annotation tool that we
developed. The annotation tool allowed annotators
to have a quick view of the posts, showing up to 50
posts per page, to navigate through posts, to check
pending posts and to annotate them by adding or
removing thinking errors, emotions and situations.
All annotations were stored in a MySQL database.

Initially 1000 posts were analysed. These were
used to define the ontology. Then 4035 posts were
labelled with thinking errors, emotions and situa-
tions. It takes an experienced psychological thera-
pist about one minute to annotate one post. Note
that the same post can exhibit multiple thinking
errors, emotions and situations, which makes the
whole process more complex. We randomly se-
lected 50 posts and calculated the inter-annotator
agreement. The inter-annotator agreement was cal-
culated using a contingency table for thinking er-
ror, emotion and situation, showing agreement and
disagreement between the two annotators. Then,
Cohen’s kappa was calculated discounting the pos-
sibility that the agreement may happen by chance.
The result is shown in Table 4. The main reason
for the low agreement in thinking errors (61%) is

Concept Thinking error Situation Emotion

Kappa 0.61 ± 0.09 0.92 ± 0.08 0.90 ± 0.07

Table 4: Cohen’s kappa with a 95% confidence interval

due to the unbounded number of thinking errors
per post. In other words, the annotators typically
have three or four thinking errors in common but
one of them might have detected one or two more.
Still, the agreement is much higher than chance,
so we think that while challenging, it is possible
to build a classifier for this task. The distributions
of labelled posts with multiple sub-categories for
three super-categories are shown in Figure 2

Figure 2: Distribution of posts for each category.

6 Deep learning model

6.1 Distributed representations

The task of decoding thinking errors and emotions
is closely related to the task of sentiment analy-
sis. In sentiment analysis we are concerned with
positive or negative sentiment expressed in a sen-
tence. Detecting thinking errors or emotions could
be perceived as detecting different kinds of negative
sentiment. Distributed representations of words,
sentences and documents have gained success in
sentiment detection and similarity tasks (Le and
Mikolov, 2014a; Maas et al., 2011; Kiros et al.,
2015). A key advantage of these representations is
that they can be obtained in an unsupervised man-
ner, thus allowing exploitation of large amounts of
unlabelled data. This is precisely what we have in
our set-up, where only a small portion of our posts
is labelled.

We utilise GloVe (Pennington et al., 2014) word
vectors, which have previously achieved competi-
tive results in a similarity task. We train the word
vectors on the whole dataset and then use a convo-
lutional neural network (CNN) to extract features
from posts where words are represented as vectors.

We also consider distributed representation of
sentences. A particularly competitive model is
the skip-thought model, which is obtained from
an encoder-decoder model that tries to reconstruct
the surrounding sentences of an encoded passage
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(Kiros et al., 2015). On similarity tasks it outper-
foms the simpler doc2vec model (Le and Mikolov,
2014a). An approach that represents vectors by
weighted averages of word vectors and then mod-
ifies them using PCA and SVD outperforms skip-
thought vectors (Arora et al., 2017). This method
however does not do well on a sentiment analysis
task due to down-weighting of words like “not”.
As these often appear in our corpus, we chose skip-
thought vectors for investigation here.

The skip-thought model allows a dense repre-
sentation of the utterance. We train skip-thought
vectors using the method described in (Kiros et al.,
2015). The automatically generated post shown in
Fig 3 demonstrates that skip-thought vectors can
convey the sentiment well in accordance to context.
We then train a gated recurrent unit (GRU) network
using the skip-thoughts as input.

i 'm so depressed . i 'm worthless . No one likes me 
i 'm try being nice but . No light at every point i 'm 
unpopular and i 'm a <NUM> year old potato . my 
most negative take is that i 'll never know how to be 
as socially as a quiet girl. i will stop talking to how 
fragile is and be any ways of normal people .

Figure 3: An example of a generated post using skip-
thought vectors initialised with ”I’m so depressed”.

6.2 Convolutional neural network model
The convolutional neural network (CNN) model is
preferred over a recurrent neural network (RNN)
model, because the posts are generally too long
for an RNN to maintain memory over words. The
convolutional neural network (CNN) used in this
work is inspired by (Kim, 2014) and operates over
pre-trained GloVe embeddings of dimensionality d.
As shown in Fig 4, the network has two inputs, one
for the problem and the other for the negative take.
These are represented as two tensors. A convolu-
tional operation involves a filter w ∈ Rld which
is applied to l words to produce the feature map.
Then, a max-pooling operation is applied to pro-
duce two vectors: p for problem and n for negative
take. The reason for this is that the negative take
is usually a summary of the post, carrying stronger
sentiment (see Figure 1). We use a gating mecha-
nism to combine p and n as follows:

g = σ(Wpp+Wnn+ b) (1)

h = g � p+ (1− g)� n (2)
Here, σ is the sigmoid function, Wp, Wn and W
are weight matrices, b is a bias term, 1 is a vector
of ones, � is the element-wise product, and g is

the output of the gating mechanism. The extracted
feature h is then processed with a one-layer fully-
connected neural network (FNN) to perform binary
classification. The model is illustrated in Fig 4.

problem

negative take

p

n

h

F
N
N

I
like
a
girl
.
.
.

.

.

.

.
broke
up denotes gating mechanism

Figure 4: CNN with gating mechanism.

6.3 Gated recurrent unit model

We use the gated recurrent unit (GRU) model to
process skip-thought sentence vectors, for two rea-
sons. First, most posts contain less than 5 sentences,
so a recurrent neural network is more suitable than
a convolutional neural network. Second, since our
corpus only comprises very limited labelled data, a
GRU should perform better than a long short-term
memory (LSTM) network as it has less parameters.

Denote each post as P = {s1, s2, ..., st, ...},
where st is the tth sentence in post P . First, we use
an already trained GRU to extract skip-thought em-
beddings et from the sentences st. Then, taking the
sequence of sentence vectors {e1, e2, ..., et, ...} as
input, another GRU is used as follows:

zt = σ(Wzht−1 +Uzet + bz) (3)

rt = σ(Wrht−1 +Uret + br) (4)

h̃t = tanh(W(rt � ht−1) +Uet + bh) (5)

ht = zt � ht−1 + (1− zt)� h̃t (6)
Wz,Uz,Wr,Ur,W,U are recurrent weight ma-
trices, bz,br,bh are bias terms, � is the element-
wise dot product, and σ is the sigmoid function.

Finally, the last hidden state hT is fed into a
FNN with one hidden layer of the same size as
input. The model is illustrated in Fig 5.

Figure 5: GRU with skip-thought vectors.
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6.4 Training set-up
We first train 100 and 300 dimensions for both
GloVe embeddings and skip-thought embeddings
using the same mechanism as in (Pennington et al.,
2014; Kiros et al., 2015). In some posts the length
of sentences is very large, so we bound the length
at 50 words. We do not treat the problem separately
from the negative take as the GRU will anyway
put more importance on the information that comes
last. We split the labelled data in a 8 : 1 : 1 ratio for
training, validation and testing in a 10-fold cross
validation for both GRU and CNN training. A
distinct network is trained for each concept, i. e.
one for thinking errors, one for emotions and one
for situations. The hidden size of the FNN is 150.

To tackle the data bias problem, we utilise over-
sampling. Different ratios (1:1, 1:3, 1:5, 1:7) of
positive and negative samples are explored.

We used filter windows of 2, 3, and 4 with 50
feature maps for the CNN model. For the GRU
model, the hidden size is set at 150, so that both
models have comparable number of parameters.
Mini-batches of size 24 are used and gradients are
clipped with maximum norm 5. We initialise the
learning rate as 0.001 with a decay rate of 0.986
every 10 steps. The non-recurrent weights with a
truncated normal distribution (0, 0.01), and the re-
current weights with orthogonal initialisation (Saxe
et al., 2013). To overcome over-fitting, we employ
dropout with rate 0.8 and l2-normalisation. Both
models were trained with Adam algorithm and im-
plemented in Tensorflow (Girija, 2016).

7 Results

7.1 Baselines
For rule-based models, we chose a chance classi-
fier and a majority classifier, where all the posts are
treated as positive examples for each class. In ad-
dition, we trained two non-deep-learning models,
the logistic regression (LR) model and the Sup-
port Vector Machine (SVM). Both of them take the
bag-of-words feature as input and implemented in
sklearn (Pedregosa et al., 2011). For completeness,
we also trained 100 and 300 dimensions PV-DM
document embeddings (Le and Mikolov, 2014b) as
the distributed representations of the posts using
the gensim toolkit (Řehůřek and Sojka, 2010), and
employ FNNs to do the classification, the hidden
size is set as 800 to ensure parameters of all deep
learning models comparable. All the baseline mod-
els are trained with the same set-up as described in

section 6.4.

7.2 Analysis

Table 5 gives the average F1 scores and the average
F1 scores weighted with the frequency of CBT
labels for all models under the oversampling ratio
1:1. It shows that GloVe word vectors with CNN
achieves the best performance both in 100 and 300
dimensions.

Model AVG. F1 Weighted AVG F1
Chance 0.203±0.008 0.337±0.008

Majority 0.24±0.000 0.432±0.000
LR-BOW 0.330±0.011 0.479±0.008

SVM-BOW 0.403±0.000 0.536±0.000
FNN-DocVec-100d 0.339±0.006 0.502±0.005
FNN-DocVec-300d 0.349±0.007 0.508±0.005

GRU-SkipThought-100d 0.401±0.005 0.558±0.004
GRU-SkipThought-300d 0.423±0.005 0.570±0.004

CNN-GloVe-100d 0.443± 0.007 0.576±0.005
CNN-GloVe-300d 0.442± 0.007 0.578± 0.006

Table 5: F1 scores for all models with 1:1 oversampling

Table 6 shows the F1-measure of the compared
models that detect thinking errors, emotions and
situations under the 1 : 1 oversampling ratio. We
only include the results of the best performing
models, SVMs, CNNs and GRUs, due to limited
space. The results show that both models outper-
form SVM-BOW in larger embedding dimensions.
Although SVM-BOW is comparable to 100 di-
mensional GRU-Skip-thought in terms on average
F1, in all other cases CNN-GloVe and GRU-Skip-
thought overshadow SVM-BOW. We also find that
CNN-GloVe on average works better than GRU-
Skip-thought, which is expected as the space of
words is smaller in comparison to the space of
sentences so the word vectors can be more accu-
rately trained. While the CNN operating on 100 di-
mensional word vectors is comparable to the CNN
operating on 300 dimensional word vectors, the
GRU-Skip-thought tends to be worse on 100 di-
mensional skip-thoughts, suggesting that sentence
vectors generally need to be of a higher dimen-
sion to represent the meaning more accurately than
word vectors.

Table 7 shows a more detailed analysis of the 300
dimensional CNN-GloVe performance, where both
precision and recall are presented, indicating that
oversampling mechanism can help overcome the
data bias problem. To illustrate the capabilities of
this model, we give samples of two posts and their
predicted and true labels in Figure 6, which shows
that our model discerns the classes reasonably well
even in some difficult cases.
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Freq.
SVM-BOW

100d 300d
Num. CNN-Glove GRU-Skip-thought CNN-Glove GRU-Skip-thought

Emotion
Anxiety 2547 0.798±0.000 0.805±0.003 0.805±0.002 0.805±0.006 0.816± 0.002
Depression 836 0.564±0.000 0.605±0.003 0.568±0.001 0.611± 0.008 0.578±0.005
Hurt 802 0.448±0.000 0.505±0.007 0.483±0.003 0.506± 0.005 0.496±0.006
Anger 595 0.375±0.001 0.389±0.009 0.384±0.007 0.383±0.004 0.425± 0.007
Loneliness 299 0.558±0.000 0.495±0.008 0.445±0.007 0.549± 0.009 0.457±0.005
Grief 230 0.433±0.005 0.462±0.010 0.373±0.008 0.462± 0.008 0.382±0.005
Shame 229 0.220±0.000 0.304± 0.011 0.243±0.004 0.277±0.007 0.254±0.004
Jealousy 126 0.217±0.000 0.228± 0.012 0.159±0.004 0.216±0.005 0.216±0.009
Guilt 136 0.252±0.000 0.295± 0.012 0.186±0.007 0.279±0.014 0.225±0.008
AVG. F1 score for Emotion 0.429±0.001 0.454± 0.008 0.405±0.005 0.454± 0.007 0.428±0.006
Situation
Relationships 2727 0.861±0.000 0.871±0.003 0.886±0.001 0.878±0.006 0.889± 0.003
Existential 885 0.556±0.000 0.591±0.002 0.600± 0.005 0.594±0.007 0.599±0.006
Health 428 0.476±0.000 0.589± 0.003 0.555±0.005 0.585±0.008 0.587±0.006
School College 334 0.633±0.000 0.670±0.004 0.641±0.003 0.673±0.009 0.680± 0.002
Other 223 0.196±0.001 0.255±0.011 0.241±0.008 0.256±0.005 0.281± 0.006
Work 246 0.651±0.000 0.663± 0.004 0.572±0.006 0.661±0.011 0.639±0.006
Bereavement 107 0.602±0.000 0.637±0.021 0.402±0.024 0.639± 0.021 0.493±0.011
AVG. F1 score for Situation 0.568±0.000 0.611±0.007 0.557±0.007 0.612± 0.010 0.595±0.006
Thinking Error
Jumping to negative conclusions 1782 0.590±0.000 0.696±0.004 0.685±0.004 0.703± 0.005 0.687±0.002
Fortune telling 1037 0.458±0.000 0.595± 0.002 0.558±0.004 0.585±0.006 0.564±0.005
Black and white 840 0.395±0.000 0.431±0.002 0.437±0.004 0.432±0.003 0.441± 0.003
Low frustration tolerance 647 0.318±0.000 0.322±0.007 0.330±0.003 0.313±0.005 0.336± 0.001
Catastrophising 479 0.352±0.000 0.375± 0.002 0.358±0.005 0.371±0.004 0.364±0.003
Mind-reading 589 0.360±0.000 0.404±0.005 0.353±0.011 0.419± 0.006 0.356±0.007
Labelling 424 0.399±0.001 0.453±0.007 0.335±0.004 0.462± 0.004 0.373±0.002
Emotional reasoning 537 0.290±0.000 0.319± 0.007 0.285±0.005 0.306±0.006 0.293±0.008
Over-generalising 512 0.405±0.001 0.405±0.006 0.375±0.004 0.418± 0.008 0.389±0.004
Inflexibility 326 0.202±0.001 0.203±0.014 0.188±0.007 0.218± 0.003 0.208±0.005
Blaming 325 0.209±0.001 0.304± 0.007 0.264±0.002 0.277±0.003 0.274±0.004
Disqualifying the positive 248 0.146±0.000 0.194±0.007 0.176±0.005 0.187±0.003 0.195± 0.005
Mental filtering 222 0.088±0.000 0.142±0.007 0.150±0.001 0.141±0.002 0.155± 0.003
Personalising 236 0.212±0.000 0.230±0.012 0.220±0.005 0.236± 0.004 0.221±0.005
Comparing 132 0.242±0.000 0.289± 0.014 0.177±0.008 0.255±0.009 0.227±0.007
AVG. F1 score for Thinking Error 0.311±0.000 0.358± 0.007 0.326±0.005 0.355±0.0050 0.339±0.004
AVG. F1 score 0.403±0.000 0.443±0.007 0.401±0.005 0.442±0.007 0.423±0.005
AVG. F1 score weighted with Freq. 0.536±0.000 0.576±0.005 0.558±0.004 0.578±0.006 0.570±0.004

Table 6: F1 score of the models trained with embeddings with dimensionality of 300 and 100 respectively.

Figure 6: predictions of posts by 300 dim CNN-GloVe

Figure 7 gives the comparative performance of
two models under different oversampling ratios.

While oversampling is essential for both models,
GRU-Skip-thought is less sensitive to lower over-
sampling ratios, suggesting that skip-thoughts can
already capture sentiment on the sentence level.
Therefore, including only a limited ratio of positive
samples is sufficient to train the classifier. Instead,
models using word vectors need more positive data
to learn sentence sentiment features.

8 Conclusion

We presented an ontology based on the principles
of Cognitive Behavioural Therapy. We then anno-
tated data that exhibits psychological problems and
computed the inter-annotator agreement.

We found that classifying thinking errors is a dif-
ficult task as suggested by the low inter-annotator
agreement. We trained GloVe word embeddings
and skip-thought embeddings on 500K posts in an
unsupervised fashion and generated distributed rep-
resentations both of words and of sentences. We
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label precision recall F1 score accuracy
Anxiety 0.739±0.007 0.884±0.005 0.805±0.006 0.729±0.012
Depression 0.538±0.010 0.708±0.005 0.611±0.008 0.813±0.010
Hurt 0.428±0.005 0.620±0.004 0.506±0.005 0.763±0.011
Anger 0.313±0.005 0.491±0.000 0.383±0.004 0.769±0.012
Loneliness 0.479±0.010 0.643±0.008 0.549±0.009 0.923±0.006
Grief 0.437±0.013 0.490±0.000 0.462±0.008 0.937±0.005
Shame 0.219±0.008 0.378±0.004 0.277±0.007 0.891±0.007
Jealousy 0.170±0.002 0.296±0.012 0.216±0.005 0.935±0.006
Guilt 0.221±0.014 0.378±0.008 0.279±0.014 0.936±0.008
Relationships 0.847±0.005 0.912±0.007 0.878±0.006 0.829±0.011
Existential 0.516±0.008 0.700±0.004 0.594±0.007 0.789±0.009
Health 0.520±0.010 0.668±0.005 0.585±0.008 0.900±0.006
School College 0.570±0.009 0.821±0.008 0.673±0.009 0.934±0.004
Other 0.209±0.004 0.331±0.007 0.256±0.005 0.894±0.007
Work 0.601±0.015 0.733±0.006 0.661±0.011 0.955±0.003
Bereavement 0.567±0.029 0.733±0.008 0.639±0.021 0.979±0.002
Jumping to negative conclusions 0.643±0.005 0.775±0.004 0.703±0.005 0.711±0.009
Fortune telling 0.486±0.006 0.737±0.004 0.585±0.006 0.733±0.010
Black and white 0.330±0.003 0.625±0.003 0.432±0.003 0.657±0.011
Low frustration tolerance 0.222±0.005 0.531±0.002 0.313±0.005 0.631±0.028
Catastrophising 0.291±0.005 0.509±0.000 0.371±0.004 0.796±0.012
Mind-reading 0.343±0.008 0.540±0.002 0.419±0.006 0.783±0.014
Labelling 0.376±0.004 0.597±0.003 0.462±0.004 0.853±0.007
Emotional reasoning 0.241±0.006 0.417±0.004 0.306±0.006 0.748±0.017
Over-generalising 0.337±0.009 0.548±0.002 0.418±0.008 0.808±0.014
Inflexibility 0.162±0.002 0.336±0.006 0.218±0.003 0.807±0.012
Blaming 0.218±0.002 0.381±0.005 0.277±0.003 0.841±0.009
Disqualifying the positive 0.125±0.002 0.365±0.008 0.187±0.003 0.808±0.016
Mental filtering 0.087±0.001 0.386±0.009 0.141±0.002 0.741±0.026
Personalising 0.179±0.003 0.345±0.007 0.236±0.004 0.871±0.009
Comparing 0.257±0.009 0.253±0.009 0.255±0.009 0.952±0.003

Table 7: Precision, recall, F1 score and accuracy for 300 dim CNN-GloVe with oversampling ratio 1:1

Figure 7: Weighted AVG. F1 for different models

then used the GloVe word vectors as input to a
CNN and the skip-thought sentence vectors as in-
put to a GRU. The results suggest that both models
significantly outperform a chance classifier for all
thinking errors, emotions and situations with CNN-
GloVe on average achieving better results.

Areas of future investigation include richer dis-

tributed representations, or a fusion of distributed
representations from word-level, sentence-level
and document-level, to acquire more powerful se-
mantic features. We also plan to extend the current
ontology with its focus on thinking errors, emotions
and situations to include a much lager number of
concepts. The development of a statistical system
delivering therapy will moreover require further
research on other modules of a dialogue system.
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Abstract

Temporal reasoning remains as an unsolved
task for Natural Language Processing (NLP),
particularly demonstrated in the clinical do-
main. The complexity of temporal represen-
tation in language is evident as results of the
2016 Clinical TempEval challenge indicate:
the current state-of-the-art systems perform
well in solving mention-identification tasks of
event and time expressions but poorly in tem-
poral relation extraction, showing a gap of
around 0.25 point below human performance.
We explore to adapt the tree-based LSTM-
RNN model proposed by Miwa and Bansal
(2016) to temporal relation extraction from
clinical text, obtaining a five point improve-
ment over the best 2016 Clinical TempEval
system and two points over the state-of-the-
art. We deliver a deep analysis of the results
and discuss the next step towards human-like
temporal reasoning.

1 Introduction

Temporal Information Extraction (TIE) is an ac-
tive research area in NLP, where the ultimate
goal is to be able to represent the development
of a story over time. TIE is a key to text pro-
cessing tasks including Question Answering and
Text Summarization and follows the traditional
pipeline of named entity recognition (NER) and
relation extraction separately. Research on this
area has been led by TempEval shared tasks (Ver-
hagen et al., 2007, 2010; UzZaman et al., 2013)
but in recent years, the target domain has been
shifted to the clinical domain. The resulting Clin-
ical TempEval challenges (Bethard et al., 2015,
2016, 2017) introduced the adoption of narrative
containers to their annotation schema, based on
the widely used TIE annotation standard ISO-
TimeML (Pustejovsky et al., 2010). Narrative con-
tainers were defined by Pustejovsky and Stubbs

Figure 1: Example temporal relation annotation with
and without using narrative containers.

(2011) as an effort to reduce the scope of temporal
relations between pairs of events and time expres-
sions. As illustrated in Figure 1, narrative contain-
ers can be thought of as temporal buckets in which
an event or series of events may fall. They help vi-
sualize the temporal relations within a text and fa-
cilitate the identification of other temporal relation
types. Until now, the only corpus annotated with
narrative containers is limited to clinical texts.

Results of the systems participating in Clinical
TempEval suggest that they perform well on time-
entity identification tasks. Nevertheless, tempo-
ral relation extraction has shown to be the most
difficult. UTHealth (Lee et al., 2016), the best
ranked system in 2016 Clinical TempEval, showed
a significant gap of 0.25 when compared to hu-
man performance even with gold-standard entity
annotations. Recent work by Lin et al. (2016)
and Leeuwenberg and Moens (2017) improved
UTHealth's results further but the gap with respect
to humans is still around 0.21. Regardless of the
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increase in annotation agreement of temporal rela-
tions by relying on narrative containers, there is a
consensus within the research community regard-
ing TIE difficulty. Still, the reasons of the uneven
results between entity and temporal relation pre-
dictions remain unclear.

We attribute the complexity of temporal repre-
sentation in natural language as the main cause of
the low performance on temporal relation tasks.
Tense and aspect are the two grammatical means
to express the notion of time in English but lit-
tle has been discussed about the latter on clinical
text. Furthermore, the focus of previous work on
temporal relation extraction is set on narrative con-
tainers, which have proved to be useful to locate
and relate two events on a timeline. Identification
of other temporal relation types has been less fre-
quently tackled. We believe is key to look at the
whole set of temporal types to achieve the ultimate
goal of developing systems that automatically cre-
ate a timeline of a patient's health care.

In this paper, we describe the process followed
to adapt the neural model proposed by Miwa and
Bansal (2016) on TIE, which has already shown
competitive results on semantic relation extrac-
tion. In our pursuit of understanding the nature of
the challenges that characterize the processing of
temporal relations, we continue with an error anal-
ysis of our system's overall performance and not
only on the identification of narrative containers.
Our final goal is to shed some light on the diffi-
culties of temporal relation extraction and the nec-
essary efforts to improve further current state-of-
the-art systems performance with that of humans
on completing the same task.

2 Related Work

Due to the recent shift of TIE to the clinical do-
main, most related work has been done by Clin-
ical TempEval participating systems. This chal-
lenge uses a corpus annotated with five different
temporal relation (TLINK) types between events
and times (“TIMEX3” in this schema): BEFORE,
BEGINS-ON, CONTAINS, ENDS-ON and OVER-
LAP. However, this challenge only evaluates the
identification of a narrative container, marked with
the CONTAINS type.

Until 2016 edition of Clinical TempEval, clas-
sic machine learning algorithms for classification
such as conditional random fields (CRF), sup-
port vector machines (SVM) and logistic regres-

sion with a variety of features (lexical, syntac-
tic, morphological, and many others) were the
predominant approach. In fact, the best per-
formance was achieved by UTHealth team (Lee
et al., 2016) using an end-to-end system based
on linear and structural Hidden Markov Model
(HMM)-SVM. Just a few teams tried a neu-
ral based method, including RNN-based models
(Fries, 2016) and CNN-based models (Chikka,
2016), (Li and Huang, 2016). Furthermore, among
those teams just Chikka (2016) participated in the
CONTAINS identification task, being around 0.30
below UTHealth's top performance.

Recent work by Lin et al. (2016), Dligach et al.
(2017) and Leeuwenberg and Moens (2017) fol-
lowed the settings of 2016 Clinical TempEval
challenge but they did not participate in the com-
petition. Out of these, our results are only di-
rectly comparable to those of Lin et al. (2016) and
Leeuwenberg and Moens (2017) since the work of
Dligach et al. (2017) was not evaluated using the
Clinical TempEval official scorer.

Even though Leeuwenberg and Moens (2017)
established a new state-of-the-art in temporal re-
lation extraction, their result is still below human
performance. Moreover, none of the aforemen-
tioned works provides a detailed discussion of why
is current performance so low and how can we
improve further the results on temporal relation
extraction, except from Leeuwenberg and Moens
(2016), which in their first attempt on tackling this
task on 2016 Clinical TempEval identified false
negatives as their major problem.

Our contribution is a deep error analysis taking
into account the performance of our model on pre-
dicting all TLINK types. As a result, we were able
to identify important clues on temporal relation
extraction and based on these findings, we discuss
the next step towards human-like temporal reason-
ing performance.

3 Method

We adapted the tree-based bidirectional LSTM-
RNN end-to-end neural model of Miwa and
Bansal (2016) to intra-sentential temporal rela-
tion extraction from clinical text. This three-layer
model (embedding, sequence and dependency lay-
ers) jointly identifies entities and relations be-
tween them. For relation classification, the model
heavily relies on the dependency structure around
the target word pair and the output of the sequence
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TLINK Train Test

CONTAINS 8653 4554

NONE 43643 20465

Total 52296 25019

Table 1: Label distribution of pre-processed dataset for
binary classification.

layer. When tested on nominal relation classifica-
tion (Hendrickx et al., 2009), it showed competi-
tive results against the state-of-the-art.

We followed the official 2016 Clinical TempE-
val settings for phase 2 of evaluation, where given
the raw text and manual event and time annota-
tions, the task is to identify the temporal relation
between a directed pair pe1, e2q, if any. e1 and e2
are entities of either EVENT or TIMEX3 type. For
relation classification, Miwa and Bansal (2016)
model takes as an input a sentence and a anno-
tation file with a word pair. The output contains
the predicted relation type and the directionality
of the entities:pe1, e2q when e1 is the source and
e2 the target and pe2, e1q otherwise.

4 Experimental settings

4.1 Dataset

Similar to 2016 Clinical TempEval, we used the
THYME corpus (Styler IV et al., 2014) for eval-
uation, a dataset of 600 clinical notes and pathol-
ogy reports from colon cancer patients at the Mayo
Clinic. The corpus is annotated at the document
level and identified entities are given a set of at-
tributes depending on their type: DocTimeRel,
Type, Polarity, Degree, Contextual Modality and
Contextual Aspect for EVENTs and Class for
TIMEX3. Temporal relation annotations specify
source and target entities along with one of the fol-
lowing TLINK types: BEFORE, BEGINS-ON, CON-
TAINS, ENDS-ON and OVERLAP.

Sentence-level annotations are necessary to
meet Miwa and Bansal (2016)’s input require-
ments. Therefore, we used the Clinical Language
Annotation, Modeling and Processing (CLAMP)
toolkit1 for tokenization and sentence boundary
detection. We matched all entities spans from
the gold standard with the sentence offsets on the
CLAMP output to identify those within the same
sentence. As a result, the new annotations con-

1http://clinicalnlptool.com/index.php

TLINK Train Test

BEFORE 1839 982

BEGINS-ON 717 363

CONTAINS 8653 4554

ENDS-ON 334 138

OVERLAP 2388 1186

NONE 43643 20465

Total 57574 27688

Table 2: Label distribution of pre-processed dataset for
multi-class classification.

System P R F1

(Lee et al., 2016) 0.588 0.559 0.573

(Lin et al., 2016) 0.669 0.534 0.594

(Leeuwenberg and Moens, 2017) - - 0.608

Our model 0.983 0.462 0.629

Human performance - - 0.817

Table 3: Performance of systems and humans on iden-
tifying CONTAINS relations.

tain a pair of words, their offsets in the sentence,
the temporal relation between them marked on the
gold standard and the directionality of the argu-
ments. Example 1 shows an example annotation
of the TLINK CONTAINS(lifelong, nonsmoker) in
the sentence He is a lifelong nonsmoker.

(1)

T1 Term 8 16 lifelong

T2 Term 17 26 nonsmoker

R1 ContainsSource-ContainsTarget Arg1:T1
Arg2:T2

Since any two EVENT/TIMEX3 can be a can-
didate pair, we took all entities in a sentence
to generate all pair combinations as candidates.
Pairs that do not have any temporal relation were
labeled as NONE. Due to the large number of
negative instances produced by this procedure,
it was applied only to CONTAINS. No negative
instances were generated for the remaining TLINK

types and we did not extend the set of TLINKs to
its transitive closure (i.e. A CONTAINS B ^ B
CONTAINS C Ñ A CONTAINS C). Table 1 and
Table 2 detail the resulting datasets.
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Binary classification Multi-class classification

Wikipedia word emb Wikipedia word emb PubMed word emb PubMed word emb + FNE

TLINK P R F1 P R F1 P R F1 P R F1

BEFORE - - - 0.698 0.185 0.292 0.708 0.198 0.310 0.683 0.202 0.312

BEGINS-ON - - - 0.585 0.062 0.112 0.615 0.103 0.177 0.608 0.116 0.195

CONTAINS 0.983 0.462 0.629 0.905 0.472 0.621 0.908 0.471 0.620 0.889 0.479 0.623
ENDS-ON - - - 0.520 0.086 0.148 0.704 0.126 0.213 0.760 0.126 0.216

OVERLAP - - - 0.504 0.134 0.211 0.504 0.134 0.211 0.497 0.140 0.218

Table 4: Results of our four experiments on the THYME test set. FNE refers to filtered negative examples.

4.2 Experiments
We followed the same experimental settings de-
scribed in Miwa and Bansal (2016). Additional to
the model's default Wikipedia word embeddings,
we trained word vectors of 200 dimensions using
word2vec (Mikolov et al., 2013) on a subset of
journal abstracts in Oncology and Gastroenterol-
ogy from PubMed20142. PubMed data can be eas-
ily downloaded without application approval that
clinical corpus like MIMIC II (Saeed et al., 2011)
require.

We conducted four experiments at the intra-
sentential level. The first experiment follows 2016
Clinical TempEval, focusing only on the identifi-
cation of the CONTAINS type. The remaining ex-
periments include the five annotated TLINKs. Fur-
ther detail of each experiment is given below:

1. TLINK:CONTAINS binary classification: In
order to obtain results comparable to Lee
et al. (2016), the best ranked system in
2016 Clinical TempEval, we only consid-
ered TLINK:CONTAINS instances. The model
chooses between CONTAINS and NONE rela-
tions.

2. Multi-class classification: To test the model
in a real-world setting, we added to train and
test sets the remaining pairs in the gold stan-
dard that have any of the other TLINK types.
No further negative examples were created
for the additional types.

3. Multi-class classification with PubMed word
embeddings: In addition to the previous set-
ting (2), we used word embeddings trained on
the subset of PubMed instead of the default
word vectors trained on Wikipedia.

2https://www.nlm.nih.gov/databases/
download/pubmed_medline.html

4. Multi-class classification with PubMed word
embeddings and filtered negative examples:
In addition to the previous setting (3), we fil-
tered from the dataset NONE pairs that ac-
cording to the THYME guidelines3 should
never be TLINKed. Thus, we removed a can-
didate pair whenever e1 contextual modality
value4 was ACTUAL or HEDGED and the e2
had HYPOTHETICAL or GENERIC modality,
and vice versa.

5 Results

5.1 TLINK:CONTAINS binary classification

Table 3 presents the results of previous approaches
compared to human performance. The first row
shows the top performance in 2016 Clinical Tem-
pEval using binary classification. The second and
third rows are the latests results outside the compe-
tition. Following the steps of the Clinical TempE-
val narrative container identification task, we only
tried to predict TLINKs of CONTAINS type. In do-
ing so we obtained an F1 score of 0.629, outper-
forming UTHealth's system. The model shows a
high precision but lower recall than UTHealth; this
is probably because of NONE relations prevailing
in the dataset. By handling the task as binary clas-
sification, given a pair of entities we are already
assuming there is some kind of temporal relation
and the classifier's task is to decide whether it is
CONTAINS or not. We performed this experiment
in order to have results comparable with those of
UTHealth. However, we cannot compare this re-

3http://savethevowels.org/files/THYMEGuidelines.pdf,
Section 6.2.5

4Entity attributes introduced in Section 4.1 were not used
as features in our model. EVENTs marked with HYPOTHET-
ICAL or GENERIC modality are non-real events. Therefore,
they cannot be related to real events marked as ACTUAL or
HEDGED.
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sult to the state-of-the-art since Leeuwenberg and
Moens (2017) was a multi-class classification ap-
proach.

5.2 Multi-class classification
Table 4 reports our experimental results of a sin-
gle run with the four different settings5. Switch-
ing from binary classification to multi-class clas-
sification we observe a significant drop in preci-
sion and a lower F1 score. This is expected since
the classifier now has more TLINK as options from
where to decide. Despite of this change, the model
keeps outperforming both UTHealth and the state-
of-the-art.

5.3 Multi-class classification with PubMed
word embeddings

Once we confirmed the adapted model gives com-
petitive results on the narrative container identifi-
cation task, we focused on increasing the system's
recall. Therefore, we changed the word represen-
tations for in-domain word embeddings in com-
parison with the previous experiment, which uses
word vectors trained on Wikipedia. Word repre-
sentation depends on the words in context and be-
cause the clinical domain is a very specific field
with a different vocabulary of that used in the gen-
eral domain, we expected the model to benefit
from a resource like PubMed. However, our re-
sults suggest this does not have a significant im-
pact on most TLINKs (OVERLAP did not change at
all). Only BEGINS-ON and ENDS-ON recall con-
siderably improved.

5.4 Multi-class classification with PubMed
word embeddings and filtered negative
examples

While we increased recall by using in-domain
word embeddings, we can still witness an imbal-
ance between precision and recall. Moreover, we
are still below UTHealth recall score (highest on
CONTAINS identification task). To improve further
the model's recall, around 10% of NONE:EVENT-
EVENT pairs were removed from the dataset based
on a rule of the annotation guidelines that prevents
non-real events (i.e. events that do not actually
appear on the patient's timeline) to be linked with
real events. Recall was further improved for most
TLINKs while it remained the same for ENDS-ON.
Under this setting, our model reached its best F1

5We experimented a couple of additional runs but the re-
sults were always the same.

Figure 2: Confusion matrix of our multi-class classifi-
cation model with PubMed word embedding on the dev
set.

scores for all TLINKs, outperforming the state-of-
the-art on CONTAINS.

6 Error Analysis

We focused our error analysis on the fourth of our
experiments. Systems participating in the Clin-
ical TempEval narrative container identification
task only received credit if for a pair of entities,
they correctly identified the source, target and the
CONTAINS relation between them. Given this set-
ting, we understand that even when using man-
ual event and time annotations the challenge is
not only to predict the TLINK type but also the
correct directionality of the entities. Part of our
analysis is to determine whether type classifica-
tion or directionality identification is the most dif-
ficult task or if they are both equally problem-
atic for the model. Confusion matrix on Fig-
ure 2 shows the results on the development set.
Overall, due to the high number of negative in-
stances, most of the false positives fall into the
Nonepe1, e2q category. At the same time, we can
observe that this type of relation is the reason why
the system shows high precision. Apart from this,
we can identify the performance on OVERLAP as
our system's main problem. Accuracy in both
Overlappe1, e2q and Overlappe2, e1q is consider-
ably low, with the latter being the lowest among
all types with 0.024. Not even the performance on
Beforepe2, e1q with 0.34 is as low, even though
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True relation Predicted relation Sentence
Overlappe1, e2q Containspe1, e2q 1. Tumor invades into the muscularis propria.

Overlappe1, e2q Containspe1, e2q 2. Recurrent rectal adenocarcinoma, previously resected node-negative

Overlappe1, e2q Containspe1, e2q 3. June 30, 2009: Due to change in stool, patient underwent colonoscopy noting
mass in the right colon.

Overlappe1, e2q Containspe1, e2q 4. A biopsy obtained was positive for adenocarcinoma, consistent with col-
orectal primary and confirmed by LCC.

Overlappe1, e2q Containspe1, e2q 5. Pathology from the extended right hemicolectomy was positive for invasive
moderately differentiated adenocarcinoma in the ascending colon.

Overlappe1, e2q Containspe1, e2q 6. Exploratory surgery with appendicitis many years ago.

Overlappe1, e2q Containspe1, e2q 7. She was seen by a cardiologist in Idyllwild back in April when she was
hospitalized and had an adenosine sestamibi scan after that hospitalization, but
if surgery is contemplated I would wish her to be seen by cardiology.

Overlappe2, e1q Containspe2, e1q 8. Does have some constipation with her iron supplementations but denies nau-
sea, vomiting, abdominal distention, or worsening constipation, as she does
have bowel movements once every several days.

Overlappe2, e1q Containspe2, e1q 9. She is still moving her bowels multiple times a day.

Overlappe2, e1q Containspe2, e1q 10. The patient smokes cigars about once-a-month.

Table 5: Sample of the analyzed misclassified sentences by our system. e1 and e2 are shown in bold and italics,
respectively.

they have similar number of instances (290 and
353, respectively). Overlappe1, e2q with 0.14 is
comparable to BeginsOnpe2, e1q, despite of hav-
ing 7 times more instances (1291 vs. 176). For this
reason, we focused our error analysis on OVER-
LAP.

From Figure 2 we can observe that
Overlappe1, e2q is usually predicted as
Containspe1, e2q and Overlappe2, e1q is
predicted as Containspe2, e1q. In both cases the
directionality of the entities was correct but the
system failed to identify the appropriate temporal
relation. For Overlappe1, e2q there were 126
misclassified sentences while in Overlappe2, e1q
there were 37. EVENT-EVENT pairs were the
predominant type of pair in the former while
TIMEX3-EVENT were for the latter, with 116 and
29 instances, respectively. We took all of the
aforementioned misclassified sentences for sup-
plementary examination and discuss the reason(s)
of this errors in the following section.

6.1 Temporal relations and Aspectual Classes

Before proceeding further, it is important to under-
stand the definition of OVERLAP and CONTAINS.
Both temporal relations are closely related since
they encompass the notion of two things happen-
ing at the same time. However, CONTAINS rela-
tions imply that the contained event (i.e. the target)
occurs entirely within the temporal bounds of the
event it is contained within (i.e. the source) while

OVERLAP relations are those where containment is
not entirely sure. Also, OVERLAP is the only sym-
metrical TLINK type since e1 OVERLAP e2 means
the same as e2 OVERLAP e1.

Strictly speaking, every entity occupies time.
An entity's time interval is crucial for understand-
ing its temporal relation with respect to another
entity, specially in the case of CONTAINS and
OVERLAP relations where the end point of the tar-
get is key to determine whether there is complete
containment or not. The temporal relations used
by the THYME project rely on Allen (1990) in-
terval algebra, a precise way to express time pe-
riods using clear start and end points. By com-
paring those, we can easily indicate the position
of two events on the timeline. However, the con-
cept of time is widely discussed across disciplines
and Allen's representation is just one among many
others. In Linguistics, the expression of time is
understood thanks to two important grammatical
systems: tense and aspect. It is particularly to
our interest the definition of aspect, the means
with which speakers discuss a single situation,
for example, as beginning, continuation, or com-
pletion (Li and Shirai, 2000). One of the best
known and widely accepted aspect classifications
is that of Vendler, who distinguished four cate-
gories for verb and verb phrases: activities, ac-
complishments, achievements and states.

Figure 3 presents Vendler's classification us-
ing (Andersen, 1990) schematization. Arrows are
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used to represent an indefinite time interval, solid
lines indicate a homogeneous duration and dashed
lines indicate a dynamic duration. An X is used to
represent a situation's natural end point.

Figure 3: Vendler’s four-way classification. Abbrevia-
tions: C, Clear; NC, Not Clear

Categorizing the source and target entities of a
relation as one of Vendler's types simplifies the
TLINK classification task. For example, categories
with no clear end points like activities and states
are more likely to overlap with accomplishments
and achievements, which have clear end points.
Figure 4 illustrates an OVERLAP and CONTAINS

relations using Allen’s and Vendler’s representa-
tion of time periods. Leveraging on aspectual type
for temporal relation extraction is a promising ap-
proach that has already been explored by Costa
and Branco (2012) on TempEval data. However,
this approach is limited since aspect is a property
of verbs.

When analyzing OVERLAP relations that were
mistaken for CONTAINS, we realized that just a
few events are verbs. Events in sentences 1, 3 and
9 in Table 5 are some examples of this (“invades”,
“noting” and “moving”). This pointed out the ne-
cessity of discriminating between verbal and non-
verbal events to understand how they are tempo-
rally related. Our observations suggest that rather
than recognizing an entity semantic type (e.g. sign
or symptoms, diseases, procedures) it is imper-
ative to take into account the action associated
to it. Thus, procedures like colonoscopy, biopsy,
pathology and surgery have to be performed, a dy-
namic verb with a natural end point: an accom-
plishment. Diseases like adenocarcinoma and ap-
pendicitis are present, they exist, and consequently

they fall in the state category. Following this line
of reasoning, it is easier to differentiate an OVER-
LAP relation from CONTAINS in sentence 5 since
we understand the adenocarcinoma was found dur-
ing the performance of the pathology but there is
not enough information to tell whether the adeno-
carcinoma is still present or not. In other words,
its end point is unclear.
In the case of TIMEX3-EVENT pairs like those in
sentences 8 to 10 in Table 5, the nature of the
OVERLAP relation between the entities is due to
the ambiguity of the time expressions combined
with actions that we perceive as ongoing. For ex-
ample, in sentence 9 the action of moving is an ac-
tivity, done indeterminably throughout the day as
multiple times a day imply. In sentence 7, on the
other hand, there is a time expression with a defi-
nite time interval overlapping the patient's state of
being hospitalized.
Temporally locating two events on a timeline re-
quires a high level of reasoning that even for hu-
mans can turn into a complicated task. All of the
aforementioned inferences were done heavily re-
lying on the internal constituency of an event, im-
plying Costa and Branco (2012) claim that tempo-
ral information processing can profit from infor-
mation about aspectual type is valid in the clinical
domain. Due to the high similarity of CONTAINS

and OVERLAP relations it does not come as a sur-
prise that these two types are easily confused by
our system, which performed reasonably well on
identifying other TLINK types with similar number
of instances. This suggests than the main problem
is not the amount of data available but how tempo-
ral properties are encoded in language.
Aspectual information proved useful for differen-
tiating between two of the most frequent and most
similar TLINK types: CONTAINS and OVERLAP.
As previously mentioned in Section 4.1, there is
a contextual aspect attribute available for EVENT

entities with three possible values: N/A (default),
NOVEL and INTERMITTENT. The latter could be
useful to identify an activity or an accomplishment
but just a small portion of EVENTs were annotated
with a value different from the default one. More-
over, aspect is a property of verbs and our analy-
sis insinuates it is more common to find nouns as
events. We discuss this finding in more detail in
the following section.
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A biopsy obtained was positive for adenocarcinoma,
consistent with colorectal primary and confirmed by LCC.

{performance of } biopsy {presence of } adenocarcinoma

TLINK: biopsy OVERLAP adenocarcinoma
Duration: A ­ < B­ < A+

B +

She is recuperating uneventfully from this most recent
surgery which resected a sidewall tumor compatible with
endometrial cancer grade 2. 

{performance of } surgery resected

TLINK: surgery CONTAINS resected
Duration: (A­ < B ­) AND (A+ > B+)

A+

B -

A -

Patient's timeline

A - A+
X

Patient's timeline

B - B +

X X

Figure 4: Allen’s and Vendler’s interval representation of OVERLAP and CONTAINS relations. A- / B- and A+ /
B+ represent the start and end of an event, respectively. Filled-dots represent clear start points while an empty-dot
represent a not-clear start point.

7 Temporality of nominal events

To deepen our understanding on the complexity
of the temporal relation extraction task, we di-
vided all OVERLAP and CONTAINS false negatives
into the four possible pair types: EVENT-EVENT,
TIMEX3-TIMEX3, EVENT-TIMEX3 and TIMEX3-
EVENT. A significant amount of OVERLAP links
were EVENT-EVENT relations and they also made
around half of CONTAINS links. We looked further
into these type of pairs, discriminating between
verb and non-verbal events. Table 6 shows the re-
sults in more detail.

Dev set: Event-Event pairs

TLINK V-V V-NV NV-V NV-NV

CONTAINS 6 47 24 103

OVERLAP 6 55 27 193

Total 12 102 51 296

Table 6: Distribution of misclassified CONTAINS and
OVERLAP Event-Event pairs by type of EVENT. Ab-
breviations: V, Verb; NV, Non-Verb

As mentioned by Pustejovsky and Stubbs
(2011) and further discussed in Styler IV et al.
(2014), EVENT-EVENT pairings are a complex and
vital component, particularly in clinical narratives
where doctors rely on shared domain knowledge
and it is essential to read “between the lines”. The
distribution of verb/non-verb entities in Table 6 in-
dicates that most of EVENT-EVENT missclasified
pairings were either of NV-NV type or include
a NV entity. Time intervals of NV entities like
“pain” or “resection” are more difficult to under-
stand, while V entities like “removed” or “improv-
ing” have their time properties morphologically
encoded. Thus, regardless of the low number of V-

V relations, temporal information from verb predi-
cates usually have more explicit hints. NV entities
are more challenging and require more careful ex-
amination.

The high frequency of NV entities is likely to
be one of the reasons why not only our system but
also previous works in temporal relation extraction
are behind human performance. In the previous
section we introduced Vendler’s aspectual classifi-
cation and discussed how it helps separate two ex-
tremely similar TLINKs. Unfortunately, this is not
compatible with nominal predicates. Verb/Non-
Verb entities distinction of EVENTs is a first step
that could alleviate this problem and positively in-
fluence the temporal relation extraction task.

8 Conclusion and Future work

Clinical language processing represents a special
challenge to NLP systems. The structure of clin-
ical texts range from telegraphic constructions to
long utterances describing a patient's condition
or a suggested diagnosis. The high use of do-
main knowledge to infer temporal relations be-
tween events does not make this task any easier. A
doctor naturally interprets adenocarcinoma (a type
of cancer) as an abnornal, uncontrolled and pro-
gressive growth of tissue which temporally speak-
ing it is and should be thought as an ongoing pro-
cess unless explicitly qualified (“We resected the
adenocarcinoma, and since margins were clear,
we can say it is gone”). This is a non-trivial task
for a computer even when relying on context in-
formation.

Up to now, there have been several attempts on
tackling temporal relation extraction from clini-
cal text mostly led by the Clinical TempEval chal-
lenges. However, the results are still far from hu-
man performance and there is little information of
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the reasons behind. This encouraged our work to
adapt a state-of-the-art system and do a detailed
error analysis, which pointed out that one of the
major challenges is how to handle the eventive
properties of nominals, the predominant type of
events on the most frequent type of pairs: EVENT-
EVENT.

Existing knowledge bases like the Unified Med-
ical Language System (UMLS) Metathesaurus
help to classify entities into semantic types like
Therapeutic or Preventive procedure, Sign or
Symptom or Disease or Syndrome. Still, the as-
sociated events and actions cannot be found in this
or any other knowledge base. We hypothesize that
a resource containing aspectual information of the
actions associated to common nominals like pro-
cedures or diseases can further improve temporal
relation extraction in the clinical domain. With
that in mind, we plan to analyze further EVENT-
EVENT relations differentiating events as verbal
and non-verbal events.
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Abstract 

A new law was established in Japan to 

promote utilization of EHRs for research 

and developments, while de-identification 

is required to use EHRs. However, studies 

of automatic de-identification in the 

healthcare domain is not active for 

Japanese language, no de-identification 

tool available in practical performance for 

Japanese medical domains, as far as we 

know. Previous work shows that rule-based 

methods are still effective, while deep 

learning methods are reported to be better 

recently. In order to implement and 

evaluate a de-identification tool in a 

practical level, we implemented three 

methods, rule-based, CRF, and LSTM. We 

prepared three datasets of pseudo EHRs 

with de-identification tags manually 

annotated. These datasets are derived from 

shared task data to compare with previous 

work, and our new data to increase training 

data. Our result shows that our LSTM-

based method is better and robust, which 

leads to our future work that plans to apply 

our system to actual de-identification tasks 

in hospitals.  

                                                           
1 (Ministry of Internal Affairs and Communication International Strategy Bureau, Information and Communication Economy 

Office, 2018) 

1 Introduction 

Recently, healthcare data is getting increased both 

in companies and government. Especially, 

utilization of Electronic Health Records (EHRs) is 

one of the most important task in the healthcare 

domain. While it is required to de-identify EHRs 

to protect personal information, automatic de-

identification of EHRs has not been studied 

sufficiently for the Japanese language. 

Like other countries, there are new laws for 

medical data treatments established in Japan. “Act 

Regarding Anonymized Medical Data to 

Contribute to Research and Development in the 

Medical Field” was established in 2018. This law 

allows specific third party institute to handle EHRs. 

As commercial and non-commercial health data is 

already increasing in recent years 1 , this law 

promotes more health data to be utilized. At the 

same time, developers are required to de-identify 

personal information. “Personal Information 

Protection Act” was established in 2017, which 

requires EHRs to be handled more strictly than 

other personal information. This law defines 

personal identification codes including individual 

numbers (e.g. health insurance card, driver license 

card, and personal number), biometric information 

(e.g. finger print, DNA, voice, and appearance), 

and information of disabilities. 

De-identifying Free Text of Japanese Electronic Health Records 
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De-identification of structured data in EHRs is 

easier than that of unstructured data, because it is 

straightforward to apply de-identification methods 

e.g. k-anonymization (Latanya, 2002).  

In the i2b2 task, automatic de-identification of 

clinical records was challenged to clear a hurdle of 

the Health Insurance Portability and 

Accountability Act (HIPAA) states (Özlem, Yuan, 

& Peter, 2007). There have been attempts to make 

k-anonymization for Japanese plain texts (Maeda, 

Suzuki, Yoshino, & Satoshi, 2016). Shared tasks of 

de-identification for Japanese EHRs were also held 

as MedNLP-1 (Mizuki, Yoshinobu, Tomoko, Mai, 

& Eiji, 2013) and MedNLP-2 (Aramaki, Morita, 

Kano, & Ohkuma, 2014).  

While rule-based, SVM (Corinna & Vlandimir, 

1995) and CRF (Lafferty, McCallum, & Pereira, 

2001) were often used in these previous NER tasks, 

deep neural network model has shown better 

results recently. However, rule-based methods are 

still often better than machine learning methods, 

especially when there is not enough data, e.g. the 

best system in MedNLPDoc (Aramaki, Morita, 

Kano, & Ohkuma, Overview of the NTCIR-12 

MedNLPDoc Task, 2016). The aim of the 

MedNLPDoc task was to infer ICD Codes of 

diagnosis from Japanese EHRs. 

In this paper, we focus on de-identification of 

free text of EHRs written in the Japanese language. 

We compare three methods, rule, CRF and LSTM 

based, using three datasets that are derived from 

EHRs and discharge summaries.  

We follow the MedNLP-1’s standard of person 

information which require to de-identify “age”, 

“hospital”, “sex” and “time”. 

Methods 

We used the Japanese morphological analyzer 

kuromoji2 with our customized dictionary, as same 

as the best result team (Sakishita & Kano, 2016) in 

the MedNLPDoc task. 

We implemented three methods as described 

below: rule-based, CRF-based, and LSTM-based. 

1.1 Rule-based Method 

Unfortunately, details and implementation of the 

best method of the MedNLP1 de-identification 

task (Imaichi, Yanase, & Niwa, 2013) are not 

publicly available. We implemented our own rule-

based program based on their descriptions in their 

                                                           
2 https://www.atilika.com/en/kuromoji/ 

paper. Our rules are shown below. For a target 

word x, 

 

 

Table 1: our extraction rules for “age” 

option1 option2

翌 (next) 一昨年 two yeas ago より　(from)

前 (before) 昨年 last year まで (until)

入院前 (before

hospitalizetion)
先月 last month 代 ('s)

入院後 (after

hospitalizetion)
先週 last week 前半 (ealry)

来院から

(after visit)
昨日 yesterday 後半 (last)

午前 (a.m.) 今年 this year ～  (from)

午後 (p.m.) 今月 this month ~ (from)

発症から

(after onset)
今週 this week 以上 (over)

発症してから

(after onset)
今日 today 以下  (under)

治療してから

(after care)
本日 today から (from)

来年 next year 時 (when)

来月 next month 頃 (about)

来週 next week ごろ (about)

翌日 tomorrow ころ (about)

再来週
the week after

next
上旬 (early)

明後日
day after

tommorow
中旬 (mid)

同年 same year 下旬 (late)

同月 same month 春 (spring)

同日 same day 夏 (summer)

翌年 following year 秋 (fall)

翌日 the next day 冬 (winter)

翌朝
the next

morning
朝 (morning)

前日
the previous

day
昼 (Noon)

未明 early morning 夕 (evening)

その後 after that 晩 (night)

xx年 xx(year)
早朝 (early

morning)

xx月 xx(month)
明朝 (early

morning)

xx週間 xx(week) 以前 (before)

xx日 xx(day) 以降 (after)

xx時 xx(o'clock)
夕刻

(evening)

xx分 xx(minutes) ほど (about)

main rule
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age (subject's years of age with its suffix) 

 If the detailed POS is number, apply rules in 
Table 1 

hospital (hospital name) 

 If one of following keywords appeared, then 
mark as hospital: 近医 (a near clinic or 

hospital), 当院 (this clinic or hospital), 同
院 (same clinic or hospital) 

 If POS is noun and detailed-POS is not non-
autonomous word, or x is either “●”, “◯”, 

“▲” or “■” (these symbols are used for 
manual de-identification due to the datasets 
are pseudo EHRs), then if suffix of x is one 
of following keywords, mark as hospital: 病
院 (hospital or clinic), クリニック(clinic), 

医院 (clinic) 

sex 

 If either 男性 (man), 女性 (woman), men, 
women, man, woman, then mark as sex 

time (subject's time with its suffix) 

 If detailed-POS is number and x is 
concatenation of four or two, or one digit 
number, slash and two-digit number (e.g. 
yyyy/mm or mm/dd) then mark as time 

 If detailed-POS of x is number and followed 
with either 歳 (old), 才 (old), 代 (‘s), mark 
as time 

 If it is further followed with either “よ
り”,” まで ”,” 前半”,” 後半”,” 以
上”,” 以下”,” 時”,” 頃”,”ごろ”,”こ
ろ”,”から”, “前半から”, “後半から”, 

“頃から”, “ごろから”,”ころから” 
and so on include these words in the 
marked time 

1.2 CRF-based Method 

As a classic machine learning baseline method of 

series labelling, we employed CRF. Many teams of 

the MedNLP1 de-identification task used CRF, 

including the second best team and the baseline 

system. We used the mallet library3  for our CRF 

implementation. We defined five training features 

for each token as follows: part-of-speech (POS), 

detailed POS, character type (Hiragana, Katakana, 

Kanji, Number,), whether the token is included in 

                                                           
3 http://mallet.cs.umass.edu/sequences.php 
4 https://nlp.stanford.edu/projects/glove/ 
5 http://www.cl.ecei.tohoku.ac.jp/~m-suzuki/jawiki_vector/ 
6 https://github.com/guillaumegenthial/sequence_tagging 

our user dictionary or not, and a binary feature 

whether the token is beginning of sentence or not. 

1.3 LSTM-based Method 

We used a machine learning method that combines 

bi-LSTM and CRF using character-based and 

word-based embedding, originally suggested by 

other group (Misawa, Taniguchi, Yasuhiro, & 

Ohkuma, 2017). In this method, both characters 

and words are embedded into feature vectors. Then 

a bi-LSTM is trained using these feature vectors. 

Finally, a CRF is trained using the output of the bi-

LSTM, using character level tags.  

The original method uses a skip-gram model to 

embed words and characters by seven years of 

Mainichi newspaper articles of almost 500 million 

words. However, we did not use skip-gram model 

but GloVe4, because GloVe is more effective than 

skip-gram (Pennington, Socher, & Manning, 2014). 

We used existing word vectors5 instead of the pre-

training in the original method. Our training and 

prediction is word based while the original method 

is character based. Our implementation is based on 

an open source API6.  

2 Experiment 

2.1 Data 

Our dataset is derived from two different sources. 

We used the MedNLP-1 de-identification task data 

to compare with previous work. This data includes 

pseudo EHRs of 50 patients. Although there were 

training data and test data provided, the test data is 

not publicly available now, which makes direct 

comparison with previous work impossible. 

However, both training and test data are written by 

the same writer and was originally one piece of 

data. Therefore, we assume that the training data 

can be regarded as almost same as the test data in 

their characteristics. 

Another source is our dummy EHRs. We built 

our own dummy EHRs of 32 patients, assuming 

that the patients are hospitalized. Documents of our 

dummy EHRs were written by medical 

professionals (doctors). We added manual 

annotations for de-identification following a 

guideline of the MedNLP-1 task. These 

annotations were assigned by ourselves.  
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All of these data are assigned five types of de-

identification tag; age, hospital, sex, time and 

person. MedNLP-1 data includes 2244 sentences 

and our dummy EHRs include 8327 sentences. 

Writers hold doctor’s licenses in both sources, 

assuming fake patients to describe pseudo medical 

records. However, descriptions are not similar 

between the two sources, probably because of the 

difference of the writers. 

2.2 Evaluation method 

Our evaluation method followed MedNLP-1, 

using the IOB2 tagging (Tjong & Jorn, 1999). We 

applied four hold cross validation, while the rule-

based method does not require training data. From 

the two sources described above, we derived three 

datasets: MedNLP-1, dummy EHRs, and both of 

MedNLP1 and dummy EHRs (mixture). We 

trained CRF and LSTM by this mixture data. We 

divided each data source for our cross-fold 

validation to hold the same balance of these two 

sources. Our evaluation metrics is strict match of 

named entities. 

3 Result and Discussion 

3.1 Result of MedNLP-1 dataset 

Table 2 shows the evaluation results. The best F1 

score is by the rule-based method. This is because 

the rules were tuned for the MedNLP-1 data. In 

both of datasets, CRF and LSTM are not 

significantly different from the rule-based one. 

LSTM performed best for the hospital tag and the 

time tag, probably because they might have typical 

patterns of less variations. Total occurrence of sex 

is very small, person is zero, in the MedNLP-1 

dataset.  

3.2  Result of Dummy-EHR dataset 

The result is shown at Table 3. The best score is 

performed by LSTM trained by the mixture dataset. 

Despite the data size is four times larger than that 

of MedNLP-1, the result is a little better. Regarding 

CRF, training with mixture dataset is worse than 

the dummy her dataset only. This is not true for 

LSTM, which shows better results when trained by 

mixture dataset.  

3.3 Overall 
We trained CRF and LSTM by the mixture dataset 

and evaluated on MedNLP-1, dummy-EHR and 

mixture dataset individually. These results are 

shown in Table 4 and Table. Regarding CRF, there 

is 26 point difference in average between 

evaluations with MedNLP-1 and dummy-EHR 

datasets. On the other hand, LSTM shows 7 point 

difference in average. These results suggest that the 

datasets are quite different, but LSTM absorbed 

these differences well.  

4 Conclusion and Future Work 

We implemented three different de-identification 

methods for Japanese EHRs. We applied these 

  

Table 4: F1 value of trained Mix dataset by CRF 

MedNLP1 dummy Mix

ALL 26.40 67.13 47.10

age 32.55 38.87 36.28

hospital 26.02 48.62 32.27

person N/A 28.36 18.04

sex 14.65 90.08 53.83

time 26.12 70.60 51.01

 

Table 2: F1 value testing of MedNLP1’s dataset. There 

were no “person” annotations in this dataset.. 

Rule

based
CRF

CRF

Mix
LSTM

LSTM

Mix

ALL 84.23 82.62 26.40 80.61 66.25

age 93.43 71.12 32.55 88.49 91.68

hospital 84.73 87.09 26.02 92.90 84.82

person N/A N/A N/A N/A N/A

sex 50.00 16.67 14.65 0.00 50.00

time 82.61 83.88 26.12 94.32 87.53

 

Table 3: F1 value testing of dummy-EHR dataset. We 

did not implement rules for “person”. 

Rule

based
CRF

CRF

Mix
LSTM

LSTM

Mix

ALL 43.74 66.97 67.13 77.20 77.66

age 51.13 48.46 38.87 75.69 79.16

hospital 15.98 47.85 48.62 67.57 68.70

person N/A 26.96 28.36 65.60 65.06

sex 93.75 35.92 90.08 45.51 98.08

time 49.48 71.28 70.60 89.17 90.92

  

Table 5: F1 value of trained Mix dataset by LSTM 

MedNLP1 dummy Mix

ALL 66.25 77.66 76.21

age 91.68 79.16 86.35

hospital 84.82 68.70 72.18

person N/A 65.06 65.06

sex 50.00 98.08 98.08

time 87.53 90.92 90.55
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methods to three datasets derived from two 

different pseudo EHR sources with de-

identification tags manually annotated. Our results 

show that LSTM is better than other methods also 

shows robustness between different sources 

compared with CRF. Machine learning methods 

could extract named entities of de-identification 

comparable to the rule based method that is 

manually tuned to specific target data. However, 

machine learning method is still weak for 

expressions with low occurrences. Combination of 

LSTM and rule-based method could be a future 

work.  

Because the current performance is enough high 

among publicly available Japanese de-

identification tools, we plan to apply our system to 

actual de-identification tasks in hospitals. 

Although it is still difficult to make real EHRs 

publicly available, we could use our large amount 

of EHRs inside our hospitals. Increasing the 

annotated dataset for such internal usage would be 

another future work. 
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Abstract

Identifying and extracting data elements such
as study descriptors in publication full texts is
a critical yet manual and labor-intensive step
required in a number of tasks. In this paper
we address the question of identifying data el-
ements in an unsupervised manner. Specifi-
cally, provided a set of criteria describing spe-
cific study parameters, such as species, route
of administration, and dosing regimen, we de-
velop an unsupervised approach to identify
text segments (sentences) relevant to the crite-
ria. A binary classifier trained to identify pub-
lications that met the criteria performs better
when trained on the candidate sentences than
when trained on sentences randomly picked
from the text, supporting the intuition that our
method is able to accurately identify study de-
scriptors.
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1 Introduction

Extracting data elements such as study descrip-
tors from publication full texts is an essential
step in a number of tasks including systematic
review preparation (Jonnalagadda et al., 2015),
construction of reference databases (Kleinstreuer
et al., 2016), and knowledge discovery (Smal-
heiser, 2012). These tasks typically involve do-
main experts identifying relevant literature per-
taining to a specific research question or a topic
being investigated, identifying passages in the re-
trieved articles that discuss the sought after infor-
mation, and extracting structured data from these
passages. The extracted data is then analyzed, for
example to assess adherence to existing guidelines
(Kleinstreuer et al., 2016). Figure 1 shows an ex-
ample text excerpt with information relevant to a
specific task (assessment of adherence to existing
guidelines (Kleinstreuer et al., 2016)) highlighted.

1http://energy.gov/downloads/
doe-public-access-plan
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Figure 1: Text excerpt from a reference database of rodent uterotrophic bioassay publications (Kleinstreuer et al.,
2016). The text in this example was manually annotated by one of the authors to highlight information relevant to
guidelines for performing uterotrophic bioassays set forth by (OECD, 2007).

Extracting the data elements needed in these
tasks is a time-consuming and at present a largely
manual process which requires domain exper-
tise. For example, in systematic review prepara-
tion, information extraction generally constitutes
the most time consuming task (Tsafnat et al.,
2014). This situation is made worse by the rapidly
expanding body of potentially relevant literature
with more than one million papers added into
PubMed each year (Landhuis, 2016). Therefore,
data annotation and extraction presents an impor-
tant challenge for automation.

A typical approach to automated identification
of relevant information in biomedical texts is to in-
fer a prediction model from labeled training data –
such a model can then be used to assign predicted
labels to new data instances. However, obtaining
training data for creating such prediction models
can be very costly as it involves the step which
these models are trying to automate – manual data
extraction. Furthermore, depending on the task
at hand, the types of information being extracted
may vary significantly. For example, in system-
atic reviews of randomized controlled trials this
information generally includes the patient group,
the intervention being tested, the comparison, and
the outcomes of the study (PICO elements) (Tsaf-
nat et al., 2014). In toxicology research the ex-
traction may focus on routes of exposure, dose,
and necropsy timing (Kleinstreuer et al., 2016).
Previous work has largely focused on identifying
specific pieces of information such as biomedical
events (Gonzalez et al., 2015) or PICO elements
(Jonnalagadda et al., 2015). However, depending

on the domain and the end goal of the extraction,
these may be insufficient to comprehensively de-
scribe a given study.

Therefore, in this paper we focus on unsuper-
vised methods for identifying text segments (such
as sentences or fixed length sequences of words)
relevant to the information being extracted. We
develop a model that can be used to identify text
segments from text documents without labeled
data and that only requires the current document
itself, rather than an entire training corpus linked
to the target document. More specifically, we
utilize representation learning methods (Mikolov
et al., 2013a), where words or phrases are embed-
ded into the same vector space. This allows us
to compute semantic relatedness among text frag-
ments, in particular sentences or text segments in a
given document and a short description of the type
of information being extracted from the document,
by using similarity measures in the feature space.
The model has the potential to speed up identifi-
cation of relevant segments in text and therefore
to expedite annotation of domain specific informa-
tion without reliance on costly labeled data.

We have developed and tested our approach on
a reference database of rodent uterotropic bioas-
says2 (Kleinstreuer et al., 2016) which are labeled
according to their adherence to test guidelines set
forth in (OECD, 2007). Each study in the database
is assigned a label determining whether or not
it met each of six main criteria defined by the

2https://ntp.niehs.nih.gov/pubhealth/
evalatm/test-method-evaluations/
endocrine-disruptors/ref-data/edhts.html
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guidelines; however, the database does not con-
tain sentence-level annotations or any information
about where the criteria was mentioned in each
publication. Due to the lack of fine-grained an-
notations, supervised learning methods cannot be
easily applied to aid annotating new publications
or to annotate related but distinct types of studies.
This database therefore presents an ideal use-case
for unsupervised approaches.

While our approach doesn’t require any labeled
data to work, we use the labels available in the
dataset to evaluate the approach. We train a binary
classification model for identifying publications
which satisfied given criteria and show the model
performs better when trained on relevant sentences
identified by our method than when trained on sen-
tences randomly picked from the text. Further-
more, for three out of the six criteria, a model
trained solely on the relevant sentences outper-
forms a model which utilizes full text. The results
of our evaluation support the intuition that seman-
tic relatedness to criteria descriptions can help in
identifying text sequences discussing sought after
information.

There are two main contributions of this work.
We present an unsupervised method that em-
ploys representation learning to identify text seg-
ments from publication full text which are relevant
to/contain specific sought after information (such
as number of dose groups). In addition, we ex-
plore a new dataset which hasn’t been previously
used in the field of information extraction.

The remainder of this paper is organized as fol-
lows. In the following section we provide more
details of the task and the dataset used in this
study. In Section 3 we describe our approach. In
Section 4 we evaluate our model and discuss our
results. In Section 5 we compare our work to ex-
isting approaches. Finally, in Section 6 we provide
ideas for further study.

2 The Task and the Data

This section provides more details about the spe-
cific task and the dataset used in our study which
motivated the development of our model.

2.1 Task Description

Significant efforts in toxicology research are be-
ing devoted towards developing new in vitro meth-
ods for testing chemicals due to the large num-
ber of untested chemicals in use (>75,000-80,000

(Judson et al., 2009; Kleinstreuer et al., 2016))
and the cost and time required by existing in vivo
methods (2-3 years and millions of dollars per
chemical (Judson et al., 2009)). To facilitate the
development of novel in vitro methods and as-
sess the adherence to existing study guidelines,
a curated database of high-quality in vivo rodent
uterotrophic bioassay data extracted from research
publications has recently been developed and pub-
lished (Kleinstreuer et al., 2016).

The creation of the database followed the study
protocol design set forth in (OECD, 2007), which
is composed of six minimum criteria (MC, Table
1). An example of information pertaining to the
criteria is shown in Figure 1. Only studies which
met all six minimum criteria were considered
guideline-like (GL) and were included in a follow-
up detailed study and the final database (Klein-
streuer et al., 2016). However, of the 670 pub-
lications initially considered for inclusion, only
93 (∼14%) were found to contain studies which
met all six MC and could therefore be included in
the final database; the remaining 577 publications
could not be used in the final reference set. There-
fore, significant time and resources could be saved
by automating the identification and extraction of
the MC.

While each study present in the database is as-
signed a label for each MC determining whether a
given MC was met and the pertinent protocol in-
formation was manually extracted, there exist no
fine-grained text annotations showing the exact lo-
cation within each publication’s full text where a
given criteria was met. Therefore, our goal was
to develop a model not requiring detailed text an-
notations that could be used to expedite the an-
notation of new publications being added into the
database and potentially support the development
of new reference databases focusing on different
domains and sets of guidelines. Due to the lack of
detailed annotations, our focus was on identifica-
tion of potentially relevant text segments.

2.2 The Dataset

The version of the database which contains both
GL and non-GL studies consists of 670 publica-
tions (spanning the years 1938 through 2014) with
results from 2,615 uterotrophic bioassays. Specif-
ically, each entry in the database describes one
study, and studies are linked to publications using
PubMed reference numbers (PMIDs). Each study
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Criteria name Description
MC 1: Animal model Immature rats, ovariectomized (OVX) adult rats, or OVX adult mice

are acceptable (immature mice are not acceptable). OVX animals:
OVX should be performed between six and eight weeks of age (al-
lowing at least 14 days post-surgery before dosing for rats and seven
days post-surgery for mice). Immature rats: dosing should begin
between postnatal day (PND) 18 and PND 21, and be completed by
PND 25.

MC 2: Group size Each control group should have a minimum of three animals and
each test group should have a minimum of five animals.

MC 3: Route of administration Acceptable routes of administration: oral gavage (p.o.), subcuta-
neous (s.c.) injection, or intraperitoneal (i.p.) injection.

MC 4: Number of dose groups Minimum of two dose level groups. Must have positive control and
negative control.

MC 5: Dosing interval Dosing for a minimum of three consecutive days. Complete by PND
25 in immature animals.

MC 6: Necropsy timing Should be carried out 18-36 hours after the last dose.

Table 1: Minimum criteria for guideline-like studies. The descriptions are reprinted here from (Kleinstreuer et al.,
2016).

is assigned seven 0/1 labels – one for each of the
minimum criteria and one for the overall GL/non-
GL label. The database also contains more de-
tailed subcategories for each label (for example
“species” label for MC 1) which were not used in
this study. The publication PDFs were provided
to us by the database creators. We have used the
Grobid3 library to convert the PDF files into struc-
tured text. After removing documents with miss-
ing PDF files and documents which were not con-
verted successfully, we were left with 624 full text
documents.

Each publication contains on average 3.7 stud-
ies (separate bioassays), 194 publications contain
a single study, while the rest contain two or more
studies (with 82 being the most bioassays per pub-
lication). The following excerpt shows an example
sentence mentioning multiple bioassays (with dif-
ferent study protocols):

With the exception of the first study
(experiment 1), which had group sizes
of 12, all other studies had group sizes
of 8.

For this experiment we did not distinguish be-
tween publications describing a single or multi-
ple studies. Instead, our focus was on retrieving
all text segments (which may be related to mul-
tiple studies) relevant to each of the criteria. For

3https://github.com/kermitt2/grobid

Criteria 0 1 Total % of 1
MC 1 414 175 589 29.71
MC 2 35 577 612 94.28
MC 3 70 536 606 88.45
MC 4 309 206 515 40.00
MC 5 96 490 586 83.62
MC 6 228 340 568 59.86
GL 522 72 594 12.12

Table 2: Label statistics. Column 0 shows number of
publications per MC which did not meet the criteria and
column 1 shows number of publications which met the
criteria. The last column in the table shows proportion
of positive (i.e. criteria met) labels.

each MC, if a document contained multiple studies
with different labels, we discarded that document
from our analysis of that criteria; if a document
contained multiple studies with the same label, we
simply combine all those labels into a single label.
Table 2 shows the final size of the dataset.

3 Approach

In this section we describe the method we have
used for retrieving text segments related to the cri-
teria described in the previous section. The intu-
ition is based off question answering systems. We
treat the criteria descriptions (Table 1) as the ques-
tion and the text segments within the publication
that discusses the criteria as the answer. Given a
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full text publication, the goal is to find the text seg-
ments most likely to contain the answer.

We represent the criteria descriptions and text
segments extracted from the documents as vectors
of features, and utilize relatedness measures to re-
trieve text segments most similar to the descrip-
tions. A similar step is typically performed by
most question answering (QA) systems – in QA
systems both the input documents and the ques-
tion are represented as a sequence of embedding
vectors and a retrieval system then compares the
document and question representations to retrieve
text segments most likely containing the answer
(Mishra and Jain, 2016).

To account for the variations in language that
can be used to describe the criteria, we repre-
sent words as vectors generated using Word2Vec
(Mikolov et al., 2013a). The following two ex-
cerpts show two different ways MC 6 was de-
scribed in text:

Animals were killed 24 h after being in-
jected and their uteri were removed and
weighed.

All animals were euthanized by expo-
sure to ethyl ether 24 h after the final
treatment.

We hypothesize that the use of word embed-
ding features will allow us to detect relevant words
which are not present in the criteria descriptions.
(Mikolov et al., 2013b) have shown that an im-
portant feature of Word2Vec embeddings is that
similar words will have similar vectors because
they appear in similar contexts. We utilize this
feature to calculate similarity between the crite-
ria descriptions and text segments (such as sen-
tences) extracted from each document. A high-
level overview of our approach is shown in Fig-
ure 2.

We use the following method to retrieve the
most relevant text segments:

Segment extraction: First, we break each doc-
ument down into shorter sequences such as sen-
tences or word sequences of fixed length. While
the first option (sentences) results in text which is
easier to process, it has the disadvantage of result-
ing in sequences of varying length which may af-
fect the resulting similarity value. However, for
simplicity, in this study we utilize the sentence
version.

Document
Criteria 

description

Segment 
extraction

Segment 
representation 

Description 
representation

Word to word similarities

Segment to description 
similarities

Candidate segments

Figure 2: High level overview of our approach. The
dotted line represents an optional step of finding
smaller sub-segments within the candidate segments.
For example, in our case, we first retrieve the most sim-
ilar sentences and in the second step find most similar
continuous 5-grams found withing those sentences.

Segment/description representation: We rep-
resent each sequence and the input description as a
sequence of vector representations. For this study
we have utilized Word2Vec embeddings (Mikolov
et al., 2013a) trained using the Gensim library on
our corpus of 624 full text publications.

Word to word similarities: Next we calculate
similarity between each word vector from each se-
quence si and each word vector from the input
description d using cosine similarity. The output
of this step is a similarity matrix Si ∈ RNi×Md

for each sequence si, where Ni is the number of
unique words in the sequence and Md is the num-
ber of unique words in the description d.

Segment to description similarities: To ob-
tain a similarity value representing the related-
ness of each sequence to the input description
we first convert each input matrix Si into a vec-
tor vi ∈ RNi by choosing the maximum simi-
larity value for each word in the sequence, that
is vi = maxrows(Si). Each sequence is then as-
signed a similarity value ri ∈ R which is calcu-
lated as ri = avg(vi). In the future we are plan-
ning to experiment with different ways of calcu-
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lating relatedness of the sequences to the descrip-
tions, such as with computing similarity of embed-
dings created from the text fragments using ap-
proaches like Doc2Vec (Le and Mikolov, 2014).
In this study, after finding the top sentences, we
further break each sentence down into continu-
ous n-grams to find the specific part of the sen-
tence discussing the MC. We repeat the same pro-
cess described above to calculate the relatedness
of each n-gram to the description.

Candidate segments: For each document we
select the top k text segments (sentences in the first
step and 5-grams in the second step) most similar
to the description.

3.1 Example Results

Figures 3, 4, and 5 show example annotations gen-
erated using our method for the first three criteria.
For this example we ran our method on the ab-
stract of the target document rather than the full
text and highlighted only the single most similar
sentence. The abstract used to produce these fig-
ures is the same as the abstract shown in Figure 1.
In all three figures, the lighter yellow color high-
lights the sentence which was found to be the most
similar to a given MC description, the darker red
color shows the top 5-gram found within the top
sentence, and the bold underlined text is the text
we are looking for (the correct answer). Annota-
tions generated for the remaining three criteria are
shown in Appendix A.

Due to space limitations, Figures 3, 4, and 5
show results generated on abstracts rather than
on full text; however, we have observed similarly
accurate results when we applied our method to
full text. The only difference between the ab-
stracts and the full text version is how many top
sentences we retrieved. When working with ab-
stracts only, we observed that if the criteria was
discussed in the abstract, it was generally suffi-
cient to retrieve the single most similar sentence.
However, as the criteria may be mentioned in mul-
tiple places within the document, when working
with full text documents we have retrieved and an-
alyzed the top k sentences instead of just a single
sentence. In this case we have typically found the
correct sentence/sentences among the top 5 sen-
tences. We have also observed that the similar sen-
tences which don’t discuss the criteria directly (i.e.
the “incorrect” sentences) typically discuss related
topics. For example, consider the following three

sentences:

After weaning on pnd 21, the dams were
euthanized by CO2 asphyxiation and
the juvenile females were individually
housed.

Six CD(SD) rat dams, each with recon-
stituted litters of six female pups, were
received from Charles River Laborato-
ries (Raleigh, NC, USA) on offspring
postnatal day (pnd) 16.

This validation study followed
OECD TG 440, with six female
weanling rats (postnatal day 21) per
dose group and six treatment groups.

These three sentences were extracted from the
abstract and the full text of a single document
(document 20981862, the abstract of which is
shown in Figures 1 and 3-8). These three sen-
tences were retrieved as the most similar to MC 1,
with similarity scores of 70.61, 65.31, and 63.69,
respectively. The third sentence contains the “an-
swer” to MC 1 (underlined). However, it can be
seen the top two sentences also discuss the animals
used in the study (more specifically, the sentences
discuss the animals’ housing and their origin).

4 Evaluation

The goal of this experiment was to explore empir-
ically whether our approach truly identifies men-
tions of the minimum criteria in text. As we did
not have any fine-grained annotations that could
be used to directly evaluate whether our model
identifies the correct sequences, we have used a
different methodology. We have utilized the exist-
ing 0/1 labels which were available in the database
(these were discussed in Section 2) to train one bi-
nary classifier for each MC. The task of each of
the classifiers is to determine whether a publica-
tion met the given criteria or not. We have then
compared a baseline classifier trained on all full
text with three other models:

• A model which, instead of all full text, uti-
lized only the top k sentences most similar
to the given MC. The top k sentences were
identified using our model introduced in the
previous section.

• A model which utilized only the k least simi-
lar sentences.
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Figure 3: Annotations generated using our method for the abstract from Figure 1. The sentence which was found
to be the most similar to the description for “MC 1: Animal model” is highlighted in yellow and the most similar
sequence of words within that sentence is highlighted in red. The text we are looking for is highlighted with bold
underlined text. For this example we ran our method on the abstract of the target document rather than the full text
and highlighted only the single most similar sentence.

Figure 4: Annotations generated using our method for “MC 2: Group size”. The highlighting used is the same as
in Figure 3.

• A model which utilized only k random sen-
tences (but none of the top or bottom k sen-
tences – the sentences were chosen at ran-
dom from the interval (k, n − k) where n
is the number of sentences in the document
and where sentences are sorted from the most
similar to the least similar).

The only difference between the four models is
which sentences from each document are passed to
the classifier for training and testing. The intuition
is that a classifier utilizing the correct sentences
should outperform both other models.

To avoid selecting the same sentences across the
three models we removed documents which con-
tained less than 3∗k sentences (Table 3, row Num-
ber of documents shows how many documents sat-
isfied this condition). In all of the experiments
presented in this section, the publication full text
was tokenized, lower-cased, stemmed, and stop
words were removed. All models used a Bernoulli
Naı̈ve Bayes classifier (scikit-learn implementa-
tion which used a uniform class prior) trained
on binary occurrence matrices created using 1-

3-grams extracted from the publications, with n-
grams appearing in only one document removed.
The complete results obtained from leave-one-out
cross validation are shown in Table 3. In all cases
we report classification accuracy. In the case of
the random-k sentences model the accuracy was
averaged over 10 runs of the model.

We compare the results to two baselines: (1) a
baseline obtained by classifying all documents as
belonging to the majority class (baseline 1 in Ta-
ble 3) and (2) a baseline obtained using the same
setup (features and classification algorithm) as in
the case of the top-/random-/bottom-k sentences
models but which utilized all full text instead of
selected sentences extracted from the text only
(baseline 2 in Table 3).

4.1 Results analysis

Table 3 shows that for four out of the six criteria
(MC 1, MC 4, MC 5, and MC 6) the top-k sen-
tences model outperforms baseline 1 as well the
bottom-k and the random-k sentences models by a
significant margin. Furthermore, for three of the

77



Figure 5: Annotations generated using our method for “MC 3: Route of administration”. The highlighting used is
the same as in Figure 3.

Approach MC1 MC2 MC3 MC4 MC5 MC6
Baseline 1: Most frequent label 70.35 94.43 88.74 59.48 84.30 60.44
Baseline 2: All full text 78.25 92.06 89.59 67.94 84.83 74.05
Top-k sentence 76.84 91.55 87.71 68.35 88.54 74.23
Bottom-k sentences 70.00 91.39 88.23 63.10 80.60 63.70
Random-k sentences 73.26 93.72 88.43 65.65 85.29 68.28
Number of documents 570 592 586 496 567 551
Number of pos. labels 169 559 520 201 478 333

Table 3: Evaluation results.

six criteria (MC 4, MC 5, and MC 6) the top-k
sentences model also outperforms the baseline 2
model (model which utilized all full text). This
seems to confirm our hypothesis that semantic re-
latedness of sentences to the criteria descriptions
helps in identifying sentences discussing the crite-
ria. These seems to be the case especially given
that for three of the six criteria the top-k sentences
model outperforms the model which utilizes all
full text (baseline 2) despite being given less in-
formation to learn from (selected sentences only
in the case of the top-k sentences model vs. all full
text in the case of the baseline 2 model).

For two of the criteria (MC 2 and MC 3) this
is not the case and the top-k sentences model per-
forms worse than both other models in the case
of MC 3 and worse than the random-k model in
the case of MC 2. One possible explanation for
this is class imbalance. In the case of MC 2, only
33 out of 592 publications (5.57%) represent neg-
ative examples (Table 3). As the top-k sentences
model picks only sentences closely related to MC
2, it is possible that due to the class imbalance
the top sentences don’t contain enough negative
examples to learn from. On the other hand, the
bottom-k and random-k sentences models may se-
lect text not necessarily related to the criteria but

potentially containing linguistic patterns which the
model learns to associate with the criteria; for ex-
ample, certain chemicals may require the use of a
certain study protocol which may not be aligned
with the MC and the model may key in on the
appearance of these chemicals in text rather than
the appearance of MC indicators. The situation is
similar in the case of MC 3. We would like to em-
phasize that the goal of this experiment was not
to achieve state-of-the-art results but to investigate
empirically the viability of utilizing semantic re-
latedness of text segments to criteria descriptions
for identifying relevant segments.

5 Related Work

In this section we present studies most similar to
our work. We focus on unsupervised methods for
information extraction from biomedical texts.

Many methods for biomedical data annotation
and extraction exist which utilize labeled data
and supervised learning approaches ((Liu et al.,
2016) and (Gonzalez et al., 2015) provided a good
overview of a number of these methods); how-
ever, unsupervised approaches in this area are
much scarcer. One such approach has been intro-
duced by (Zhang and Elhadad, 2013), who have
proposed a model for unsupervised Named En-
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tity Recognition. Similar to our approach, their
model is based on calculating the similarity be-
tween vector representations of candidate phrases
and existing entities. However, their vector repre-
sentations are created using a combination of TF-
IDF weights and word context information, and
their method relies on a terminology. More re-
cently, (Chen and Sokolova, 2018) have utilized
Word2Vec and Doc2Vec embeddings for unsuper-
vised sentiment classification in medical discharge
summaries.

A number of previous studies have focused
on unsupervised extraction of relations such as
protein-protein interactions (PPI) from biomedical
texts. For example, (Quan et al., 2014) have uti-
lized several techniques, namely kernel-based pat-
tern clustering and dependency parsing, to extract
PPI from biomedical texts. (Alicante et al., 2016)
have introduced a system for unsupervised extrac-
tion of entities and relations between these enti-
ties from clinical texts written in Italian, which uti-
lized a thesaurus for extraction of entities and clus-
tering methods for relation extraction. (Rink and
Harabagiu, 2011) also used clinical texts and pro-
posed a generative model for unsupervised rela-
tion extraction. Another approach focusing on re-
lation extraction has been proposed by (Madkour
et al., 2007). Their approach is based on construct-
ing a graph which is used to construct domain-
independent patterns for extracting protein-protein
interactions.

A similar but distinct approach to unsupervised
extraction is distant supervision. Similarly as un-
supervised extraction methods, distant supervi-
sion methods don’t require any labeled data, but
make use of weakly labeled data, such as data ex-
tracted from a knowledge base. Distant supervi-
sion has been applied to relation extraction (Liu
et al., 2014), extraction of gene interactions (Mal-
lory et al., 2015), PPI extraction (Thomas et al.,
2012; Bobić et al., 2012), and identification of
PICO elements (Wallace et al., 2016). The ad-
vantage of our approach compared to the distantly
supervised methods is that it does not require any
underlying knowledge base or a similar source of
data.

6 Conclusions and Future Work

In this paper we presented a method for unsuper-
vised identification of text segments relevant to
specific sought after information being extracted

from scientific documents. Our method is entirely
unsupervised and only requires the current docu-
ment itself and the input descriptions instead of
corpus linked to this document. The method uti-
lizes short descriptions of the information being
extracted from the documents and the ability of
word embeddings to capture word context. Con-
sequently, it is domain independent and can po-
tentially be applied to another set of documents
and criteria with minimal effort. We have used the
method on a corpus of toxicology documents and a
set of guideline protocol criteria needed to be ex-
tracted from the documents. We have shown the
identified text segments are very accurate. Fur-
thermore, a binary classifier trained to identify
publications that met the criteria performed bet-
ter when trained on the candidate sentences than
when trained on sentences randomly picked from
the text, supporting our intuition that our method is
able to accurately identify relevant text segments
from full text documents.

There are a number of things we plan on inves-
tigating next. In our initial experiment we have
utilized criteria descriptions which were not de-
signed to be used by our model. One possible im-
provement of our method could be replacing the
current descriptions with example sentences taken
from the documents containing the sought after in-
formation. We also plan on testing our method on
an annotated dataset, for example using existing
annotated PICO element datasets (Boudin et al.,
2010).
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A Supplemental Material

This section provides additional details and re-
sults. Figures 6, 7, and 8 show example annota-
tions generated for criteria MC 4, MC 5, and MC
6.
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Figure 6: Annotations generated using our method for abstract from Figure 1. The sentence which was found to
be the most similar to the description for “MC 4: Number of dose groups” is highlighted in yellow and the most
similar sequence of words within that sentence is highlighted in red. The text we are looking for is highlighted
with bold underlined text. For this example we ran our method on the abstract of the target document rather than
the full text and highlighted only the single most similar sentence.

Figure 7: Annotations generated using our method for “MC 5: Dosing interval”.

Figure 8: Annotations generated using our method for “MC 6: Necropsy timing”.
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Abstract

Parallel aligned sentences provide useful in-
formation for different NLP applications. Yet,
this kind of data is seldom available, especially
for languages other than English. We pro-
pose to exploit comparable corpora in French
which are distinguished by their registers (spe-
cialized and simplified versions) to detect and
align parallel sentences. These corpora are re-
lated to the biomedical area. Our purpose is
to state whether a given pair of specialized
and simplified sentences is to be aligned or
not. Manually created reference data show
0.76 inter-annotator agreement. We exploit a
set of features and several automatic classi-
fiers. The automatic alignment reaches up to
0.93 Precision, Recall and F-measure. In or-
der to better evaluate the method, it is applied
to data in English from the SemEval STS com-
petitions. The same features and models are
applied in monolingual and cross-lingual con-
texts, in which they show up to 0.90 and 0.73
F-measure, respectively.

1 Introduction

The purpose of text simplification is to provide
simplified versions of texts, in order to remove or
replace difficult words or information. Simplifica-
tion can be concerned with different linguistic as-
pects, such as lexicon, syntax, semantics, pragmat-
ics and even document structure. Simplification
can address needs of people or NLP applications
(Brunato et al., 2014). In the first case, simpli-
fied documents are typically created for children
(Son et al., 1008; De Belder and Moens, 2010; Vu
et al., 2014), people with low literacy or foreign-
ers (Paetzold and Specia, 2016), people with men-
tal or neurodegenerative disorders (Chen et al.,
2016), or laypeople who face specialized docu-
ments (Arya et al., 2011; Leroy et al., 2013). In
the second case, the purpose of simplification is to
transform documents in order to make them easier

to process within other NLP tasks, such as syn-
tactic analysis (Chandrasekar and Srinivas, 1997;
Jonnalagadda et al., 2009), semantic annotation
(Vickrey and Koller, 2008), summarization (Blake
et al., 2007), machine translation (Stymne et al.,
2013; Štajner and Popović, 2016), indexing (Wei
et al., 2014), or information retrieval and extrac-
tion (Beigman Klebanov et al., 2004). Hence, par-
allel sentences, which align difficult and simple
information, provide crucial indicators for the text
simplification. Indeed such pairs of sentences con-
tain cues on transformations which are suitable for
the simplification, such as lexical substitutes and
syntactic modifications. Yet, this kind of resources
is seldom available, especially in languages other
than English. The purpose of our work is to de-
tect and align parallel sentences from compara-
ble monolingual corpora, that are differentiated by
their registers. Besides, comparable corpora are
easier to obtain. More precisely, we work with
texts written for specialists and their simplified
versions. We work with corpora in French.

2 Existing Work

In parallel corpora, sentence alignment can rely on
empirical information, such as relative length of
the sentences in each language (Gale and Church,
1993), or lexical information (Chen, 1993). In
comparable corpora, both monolingual and bilin-
gual, sentences present relatively loose common
semantics and do not necessarily occur in the same
order. It should also be noted that (1) the de-
gree of parallelism can vary from nearly parallel
corpora, with a lot of parallel sentences, to very-
non-parallel corpora (Fung and Cheung, 2004);
and that (2) such corpora can contain parallel in-
formation at various degrees of granularity, such
as documents, sentences or sub-phrastic segments
(Hewavitharana and Vogel, 2011). Detection of

83



parallel sentences in comparable corpora is thus
a substantial challenge and requires specific meth-
ods.

Several existing works are related to machine
translation: bilingual comparable corpora are ex-
ploited for creation of parallel and aligned cor-
pora. Usually, these methods rely on three steps:

1. detection of comparable documents using for
instance generative models (Zhao and Vogel,
2002) or similarity scores (Utiyama and Isa-
hara, 2003; Fung and Cheung, 2004);

2. detection of candidate sentences, or sub-
phrastic segments, for the alignment using for
instance cross-lingual information retrieval
(Utiyama and Isahara, 2003; Munteanu and
Marcu, 2006), sequence alignment trees
(Munteanu and Marcu, 2002), mutual trans-
lations (Munteanu and Marcu, 2005; Ku-
mano et al., 2007; Abdul-Rauf and Schwenk,
2009), or dynamic programming (Yang and
Li, 2003);

3. filtering and selection of correct extractions
using classification (Munteanu and Marcu,
2005; Tillmann and Xu, 2009; Hewavitha-
rana and Vogel, 2011; S, tefănescu et al.,
2012), similarity measure of translations
(Fung and Cheung, 2004; Hewavitharana and
Vogel, 2011), error rate (Abdul-Rauf and
Schwenk, 2009), generative models (Zhao
and Vogel, 2002; Quirk et al., 2007), or spe-
cific rules (Munteanu and Marcu, 2002; Yang
and Li, 2003).

In relation with monolingual comparable cor-
pora, the main difficulty is that sentences may
show low lexical overlap but be nevertheless paral-
lel. Recently, this task gained in popularity thanks
to the semantic text similarity (STS) initiative.
Dedicated SemEval competitions have been pro-
posed for several years (Agirre et al., 2013, 2015,
2016). The objective, for a given pair of sentences,
is to predict if they are semantically similar and to
assign similarity score going from 0 (independent
semantics) to 5 (semantic equivalence). This task
is usually explored in general-language corpora.
Among the exploited methods, we can notice:

• lexicon-based methods which rely on simi-
larity of subwords or words from the pro-
cessed texts or on machine translation (Mad-
nani et al., 2012). The features exploited can

be: lexical overlap, sentence length, string
edition distance, numbers, named entities,
the longest common substring (Clough et al.,
2002; Zhang and Patrick, 2005; Qiu et al.,
2006; Zhao et al., 2014; Nelken and Shieber,
2006; Zhu et al., 2010);

• knowledge-based methods which exploit ex-
ternal resources, such as WordNet (Miller
et al., 1993) or PPDB (Ganitkevitch et al.,
2013). The features exploited can be: over-
lap with external resources, distance between
the synsets, intersection of synsets, seman-
tic similarity of resource graphs, presence of
synonyms, hyperonyms or antonyms (Mihal-
cea et al., 2006; Fernando and Stevenson,
2008; Lai and Hockenmaier, 2014);

• syntax-based methods which exploit the syn-
tactic modelling of sentences. The fea-
tures often exploited are: syntactic cate-
gories, syntactic overlap, syntactic dependen-
cies and constituents, predicat-argument rela-
tions, edition distance between syntactic trees
(Wan et al., 2006; Severyn et al., 2013; Tai
et al., 2015; Tsubaki et al., 2016);

• corpus-based methods which exploit distri-
butional methods, latent semantic analysis
(LSA), topics modelling, word embeddings,
etc. (Barzilay and Elhadad, 2003; Guo and
Diab, 2012; Zhao et al., 2014; Kiros et al.,
2015; He et al., 2015; Mueller and Thyagara-
jan, 2016).

These methods and types of features can of course
be combined for optimizing the results (Bjerva
et al., 2014; Lai and Hockenmaier, 2014; Zhao
et al., 2014; Rychalska et al., 2016; Severyn et al.,
2013; Kiros et al., 2015; He et al., 2015; Tsubaki
et al., 2016; Mueller and Thyagarajan, 2016).

Our objective is close to the second type of
works: we want to detect and align parallel sen-
tences from monologual comparable corpora. Yet,
there are some differences: (1) we work with cor-
pora related to the biomedical area and not to the
general language, (2) we have to state if two sen-
tences have to be aligned (binary statement) and
not to compute their similarity score, and (3) we
work with data in French which were not exploited
for this kind of task yet. To our knowledge, the
only work which exploited articles from French
encyclopedia performed manual alignment of sen-
tences (Brouwers et al., 2014).
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In what follows, we first present the linguistic
material used, and the methods proposed. We then
present and discuss the results obtained, and con-
clude with directions of future work.

3 Linguistic Material

We use three comparable corpora in French. They
are related to the biomedical domain and are con-
trasted by the technicity of information they con-
tain with typically specialized and simplified ver-
sions of a given text. These corpora cover three
genres: drug information, summaries of scientific
articles, and encyclopedia articles (Sec. 3.1). We
also exploit a set of stopwords (Sec. 3.2), and the
reference data with sentences manually aligned by
two annotators (Sec. 3.3).

3.1 Comparable Corpora
Table 1 indicates the size of the source corpora
(number of documents, number of words in spe-
cialized and simplified versions). The three cor-
pora are built with French data.

The Drug corpus contains drug information
such as provided to health professionals and pa-
tients. Indeed, two distinct sets of documents ex-
ist, each of which contains common and specific
information. This corpus is built from the pub-
lic drug database1 of the French Health ministry.
These data have been downloaded in June 2017.
We can see that the specialized versions of docu-
ments provide more word occurrences.

The Scientific corpus contains summaries of
meta-reviews of high evidence health-related ar-
ticles, such as proposed by the Cochrane collabo-
ration (Sackett et al., 1996). These reviews have
been first intended for health professionals but re-
cently the collaborators started to create simpli-
fied versions of the reviews (Plain language sum-
mary) so that they can be read and understood by
the whole population. This corpus has been built
from the online library of the Cochrane collabora-
tion2. The data have been downloaded in Novem-
ber 2017. We can see that specialized version of
summaries is also larger than the simplified ver-
sion, although the difference is not very important.

The Encyclopedia corpus contains encyclo-
pedia articles from Wikipedia3 and Vikidia4.

1http://base-donnees-publique.
medicaments.gouv.fr/

2http://www.cochranelibrary.com/
3https://fr.wikipedia.org
4https://fr.vikidia.org

Wikipedia articles are considered as technical
texts while Vikidia articles are considered as their
simplified versions (they are created for children
8 to 13 year old). Similarly to the works done
in English, we associate Vikidia with Simple
Wikipedia5. Only articles related to the medical
portal are exploited in this work. These encyclo-
pedia articles have been downloaded in August
and September 2017. From Table 1, we can see
that specialized versions (from Wikipedia) are also
longer than simplified versions.

These three corpora are more or less parallel:
Wikipedia and Vikidia articles are written inde-
pendently from each other, drug information doc-
uments are related to the same drugs but the types
of information presented for experts and laypeo-
ple vary a lot, while simplified summaries from
the scientific corpus are created starting from the
expert summaries.

3.2 Stopwords

We use a set of 83 stopwords in French, which are
mostly grammatical words, like prepositions (de,
et, à, ou (of, and, in, or)), auxiliary verbs (est, a (is,

has)) or adverbs (tout, plusieurs (all, several)).

3.3 Reference Data

In this section we describe the data that are used
for training and evaluation of the automatic sen-
tence alignments.

The reference data are created manually. We
have randomly selected 2*14 encyclopedia arti-
cles, 2*12 drug documents, and 2*13 scientific
summaries. The sentence alignment is done by
two annotators following these guidelines:

1. exclude identical sentences or sentences with
only punctuation and stopword difference ;

2. include sentence pairs with morphological
variations (e.g. Ne pas dépasser la posolo-
gie recommandée. and Ne dépassez pas la
posologie recommandée. – both examples
can be translated by Do not take more than
the recommended dose.);

3. exclude sentence pairs with overlapping se-
mantics, when each sentence brings own in-
formation, in addition to the common seman-
tics;

5http://simple.wikipedia.org
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corpus # docs # occsp # occsimpl # lemmassp # lemmassimpl

Drugs 11,800*2 52,313,126 33,682,889 43,515 25,725
Scient. 3,815*2 2,840,003 1,515,051 11,558 7,567
Encyc. 575*2 2,293,078 197,672 19,287 3,117

Table 1: Size of the three source corpora. (column headers : number of documents, total of occurrences (specialized
and simple), total of unique words (specialized and simple))

Specialized Simplified Alignment
source aligned source aligned rate (%)

corpus # doc. # pairs. # occ. # pairs. # occ. # pairs # occ. # pairs. # occ. sp. simp.
Drugs 12*2 4,416 44,709 502 5,751 2,736 27,820 502 10,398 18 11
Scient. 13*2 553 8,854 112 3,166 263 4,688 112 3,306 20 43
Encyc. 14*2 2,494 36,002 49 1,100 238 2,659 49 853 2 21

Table 2: Size of the reference data with consensual alignment of sentences. (number of sentence pairs and word
occurrences for each subset)

4. include sentence pairs in which one sentence
is included in the other, which enables many-
to-one matching (e.g. C’est un organe fait de
tissus membraneux et musculaires, d’environ
10 à 15 mm de long, qui pend à la partie
moyenne du voile du palais. and Elle est con-
stituée d’ un tissu membraneux et musculaire.
– It is an organ made of membranous and
muscular tissues, approximately 10 to 15 mm
long, that hangs from the medium part of the
soft palate. and It is made of a membranous
and muscular tissue.);

5. include sentence pairs with equivalent se-
mantics – other than semantic intersection
and inclusion (e.g. Les médicaments inhibant
le péristaltisme sont contre-indiqués dans
cette situation. and Dans ce cas, ne prenez
pas de médicaments destinés à bloquer ou
ralentir le transit intestinal. – Drugs that
inhibit the peristalsis are contraindicated in
that situation. and In that case, do not take
drugs intended for blocking or slowing down
the intestinal transit.)

The judgement on semantic closeness may vary
according to the annotators. For this reason, the
alignments provided by each annotator undergo
consensus discussions. This alignment process
provides a set of 663 aligned sentence pairs. The
inter-annotator agreement is 0.76 (Cohen, 1960).
It is computed within the two sets of sentences
proposed for alignment by the two annotators.

Table 2 indicates the size of the reference
data before (source columns) and after (aligned

columns) the alignment. In the two last columns
(Alignment rate), we indicate the percentage of
sentences aligned in each register and corpus.
We can observe that scientific corpus is the most
parallel with the highest alignment rate of sen-
tences from specialized and simplified documents,
while the two other corpora (drugs and encylo-
pedia) contain proportionnally less parallel sen-
tences. Another interesting observation is that
sentences from simplified documents in the sci-
entific and drugs corpora are longer than sen-
tences from specialized documents because they
often add explanations for technical notions, like
in this example: We considered studies involv-
ing bulking agents (a fibre supplement), antispas-
modics (smooth muscle relaxants) or antidepres-
sants (drugs used to treat depression that can also
change pain perceptions) that used outcome mea-
sures including improvement of abdominal pain,
global assessment (overall relief of IBS symp-
toms) or symptom score. In the encylopedia cor-
pus such notions are replaced by simpler words,
or removed. Finally, in all corpora, we observe
frequent substitutions by synonyms, like in these
pairs: {nutrition; food}, {enteral; directly in the
stomach}, {hypersensitivity; allergy}, {incidence;
possible complications}. Notice that with such
substitutions, lexical similarity between sentences
is reduced.
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4 Automatic Alignment of Parallel
Sentences

As already indicated, our objective is to detect and
align parallel sentences within monologual com-
parable corpora in French. We already have the
information on which documents are comparable.
So, the task is really dedicated to the alignment of
sentences from specialized and simplified versions
of documents. The method is composed of several
steps: pre-processing of data (Sec. 4.1), genera-
tion of features (Sec. 4.2), automatic alignment of
sentences (Sec. 4.3), and evaluation (Sec. 4.4).

4.1 Pre-processing of Data

The documents are first pre-processed: they are
POS-tagged with TreeTagger (Schmid, 1994),
which permits to obtain their lemmatized versions.
Then, the documents are segmented into sentences
using strong punctuation (i.e. .?!;:). The same
pre-processing and segmentation have been ap-
plied when creating the reference data.

4.2 Feature Generation

Our goal is to propose features that can work on
textual data in different languages. We use sev-
eral features which are mainly lexicon-based and
corpus-based, so that they can be easily applied
to textual data in other languages or transposed
to data in other languages. The features are com-
puted on word forms and on lemmas:

1. Number of common non-stopwords. This
feature permits to compute the basic lexical
overlap between specialized and simplified
versions of sentences (Barzilay and Elhadad,
2003). This feature exploits external knowl-
edge (set of stopwords), which are neverthe-
less very common linguistic data;

2. Number of common stopwords. This feature
also exploits external knowledge (set of stop-
words). It concentrates on non-lexical con-
tent of sentences;

3. Percentage of words from one sentence in-
cluded in the other sentence, computed in
both directions. This features represents pos-
sible lexical and semantic inclusion relations
between the sentences;

4. Sentence length difference between special-
ized and simplified sentences. This feature

assumes that simplification may imply stable
association with the sentence length;

5. Average length difference in words between
specialized and simplified sentences. This
feature is similar to the previous one but takes
into account average difference in sentence
length;

6. Total number of common bigrams and tri-
grams. This feature is computed on charac-
ter ngrams. The assumption is that, at the
sub-word level, some sequences of characters
may be meaningful for the alignment of sen-
tences if they are shared by them;

7. Word-based similarity measure exploits three
scores (cosine, Dice and Jaccard). This fea-
ture provides a more sophisticated indication
on word overlap between the two compared
sentences. Weight assigned to each word is
set to 1;

8. Word-based similarity measure with the
tf*idf weighting of words (Nelken and
Shieber, 2006). This feature is similar to the
previous one but it also exploits information
on context by incorporating the tf*idf weight-
ing (Salton and Buckley, 1988) of words. For
this, sentences are considered as documents
and documents as corpora. This feature per-
mits to weigh words in a sentence with re-
spect to their occurrences in other sentences
of the document;

9. Character-based minimal edit distance (Lev-
enshtein, 1966). This is a classical acception
of edit distance. It takes into account basic
edit operations (insertion, deletion and sub-
stitution) at the level of characters. The cost
of each operation is set to 1;

10. Word-based minimal edit distance (Leven-
shtein, 1966). This feature is computed with
words as units within sentence. It takes into
account the same three edit operations with
the same cost set to 1. This feature permits to
compute the cost of lexical transformation of
one sentence into another.

4.3 Automatic Alignment of Sentences

The task is to find parallel sentences within the
whole set of sentences we described in section

87



3.3. Hence, we have to categorize the pairs of sen-
tences in one of the two categories:

• alignment: the sentences are parallel and can
be aligned;

• non-alignment: the sentences are non-
parallel and cannot be aligned.

The reference data provide positive examples
(663 parallel sentences), while negative examples
are obtained by randomly pairing some of the
remaining sentences (800 non-parallel sentences)
from the same documents.

We use several linear classifiers with their de-
fault parameters if not indicated otherwise: Per-
ceptron (Rosenblatt, 1958), Multilayer Percep-
tron (MLP) (Rosenblatt, 1961), Linear discrim-
inant analysis (LDA) (Fisher, 1936) with the
LSQR solver, Quadratic discriminant analysis
(QDA) (Cover, 1965), Logistic regression (Berk-
son, 1944), Stochastic gradient descent (SGD)
(Ferguson, 1982) with the log loss, Linear SVM
(Vapnik and Lerner, 1963). We also tested hinge
and modified huber as loss functions with
the SGD, and Eigen and SVD solvers with the
LDA, but the results were either lower or very
close to the best parameters and we abandoned the
idea to use them.

4.4 Evaluation
The training of the system is performed on two
thirds of the sentence pairs, and the test is per-
formed on the remaining third. Several classifiers
and several combinations of features are tested.
Classical evaluation measures are computed: Pre-
cision, Recall, F-measure, Mean Square Errors,
and True Positives. Our baseline is the combina-
tion of length measures with the common words
(features 1, 2, 4 and 5). These features are indeed
traditionnally exploited in the existing work.

We also evaluate the system on data in English
that were released for STS competitions6: we use
750 sentence pairs from SemEval 2012, 1,500 sen-
tence pairs from SemEval 2013, 3,750 sentence
pairs from SemEval 2014. Each pair of sentences
is associated with the similarity score [0;5]. We
apply our system to these data in two ways: (1)
the system is trained and tested on the STS dataset,
and (2) the system is trained on our dataset in
French and tested on the STS dataset in English.

6http://ixa2.si.ehu.es/stswiki/index.
php/Main_Page

We assume indeed that the features used and even
the models generated can be transposed to data in
other languages. For the experiments with the En-
glish data, we use the same evaluation measures
(Precision, Recall, F-measure, Mean Square Er-
rors, and True Positives). The set of stopwords
in English contains 150 entities.

5 Results and Discussion

Classifier R P F1 MSE TP
Perceptron 0.87 0.84 0.84 0.63 142
MLP 0.87 0.87 0.86 0.53 167
LDA 0.90 0.90 0.90 0.40 175
QDA 0.89 0.89 0.89 0.45 197
LogReg 0.93 0.93 0.93 0.30 191
SGD 0.87 0.84 0.84 0.84 210
LinSVM 0.81 0.81 0.81 0.74 166

Table 3: Alignment results obtained with different clas-
sifiers on French data, test set, whole featureset without
tf*idf similarity scores, and non-lemmatized text.

In Table 3, we present the results obtained on
French data using the whole set of features (but
without the tf*idf similarity scores) on test set, and
non-lemmatized texts. The results are indicated
in terms of Recall R, Precision P , F-measure F ,
Mean Square Errors MSE and True positives TP
(out of the 221 positive sentence pairs in the test
set). We can see that all the classifiers are com-
petitive with F-measure above 0.80. Overall, sev-
eral classifiers (LDA, QDA, LogReg, LinSVM)
provide stable results, for which we indicate the
evaluation scores obtained in one iteration. Other
classifiers (Perceptron, MLP, SGD) provide fluc-
tuating results, and we indicate then the average
scores obtained after 20 iterations. Another posi-
tive observation is that Precision and Recall values
are well balanced. Logistic regression seems to be
the best classifier for this task, with Precision, Re-
call and F-measure at 0.93. This classifier is used
for the experiments described in the next sections.

We first present and discuss the exploitation of
various featuresets on French data (Sec. 5.1), and
then the exploitation of the features and models on
the STS data in English in monolingual (Sec. 5.2)
and cross-lingual (Sec. 5.3) contexts. As our final
objective (text simplification in French) and the
data we work on (French texts from the biomed-
ical domain) are different from the STS context,
we believe it should be noted that there are intrin-

88



sic limitations as to the comparison we can make.

5.1 Different Featuresets

Feature set R P F1 MSE TP
BL 0.87 0.87 0.86 0.54 173
S 0.84 0.84 0.84 0.64 174
L 0.79 0.78 0.78 0.86 146
N 0.89 0.88 0.88 0.48 168
L+S 0.88 0.88 0.88 0.48 170
L+N 0.91 0.91 0.91 0.37 187
S+N 0.91 0.91 0.91 0.37 183
BL+L 0.90 0.90 0.90 0.40 184
BL+S 0.89 0.89 0.89 0.46 180
BL+N 0.91 0.91 0.91 0.35 187
BL+L+S 0.90 0.90 0.90 0.40 184
BL+L+N 0.93 0.93 0.93 0.29 191
BL+S+N 0.91 0.91 0.91 0.36 189
L+S+N 0.91 0.91 0.91 0.36 189
BL+L+S+N 0.93 0.93 0.93 0.29 191

Table 4: Alignment results obtained with various fea-
turesets, logistic regression, non-lemmatized text.

The purpose of these experiments is to detect
the most suitable combinations of features. We
present the results obtained on our data. We dis-
tinguish four sets of features, which are used in
isolation and in various combinations. We indi-
cate the corresponding numbers from section 4.2
between brackets :

1. BL: baseline (1, 2, 3, 4 5);

2. L: Levenshtein-based features (9, 10);

3. S: similarity-based features (7, 8);

4. N: ngram-based features (6).

Contrary to the previous work (Nelken and
Shieber, 2006; Zhu et al., 2010), the tf*idf weight-
ing of words is not efficient on our data. For this
reason, this set of features was not used in the ex-
periments.

The results are presented in Table 4. The
lowest results are obtained with the Levenshtein-
based features (F-measure 0.78), they are fol-
lowed by the similarity-based features (F-measure
0.84). We obtain 0.86 F-measure with the base-
line. Other combinations indicate that each set
of features exploited is useful to gain efficiency
for this task. Hence, the best results are obtained
with the combination BL+L+N and with the whole

set of features (BL+L+S+N), which shows 0.93 F-
measure. We use the whole set of features for the
experiments with the STS dataset.

5.2 Classification of the STS Sentence Pairs

STSset score R P F1 MSE TP
STS2012 2.5 0.82 0.82 0.82 0.71 477
STS2012 3.5 0.74 0.74 0.74 1.04 277
STS2012 4.5 0.79 0.81 0.78 0.74 37
STS2013 2.5 0.73 0.73 0.73 1.09 176
STS2013 3.5 0.78 0.78 0.78 0.87 96
STS2013 4.5 0.89 0.93 0.90 0.29 2
STS2014 2.5 0.75 0.76 0.75 0.97 653
STS2014 3.5 0.70 0.71 0.71 1.17 306
STS2014 4.5 0.89 0.93 0.90 0.29 2

Table 5: Alignment results obtained on the STS data in
English, test set, whole featureset, logistic regression,
non-lemmatized text and training on the STS data.

In this set of experiments, the classification
model is trained and tested on the STS reference
data in English. Our assumption is that the fea-
tures exploited are transferable from one language
to another. The reference data and categories in
English and in French differ. One difference is
that the STS pairs of sentences are scored from 0
to 5 according to their similarity, while in French
we do binary classification (a given pair of sen-
tences should be aligned or not). To make the two
datasets comparable, we propose to transform the
STS scoring in binary categories. We test sim-
ilarity thresholds within the interval [2.5;4.5] by
step of 0.5, which permits not to consider identi-
cal sentences (scores close to 5) and very distant
sentences (scores lower than 2.5). As indicated
in Table 5, we obtain up to 0.90 F-measure with
the similarity threshold 4.5 on data from 2013 and
2014, while in 2012 the best F-measure (0.82) is
obtained with the similarity score 2.5. It is difficult
to compare our results with those of the participat-
ing teams and already published results because
our categories and evaluation differ from the STS
protocols – we rate sentence pairs as either aligned
or not aligned, while STS offers a scale from 0 to
5. Yet, the MSE rate (0.308) published by one of
the top participants in 2014 (Bjerva et al., 2014)
indicates that our MSE rate is improved, as it is at
0.29 on the 2014 data.
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5.3 Cross-lingual Classification of the STS
Sentence Pairs

STSset score R P F1 MSE TP
STS2012 2.5 0.83 0.81 0.82 0.19 1378
STS2012 3.5 0.74 0.72 0.71 0.28 1035
STS2012 4.5 0.81 0.49 0.52 0.51 413
STS2013 2.5 0.74 0.74 0.74 0.26 523
STS2013 3.5 0.78 0.73 0.74 0.27 396
STS2013 4.5 0.92 0.57 0.67 0.43 88
STS2014 2.5 0.74 0.72 0.73 0.28 1688
STS2014 3.5 0.72 0.69 0.69 0.31 1216
STS2014 4.5 0.88 0.54 0.61 0.46 384

Table 6: Alignment results obtained on the STS data in
English, test set, whole featureset, Logistic regression,
non-lemmatized text and training on the French data.

In this set of experiments, the classification
model is trained on French data and tested on the
STS data in English. Here, our assumption is
that the models generated on one language can be
transferable to another language in order to detect
parallel sentences. Here as well, we test several
similarity thresholds. As we can see in Table 6, in
this cross-lingual experiment, the best F-measures
are obtained with the score 2.5 in 2012 (0.82) and
in 2014 (0.73), and with scores 2.5 and 3.0 in 2013
(0.74). These thresholds indicate that the models
generated on our French data can be exploited on
the STS data in English quite efficiently and that
the features that are used show cross-lingual rele-
vance for the French-English language pair. These
results also indicate that, for the targeted task of
text simplification, we need quite a strong similar-
ity between sentences.

6 Conclusion and Future Work

In this work, we proposed to address the task of
detection and alignment of parallel sentences from
monolingual comparable corpora in French. The
comparable dimension is due to the technicality
of documents, which contrast specialized and sim-
plified versions of documents and sentences. We
use three corpora which are related to the biomed-
ical area. Several features and classifiers and ex-
ploited. Our results reach up to 0.93 F-measure
on the French data, with a very good balance be-
tween Precision and Recall. Linear regression ap-
pears to be the best classifier for this task. Our
approach is then tested on the STS data in En-
glish, such as proposed by several SemEval com-

petitions between 2012 and 2014. We first test the
features, with training and testing done on the STS
data. This gives up to 0.90 F-measure with the
4.5 similarity threshold. Then, we test the models:
they are generated on the French data and tested
on the STS data. This gives 0.82 F-measure. We
assume that the proposed approach (features and
classifiers) show a good transferability to another
language. This is a good point because it validates
our approach on data from another language.

In future, we plan to exploit the best models
generated in French for enriching the set of par-
allel sentences. This will permit to prepare data
necessary for the developement of simplification
methods for French. Parallel sentences may also
be helpful for othe NLP applications. Other di-
rections for future work are concerned with the
exploitation of other features for the alignment
of sentences, such as use of word embeddings to
smooth lexical variation or exploitation of external
knowledge. Besides, our appoach will be further
evaluated on data from other languages.
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Abstract
We present our initial evaluation of a proto-
type system designed to assist nurses in as-
signing subject headings to nursing narratives
– written in the context of documenting patient
care in hospitals. Currently nurses may need
to memorize several hundred subject head-
ings from standardized nursing terminologies
when structuring and assigning the right sec-
tion/subject headings to their text. Our aim is
to allow nurses to write in a narrative manner
without having to plan and structure the text
with respect to sections and subject headings,
instead the system should assist with the as-
signment of subject headings and restructur-
ing afterwards. We hypothesize that this could
reduce the time and effort needed for nursing
documentation in hospitals. A central compo-
nent of the system is a text classification model
based on a long short-term memory (LSTM)
recurrent neural network architecture, trained
on a large data set of nursing notes. A simple
Web-based interface has been implemented for
user interaction. To evaluate the system, three
nurses write a set of artificial nursing shift
notes in a fully unstructured narrative man-
ner, without planning for or consider the use of
sections and subject headings. These are then
fed to the system which assigns subject head-
ings to each sentence and then groups them
into paragraphs. Manual evaluation is con-
ducted by a group of nurses. The results show
that about 70% of the sentences are assigned
to correct subject headings. The nurses be-
lieve that such a system can be of great help
in making nursing documentation in hospitals
easier and less time consuming. Finally, var-
ious measures and approaches for improving
the system are discussed.

1 Introduction

An important task for hospital nurses is to docu-
ment the administrated patient care in order to en-
sure care continuity. These nursing (shift) notes

are typically stored in patients’ electronic health
records. However, documentation constitutes a
relatively large portion of nurses time, up to 35%,
and an average of 19% (Yee et al., 2012). Re-
ducing the time spent on documentation will free
up more time for direct patient care. As a means
to make the documented text easier to navigate
and process, e.g., for the purpose of planning and
extracting statistics, nurses in many countries are
required to perform some sort of structuring of
the text they write (Saranto et al., 2014). Such
structuring approaches include the use of docu-
mentation standards, classifications and standard-
ized terminologies (Hyppönen et al., 2014). Com-
pared to using fully unstructured free (narrative)
text, certain restrictions and requirements to the
documentation process are added. As an exam-
ple, in Finland nurses are nowadays expected to
structure the text they write by using subject head-
ings from the Finnish Care Classification (FinCC)
standard (Hoffrén et al., 2008). FinCC consist
primarily of two taxonomy resources, the Finnish
Classification of Nursing Diagnoses (FiCND) and
the Finnish Classification of Nursing Interventions
(FiCNI), and both of these have a three-level hier-
archy. For example, one branch in FiCND is: “Tis-
sue integrity” (level 1), “Chronic wound” (level 2)
and “Infected wound” (level 3). Another exam-
ple, a branch from FiCNI is: “Medication” (level
1), “Pharmacotherapy” (level 2) and “Pharmaceu-
tical treatment, oral instructions” (level 3). In sum,
FinCC consist of more than 500 subject head-
ings, making it challenging and time consuming
for nurses to use since they are required to mem-
orize, use and structure the text they write accord-
ing to such a large number of subject headings
(Häyrinen et al., 2010).

Our goal is to assist nursing documentation by
developing a system that is able to automatically,
or semi-automatically, assign subject headings to
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nursing narratives according to the current care
classification standard. A central component is a
text classification model based on a long short-
term memory (LSTM) recurrent neural network
architecture (Hochreiter and Schmidhuber, 1997;
Gers et al., 2000). We hypothesize that such a sys-
tem has the potential to reduce the time and ef-
fort needed for documentation. It could also in-
crease the consistency in the use of subject head-
ings, and potentially improve the documentation
quality. We see two use-cases for such a system:
One is where the system assists nurses in selecting
appropriate headings when they write, in a sug-
gestive manner, e.g., per sentence or paragraph;
A second use-case is where nurses are allowed to
write in an unstructured narrative manner, without
having to take into consideration the use of subject
headings. Instead the system should assign subject
headings afterwards and restructure the text under
the various subject headings when such a repre-
sentation is needed. In the presented experiment
we focus on the second use-case, where we eval-
uate the performance of a prototype system devel-
oped for this purpose.

2 Related Work

Natural language text is among the most complex
data types commonly used for storing and manag-
ing information. Thanks to continuous advance-
ments in the field of natural language processing
(NLP), computers are becoming capable of per-
forming increasingly complex tasks on this type
of data.

Denny et al. (2009) present an algorithm called
“SecTag” for detecting section headers in clinical
notes based on the free text. More precisely, they
focus on history and physical examination docu-
ments where the goal is to identify and normal-
ize section headers as well as to detect section
boundaries, evaluated with 29 section headers to
choose from. For this they use various NLP tech-
niques including word recognition, terminology-
based rules, and naive Bayesian classifier. Li et al.
(2010) present a system that categorizes sections
in clinical notes into one of 15 pre-defined section
labels. They use a Hidden Markov model which
expects as input clinical notes that have already
been split into sections. In Haug et al. (2014)
the goal is to develop a “Clinical Section Labeler”
which assigns standardized topics to the sections
found in clinical notes. These topics, 28 in total,

are here seen as separate from the section headings
used by the clinicians when writing, thus the sec-
tion headings are considered as input to the classi-
fier along with the free text. As classifiers they use
two variations of Bayesian networks.

Deep learning methods based on artificial neu-
ral networks (ANNs) are currently representing
state of the art in many NLP tasks (Zhang et al.,
2015; Tang et al., 2015), including text classifi-
cation, relation extraction and translation. In the
presented experiment/prototype system we use the
popular long short-term memory (LSTM) recur-
rent neural network architecture (Hochreiter and
Schmidhuber, 1997; Gers et al., 2000) for con-
ducting the text classification. In the data set used
here there are 676 unique headings to choose from
by the classifier.

3 Methods

3.1 User Interface

The prototype system is implemented in Python
with a simple Web interface using the Flask frame-
work (Grinberg, 2018). The interface allows users
to upload a text document (i.e. nursing narrative),
as shown in Figure 1. When pressing the create
headings button, the system first splits the text into
sentences and then performs word-level tokeniza-
tion. Each sentence is then fed to the pre-trained
text classification model (described below) which
assigns subject headings the one subject heading
with the highest confidence score according to the
classifier. Based on their assigned subject head-
ings, sentences are grouped into paragraphs – one
paragraph per unique subject heading. Figure 2
shows a translated example of how a nursing note
without subject headings (upper) is converted into
paragraphs with assigned subject headings (lower)
using the system. Although not utilized in the ex-
periment presented here, the interface also allows
the user to move sentences between paragraphs,
edit existing subject headings and add new subject
headings/paragraphs. In addition, when holding
the mouse cursor over a sentence the system shows
its top 10 subject heading suggestions according to
the classifier. These features provide the user with
ways to quickly correct the initial subject heading
assignments conducted by the system.

3.2 Text Classification

A central component of the system is the text clas-
sification model. The classification task is ap-
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Figure 1: Prototype Web interface.

Oxynorm 10 mg p.o. for abdominal pain when needed
to relieve pain. Eaten breakfast. NaCl 0.9 1——-1 can-
nula removed. Reads news and watches TV in recre-
ation room after breakfast. Feeling well and pain free
at the time, the oxynorm administered in the morning
helped. CRP decreased now 63, leuc 7.4, also in de-
cline. Eaten lunch. Sister visits after lunch. No need for
a sickness certificate. Wound treatment instructions and
pain prescriptions given. Has permission to go home in
the evening, sister comes to pick up at some point. Left
for home at 18.30.

PAIN
Oxynorm 10mg p.o. for abdominal pain when needed
to relieve pain.

NUTRITION
Eaten breakfast.
Eaten lunch.

FLUID THERAPY
NaCl 0,9 1——-1 cannula removed.

CURRENT HEALTH AND FUNCTIONALITY
Reads news and watches TV in recreation room after
breakfast.
Feeling well and pain free at the time, the oxynorm ad-
ministered in the morning helped.
Sister visits after lunch.
Left for home at 18.30.

DOCTORS VISIT
CRP decreased now 63, leuc 7.4, also in decline.
No need for a sickness certificate.
Has permission to go home in the evening, sister comes
to pick up at some point.

EDUCATION OF RELATIVES
Wound treatment instructions and pain prescriptions
given.

Figure 2: An example showing how a nursing note
written in a purely narrative manner (upper) is assigned
headings and structured using the system (lower). This
has been translated from Finnish to English.

proached as a multiclass classification task, where
each sentence is assumed to have one correct sub-

ject heading (i.e. class/label). There exist a num-
ber of different methods and tools that are suit-
able for this type of text classification, including
the already mentioned LSTM networks (Hochre-
iter and Schmidhuber, 1997; Gers et al., 2000),
convolutional neural networks (CNNs) (LeCun
et al., 1998), Random Forest classifiers (Liaw
et al., 2002) and support vector machine classifiers
(SVM) (Joachims, 1999). However, the focus of
this study is not to find the optimal text classifica-
tion method and parameter settings for this task.
This has been the focus of a previous study (under
review), where a range of different state-of-the-art
and baseline text classification methods are tested
and compared. The mentioned study indicated
that a bidirectional version of LSTM networks per-
forms best when compared to other classification
methods/models, including CNN, SVM and Ran-
dom Forest. A LSTM network is designed to pro-
cess sequential data in that it makes its final classi-
fication decision after having iteratively observed
each element in a sequence, where the order of the
elements matters. In our case, a sequence is a list
of words belonging to a sentence. This ability to
utilize word ordering and to detect long distance
word relations in the input sentences is a strength
of LSTM networks compared to other text classifi-
cation approaches relying on bag of word features.
In the bidirectional version of LSTM that we use,
a sentence is read from both left to right and right
to left. This network has been trained on the train-
ing set described below. We use the Python-based
Keras deep learning library (Chollet et al., 2015)
with Theano tensor manipulation library (Bastien
et al., 2012) as backend engine.

3.3 Training Data

The data set used for training the classifier is a
collection of approximately 0.5 million patients’
nursing notes extracted from a hospital in Finland.
Ethical approval for using the data was obtained
from the hospital district’s ethics committee and
research approval was obtained from the medical
director of the hospital district. The selection cri-
teria were patients with any type of heart-related
problem in the period 2005 to 2009. This includes
nursing notes from all units in the hospital visited
during their hospital stay. The data is collected
during a transition period between an older care
classification standard and the mentioned FinCC
standard, thus only a subset of the headings found
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CANNULA CARE
Taken care of the cannula himself. Bandage contains
stringy colourful mucus. NaCl cleaning + change of
bandages.

taken care of the cannula himself . cannula care
bandage contains stringy colourful mucus . cannula care
nacl cleaning + change of bandages . cannula care

Figure 3: An example showing how a paragraph (up-
per) is converted into a set of sentence-level training ex-
amples (lower). This has been translated from Finnish
to English.

there are from FinCC. We only use sentences oc-
curring in a paragraph with a subject heading,
which amounts to approximately 5.5 million sen-
tences, 133,890 unique tokens and approximately
38.5 million tokens in total. The average sentence
length is 7 tokens and the average number of sen-
tences per paragraph is 2.1. To reduce the num-
ber of unique subject headings and to ensure that
each included subject heading has a fair number
of training examples, we apply a lower frequency
threshold of 100. This result in 676 unique subject
headings, where their frequency count range from
100 to 222,984, with an average of 4,896. We con-
vert the data into training examples by splitting
each paragraph into sentences, each representing
a training example with input (X) being the sen-
tence and the output (y) being the associated sub-
ject heading of the paragraph. See Table 3 for
an example. This enables classification on sen-
tence level, which further allows restructuring and
grouping of sentences that are classified as having
the same or similar headings. The data set was
split into training (60%), development (20%) and
test (20%) sets.

Although not the focus of this paper, we report
the performance of the bidirectional LSTM classi-
fier when used to predict subject headings for the
test set, as a comparison to the experiment pre-
sented below. Performance is calculated as recall
at N (R@N), which is the average of how many
times the correct subject heading is found among
the top N suggested subject headings by the sys-
tem. R@1 is here equal to the classifier’s accu-
racy score on the test set. These results are pre-
sented in Table 1. We refer to this evaluation as an
automatic evaluation since no (additional) manual
evaluation is required.

Measure Score
R@1 / Accuracy 54.35%
R@10 89.54%

Table 1: The classifiers performance on the test set.
R@N is recall at N, reflecting the average of how many
times the correct subject heading is found among the
top N retrieved ones, over all sentences, in the test set.
R@1 is equal to accuracy.

4 Experiment

The main objective of the experiment is to assess
how well the described system is able to assign
relevant subject headings to nursing notes that are
written in a narrative manner, without using or
considering subject headings. A secondary objec-
tive is to report on feedback from nurses concern-
ing the potential use of such a system in a clinical
setting.

The nursing notes that we have in the existing
data set are all planned, written and structured ac-
cording to the ruling documentation standard –
where the text is split into sections labeled with
subject headings. Thus, to acquire relevant nurs-
ing notes for the evaluation – nursing notes writ-
ten in a way where the authors does not plan for or
consider the use of sections and subject headings –
we asked three domain experts with nursing back-
ground to write a couple of notes each in this way
based on made up artificial patients. This resulted
in a total of 20 nursing notes. These were then
presented to the system, one by one, which clas-
sified and assigned subject headings on sentence
level before grouping sentences under each head-
ing. The results were stored in a spreadsheet for
evaluation, containing a short description of the
patient case, the original nursing note and the ver-
sion with assigned subject headings on sentence
level. See Figure 2 for an example of one of
the nursing narratives/notes used in the evaluation,
both without and with the assigned headings and
restructuring conducted by the system.

Next, two domain experts (hereby referred to as
evaluators) were given the task of assessing how
well the system performed. For this the evaluators
were (a) instructed to use a four class scale when
manually assessing each sentence with respect to
their assigned headings, and (b) asked to answer
the open ended question “what do you think about
the current performance and functionality of the
system and its potential use in a clinical setting?”.
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Class Count Percentage
1 / Accuracymin 311 68.05%
2 93 20.35%
3 48 10.50%
4 5 1.10%
1 + 2 / Accuracymax 404 88.40%

Table 2: Average results from the manual evaluation.
Class description: 1 - Correct heading.
2 - Maybe correct heading. 3 - Wrong heading.
4 - Unable to assess.

The four classes are as follows:

1 - Correct heading (it correctly describes the
content of the sentence)

2 - Maybe correct heading

3 - Wrong heading

4 - Unable to assess

The proportion of sentences assigned to Class 1 is
equal to the accuracymin score of the system for
this task, while the sum of Class 1 and 2 can be
considered as the accuracymax score. So the ac-
tual accuracy score would be somewhere between
accuracymin and accuracymax.

5 Results

Initially the two evaluators disagreed in their as-
sessments of 30.45% of the sentences. To reach a
common consensus, the two evaluators discussed
these cases together with a third domain expert.
The results from the manual evaluation (consen-
sus) are presented as average counts and percent-
ages for each class in Table 2.

The percentage of correctly classified sentences
in the manual evaluation experiment is 68.05%
(Table 2). However, the actual accuracy score
of the system can be assumed to be some-
where between 68.05% (accuracymin) and 88.40%
(accuracymax). This is roughly 13% to 34% points
up from the R@1/accuracy score resulting from
the automatic evaluation in Table 1. When the sys-
tem is allowed to suggest 10 headings, R@10, the
correct heading is found among these for about
90% of the sentences in the test set. I.e. at least
one of the suggested 10 headings for a sentence
has been considered correct for about 90% of the
test set sentences in the manual evaluation.

The evaluators reported that they were generally
satisfied with the performance of the system. They

think that such a system/functionality could be
very useful to have as an integrated part of a hos-
pital information system/electronic health record
system, and could reduce the time and effort re-
quired to perform the documentation. They also
think that it has the potential to increase the qual-
ity of documentation by supporting the correct use
of such standardized terminologies. The evalua-
tors reported that the system showed a tendency
to assign subject headings with a high level of
specificity, and sometimes even too specific than
what would be practical. For example, for two
or more sentences describing different aspects of
pain management in the same nursing note, such
as treatment and medication, the system would in
some cases assign these to different subject head-
ings, and/or headings of different level of speci-
ficity/abstraction. Another observation was that
the system had sometimes difficulties in correctly
classifying sentences that covers multiple subjects.

6 Discussion

One obvious observation is that there is a rela-
tively large gap between the scores resulting from
the conducted manual evaluation (68.05%≤ accu-
racy ≤ 88.40%, Table 2) and the automatic eval-
uation scores (accuracy = 54.35%, Table 1). We
believe that this is caused by primarily two under-
lying problems: First, the data set spans two differ-
ent documentation standards (as described in Sec-
tion 3), which could be somewhat confusing to the
classifier. Second, the nurses do not necessarily
always use the correct subject headings when they
write. Thus it is likely, in particular for this type
of automatic evaluation, that higher scores will be
achieved when the classifier is trained and eval-
uated on a data set consisting of only one docu-
mentation standard. When looking at the R@10
scores (Table 1), the system suggests the correct
heading for about 90% of the sentences in the test
set. However, it is likely that the same problem of
“classification standard confusion” negatively in-
fluences this score too. For a use-case where, let
us say, the system suggests 10 headings per sen-
tence to the user when he/she is writing the nurs-
ing notes, this would mean that there is a very high
probability (≥ 90%) of finding a suitable/correct
subject heading among the suggested ones.

Based on their observations, the evaluators
found the system to sometimes assign subject
headings with an artificial detail level. One way to
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deal with this would be to allow the users to pre-
select the level in the hierarchy of the documenta-
tion standard that the system should aim for when
assigning subject headings. In addition, since a
unit in the hospital would typically not use all the
headings in the documentation standard, it should
be possible to limit the headings that the system
can choose from for different units.

To further improve the performance of the sys-
tem there are several, possibly complementary, ap-
proaches that could be explored. One approach
is to allow the user to manually correct the initial
classifications done by the system, e.g. by moving
sentences to their correct subject headings, and al-
lowing the user to add and remove subject head-
ings at will. Additionally, this type of manual
corrections could be used to further improve the
system/classifier. A possibly complementary ap-
proach could be to apply some form of classifica-
tion heuristic and/or feedback based on the confi-
dence scores produced by the classifier. For ex-
ample, when classifying a sentence, if the classi-
fier shows very similar confidence scores for the
top suggested subject headings, and if a subject
heading used in the same or a previous nursing
note, from the same patient and care episode, is
among these, one could have the system select
this one. Another example, if the classifier does
not show a clear preference for a single subject
heading when classifying a sentence, this could be
communicated to the user. Some type of clustering
of subject headings that are very similar (in terms
of form and/or meaning) within a single nursing
note could also be tried. It would also make sense
to exploit the taxonomic hierarchy underlying the
nursing documentation standard, e.g. during train-
ing and/or prediction as well as in the grouping of
sentences and possibly for merging some of the as-
signed subject headings. Another approach would
be to try using a more balanced data set for training
the classifier – balanced in terms of label/subject
heading frequencies. The use of class weighting
when training the classifier could also be tried.
With enough training data, it could also be an idea
to train a separate classifier per hospital unit. Fur-
ther performance gains could be achieved by also
training a classifier on the level of paragraphs as a
supplement to the sentence-level classification.

Although the focus of this work has been on as-
sisting nursing documentation, other professions
use subject headings in a similar fashion when

they write. One example is physicians and the
notes they write in relation to diagnosis and treat-
ment of patients. Thus we assume that the same
type of classification-based system could be use-
ful to other professions too.

7 Conclusions and Future Work

The presented prototype system for automated as-
signment of subject headings to nursing notes is
shown to perform well based on the reported ex-
periment. It achieves a classification accuracy
somewhere between 68.05% (accuracymin) and
88.40% (accuracymax). The domain experts eval-
uating the system reported that they believe such
a system could save both time and effort when it
comes to writing nursing shift notes in hospitals.
We argue that future improvements of the sys-
tem’s classification performance could be gained
through user feedback or by applying some heuris-
tic based on its confidence scores. In the presented
experiment we have the classification system learn
to classify text on the level of sentences. As future
work we are also considering exploring paragraph-
level classification for this task, primarily as a
supplement to sentence-level classification. Since
there are other professions who use subject head-
ings in a similar way as nurses when they docu-
ment, we believe that a similar system could also
be useful in other domains, for other professions.

As future work we aim to test this sys-
tem/classifier on a larger scale, where it will also
be evaluated when used in the initial writing of
nursing notes, by suggesting N subject headings
to the user for each sentence being written. We
will also strive to acquire a data set containing
only one documentation standard – the one cur-
rently being used in the targeted hospital district.
Then the following step would be clinical testing
and assessment of the impact of such a system (ex-
trinsic evaluation).
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Abstract

Psychiatric evaluation reports represent a rich
and still mostly-untapped source of informa-
tion for developing systems for automatic di-
agnosis and treatment of mental health prob-
lems. These reports contain free-text struc-
tured within sections using a convention of
headings. We present a model for automati-
cally detecting the position and type of differ-
ent psychiatric evaluation report sections. We
developed this model using a corpus of 150
sample reports that we gathered from the Web,
and used sentences as a processing unit while
section headings were used as labels of section
type. From these labels we generated a unified
hierarchy of labels of section types, and then
learned n-gram models of the language found
in each section. To model conventions for sec-
tion order, we integrated these n-gram mod-
els with a Hierarchical Hidden Markov Model
(HHMM) representing the probabilities of ob-
served section orders found in the corpus, and
then used this HHMM n-gram model in a de-
coding framework to infer the most likely sec-
tion boundaries and section types for docu-
ments with their section labels removed. We
evaluated our model over two tasks, namely,
identifying section boundaries and identifying
section types and orders. Our model signif-
icantly outperformed baselines for each task
with an F1 of 0.88 for identifying section
types, and a 0.26 WindowDiff (Wd) and 0.20
and (Pk) scores, respectively, for identifying
section boundaries.

1 Introduction

With the exponential growth of free text in elec-
tronic health records (EHRs)—which includes
mental health documents—it is ever more impor-
tant to develop natural language processing (NLP)
models that automatically understand and parse
such text. When incorporated in other systems,
these models may aid (1) clinical decision sup-

port, (2) the extraction of key population informa-
tion and trends, and (3) precision medicine efforts
where personalized information and trends are ex-
tracted and used in the treatment process (Demner-
Fushman et al., 2009; Hripcsak et al., 2003).

The majority of clinical NLP work has focused
on semantic parsing of clinical notes found in
EHRs. There are several challenges in automatic
understanding of unstructured text in EHRs, en-
compassing many levels of linguistic processing:
identifying document layouts, their discourse or-
ganization, mapping lexical information to seman-
tic concepts found in biomedical ontologies, as
well as understanding inter-concept co-reference
and temporal relations (Li et al., 2010). These
challenges are also present for mental health NLP
applications.

We present an approach to automatically model
the discourse structure of psychiatric reports as
well as segment these reports into various sec-
tions. Our model learns the section types, po-
sitions, and sequence and can automatically seg-
ment unlabeled text in a psychiatric report into
the corresponding sections. We hypothesize that
knowledge of the ordering of the sections can im-
prove the performance of a section classifier and a
text segmenter. To test this hypothesis, we train a
Hierarchical Hidden Markov Model (HHMM) that
categorizes sections in psychiatric reports into one
of 25 pre-defined section labels.

The remainder of this paper is organized as fol-
lows: we first introduce psychiatric reports and
their various types and conventions (§2). Next, we
discuss the task definition in detail (§3). We then
describe our approach including the corpus used,
and the two main components of our model (§4).
Additionally, we present and discuss the baselines
and experiments performed as well as the results
obtained from those experiments (§5). We follow
this with a review of related work on document
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section identification and text segmentation (§6).
Finally, we conclude and specify our contributions
(§7).

2 Psychiatric Evaluation Reports

A mental health assessment is the process through
which a psychiatrist or a psychologist obtains
and organizes necessary information about men-
tal health patients. This process usually involves
a series of psychological and medical tests (clin-
ical and non-clinical), examinations, and inter-
views (Reeves and Rosner, 2016). These proce-
dures serve the purpose of making a diagnosis that
then guides a treatment or a treatment plan (Asso-
ciation, 2018).

The output of a mental health assessment is a
mental health report. Psychiatric reports are sim-
pler subtype of this document type, and mainly
consist of long-form unstructured text. They
are the end product of psychiatric assessments
in which psychiatrists summarize the information
they gathered, as well as integrate the patient his-
tory, their evaluation, patient diagnosis, and sug-
gested treatments or future steps (Groth-Marnat,
2009; Goldfinger and Pomerantz, 2013). There
are several types of psychiatric reports that vary
depending on the type and purpose of assessment:
Psychiatric evaluation reports, crisis evaluation re-
ports, daily SOAP reports (Subjective, Objective,
Assessment, Plan), mental status exam reports,
and mini mental status exam reports, to name a
few (Association, 2006). Our study focuses on
psychiatric evaluation reports. Although there
is no one strict format, there are general guide-
lines that psychiatrists follow when writing psy-
chiatric evaluation reports. Drawing from the gen-
eral psychiatric evaluation domains, these reports
start with the patient’s identifying information,
followed by the patient’s chief complaints, pre-
senting illness and its history, personal and fam-
ily’s medical history, mental status examination,
and ending with the psychiatric medical diagnosis
and treatment plan. This information is typically
structured into an ordered list of headed sections
(Association, 2006). Table 1 contains a detailed
list of the main sections of a psychiatric evalua-
tion report in general order of appearance. Not all
listed sections appear in all psychiatric evaluation
reports, and they also do not necessarily appear in
the same order, although there is usually a general
pattern to the order.

Family History: Her mother was depressed and was
treated. Her mother is currently age 55 . . . There is no
family history of bipolar disorder, anxiety . . . Medical
history in the family is significant for her son, age 4, who
is having seizures . . . and several paternal great aunts
had breast cancer.

Figure 1: Excerpt from a psychiatric report showing
an example of implicitly including two different sec-
tions within another (namely, FAMILY PSYCHIATRIC
HISTORY in the first underlined portion, and FAMILY
MEDICAL HISTORY in the second underlined portion
within FAMILY HISTORY).

3 Task Definition

Our goal was to build models that learn the sec-
tion structure of an evaluation psychiatric report.
As discussed earlier, a psychiatric evaluation re-
port consists of several sections, often ordered in
a usual way. Therefore the task we tackle here
is to segment and classify blocks of unstructured
text (at the sentence level) drawn from psychi-
atric evaluation reports into their appropriate sec-
tion types. We assume that the reports follow the
general guidelines of psychiatric evaluation report
writing discussed in (§2).

There are four main challenges in section classi-
fication of clinical notes and mental health reports.
First, labels that psychiatrists use to designate sec-
tions are ambiguous and various (Li et al., 2010),
for example, a section titled IDENTIFICATION
OF PATIENT by one psychiatrist might be named
REFERRAL DATA or IDENTIFYING INFORMA-
TION by another. Second, psychiatrists often omit
some sections entirely or include them implicitly
within other sections or under other labels, for ex-
ample, the section CHILDHOOD EVENTS can be
included in a larger section such as FAMILY HIS-
TORY while STRENGTHS AND SUPPORTS can
be listed within Mental Status. Figure 1 shows an
example. Third, the sections’ order can be differ-
ent between different psychiatric reports. Fourth,
some section labels are omitted or skipped, es-
pecially if the information that would be placed
in that section is not relevant to the patient being
evaluated.

Additionally, With the section labels removed
from the reports, our segmentation task was to find
the section boundaries using sentences as the pro-
cessing unit. This task is similar to topic shift de-
tection in meeting minute, newscasts, and doctor-
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patient counseling conversations (both, written
and spoken). Psychiatric reports are highly struc-
tured , with specific types of information (e.g.,
prescribed medications) found in particular sec-
tions (e.g., Treatment Plan), and with various gen-
eral conventions for what information should ap-
pear in which sections, and in what order. How-
ever, the segmentation task is not trivial as it faces
the same aforementioned challenges. Addition-
ally, one must find highly distinctive features to
distinguish individual sentences (and thus, bound-
aries) in various sections as some of these sec-
tions can contain similar linguistic and structural
features and may even contain similar topic key-
words (e.g. language in FAMILY PSYCHIATRIC
HISTORY and SOCIAL HISTORY.

We identify the subtasks of this problem as (1)
learning and building a model for the sections’
order and presence in a report, (2) learning and
building models that describe the distinctive fea-
tures of the various section types, and (3) apply-
ing a combination of these two model to simulta-
neously identifying section boundaries and label
section types.

4 Approach

Given the sequential nature of the reports’ sec-
tions, we treat this ordering task as a sequence
labeling task. That is, given a psychiatric re-
port with n sections S = (S1, . . . , Sn), de-
termine the optimal sequence of section labels
O∗ = (O∗

1, . . . , O
∗
n) among all possible section

sequences. Hidden Markov Models (HMMs) have
been used successfully for sequence labeling in
a wide variety of applications, including specifi-
cally natural language processing and medical in-
formatics. In our problem formulation and ap-
proach, we follow and combine work presented
by Sherman and Liu (2008) and Li et al. (2010).
Both of these approaches used HMM-based mod-
els coupled with section or topic-specific n-gram
models to segment text. Sherman and Liu (2008)
focused on segmenting sentences within meeting
minutes into a set of predefined topics, while Li
et al. (2010) focused on identifying sections within
a clinical note documents. We take a supervised
learning approach where we learn the HMM pa-
rameters using a labeled corpus. Our implementa-
tion was generally guided by the work described
in Barzilay and Lee (2004) and (Rabiner, 1989).

To overcome the challenges outlined in (§3), we

first created a unified hierarchy of standardize sec-
tion labels types, based on observations in a 150
report corpus that we assembled. Second, while
Li et al. (2010) focused on the section level when
building their n-gram language models, we focus
on the sentence level, similar to Sherman and Liu
(2008). Additionally, to model the inclusion of
some sections within others as discussed in (§3)
we built a two-level Hierarchical HMM (HHMM)
(Bui et al., 2004) in which some states contain
HMM models for their implicit subsections. This
is in contrast to the approach presented by Li et al.
(2010), who used a flat HMM, disregarding any
hierarchy within the clinical notes’ sections. The
HHMM model was first proposed by Fine et al.
(1998) as a strict tree structure where each state
in the HHMM is an HHMM itself. This approach
was extended and tailored by researchers for var-
ious tasks such as the approach proposed by Bui
et al. (2004) who relaxed the original model to fit
general HMM structures and implementations.

In summary, to tackle the first subtask from
(§3) we built a two-level HHMM that models the
positions and order of the reports’ sections. To
tackle the second subtask, we built language mod-
els (namely, n-gram models) per section type that
describe distinctive lexical information for each of
those sections. We then couple the HHMM with
the n-gram models where the HHMM and HMM
states represent the known section labels, while
the states’ observations are the n-grams contained
within each of the individual sections. Finally,
to tackle the the third subtask, that is identifying
section boundaries, we follow a decoding scheme
using the Viterbi algorithm (discussed briefly in
§4.4).

In the remainder of this section we describe
the corpus we collected and annotated. Next, we
present the two components of the HHMM model,
that is, the states (modeling the section order) and
the observations (modeling the section language).
Finally we briefly discuss the process by which we
use the model to identify section boundaries.

4.1 Corpus

To the best of our knowledge there is no corpus of
psychiatric reports annotated with section labels,
so we created our own. We collected 150 pub-
licly available psychiatric evaluation report sam-
ples by crawling the web through custom search
engines (Google Custom Search Engine for Med-
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Parent Label Section Label 

# 

Words 

# 

Sentences 

Avg. Sent. 

Length 

% 

Present 

% 

Implicit 

- 
IDENTIFYING DATA 12 2 6 100 - 

CHIEF COMPLAINT 27 3 9 100 - 

MEDICAL HISTORY 

HISTORY OF PRESENT ILLNESS 232 29 8 95 10 

PSYCHIATRIC HISTORY 85 8 11 82 36 
SUBSTANCE ABUSE HISTORY 98 10 10 88 44 

REVIEW OF SYMPTOMS 150 19 8 96 51 

- 

SURGERIES 28 3 7 33 - 

ALLERGIES 4 2 2 98 - 
CURRENT MEDICATIONS 40 9 4 100 - 

FAMILY HISTORY 

BIRTH AND DEVELOPMENTAL HISTORY 59 5 10 31 51 

ABUSE HISTORY / TRAUMA 110 9 12 79 34 

FAMILY PSYCHIATRIC HISTORY 44 5 9 73 80 
FAMILY MEDICAL HISTORY 48 7 7 92 38 

SOCIAL HISTORY 80 7 11 76 45 

PREGNANCY 29 3 8 47 64 

- 

SPIRITUAL BELIEFS 12 2 5 24 - 
EDUCATION 32 3 8 68 - 

EMPLOYMENT 31 3 9 79 - 

LEGAL 10 1 5 20 - 

MENTAL STATUS 
MENTAL STATUS 155 18 9 95 11 

STRENGTHS AND SUPPORTS 8 1 8 71 43 

- 

FORMULATION 35 4 8 62 - 

DIAGNOSES 63 12 5 100 - 

PROGNOSIS 8 2 3 74 - 

TREATMENT PLAN 121 12 10 100 - 

 

 

 

 

 

 

 

 

 

 

 

Table 1: List of possible sections in a psychiatric report used in the corpus.

ical Transcriptionists1 and GoogleMT2) and other
sources 3. The reports we selected were complete
and adhere to the general guidelines for psychi-
atric report writing discussed in the previous sec-
tions. Some of the reports were anonymized sam-
ples of real reports, while others were mock re-
ports written for educational purposes.

We prepared the corpus in two stages. First, we
standardized the labels’ names, selecting a single
uniform name for each section type and mapping
corresponding section labels found in the corpus
to those names. For example, some reports con-
tained the section SCHOOL while others listed it
as EDUCATION. Here we selected EDUCATION
as the uniform section label across all reports.

Second, we created a hierarchy for the sec-
tion names which reflected implicit embedded sec-
tions types that we found in the corpus. There
were only three section types that included im-

1https://cse.google.com/cse/publicurl?
cx=010964806533120826279:kyuedntb2fy

2https://www.googlemt.com/#gsc.tab=0
3http://www.medicaltranscriptionsamples.

com/
http://mtsamples.com/
https://medword.com/psychiatry5.html
http://www.medicaltranscriptionsamplereports.

com/
http://onwe.bioinnovate.co/

psychological-assessment-example/

plicit subsections in our data, namely, MEDI-
CAL HISTORY, FAMILY HISTORY, and MEN-
TAL STATUS. For example, some reports con-
taining the section MENTAL STATUS might in
turn include information in that section about both
MENTAL STATUS EXAM and STRENGTHS AND
SUPPORTS. In this case we identified these im-
plicit subsection boundaries (that is, the bound-
aries were not identified with a section header) and
labeled those subsections with both the parent and
child label. Table 1 lists the the parent sections that
sometimes included other sections implicitly (first
column), the unified list of section types found in
the collected reports (second column), word and
sentence level statistics (columns 3-5), and per-
centage of reports containing those sections in the
corpus (last two columns). For both of these stages
we used all 150 reports.

Following standard procedure for supervised
machine learning, we split our corpus under a
cross-validation paradigm into two sets for train-
ing and testing, where 80% of the reports were
used in training and 20% for testing. This
amounted to 120 and 30 reports for training and
testing respectively.
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4.2 Modeling the Section Orders

As discussed before, we built an HHMM where
each state corresponds to a distinct section la-
bel. We introduce the terms state and parent state
when discussing the HHMM. A state is simply
an HMM state corresponding to a distinct section.
A parent state is an HHMM state corresponding
to a collection of ordered sections. To account
for sections listed implicitly, we created a two-
level HHMM where parent states contained states
representing the ordered subsections found in the
parent state section. Thus our model contained
25 states and three parent states corresponding to
information in Table 1. The first HHMM layer
contained both states and parent states, while the
second layer contained a total of 12 states corre-
sponding to the potential implicit subsections for
the three parent states. In our HHMM, each par-
ent state is simply an HMM itself. Thus our dis-
cussion of HMM parameter calculation applies to
both states and parent states.

Our model learned transition probabilities from
the labeled corpus. The state transition prob-
abilities capture constraints on section order-
ings. We estimated the probabilities between each
state s using Equation 1. Additionally, to account
for sparsity (that is, unseen section orders) we
smoothed the probabilities by the total number of
section labels tS following Laplace smoothing.

P (sj |si) =
count(si, sj) + 1

count(si) + tS
(1)

The second level HMM models contained
within the parent states follow the same scheme in
probability estimation, but differ in the smoothing
parameter (tS). Here, the total number of section
labels tS depends on the number of subsections in
each of the parent states. For example, the parent
state MEDICAL HISTORY contains a total of four
subsections or states, and thus its HMM model is
smoothed by tS = 4. Finally, all of the model’s
states were linked with empty transitions in ad-
dition to self-looping ones to account for missing
sections as well as a section continuation, respec-
tively (i.e. indicating a section shift or a continua-
tion).

4.3 Modeling Section Language

To tackle the second subtask identified in (§3), we
built n-gram language models (Jain et al., 2015)
that captured distinctive lexical information con-

tained within the individual sections. This, in
turn, helped classify unknown blocks of text (that
is, text unseen previously by the trained mod-
els) within a report into their respective sections.
We opted to use bigrams as our training corpus
because higher n-gram models were extremely
sparse, and had poor performance. This is con-
sistent with significant research showing that in
most applications bigrams work well and better
than others (Reynar, 1998).

We built independent bigram models for each
section type in the reports, using only text from
that section type. Additionally, for each of the
three section types represented by the parent states
(discussed above) we built bigram models using
text found in all of the contained subsections. A
common problem that arises with n-gram models
is sparsity of phrases or words. This is especially
the case when training on a small corpus. Given
our relatively small corpus, our models were quite
sparse at first, however, we used Laplace Smooth-
ing as a solution.

Similar to transition probabilities, our HHMM
learned observation probabilities from the labeled
corpus. We trained a bigram model for each state
s of the HHMM. Equation 2 shows the computa-
tion for the likelihood of a sentence sequence wk

0

(i.e., a long sequence of words) to be generated
by a state s. Equation 3 shows the computation
for estimating the specific state bigram probabil-
ity along with Laplace smoothing counts for the
corresponding section S (VS represents the vocab-
ulary size for that section state).

P (wk
0 |s) =

k−1∏

0

Ps(wi+1|wi) (2)

Ps(wi+1|wi) =
countS(w

i+1
i ) + 1

countS(wi) + |VS |
(3)

We used a rule-based approach to detect uni-
formly structured sections containing only stan-
dard medical terms such as medications and addi-
tional key terms. The sections mapped with hard-
coded rules are the CURRENT MEDICATIONS
and the standard DSM-IV multiaxal assessment
contained within the DIAGNOSIS section, one of
which is illustrated in Figure 2. We recognize that
this standard has been dropped with the introduc-
tion of DSM-5 in 2013, however, our dataset fol-
lows the older standard as most psychiatric reports
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in existence do since the new standard is relatively
new.

Figure 2: Example of DSM-IV multiaxal diagnosis as-
sessment.

For the MEDICATIONS section we used pub-
licly available datasets containing lists of medica-
tions (eMedicineHealth, 2018), and the U.S. Na-
tional Library of Medicine’s RxNorm dataset (Liu
et al., 2005). String-matching was additionally
used to locate the DIAGNOSIS sections as our al-
gorithm would search for the key headers “Axis I,
II, III, IV, V”.

Therefore we generated 26 bigram models, one
for each section type (except for the two rule-
based types) plus three parent section types.

4.4 Decoding

We integrated the bigram models with the HHMM
and then used this bigram-HHMM model in a de-
coding framework to infer the most likely sec-
tion boundaries and section types for documents
with their section labels removed. We used the
Viterbi algorithm and applied the following equa-
tion to obtain the most likely labeling of sections
O∗, where n is the section index, and kn is the
word index for section n:

O∗ = argmax
s

P (s)P (wkn
0 |s)

= argmax
s1s2...sn

P (s1)P (wkn
0 |s1)×

n∏

i=0

P (si|si−1)P (wkn
1 |si)

5 Results and Discussion

As discussed above, we randomly split the corpus
into training and testing sets in a cross-validation
setup, using ten folds, resulting in 120 reports for
training and 30 for testing in each fold. Our mod-
els were trained to learn a total of 25 distinct sec-
tions. Here we present our evaluation methods
and results, describing our baseline approaches, as
well as the performance of both the baselines and
our method averaged across the test sets.

5.1 Evaluation Methods

There are two problems that our system solves: 1)
the section labeling problem —applying the cor-
rect section type to each section—and 2) the sec-
tion segmentation problem—identifying the cor-
rect section boundaries. We evaluate our system’s
performance on these two problems separately.

For the section ordering, we evaluated the per-
formance of the model on each section using the
F1 measure averaged across all folds. As for
the boundary detection problem, we use the Win-
dowDiff (Wd) (Pevzner and Hearst, 2002) and Pk

(Beeferman et al., 1999) metrics. These metrics
compare the number of segmentation boundaries
between a system’s output and a gold standard by
observing a scrolling window of text in the docu-
ment, and run from 0 to 1, with scores closer to 0
being better. Wd increases (gets worse) when the
boundaries are different. Similarly Pk increases
when a section type transition (i.e., a section type
for this study) is different. The Wd score repre-
sents the probability that the number of boundaries
found by the system is different from that in the
gold standard, while the Pk score represents the
probability that any two sentences are incorrectly
listed as being in the same section.

5.2 Baseline Methods

We compared our system’s performance in find-
ing the correct labels of sections in a report to
two baseline methods. The first method was in-
troduced as a baseline by Li et al. (2010). This
method uses bigrams to independently classify
each section, disregarding any section order in-
formation. For the second baseline, we followed
the primary approach proposed by Li et al. (2010)
which is a flat HMM model built similarly to
our model as described previously (§4), but op-
erates on a section level rather than a sentence
level. Li’s method ignores hierarchical informa-
tion where some report sections are implicitly in-
cluded within other sections. Our implementation
of this model included 25 states corresponding to
each section within the reports. Both of these
methods assume that the section boundaries are
given, and as such they only generate a sequence
labeling for section types.

We compared our system’s performance in
identifying section boundaries to two other base-
line methods. The first is LCSeg—a popular text
segmentation baseline (Galley et al., 2003). LC-
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Section
Independent Bigram Flat HMM HHMM
P R F1 P R F1 P R F1

IDENTIFYING DATA 0.83 0.81 0.82 0.96 0.94 0.95 0.98 0.95 0.97
CHIEF COMPLAINT 0.68 0.65 0.67 0.88 0.74 0.80 0.94 0.89 0.91

MEDICAL HISTORY 0.66 0.66 0.65 0.93 0.88 0.90 0.93 0.88 0.90
HISTORY OF PRESENT ILLNESS 0.69 0.67 0.68 0.91 0.86 0.88 0.94 0.86 0.90

PSYCHIATRIC HISTORY 0.65 0.60 0.62 0.74 0.85 0.79 0.93 0.86 0.89
SUBSTANCE ABUSE HISTORY 0.69 0.69 0.69 0.88 0.80 0.84 0.95 0.83 0.89

REVIEW OF SYMPTOMS 0.8 0.67 0.73 0.79 0.86 0.82 0.94 0.87 0.90
SURGERIES 0.4 0.31 0.35 0.79 0.51 0.62 0.85 0.64 0.73
ALLERGIES 0.6 0.80 0.69 0.90 0.86 0.88 0.88 0.91 0.89

CURRENT MEDICATIONS 0.87 0.74 0.80 0.90 0.84 0.87 0.91 0.93 0.92
FAMILY HISTORY 0.60 0.56 0.58 0.92 0.86 0.89 0.92 0.86 0.89

BIRTH AND DEVELOPMENTAL HISTORY 0.68 0.50 0.57 0.71 0.68 0.69 0.89 0.80 0.84
ABUSE HISTORY / TRAUMA 0.42 0.33 0.37 0.87 0.77 0.82 0.96 0.81 0.88

FAMILY PSYCHIATRIC HISTORY 0.57 0.59 0.58 0.92 0.87 0.89 0.92 0.90 0.91
FAMILY MEDICAL HISTORY 0.65 0.60 0.62 0.92 0.89 0.90 0.94 0.89 0.91

SOCIAL HISTORY 0.67 0.69 0.68 0.66 0.89 0.76 0.93 0.81 0.87
PREGNANCY 0.6 0.67 0.63 0.89 0.51 0.65 0.92 0.80 0.86

SPIRITUAL BELIEFS 0.73 0.46 0.56 0.90 0.9 0.90 0.93 0.88 0.90
EDUCATION 0.66 0.61 0.63 0.71 0.77 0.74 0.92 0.84 0.88

EMPLOYMENT 0.65 0.62 0.63 0.91 0.88 0.89 0.92 0.86 0.89
LEGAL 0.16 0.62 0.26 0.67 0.61 0.64 0.72 0.68 0.70

MENTAL STATUS 0.56 0.72 0.62 0.85 0.94 0.89 0.85 0.94 0.89
MENTAL STATUS EXAM 0.64 0.63 0.64 0.83 0.96 0.89 0.85 0.96 0.90

STRENGTHS AND SUPPORTS 0.42 0.82 0.56 0.80 0.92 0.86 0.82 0.92 0.87
FORMULATION 0.56 0.71 0.63 0.86 0.78 0.82 0.92 0.82 0.87

DIAGNOSES 0.88 0.76 0.81 0.96 0.95 0.96 0.98 0.98 0.98
PROGNOSIS 0.66 0.62 0.64 0.84 0.82 0.83 0.90 0.86 0.88

TREATMENT PLAN 0.74 0.83 0.78 0.95 0.93 0.94 0.97 0.93 0.95
Macro-Average 0.62 0.64 0.62 0.85 0.82 0.83 0.91 0.86 0.88
Micro-Average 0.62 0.62 0.62 0.86 0.83 0.84 0.93 0.91 0.92

Table 2: Section type identification results (precision, recall and F1 scores) per section as well as micro and macro
averages. Parent sections are in bold.

Seg assumes that a topic change in written text oc-
curs when chains of frequent repetitions of words
begin and end. It rewards shorter chains over
longer ones and further rewards chains with more
repeated terms. Finally, the lexical cohesion be-
tween two chains is evaluated using a cosine simi-
larity. The second method is TopicTiling—an aug-
mentation of the well-known TextTiling algorithm
(Hearst, 1994). TopicTiling (Riedl and Biemann,
2012) is LDA-based and represents segments as
dense vectors of terms contained in dominant top-
ics (as opposed to sparse term vectors).

5.3 Results

For the section labeling problem, our model
equaled or outperformed both baselines in all
the sections. Table 2 shows the precision, re-
call, and F1 scores for the two baselines and our
model. The DIAGNOSIS section saw the best per-
formance due to a rule-based approach. Simi-
larly, CURRENT MEDICATIONS achieved high
scores due to the use of dictionaries. All three

models performed the worst in identifying the LE-
GAL section. We suspect that this is due to the
low prevalence of this section and its content in
the dataset. Similarly, sections with lower preva-
lence saw lower performance than others. Both
baselines performed well in identifying the IDEN-
TIFYING DATA and DIAGNOSIS sections due to
their highly distinctive language. Our model per-
formed better for all implicit subsections, and sig-
nificantly better for two (i.e., PREGNANCY and
BIRTH AND DEVELOPMENTAL HISTORY. Fi-
nally, our model performed exactly the same as the
Flat HMM baseline for the three parent types, as
our model reduces to the Flat HMM in these cases
and because the flat HMM model assumes a fixed
general ordering of the sections.

Since the report sections vary in size, we com-
puted both macro- and micro-averaged precision,
recall, and F -measure (last two rows in Table 2).
Our model’s micro-averaged F -measure is above
90% which is significantly higher than both the
Flat-HMM and the independent bigram baselines
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performing at 85% and 62% respectively. Sim-
ilar to Li et al. (2010), both our HHMM and
the Flat-HMM baseline seemed to neither overfit
nor underfit, which is indicated by higher micro-
averaged compared to the macro-averaged scores.

As for the boundary detection problem, and
similar to the evaluation in Sherman and Liu
(2008), we performed two experiments for the
baselines since both baselines require a parame-
ter representing the number of boundaries (num-
ber of topics minus one). In the first experiment
we allowed the parameter to be chosen by LCSeg
and TopicTiling, respectively, while in the second
experiment, we provide the algorithms with the
correct number of boundaries (i.e., number of sec-
tions minus one). Our model however, needs no
prior information regarding the number of sections
present in a given report. Table 3 shows the Wd

and Pk scores for all three approaches. Our sys-
tem again outperformed both baselines indicated
by lower Wd and Pk error rates overall. Both
baselines performed better when the number of
boundaries is known—an expected result. In fact,
TopicTiling outperformed our approach by a small
margin when provided with the correct parameter
value. We note, however, that when running open
loop on new text, the number of sections will be
unknown, so this result does not reflect how we
envision the approach being used.

# of Boundaries Algorithm Pk Wd 

System Choice 
LCSeg 0.29 0.37 

TopicTiling 0.27 0.33 

Provided 
LCSeg 0.25 0.33 

TopicTiling 0.20 0.25 
 HHMM 0.20 0.26 

 

 Table 3: Section boundary identification results.

6 Related Work

As discussed above, our work simultaneously
solves two problems within a psychiatric evalua-
tion report: identifying section types and identify-
ing section boundaries. The first problem has been
referred to as argumentative zoning (Teufel et al.,
1999; Li et al., 2010; Denny et al., 2009), while
the second is a type of text segmentation problem
(Hearst, 1994; Riedl and Biemann, 2012). Argu-
mentative zoning refers to classifying text sections
into mutually exclusive categories. Work on this

task is mostly centered around identifying scien-
tific article sections (e.g., abstract, introduction,
methodology, etc.) (Teufel, 1999).

Our work is a combination and extension of
Li et al. (2010)’s work on identifying section
types within clinical notes and Sherman and Liu
(2008)’s work on text segmentation of meeting
minutes. Both approaches integrated n-gram lan-
guage models into HMMs. The former mod-
eled HMM emissions at the section level using
bigrams, while the later modeled the emissions
at the sentence level and used unigrams and tri-
grams. Other approaches followed similar strate-
gies in segmenting story text and in creating gener-
ative models for detecting story boundaries (Mul-
bregt et al., 1998; Yamron et al., 1998). More re-
cently, Yu et al. (2016) used a hybrid deep neural
network combined with a Hidden Markov Model
(DNN-HMM) to segment speech transcripts from
broadcast news to a sequence of stories.

More broadly, there has been some work on ap-
plying NLP in the mental health domain. How-
ever, due to lack of readily available clinical
data (e.g. clinical reports), researchers have fo-
cused on non-clinical sources (e.g., social me-
dia) (Chapman et al., 2011). Several algorithms
were developed to detect specific emotions from
suicide notes and online journals (Pestian et al.,
2012; Strapparava and Mihalcea, 2008), while
twitter data was used to detect distress and sui-
cide ideation (Homan et al., 2014; O’Dea et al.,
2015). Additionally, twitter data was used to mea-
sure mood valence and detect depression (Sadilek
et al., 2013; De Choudhury et al., 2013; Cop-
persmith et al., 2015). Facebook data was used
to measure emotion contagion and to predict
post-partum depression (Coviello et al., 2014;
De Choudhury et al., 2014). Instead of social me-
dia and publicly available, non-clinical data Al-
thoff et al. (2016) used counseling conversations
gathered using a messaging service and developed
discourse analysis methods to measure the corre-
lation of outcomes with various linguistic aspects.

7 Contributions

To the best of our knowledge, our work represents
the only attempt at detecting the position and type
of psychiatric report sections. In this paper we
present an approach that applies and extends ear-
lier work on document section discovery and seg-
mentation. We collected a corpus of psychiatric
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documents and created a unified hierarchy of sec-
tion labels. We built an n-gram-based HHMM
model that successful detects the order of sec-
tions as well as their boundaries within a given re-
port. We evaluated our model’s performance over
two separate tasks, namely the section ordering
task and the section boundary identification. Our
model outperformed baselines for both of those
tasks. Finally, our approach further confirms that
learning the section ordering of a psychiatric re-
port yields better performance for boundary iden-
tification and text segmentation.
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Abstract

In this article, we describe the development of
annotation guidelines for family history infor-
mation in Norwegian clinical text. We make
use of incrementally developed synthetic clin-
ical text describing patients’ family history re-
lating to cases of cardiac disease and present
a general methodology which integrates the
synthetically produced clinical statements and
guideline development. We analyze inter-
annotator agreement based on the developed
guidelines and present results from experi-
ments aimed at evaluating the validity and ap-
plicability of the annotated corpus using ma-
chine learning techniques. The resulting anno-
tated corpus contains 477 sentences and 6030
tokens. Both the annotation guidelines and the
annotated corpus are made freely available and
as such constitutes the first publicly available
resource of Norwegian clinical text.

1 Introduction

The limited availability of clinical text corpora
constitutes a major challenge for the develop-
ment of clinical NLP tools. Such text origi-
nates in the (electronic) health record (EHR), and
access to and use of the EHR is governed by
strict data privacy and health service regulations,
which usually restricts secondary use and pro-
hibits re-distribution and sharing with the larger
NLP community. Among notable exceptions are
anonymized health record texts published as part
of the i2b2 challenges (Uzuner and Stubbs, 2015)
and the CLEF corpus (Roberts et al., 2008b). For
languages other than English the situation is even
more difficult, and despite notable annotation ef-
forts (Dalianis et al., 2012), the underlying corpora
are largely unavailable.

Clinical texts are radically different in form and
function from other biomedical texts: They are
communicative, conveying information between

health service providers, terse (in that the patient
is implicit), and very specialized according to the
role of the narrative and profession of the author
(Allvin et al., 2010; Røst et al., 2008). In this
work, the targeted narrative of family history cor-
responds to the anamnesis recorded by the cardi-
ologist when interviewing the patient as part of a
consultation. However, lacking a corpus of family
history statements, we decided to develop a syn-
thetic corpus (Lohr et al., 2018; Boag et al., 2018).

Development of most NLP tools requires man-
ually annotated data and the design of annotation
guidelines is crucial for consistent and high qual-
ity data suitable for machine learning and classifi-
cation. Development of annotation guidelines is a
time consuming process which in the case of clin-
ical data often also requires access to domain ex-
perts (clinicians). The question of how to involve
the clinician in the annotation process and make
the best use of their domain knowledge is there-
fore highly relevant.

This article describes the systematic develop-
ment of annotation guidelines for family history
information in Norwegian clinical text. We make
use of incrementally developed synthetic clinical
text describing patients’ family history relating to
cases of cardiac diseases. The domain expert is
an integral part of this methodology and generates
synthetic examples that challenge the guidelines
and further participates both in the annotation and
development of guidelines. In doing so, the do-
main knowledge of the clinician informs the anno-
tation process systematically. Measures of inter-
annotator agreement is actively used to improve
the annotation guideline, as well as to extend the
synthetic corpus and range of annotated concepts.

In the rest of the paper, we describe the method-
ology for corpus generation and annotation guide-
line design in more detail and provide an overview
of our current state of progress in the fam-
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ily history domain. We analyse inter-annotator
agreement based on the developed guidelines and
present results from experiments aimed at evalu-
ating the validity and applicability of the purpose-
made annotated corpus using machine learning.

2 Family history in clinical text

A family history is an important part of the med-
ical record. It helps the clinician in identifying
risk factors, in diagnosing conditions that have ge-
netic components, and in identifying family mem-
bers that should be offered genetic counselling or
medical follow up. Specific patterns of disease
or symptoms in a family suggest modes of inheri-
tance, and could be helpful in the diagnosis of an
unrecognised disease or syndrome. For example,
if only men in the family are affected, one might
expect an X-linked trait, or if approximately half
of the offspring in a generation seem to be af-
fected, it would suggest an autosomal dominant
disease. In the cases where a pathological muta-
tion has already been identified, the pedigree is
used to plan further genetic screening or coun-
selling. Figure 1 shows an example pedigree with
a typical autosomal dominant inheritance pattern.

For some diseases, the course of events in the
patient’s family are important in judging the pa-
tient’s own risk of serious events. In patients with
hereditary hypertrophic cardiomyopathy, the Eu-
ropean Society of Cardiology recommends using
an online risk calculator to estimate a patient’s 5
year risk of sudden cardiac death (SCD). Among
the seven factors included in the underlying model
– a strong contributor to individual risk – is a his-
tory of SCD in first degree relatives (Elliott et al.,
2014).

Family histories occur as descriptive text in the
EHR, but acknowledging that computational rea-
soning about family history have substantial ben-
efits in research, diagnosis and decision support
where many tools has been developed for inter-
active pedigree input (Welch et al., 2018). The
underlying objective of our NLP challenge is to
be able to infer the pedigree of a patient from
text. However, even checking consistency of fam-
ily history information represented in OWL proves
to be a challenge (Stevens et al., 2014). A po-
tential outcome of our work would be to trans-
form statements about pedigree into tabular for-
mats directly usable in risk calculators and for
bioinformatics application like genome-wide anal-

Figure 1: An example pedigree chart with a typical
autosomal dominant inheritance pattern. Horizontal
rows represent generations, lines represent relation-
ships, lines of descent and sibship. Squares are male,
circles female, and diamond shape is unknown gender.
A symbol with a ‘P’ inside denotes a pregnancy. Diag-
onal lines through symbols denote deceased individu-
als and the text below their age at the time of death (eg.
‘d. 43’ means died when 43 years old). Filled sym-
bols represent individuals with manifest disease, sym-
bols with a vertical line are healthy gene carriers who
may develop disease later. The small arrow denotes the
current patient (“self”) and the arrow with the ‘P’ is the
proband or index patient where the genetic analysis of
the family started (Bennett et al., 2008).

ysis (Hiekkalinna et al., 2005).

2.1 Previous work
There has been some previous work aimed at ex-
tracting family history information from clinical
text. Bill et al. (2014) annotate 284 sentences from
the publicly available MTSamples corpus of syn-
thetically produced English clinical text for infor-
mation about family members and clinical obser-
vations with some additional attributes (vital sta-
tus, negation and age of death). However, they do
not provide any measures of inter-annotator agree-
ment. Polubriaginof et al. (2015) compared the in-
formation contained in structured and free-text de-
scriptions of family history information and found
that the free-text descriptions were more compre-
hensive.

In another work, Goryachev et al. (2008) de-
veloped a pipeline of rule based systems to detect
family members and diagnosis concepts; and, then
assign the family diagnosis to a specific family
number. The authors run standard NLP tools such
as sentence splitter and part-of-speech taggers on

112



discharge summary notes. The pipeline system is
related to Friedlin and McDonald (2006) in only
identifying diagnosis concepts that are present in
standard medical dictionaries and do not perform
relation extraction as performed in this paper.

Both rule based systems (Abacha and Zweigen-
baum, 2011) and machine learning methods such
as Roberts et al. (2008a) and Minard et al. (2011)
use multi-class SVMs to perform relation extrac-
tion from clinical reports. Our work in this pa-
per is closest to the work of Roberts et al. (2008a)
who manually annotated cancer narratives for en-
tities and relations and, then, trained and tested a
one-vs-rest SVM classifier for training and testing.
In this paper, we employ widely used features in
general purpose named entity recognition (Hong,
2005; Miwa and Sasaki, 2014) to train the SVM
models.

3 Incremental annotation guideline and
synthetic corpus development

One immediate goal of this work is to develop a
tool for the extraction of family history informa-
tion from Norwegian clinical text. Due to the un-
availability of the real health records describing
family histories, we developed a methodology for
annotation guideline development which makes
use of an incrementally developed synthetic cor-
pus. The textual data contained in the corpus was
produced by a clinician who has extensive expe-
rience with clinical work and genetic cardiology.
The data consists of statements that summarize
the family history of a patient and will typically
correspond to a small part of a patient journal.
The descriptions were made by performing web
searches for images of “autosomal dominant pedi-
gree”, and pseudo-randomly describing parts of
the displayed pedigrees while assigning invented
but realistic medical events. No real patient his-
tories are reproduced, but coincidental similarities
must be expected. The text does not contain any
personal identification information.

The first step in a semantic annotation of text
is to decide upon the entities and the relations
that are interesting to extract or characterize.
Biomedicine employs terminologies and classifi-
cations that may be used for annotation (Savova
et al., 2010). In our domain of family history,
we started with family members and relationships,
and largely ignored medical conditions apart from
death or known (cardiac) disease in general.
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Corpus

Clinician
annotation

Independent 
annotation

Annotated
corpus

Annotated 
corpus

Annotation 
Guideline

Alignment

Corpus 
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Revised
Annotation
Guideline

Start

Guideline
revision

Figure 2: Incremental development of corpus and an-
notation guidelines

The guideline developers consisted of a clini-
cian and three computational linguists and/or com-
puter scientists. We usually maintained two roles:
The clinician would produce a set of representa-
tive sentences and along with one of the others
propose an annotation scheme for these. Then, the
clinician would annotate while another indepen-
dent person not involved in the design of the an-
notation scheme would make an independent an-
notation. The results were compared and discrep-
ancies were recorded. We (sometimes artificially)
could identify both semantic and pragmatic dis-
crepancies. Semantic discrepancy would signify
a misunderstanding of the underlying domain and
required amending the ontology, whereas the prag-
matic discrepancy would uncover an underspeci-
fied or incomplete annotation rule which could be
further specified by adding more examples to the
corpus. The drivers and amendments in this quiz-
like game is shown in the table 1.

Figure 2 shows the double loops of corpus pro-
duction and guideline development. As shown,
the family history statements were produced it-
eratively. In the initial round, the clinician was
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Driver Amendment

Guideline
iteration

Semantic dis-
crepancy

Add concept or
revise guideline

Corpus
Iteration

Pragmatic
discrepancy

Add sentence to
corpus

Table 1: Drivers and amendments guiding the develop-
ment of annotation guidelines.

asked to produce a set of representative statements
about SCD-related family history. Example 1 be-
low shows a sentence from the corpus.

(1) Indekspasienten
Index-patient

er
is

hans
his

onkel
uncle

på
on

farssiden,
father’s-side,

som
who

hatt
had

hjertestans
cardiac-arrest

og
and

fått
had

implantert
implanted

ICD.
ICD.

‘The index patient is his uncle on the father’s
side, who had cardiac arrest and implanted ICD.

Following the initial iterations and discussions
with the clinician the need to account for i) re-
lations to groups of family members, ii) tempo-
ral statements, and iii) negation emerged. Dur-
ing this iteration the clinician was therefore tasked
with the generation of statements that challenged
the current guidelines, whilst still producing rep-
resentative family statements. Example 2 shows
an example sentence containing a temporal state-
ment and example 3 shows another type of tem-
poral statement describing the age of the family
member at the time of diagnosis.

(2) Han
He

har
has

kjent
felt

hjertebank
heart-palps

de
the

siste
last

fire-fem
four-five

månedene.
months

‘He has been feeling heart palpitations during the
last four-five months’

(3) Broren
Brother-the

fikk
got

diagnosen
diagnosis

i
i

femti-årene.
fifty-years

‘The brother was diagnosed in his fifties’

After arriving at a fairly stable set of guidelines,
a large portion of the data set (320 sentences) was
doubly annotated. Following this, disagreements
were resolved in a round of consolidation between
the annotators. The final portion of the data set
(91 sentences) was then annotated doubly and the
resulting inter-annotator agreement on these data
sets is reported here in Section 4.5.

All annotation was performed using the Brat
web-based annotation tool (Stenetorp et al., 2012).
The data was manually segmented and tokenized
prior to annotation.

4 Annotation guidelines

The following section presents an overview of the
resulting annotation guidelines. The annotation
of the corpus distinguishes semantically relevant
clinical entities and shows how these relate to each
other in the text via a set of relations. Figure
4 shows a graphical overview of the annotation
schema, where rectangles indicate core clinical en-
tities, ovals indicate modifier entities, and all pos-
sible relations are indicated by directed arcs.

4.1 Clinical entities
Clinical entities are marked with one of the fol-
lowing entity types:

• Family describes various family members
(e.g. onkelen ‘the uncle’, bestefar ‘grandfa-
ther’).

• Self is used only for the patient under con-
sideration (e.g. pasienten ‘the patient’, hun
‘she’).

• Index entities designate the property of be-
ing the index patient or proband, i.e. the
first identified family member with disease
indekspasienten ‘the index patient’.

• Condition entities describe a range of
clinical conditions such as diseases (ko-
ronarsykdom ‘coronary disease’), diagnoses,
various types of mutations, test results
(testet negativt ‘tested negative’), treatments
(hjertetransplantert ‘heart-transplanted’),
and vital state (død ‘dead’, frisk ‘healthy’).

• Event entities describe clinical events (e.g.
hjertestans ‘cardiac arrest’ and synkope ‘syn-
cope’).

The distinction between conditions and events re-
late to the temporal extension of the entity de-
scribed: an event is something that happens and
then is over, but a condition is a prolonged state
of the patient, for instance, the patient has a heart
attack (Event), but from this point on she is con-
sidered to have heart disease (Condition).

In addition to the main clinical entities de-
scribed above, the annotation guidelines also dis-
tinguish a set of modifier entities that further de-
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Figure 3: Schematic diagram showing the possible relations between entities. The different relations are marked
with a number to avoid cluttering. Holder: 1, 2, 4, 5, 6, 7, 8; Modifier: Dotted lines; Related_to: 3, 9a;
Subset: 9b; Partner: 9c.

Self Family Condition Event Temporal
Pasientens søster fikk diagnosen i forbindelse med en synkope for fire år siden
Patient’s sister got diagnosis in conjunction with a syncope for four years ago

Related_to

Holder

Holder

Modifier

Figure 4: Annotation of clinical entities and relations for an example sentence from the corpus.

scribe the clinical entities for a number of proper-
ties that are relevant for semantic interpretation of
family history information:

• Side entities describe the side of the fam-
ily and thus modify Family entities (e.g.
farssiden ‘paternal side’).

• Age entities describe the age of a family
member 40 år gammel ‘40 years old’.

• Negation entities mark lexical items that
signal negation, so-called negation cues in
the terminology of Morante and Daelemans
(2012). These may be negative adverbs, such
as e.g., ikke ‘not’, aldri ‘never’, or negative
determiners/pronouns ingen ‘nobody’. Note
that in contrast to Morante and Daelemans
(2012), we do not annotate morphological
negation cues (e.g. im-possible). In this ver-
sion of the guidelines, we treat negation as
encompassing uncertainty. The main reason
for this is that just like the presence of nega-
tion, it marks missing information in the fam-
ily history.

• Amount modifiers describe quantifiers that
describe numerical properties of clinical en-
tities, e.g. to ‘two’, mange ‘many’.

• Temporal modifiers typically position
Condition/Event entities in time, e.g. i
sommer ‘this summer’, for tre år siden ‘three
years ago’. These are similar to temporal
expressions (so-called timexes) in previous
temporal annotation schemes (Ferro et al.,
2002; Saurí et al., 2006).

4.2 Family history relations
In addition to the clinical entities described above,
we further annotate a number of relationships be-
tween entities in our annotation scheme. Example
4 shows a fully annotated example containing en-
tities and their relations for an sentence from the
corpus. The relations are binary undirected rela-
tions of the following types:

• Holder relations are always between
Condition/Event entity on the one hand
and its holder, a Family/Self/Index
entity.
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• Modifier relations hold between modifier
entities (e.g. Side, Negation) and clini-
cal entities (e.g. Family, Condition).

• Related_to relations specify relations be-
tween family members and always hold be-
tween entities of the Family type.

• Subset relations specify relations between
family members, where one is a subset of the
other, e.g. in statements such as Hun har
to brødre, den ene har mutasjonen ‘She has
two brothers, one of them has the mutation’,
where den ene ‘one of them’ would be con-
nected to the Family entity brødre ‘broth-
ers’ with a Subset-relation.

• Partner relations specify relations be-
tween entities of the Family type, used to
identify couples (husbands and wives, civil
partnerships) that are able to provide off-
spring. The assumption is no kinship.

4.3 Span of annotations
In general, annotation should pick out the mini-
mal span in the text which denotes the entity or
property in question. This will most often be a
single word (onkel ‘uncle’, mutasjon ‘mutation’)
but will in some cases also include more than one
word (plutselig hjertedød ‘sudden cardiac death’,
voksende hjerte ‘growing heart’). Genitive mod-
ifiers of an entity, e.g. farens ‘father’s’ in farens
søster ‘the father’s sister’ or Søsteren til faren ‘the
sister of the father’ should not be included in the
annotation span. Rather, these are annotated as
two separate entities related by a Related_to
relation. The span of Family entities usually en-
compass only the family term itself (onkel ‘uncle’,
søster ‘sister’), however, when the family term is
described using a pronominal element (hun ‘she’,
den ene ‘one (of them)’) this should be annotated
as a family entity. When both are present (den ene
broren ‘the one brother’) only the family term is
annotated.

Temporal expressions will often be more com-
plex and should include both numerical expres-
sions denoting amount (tre ‘three’, flere ‘several’),
temporal units such as month/year, as well as ex-
pressions denoting temporal ordering or duration
(i ‘in’, siden ‘since’ as in tre år siden ‘three years
since’, i tre år ‘for three years’). Initial iterations
of annotation showed that agreement for this cat-
egory was low due to differences in annotation
span. We therefore introduced the generalization

Entities Number Spans

Family 1704 96
Condition 681 135
Event 542 115
Self 509 –
Amount 273 9
Temporal 214 178
Negation 131 33
Age 57 34
Side 36 3
Index 7 –

Relations Number Spans

Holder 880 –
Modifier 687 –
Related_to 389 –
Subset 108 –
Partner 14 –

Table 2: Distribution of entities and relations in the data
annotated by the clinician. The Spans column shows
the number of entities that span across words. Both the
entities and relations are sorted in decreasing order of
number of occurrences.

that temporal annotation should make use of a re-
placement rule where the full constituent replaced
by a temporal pronoun corresponding to English
then is annotated. This means that unlike e.g.
Ferro et al. (2002), our temporal annotations will
include prepositions (e.g. i tre år ‘for three years’).

4.4 Statistics
The resulting annotated corpus contains 477 sen-
tences and 6030 tokens. In table 2 we present the
distribution of the entities and relations in the cor-
pus. We see that Condition and Event entities
are fairly equally distributed in the corpus. Tem-
poral modifiers span more than one word in a ma-
jority of cases. Whereas Holder-relations are the
most common type of relation in the corpus, there
are only 14 cases of the Partner relation.

4.5 Inter-Annotator Agreement
As described in Section 3, two final rounds of an-
notation with different second annotators (in ad-
dition to the clinician, here dubbed A1 and A2)
were used to complete the annotation guidelines.
We measured the inter-annotator agreement at two
levels. At the first level, IAA is based on match of
the entities spans and their labels. At the second
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level, IAA is based on the relationship matches
between the matched spans. Therefore, the rela-
tionship agreement measurement is stricter than
the entity level agreement measurement. We ex-
amine token level agreement where we treat the
clinician’s notes as gold standard and compute the
per token F-measures i.e., Precision, Recall, and
F1-score. We measure the inter-annotator agree-
ment using micro F1-score. The Precision, Recall,
and F1-scores of the agreement is provided in table
3.

Annotator Precision Recall F1-score

A1, 320
0.743 0.648 0.692
0.645 0.559 0.599

A2, 91
0.821 0.797 0.809
0.752 0.678 0.713

Table 3: Each row shows the number of sentences an-
notated by each annotator. The first and second rows
shows the Precision, Recall, and F1-score for entities
and relations. All the results are in comparison to the
texts annotated by the clinician.

We find that the round of consolidation and im-
provement of the guidelines was useful and im-
proves the IAA scores for both entities and rela-
tions. When we compare the annotations of the
clinician (A0) and the second additional annotator
(A2), we find that there are still a number of re-
maining discrepancies. Some of these are what we
termed semantic discrepancies above in Section 3
above, annotation decisions that require domain
knowledge. For instance, in several places A2
annotates clinical conditions that are not marked
by the clinician, e.g. marking symptomer ‘symp-
toms’ as a Condition. There are also examples
where additional distinctions should probably be
added to the guidelines, in particular with respect
to annotation of temporal and negation-related in-
formation, both examples of complex annotation
tasks by themselves. For instance, A2 annotates
the phrase under en flytur til Spania ‘during a
flight to Spain’ as Temporal, where A0 does not.
With respect to negation, the distinction between
negation and uncertainty causes differences in an-
notation spans, where A0 annotates husker ikke
‘does not remember’ as NEG, whereas A2 anno-
tates only ikke ‘not’.

5 Preliminary experiments

In this section, we perform entity classification
and relation extraction experiments to verify the
viability of our annotation. We train and test SVM
model on the data annotated by the domain expert
in five-fold cross-validation fashion. The domain
expert annotated dataset has 477 sentences and we
performed five-fold cross-validation to train and
test our model. In all our experiments, we split
the sentences into five folds and extracted entities
and relations. Then, we treated each of five folds
as test dataset and trained on the other four folds
in an iterative fashion.

5.1 Entity detection
In this experiment, we trained and tested a lin-
ear classifier (SVM model) for entity classifica-
tion. We treat entity classification as a multi-class
classification problem where there are 11 classes
including the O entity that denotes unmarked lex-
ical units. Our model is a linear SVM model that
is trained on the following features:

• Lexical: Current word, words in a context
window size of 2.

• Universal POS tags: Current word, words in
a context window size of 2.

• Entity tags: The two previous entity tags
where the model uses the gold entity tags to
train but uses the previous predicted entity
tags to predict the current tag.

We also experimented with lowercasing a word
and orthographic features such as prefixes and suf-
fixes of length 3 which did not improve the perfor-
mance of the SVM model. We evaluate the per-
formance of the SVM model using weighted F1

score to account for class imbalance. On an aver-
age, these feature templates yielded 5000 features
across the five cross-validation experiments. All
the Universal POS tags are obtained through the
CoNLL17 Baseline model (Zeman et al., 2017)
trained on the publicly available Universal Depen-
dencies Norwegian Bokmål treebank (Øvrelid and
Hohle, 2016). We used the majority class “O”
as the baseline in our experiments. The results
of our experiments are given in table 4. It has
to be noted that these results are not comparable
to the IAA scores presented in table 3, which are
calculated only over entities and completely dis-
regard the remaining tokens. Moreover, the IAA

117



System Precision Recall F1-score

Baseline 0.34 0.582 0.429
SVM 0.843 0.843 0.841

Table 4: The average of the weighted F1-scores across
the five folds. On an average, there are 6030 training
instances and 1507 test instances.

score is computed only on parts of the annotated
data whereas the SVM models are trained and
tested on the whole of the data annotated by A0.
The SVM model performs better than the majority
class baseline model across all the measures. The
SVM model made errors at distinguishing Con-
dition entities from Event entities and Age from
Temporal entities. Most of the errors occurred
when the SVM model misclassified the rest of the
classes as “O”.

5.2 Relation extraction
In this subsection, we performed a relation detec-
tion and classification experiment. In this experi-
ment, we treat a relation defined between exactly
two entities to belong to one of the six relations
where five of them are given in table 2 and the
sixth relation is “No_Relation”. We train and test
an SVM model in a five-fold cross-validation fash-
ion. Apart from entity labels, we experimented
with increasingly complex set of features:

• Lexical: Words belonging to the entities are
treated as two separate features.

• POS tags: Universal POS tags of the entities’
lexical tokens as separate features.

• Dependency features: The dependency label
of a entity word’s incoming arc as a feature.

If a entity is spanning across multiple words,
we concatenate the per-word feature and treated
them as a single feature when training and test-
ing the SVM model. The results of the experi-
ments are given in table 5. Our results suggest
that word based features themselves yield a per-
formance which is close to the model with more
complex features. Incremental inclusion of POS
tags and dependency labels increases the perfor-
mance of the SVM model, whereas the inclusion
of predicted entity labels does not improve the per-
formance of the SVM model. We experimented if
including the gold standard labels would improve
the performance of the SVM model. We find that

the quality of entity labels does improve the per-
formance of the model.

Finally, we present the confusion matrix for
the best fold is presented in table 6. The SVM
model makes most of the errors when it mis-
classifies one of the five annotated relations as
“No_Relation” and vice-versa. The classifier errs
when distinguishing between “Related_to”, “Part-
ner” and “Subset” relations. Finally, the classi-
fier makes errors when distinguishing between the
Norwegian indefinite determiner en which is un-
marked and the quantifier en.

Features Precision Recall F1-score

Words 0.716 0.732 0.719
+POS tags 0.73 0.738 0.731
+Dependency labels 0.743 0.746 0.743
+Entity labels (Predicted) 0.743 0.745 0.743

+Entity labels (Gold) 0.771 0.767 0.768

Table 5: Average of the weighted F1-scores on five fold
cross-validation. On an average, there are 5530 training
instances and 1461 test instances.

Holder Modifier No_Relation Partner Related_to Subset

Holder 127 1 54 0 1 0
Modifier 2 82 66 0 0 0
No_Relation 65 100 1045 1 30 15
Partner 0 0 0 2 3 0
Related_to 7 0 22 0 58 2
Subset 0 0 11 0 4 13

Table 6: Confusion matrix for the SVM model at the
task of relation extraction on the best performing fold.

6 Discussion

The validity of our study is limited by using syn-
thetic data. While the clinician producing the clin-
ical text works in genetic cardiology, and writes
similar patient histories in his clinical practice, the
synthetic data can not be expected to be fully rep-
resentative of real clinical notes from a large pa-
tient cohort. The analysis pertaining to the syn-
thetic data should be thought of as an illustration
of one iteration of the cycle described in 2, and
the objective of the iterative process is a stepwise,
guided, design of an annotation guideline in a set-
ting where the target text data is unavailable. The
same process could be used with a real corpus,
where specific new examples would present chal-
lenges driving guideline development. The only
difference is that in our case, a specialist produced
text, instead of finding representative text.
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The guideline development workflow itself may
also be improved or expanded by storing a repre-
sentation of the input data (the pedigree) and link-
ing it to the resulting synthetic text description,
which would allow further downstream compari-
son of extraction results to the actual source mate-
rial.

7 Conclusion

This article has investigated the development of
annotation guidelines for family history informa-
tion in Norwegian by leveraging synthetically pro-
duced clinical text. Inter-annotator agreement
scores show that the annotation schema can be ap-
plied fairly consistently and that it may also be
generalized to unseen text using machine learn-
ing. Both the annotation guidelines and the anno-
tated corpus will be made freely available and as
such constitutes the first freely available resource
of Norwegian clinical text.

In the near future, we will apply the annotation
schema to real clinical texts. The family history is
but a minor part of a patient record, and segmenta-
tion as shown in Bill et al. (2014) is needed. Anal-
ysis of the annotation disagreements along with
the experimental results also highlighted part of
the schema that will need to be further refined, e.g.
the analysis of temporality and our treatment of
uncertainty. We will develop the method for in-
cremental and systematic annotation guideline de-
velopment further. The method will be put to test
when we iteratively improve the current guideline
in order to capture real patient pedigree informa-
tion from the EHR.
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Abstract

Textual corpora are extremely important for
various NLP applications as they provide in-
formation necessary for creating, setting and
testing these applications and the correspond-
ing tools. They are also crucial for designing
reliable methods and reproducible results. Yet,
in some areas, such as the medical area, due to
confidentiality or to ethical reasons, it is com-
plicated and even impossible to access textual
data representative of those produced in these
areas. We propose the CAS corpus built with
clinical cases, such as they are reported in the
published scientific literature in French. We
describe this corpus, currently containing over
397,000 word occurrences, and the existing
linguistic and semantic annotations.

1 Introduction

Textual corpora are extremely important for vari-
ous NLP applications as they provide information
necessary for creating, setting and testing these
applications and the corresponding tools. Yet, in
some areas, due to confidentiality or to ethical rea-
sons, it is complicated and even impossible to ac-
cess representative textual data. Medical and le-
gal areas correspond to such examples: in the le-
gal area, information on lawsuits and trials remain
confidential, while in the medical area, the med-
ical secret must be respected. In both situations,
personal data cannot be used. For several years
now, anonymization and de-identification methods
and tools have been made available and provide
competitive and reliable results (Ruch et al., 2000;
Sibanda and Uzuner, 2006; Uzuner et al., 2007;
Grouin and Zweigenbaum, 2013) reaching up to
90% precision and recall. But even de-identified
data may be difficult to be freely accessed and
used for the research purpose because there is a
risk of re-identification of people, and more par-
ticularly of patients (Meystre et al., 2014; Grouin

et al., 2015) because several medical histories are
unique, or because of other reasons. Hence, the
application of the de-identification tools on per-
sonal data often does not permit to make these
data freely available and usable within the research
context.

Yet, there is a real need for the development of
methods and tools for several applications suited
for such restricted areas. For instance, in the med-
ical area, it is important to have suitable tools for
information retrieval and extraction, for the re-
cruiting of patients for clinical trials, and for per-
forming several other important tasks such as in-
dexing, study of temporality, negation, etc. (Embi
et al., 2005; Hamon and Grabar, 2010; Uzuner
et al., 2011; Fletcher et al., 2012; Sun et al., 2013;
Campillo-Gimenez et al., 2015; Kang et al., 2017).
Another important issue is related to the reliability
of tools and to the reproducibility of study results
across similar data from different sources. The sci-
entific research and clinical community are indeed
increasingly coming under criticism for the lack
of reproducibility in the biomedical area (Chap-
man et al., 2011; Collins and Tabak, 2014; Cohen
et al., 2016), as well as in other areas. First step
towards the reproducibility of results is the avail-
ability of freely usable tools and corpora. In our
work, we are mainly concerned by building freely
available corpora from the medical area.

The purpose of our work is to introduce the
CAS corpus with French medical data, containing
clinical cases such as those published in scientific
literature or used for the education and training of
medical students. In what follows, we first present
some works on creation of medical corpora stress-
ing more particularly on corpora freely available
for the research (Section 2). We then introduce
and describe the CAS corpus in French (Section
3) and its current annotations. We conclude with
some directions for the future work (Section 4).
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2 Freely available clinical corpora

Within the medical area, we can distinguish two
main types of medical corpora: scientific and
clinical. Scientific corpora are issued from sci-
entific publications and reporting. Such corpora
are becoming increasingly available for the re-
search thanks to the recent and less recent initia-
tives dedicated to the open publication, such as
those promoted by the NLM (National Library
of Medicine) through the PUBMED portal1 and
specifically dedicated to the biomedical area, and
by the HAL2 and ISTEX3 initiatives, which pro-
vide generic portals for accessing scientific pub-
lications from various areas, including medicine.
Such corpora describe the research works, their
motivation, methods, results and issues on precise
research questions. Other portals may also provide
access to scientific literature following specific
purposes, like indexing of reliable literature, such
as proposed by HON (Boyer et al., 1997), CIS-
MEF (Darmoni et al., 1999), and other similar ini-
tiatives (Risk and Dzenowagis, 2001). Thanks to
some research works, there are also scientific cor-
pora which provide precise annotations and cate-
gorizations. These are mainly built for the pur-
poses of challenges (Kelly et al., 2013; Goeuriot
et al., 2014) but may also be provided from works
of researchers, such as POS-tag (Tsuruoka et al.,
2005) and negation (Szarvas et al., 2008) anno-
tated corpora. As for clinical corpora, they are
related to hospital and clinical events of patients.
Such corpora typically describe medical history of
patients and the medical care they are undergo-
ing. It is complicated to obtain free access to this
kind of medical data and, for this reason, there are
very few clinical corpora freely available for the
research. In our work, we are mainly interested
in clinical corpora: the proposed literature review
of the existing work is aimed at clinical corpora
which are freely available for the research. We
present here the main existing clinical corpora.

MIMIC (Medical Information Mart for Inten-
sive Care) corpora, now in their version III, pro-
vide the largest available set of structured and un-
structured clinical data in English. MIMIC III is a
single-center database comprising information re-
lating to patients admitted to critical care units at a
large tertiary care hospital. These data include vi-

1https://www.ncbi.nlm.nih.gov/pubmed
2https://hal.archives-ouvertes.fr/
3https://www.istex.fr/

tal signs, medications, laboratory measurements,
observations and notes charted by care providers,
fluid balance, procedure codes, diagnostic codes,
imaging reports, hospital length of stay, survival
data, and more. The database supports applica-
tions including academic and industrial research,
quality improvement initiatives, and higher educa-
tion coursework (Johnson et al., 2016). These data
are widely used by researchers, for instance for the
prediction of mortality (Anand et al., 2018; Feng
et al., 2018), for the diagnosis identification and
coding (Perotte et al., 2014; Li et al., 2018), for
the study of temporality (Che et al., 2018) or for
the identification of similar clinical notes (Gabriel
et al., 2018) to cite just a few of such works. Data
from these corpora are also used in challenges,
such as I2B2, N2C2 and CLEF-eHEALTH.

I2B2 (Informatics for Integrating Biology and
the Bedside)4 is an NIH-funded initiative promot-
ing the development and test of NLP tools for
healthcare improvement. In order to enhance the
ability of NLP tools to process fine grained in-
formation from clinical records, I2B2 challenges
provide sets of fully deidentified clinical notes en-
riched with specific annotations (Uzuner, 2008;
Uzuner et al., 2011; Sun et al., 2013), such as: de-
identification, smoking status, medication-related
information, semantic relations between entities,
or temporality. The clinical corpora and their an-
notations built for the I2B2 NLP challenges are
available now for the general research purposes.

N2C2 (National NLP Clinical Challenges)5,
held for the first time in 2018, is dedicated to the
inclusion of patients in clinical trials and the de-
tection of adverse-drug events.

CLEF-eHEALTH challenges6 held in 2013 and
2014 provide annotations for the detection of dis-
orders and normalization of abbreviations, in 2016
the focus was done on structuring of Australian
free-text nurse notes, and in 2016 and 2017 death
reports in French, provided by the CépiDc7, have
been processed for the extraction of death causes.

Finally, medical data, close to those handled in
the clinical context, can be found in the clinical tri-
als protocols. One example is the corpus of clini-
cal trials annotated with information on numerical

4https://www.i2b2.org/NLP/DataSets/
Main.php

5https://n2c2.dbmi.hms.harvard.edu/
6https://sites.google.com/site/

shareclefehealth/
7http://www.cepidc.inserm.fr/

123



A term female infant was born by vaginal delivery with normal birth weight, body length and APGAR
score, from a 42-year-old mother with 13 previous pregnancies resulting in 3 miscarriages and 10 live
births. The mother had no history of antenatal medical illness nor of exposure to smoking, drinking and
other drugs. At birth, general and systemic examination revealed a round face, single palmar crease,
left precordial systolic murmur. Two hours after birth a deterioration of the general condition occurred,
with generalized hypotonia, cyanosis, poor feeding. The blood count revealed white blood cell count
of 35.6*10 /µL with 20.6*10 /µL, 57.9% monocytes, normal neutrophils, lymphocytes and eosinophils
count, hemoglobin levels of 19.1 g/dl and 27*10 /µL platelets count. The acute phase reactants were neg-
ative. Because she maintained the altered general condition and the platelets ranged between 17-18 *10
/µL, on the 8th day after birth she was referred to our unit for proper diagnosis and treatment. Physical
examination showed a phenotype suggestive for Down syndrome, later confirmed by karyotyping (47,
XX + 21). She was lethargic, tachypneic and a systolic heart murmur was observed. The liver was 2 cm
below the right costal margin, along with a slight enlargement of the spleen. The laboratory tests on the
first day of admission in our unit revealed a white blood count of 15.8*10 /µL, with an abnormal mono-
cyte count (increased absolute and percentile count: 5.66*10 /µL, respectively 35.5%), normal absolute
neutrophil count (5.53*10 /µL), a hemoglobin level of 15.9 g/dl and severe thrombocytopenia (15*10
/µL). The biochemical parameters including electrolytes, uric acid, creatinine, bilirubin, liver enzymes
were normal. The serum lactate dehydrogenase was raised. The bacterial culture work-up and titers of
antibodies against toxoplasmosis, cytomegalovirus, Epstein Barr virus, hepatitis C, HIV were negative.
The peripheral blood smear presented atypical cells. The bone marrow aspiration showed hemodiluted
aspirate with blast cells. Immunophenotyping revealed 23% blast cells, positive for megakaryocytic
markers (CD42b, CD41, CD61), myeloid markers (CD33), progenitor cell markers (CD117, CD34)
and T cell marker - CD7 positive. MPO and HLA/DR were negative. The mutational status of AM-
LETO, PML-RARα, FLT3 and NPM1 fusion genes came out absent. The positive diagnosis was acute
megakaryoblastic leukemia (AMKL).
The echocardiography found a patent foramen ovale. The infant underwent chemotherapy according
to the Down syndrome-specific AML chemotherapy protocol, consisting in four cycles of treatment: the
first two cycles (induction phase) included combinations of cytarabine and liposomal daunorubicin and
the last two cycles (consolidation phase): etoposide, cytarabine and mitoxantrone. Our patient aquired
clinical and hematological remission without serious adverse events.

Figure 1: Example of clinical case

values in English (Claveau et al., 2017), and on
negation in French and Brazilian Portuguese (Dal-
loux et al., 2018).

3 The CAS corpus

3.1 Content of the corpus

We present the CAS corpus in French. It contains
clinical cases such as published in scientific liter-
ature and training material. Cases from these dif-
ferent sources are included in the corpus. Usually,
the source data are available as pdf files. Their
conversion in the text format is automatic but then
needs to be fully checked out in order to correct
potential segmentation errors (remove the paratext
specific to a given journal, verify the conversion of
columns, of end of lines and pages, etc.).

Similarly to clinical documents, the content of
clinical cases depends on the clinical situations

which are illustrated and on the disorders, but also
on the purpose of the presented cases (description
of diagnoses, treatments or procedures, expected
audience, etc.).

Figure 1 presents an example of clinical case in
English. Such data are de-identified by the auhors
and their publication is done with the written per-
mission of patients. The case reports can be re-
lated to any medical situation (diagnosis, treat-
ment, procedure, follow-up...) and to any disor-
der. Publication of clinical cases usually has di-
dactic purposes: train medical students, report on
unusual or new clinical situations, present novel
treatment or imaging issue... A typical structure
of publications with clinical cases starts with the
introduction to the clinical situation, then one or
more clinical cases are presented to support the
situation. Schemas, imaging, examination results,
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word PoS lemma uncert. uncert. CUI neg neg
cue scope cue scope

L’ B-determiner le O O O O O
adolescent B-common noun adolescent O O B-C0205653 O O
parait B-present verb form paraı̂tre B-u-1 O O O O
triste B-adjective triste O B-u-1 O O O
et B-coordination conjunction et O O O O O
ne B-adverb ne O O O B-n-1 O
parle B-present verb form parler O O O O B n-1
pas B-adverb pas O O O I-n-1 O
. B-ending punctuation mark . O O O O O

Table 1: Example of the annotated sentence from the corpus (B-u-x stands for the beginning of the uncertainty cue
or scope number x, B-n-y for the negation cue or scope number y)

patient history, lab results, clinical evolution, treat-
ment, etc. can also be provided for the illustra-
tion of clinical cases. Finally, these clinical cases
are discussed. Hence, such cases may present an
extensive description of medical problems. Such
publications gather medical information related to
clinical discourse (clinical cases) and to scientific
discourse (introduction and discussion). Related
scientific literature is also provided.

As we can see from Figure 1, the clinical part
of publications on clinical cases may be very sim-
ilar to clinical documents: it describes patients,
and proposes their diagnosis based on examina-
tion, imaging, and biological and genetic informa-
tion. Besides, numerical values and abbreviations
are also present. Misspellings, which are quite fre-
quent in clinical documents, may be missing in
publications on clinical cases.

3.2 Annotation of the corpus

Currently, the corpus contains linguistic and se-
mantic annotations.

At the linguistic level, the corpus is PoS-tagged
and lemmatized with a tool developed in-house
and available as a web-service at https://
anonymized_url. Then, several layers of se-
mantic annotation are performed automatically:

• Concept Unique Identifiers (CUI) corre-
sponding to French terms from the UMLS
(Lindberg et al., 1993) for single or multi-
word terms. For multi-word terms, the an-
notations exploits the IOB (Inside-Outside-
Begin) format. For instance, the two-word
term vitamine B12 is encoded as follows:

... O
vitamine B-C0042845
B12 I-C0042845
... O

In the current version of the corpus, in case
of several concurrent CUIs, only the longest,
and supposedly more precise, CUIs are kept.
For instance, carence en vitamine B12 (defi-

ciency in B12 vitamin) (C0042847) will be pre-
ferred to vitamine B12 (C0042845);

• Negation. Negation indicates whether a given
disorder, procedure or treatment are present
or not in the medical history and care of a
given patient. For this reason, its annota-
tion and detection are important. We adopt
the approach proposed by Fancellu et al.
(2016) and adapted for French by Dalloux
et al. (2018) based on Machine Learning
techniques trained on annotated data. This
follows a two-step process: (1) the nega-
tion markers are detected with a specifically
trained CRF; (2) the scope of each detected
marker is found with a neural network (Bi-
LSTM with a CRF layer). On the French and
English data tested, the detection of negation
gives up to 0.98 for the cues and 0.86 for their
scope;

• Uncertainty. Uncertainty is also an inte-
gral part of medical discourse and should be
taken into account for a more precise com-
puting of the status of disorders, procedures
and treatments. A set of markers has been
built manually. It contains simple and com-
plex lexical markers like probablement, cer-
tainement (probably, certainly) and morpholog-
ical cues like conditional verbs (indiquerait,
proviendrait (should indicate, may be caused by)).
These markers and cues are projected on the
corpus and their scope are found by heuristic
rules. Detection of uncertainty gives about
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type # annotations
CUI 47,708
uncertainty 4,723
negations 4,620

Table 2: Statistics on annotations

0.90 F-measure for the cues and 0.80 for the
scope.

Since there may be several markers of negation
and uncertainty in a sentence, they are numbered
with their scopes accordingly.

In Table 1, we present an excerpt from the cor-
pus with all the aforementioned linguistic and se-
mantic annotations for the sentence L’adolescent
paraı̂t triste et ne parle pas. (The teenager seems to be

sad and doesn’t speak.)

3.3 Annotation statistics

Overall, the corpus currently contains 20,363 sen-
tences and over 397,000 word occurrences exclud-
ing punctuation marks. Table 2 indicates the num-
ber of units automatically recognized for each cat-
egory.

4 Conclusion

We presented a new corpus in French which pro-
vides medical data close to those produced in the
clinical context: description of clinical cases and
their discussion. Overall, the corpus currently
contains over 397,000 word occurrences exclud-
ing punctuation marks. The corpus is currently
annotated with several layers of information: lin-
guistic (PoS-tagging, lemmas) and semantic (the
UMLS concepts, uncertainty, negation and their
scopes). The corpus will be enriched with more
clinical cases published. Other annotation layers
will be added and their correctness cross-validated
by human annotators. The enriched version of the
corpus will undergo a more detailed description,
such as statistics on age and gender of patients,
their diseases, or the sources of publications.

Besides, similar corpora will be built for other
languages. For instance, the repository of clinical
cases in English is available on a dedicated web-
site Archive of Clinical Cases8 respecting the Cre-
ative Commons License.

The very purpose of our work is to make these
annotated corpora freely available for research.
We expect that this may encourage development of

8http://www.clinicalcases.eu

robust NLP tools for medical free-text documents
in French and other languages.
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2015. Is it possible to recover personal health infor-
mation from an automatically de-identified corpus of
French EHRs? In Proc of LOUHI, Lisbon, Portugal.

Cyril Grouin and Pierre Zweigenbaum. 2013. Au-
tomatic de-identification of french clinical records:
Comparison of rule-based and machine-learning ap-
proches. In Stud Health Technol Inform, Proc of
MedInfo, volume 192, pages 476–80, Copenhagen,
Denmark.

T Hamon and N Grabar. 2010. Linguistic approach for
identification of medication names and related infor-
mation in clinical narratives. J Am Med Inform As-
soc, 17(5):549–54.

Alistair E.W. Johnson, Tom J. Pollard, Lu Shen, Li wei
H. Lehman, Mengling Feng, Mohammad Ghassemi,
Benjamin Moody, Peter Szolovits, Leo Anthony
Celi, and Roger G. Mark. 2016. MIMIC-iii, a freely
accessible critical care database. Scientific Data,
3(160035):1–9.

Tian Kang, Shaodian Zhang, Youlan Tang, Gregory W
Hruby, Alexander Rusanov, Noemie Elhadad, and

Chunhua Weng. 2017. EliIE: An open-source infor-
mation extraction system for clinical trial eligibility
criteria. J Am Med Inform Assoc, 24(6):1062–1071.

Liadh Kelly, Lorraine Goeuriot, Hanna Suominen,
Danielle L. Mowery, Sumithra Velupillai, Wendy W.
Chapman, Guido Zuccon, and Joao Palotti. 2013.
Overview of the share/clef ehealth evaluation lab
2013. In CLEF, Lecture Notes in Computer Science
(LNCS). Springer.

M Li, Z Fei, M Zeng, F Wu, Y Li, Y Pan, and J Wang.
2018. Automated ICD-9 coding via a deep learning
approach. In IEEE/ACM Trans Comput Biol Bioin-
form.

DA Lindberg, BL Humphreys, and AT McCray. 1993.
The unified medical language system. Methods Inf
Med, 32(4):281–291.

Stephane Meystre, Shuying Shen, Deborah Hofmann,
and Adi Gundlapalli. 2014. Can physicians recog-
nize their own patients in de-identified notes? In
Stud Health Technol Inform 205, pages 778–82.

Adler Perotte, Rimma Pivovarov, Karthik Natarajan,
Nicole Weiskopf, Frank Wood, and Noémie El-
hadad. 2014. Diagnosis code assignment: models
and evaluation metrics. J Am Med Inform Assoc,
21:231–237.

Ahmad Risk and J Dzenowagis. 2001. Review of inter-
net information quality initiatives. Journal of Medi-
cal Internet Research, 3(4).

Patrick Ruch, Robert H. Baud, Anne-Marie Rassinoux,
Pierrette Bouillon, and Gilbert Robert. 2000. Med-
ical document anonymization with a semantic lexi-
con. In Ann Symp Am Med Inform Assoc (AMIA),
pages 729–733, Los Angeles, CA.

T Sibanda and O Uzuner. 2006. Role of local context in
de-identification of ungrammatical, fragmented test.
In NAACL-HLT 2006, New York, USA.

Weiyi Sun, Anna Rumshisky, and Özlem Uzuner. 2013.
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Abstract

Readmission after discharge from a hospital
is disruptive and costly, regardless of the rea-
son. However, it can be particularly prob-
lematic for psychiatric patients, so predicting
which patients may be readmitted is critically
important but also very difficult. Clinical nar-
ratives in psychiatric electronic health records
(EHRs) span a wide range of topics and vo-
cabulary; therefore, a psychiatric readmission
prediction model must begin with a robust and
interpretable topic extraction component. We
created a data pipeline for using document
vector similarity metrics to perform topic ex-
traction on psychiatric EHR data in service of
our long-term goal of creating a readmission
risk classifier. We show initial results for our
topic extraction model and identify additional
features we will be incorporating in the future.

1 Introduction

Psychotic disorders typically emerge in late ado-
lescence or early adulthood (Kessler et al., 2007;
Thomsen, 1996) and affect approximately 2.5-4%
of the population (Perälä et al., 2007; Bogren et al.,
2009), making them one of the leading causes of
disability worldwide (Vos et al., 2015). A sub-
stantial proportion of psychiatric inpatients are
readmitted after discharge (Wiersma et al., 1998).
Readmissions are disruptive for patients and fami-
lies, and are a key driver of rising healthcare costs
(Mangalore and Knapp, 2007; Wu et al., 2005).
Reducing readmission risk is therefore a major un-
met need of psychiatric care. Developing clini-
cally implementable machine learning tools to en-
able accurate assessment of risk factors associated
with readmission offers opportunities to inform
the selection of treatment interventions and imple-
ment appropriate preventive measures.

In psychiatry, traditional strategies to study
readmission risk factors rely on clinical observa-

tion and manual retrospective chart review (Olf-
son et al., 1999; Lorine et al., 2015). This ap-
proach, although benefitting from clinical exper-
tise, does not scale well for large data sets, is
effort-intensive, and lacks automation. An effi-
cient, more robust, and cheaper NLP-based alter-
native approach has been developed and met with
some success in other medical fields (Murff et al.,
2011). However, this approach has seldom been
applied in psychiatry because of the unique char-
acteristics of psychiatric medical record content.

There are several challenges for topic extraction
when dealing with clinical narratives in psychi-
atric EHRs. First, the vocabulary used is highly
varied and context-sensitive. A patient may report
“feeling ‘really great and excited’” – symptoms of
mania – without any explicit mention of keywords
that differ from everyday vocabulary. Also, many
technical terms in clinical narratives are multiword
expressions (MWEs) such as ‘obsessive body im-
age’, ‘linear thinking’, ‘short attention span’, or
‘panic attack’. These phrasemes are comprised of
words that in isolation do not impart much infor-
mation in determining relatedness to a given topic
but do in the context of the expression.

Second, the narrative structure in psychiatric
clinical narratives varies considerably in how the
same phenomenon can be described. Hallucina-
tions, for example, could be described as “the pa-
tient reports auditory hallucinations,” or “the pa-
tient has been hearing voices for several months,”
amongst many other possibilities.

Third, phenomena can be directly mentioned
without necessarily being relevant to the patient
specifically. Psychosis patient discharge sum-
maries, for instance, can include future treatment
plans (e.g. “Prevent relapse of a manic or major
depressive episode.”, “Prevent recurrence of psy-
chosis.”) containing vocabulary that at the word-
level seem strongly correlated with readmission
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risk. Yet at the paragraph-level these do not in-
dicate the presence of a readmission risk factor in
the patient and in fact indicate the absence of a risk
factor that was formerly present.

Lastly, given the complexity of phenotypic as-
sessment in psychiatric illnesses, patients with
psychosis exhibit considerable differences in
terms of illness and symptom presentation. The
constellation of symptoms leads to various diag-
noses and comorbidities that can change over time,
including schizophrenia, schizoaffective disorder,
bipolar disorder with psychosis, and substance use
induced psychosis. Thus, the lexicon of words and
phrases used in EHRs differs not only across diag-
noses but also across patients and time.

Taken together, these factors make topic extrac-
tion a difficult task that cannot be accomplished by
keyword search or other simple text-mining tech-
niques.

To identify specific risk factors to focus on,
we not only reviewed clinical literature of risk
factors associated with readmission (Alvarez-
Jimenez et al., 2012; Addington et al., 2010),
but also considered research related to functional
remission (Harvey and Bellack, 2009), forensic
risk factors (Singh and Fazel, 2010), and con-
sulted clinicians involved with this project. Seven
risk factor domains – Appearance, Mood, Inter-
personal, Occupation, Thought Content, Thought
Process, and Substance – were chosen because
they are clinically relevant, consistent with liter-
ature, replicable across data sets, explainable, and
implementable in NLP algorithms.

In our present study, we evaluate multiple ap-
proaches to automatically identify which risk fac-
tor domains are associated with which paragraphs
in psychotic patient EHRs.1 We perform this study
in support of our long-term goal of creating a read-
mission risk classifier that can aid clinicians in tar-
geting individual treatment interventions and as-
sessing patient risk of harm (e.g. suicide risk,
homicidal risk). Unlike other contemporary ap-
proaches in machine learning, we intend to create
a model that is clinically explainable and flexible
across training data while maintaining consistent
performance.

To incorporate clinical expertise in the identi-
fication of risk factor domains, we undertake an
annotation project, detailed in section 3.1. We
identify a test set of over 1,600 EHR paragraphs

1This study has received IRB approval.

which a team of three domain-expert clinicians
annotate paragraph-by-paragraph for relevant risk
factor domains. Section 3.2 describes the results
of this annotation task. We then use the gold stan-
dard from the annotation project to assess the per-
formance of multiple neural classification mod-
els trained exclusively on Term Frequency – In-
verse Document Frequency (TF-IDF) vectorized
EHR data, described in section 4. To further im-
prove the performance of our model, we incor-
porate domain-relevant MWEs identified using all
in-house data.

2 Related Work

McCoy et al. (2015) constructed a corpus of
web data based on the Research Domain Criteria
(RDoC)(Insel et al., 2010), and used this corpus to
create a vector space document similarity model
for topic extraction. They found that the ‘neg-
ative valence’ and ‘social’ RDoC domains were
associated with readmission. Using web data (in
this case data retrieved from the Bing API) to train
a similarity model for EHR texts is problematic
since it differs from the target data in both struc-
ture and content. Based on reconstruction of the
procedure, we conclude that many of the informa-
tive MWEs critical to understanding the topics of
paragraphs in EHRs are not captured in the web
data. Additionally, RDoC is by design a general-
ized research construct to describe the entire spec-
trum of mental disorders and does not include do-
mains that are based on observation or causes of
symptoms. Important indicators within EHRs of
patient health, like appearance or occupation, are
not included in the RDoC constructs.

Rumshisky et al. (2016) used a corpus of EHRs
from patients with a primary diagnosis of ma-
jor depressive disorder to create a 75-topic LDA
topic model that they then used in a readmission
prediction classifier pipeline. Like with McCoy
et al. (2015), the data used to train the LDA
model was not ideal as the generalizability of the
data was narrow, focusing on only one disorder.
Their model achieved readmission prediction per-
formance with an area under the curve of .784
compared to a baseline of .618. To perform clini-
cal validation of the topics derived from the LDA
model, they manually evaluated and annotated the
topics, identifying the most informative vocabu-
lary for the top ten topics. With their training
data, they found the strongest coherence occurred
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in topics involving substance use, suicidality, and
anxiety disorders. But given the unsupervised na-
ture of the LDA clustering algorithm, the topic
coherence they observed is not guaranteed across
data sets.

3 Data

Our target data set consists of a corpus of dis-
charge summaries, admission notes, individual en-
counter notes, and other clinical notes from 220
patients in the OnTrackTM program at McLean
Hospital. OnTrackTM is an outpatient program,
focusing on treating adults ages 18 to 30 who are
experiencing their first episodes of psychosis. The
length of time in the program varies depending on
patient improvement and insurance coverage, with
an average of two to three years. The program
focuses primarily on early intervention via indi-
vidual therapy, group therapy, medication evalu-
ation, and medication management. See Table
1 for a demographic breakdown of the 220 pa-
tients, for which we have so far extracted approx-
imately 240,000 total EHR paragraphs spanning
from 2011 to 2014 using Meditech, the software
employed by McLean for storing and organizing
EHR data.

These patients are part of a larger research co-
hort of approximately 1,800 psychosis patients,
which will allow us to connect the results of this
EHR study with other ongoing research studies
incorporating genetic, cognitive, neurobiological,
and functional outcome data from this cohort.

We also use an additional data set for training
our vector space model, comprised of EHR texts
queried from the Research Patient Data Registry
(RPDR), a centralized regional data repository of
clinical data from all institutions in the Partners
HealthCare network. These records are highly
comparable in style and vocabulary to our target
data set. The corpus consists of discharge sum-
maries, encounter notes, and visit notes from ap-
proximately 30,000 patients admitted to the sys-
tem’s hospitals with psychiatric diagnoses and
symptoms. This breadth of data captures a wide
range of clinical narratives, creating a comprehen-
sive foundation for topic extraction.

After using the RPDR query tool to extract EHR
paragraphs from the RPDR database, we created a
training corpus by categorizing the extracted para-

2The vast majority of patients in our target cohort are
dependents on a parental private health insurance plan.

Mean Age (2014) 20.7
Gender (Male) 79%
Race

Asian 6%
Black 7%
Caucasian 77%
Latino 5%
Multiracial 5%

Insurance (Public)2 5.5%
30-day Inpatient Readmission
Rate

14%

Table 1: Demographic breakdown of the target cohort.

graphs according to their risk factor domain using
a lexicon of 120 keywords that were identified by
the clinicians involved in this project. Certain do-
mains – particularly those involving thoughts and
other abstract concepts – are often identifiable by
MWEs rather than single words. The same clin-
icians who identified the keywords manually ex-
amined the bigrams and trigrams with the highest
TF-IDF scores for each domain in the categorized
paragraphs, identifying those which are conceptu-
ally related to the given domain. We then used
this lexicon of 775 keyphrases to identify more
relevant training paragraphs in RPDR and treat
them as (non-stemmed) unigrams when generating
the matrix. By converting MWEs such as ‘short-
ened attention span’, ‘unusual motor activity’,
‘wide-ranging affect’, or ‘linear thinking’ to non-
stemmed unigrams, the TF-IDF score (and there-
fore the predictive value) of these terms is magni-
fied. In total, we constructed a corpus of roughly
100,000 paragraphs consisting of 7,000,000 to-
kens for training our model.

3.1 Annotation Task

In order to evaluate our models, we annotated
1,654 paragraphs selected from the 240,000 para-
graphs extracted from Meditech with the clinically
relevant domains described in Table 2. The anno-
tation task was completed by three licensed clini-
cians. All paragraphs were removed from the sur-
rounding EHR context to ensure annotators were
not influenced by the additional contextual infor-
mation. Our domain classification models con-
sider each paragraph independently and thus we
designed the annotation task to mirror the infor-
mation available to the models.

The annotators were instructed to label each

131



Domain Description Example Paragraph Example Keywords
Appearance Physical appearance, gestures, and

mannerisms
“A well-appearing, clean young woman
appearing her stated age, pleasant and
cooperative. Eye contact was good.”

disheveled, clothing,
groomed, wearing,
clean

Thought
Content

Suicidal/homicidal ideation,
obsessions, phobias, delusions,
hallucinations

“No SI3, No HI4, No hallucinations,
Ideas of reference, Paranoid delusions”

obsession, delusion,
grandiose, ideation,
suicidal, paranoid

Interpersonal Family situation, friendships, and
other social relationships

“Pt. overall appears to be functioning
very well despite this conflict with a
romantic interest of hers.”

boyfriend,
relationship, peers,
family, parents, social

Mood Feelings and overall disposition “Pt. indicates that his mood is becoming
more ‘depressed.’”

anxious, calm,
depressed, labile,
confused, cooperative

Occupation School and/or employment “Pt. followed through with decision to
leave college at this point in time.”

boss, employed, job,
school, class,
homework, work

Thought
Process

Pace and coherence of thoughts.
Includes linear, goal-directed,
perseverative, tangential, and flight of
ideas

“Disorganized (Difficult to
communicate with patient.), Paucity of
thought, Thought-blocking.”

linear, tangential,
prosody, blocking,
goal-directed,
perseverant

Substance Drug and/or alcohol use “Patient used marijuana once which he
believes triggered the current episode.”

cocaine, marijuana,
ETOH5, addiction,
narcotic

Other Any paragraph that does not fall into
any of the other seven domains

“Maintain mood stabilization, prevent
future episodes of mania, improve
self-monitoring skills.”

–

Table 2: Annotation scheme for the domain classification task.

paragraph with one or more of the seven risk fac-
tor domains. In instances where more than one do-
main was applicable, annotators assigned the do-
mains in order of prevalence within the paragraph.
An eighth label, ‘Other’, was included if a para-
graph was ambiguous, uninterpretable, or about a
domain not included in the seven risk factor do-
mains (e.g. non-psychiatric medical concerns and
lab results). The annotations were then reviewed
by a team of two clinicians who adjudicated col-
laboratively to create a gold standard. The gold
standard and the clinician-identified keywords and
MWEs have received IRB approval for release to
the community. They are available as supplemen-
tary data to this paper.

3.2 Inter-Annotator Agreement

Inter-annotator agreement (IAA) was assessed us-
ing a combination of Fleiss’s Kappa (a variant of
Scott’s Pi that measures pairwise agreement for
annotation tasks involving more than two anno-
tators) (Fleiss, 1971) and Cohen’s Multi-Kappa
as proposed by Davies and Fleiss (1982). Table
3 shows IAA calculations for both overall agree-
ment and agreement on the first (most important)
domain only. Following adjudication, accuracy
scores were calculated for each annotator by eval-
uating their annotations against the gold standard.

Overall agreement was generally good and

aligned almost exactly with the IAA on the first
domain only. Out of the 1,654 annotated para-
graphs, 671 (41%) had total agreement across all
three annotators. We defined total agreement for
the task as a set-theoretic complete intersection of
domains for a paragraph identified by all anno-
tators. 98% of paragraphs in total agreement in-
volved one domain. Only 35 paragraphs had total
disagreement, which we defined as a set-theoretic
null intersection between the three annotators. An
analysis of the 35 paragraphs with total disagree-
ment showed that nearly 30% included the term
“blunted/restricted”. In clinical terminology, these
terms can be used to refer to appearance, affect,
mood, or emotion. Because the paragraphs be-
ing annotated were extracted from larger clinical
narratives and examined independently of any sur-
rounding context, it was difficult for the annotators
to determine the most appropriate domain. This
lack of contextual information resulted in each
annotator using a different ‘default’ label: Ap-
pearance, Mood, and Other. During adjudication,
Other was decided as the most appropriate label
unless the paragraph contained additional content
that encompassed other domains, as it avoids mak-
ing unnecessary assumptions.

3Suicidal ideation
4Homicidal ideation
5Ethyl alcohol and ethanol
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Labels Fleiss’s Kappa Cohen’s Multi-Kappa Mean Accuracy
Overall 0.575 0.571 0.746
First Domain Only 0.536 0.528 0.805

Table 3: Inter-annotator agreement

Network MLP RBF

Input Layer
Nodes 100 100
Dropout 0.2 0.2
Activation ReLU6 ReLU

Hidden Layer
Nodes 100 350
Dropout 0.5 0.0
Activation ReLU RBF

Output Layer
Nodes 7 7
Activation Sigmoid Linear

Optimizer Adam7 Adam
Loss Function Categorical

Cross
Entropy

Mean
Squared
Error

Training
Epochs

30 50

Batch Size 128 128

Table 4: Architectures of our highest-performing MLP
and RBF networks.

A Fleiss’s Kappa of 0.575 lies on the boundary
between ‘Moderate’ and ‘Substantial’ agreement
as proposed by Landis and Koch (1977). This
is a promising indication that our risk factor do-
mains are adequately defined by our present guide-
lines and can be employed by clinicians involved
in similar work at other institutions.

The fourth column in Table 3, Mean Accuracy,
was calculated by averaging the three annotator
accuracies as evaluated against the gold standard.
This provides us with an informative baseline of
human parity on the domain classification task.

4 Topic Extraction

Figure 1 illustrates the data pipeline for generat-
ing our training and testing corpora, and applying
them to our classification models.

6Rectified Linear Units, f(x) = max(0, x) (Nair and
Hinton, 2010)

7Adaptive Moment Estimation (Kingma and Ba, 2014)

We use the TfidfVectorizer tool included in the
scikit-learn machine learning toolkit (Pedregosa
et al., 2011) to generate our TF-IDF vector space
models, stemming tokens with the Porter Stemmer
tool provided by the NLTK library (Bird et al.,
2009), and calculating TF-IDF scores for uni-
grams, bigrams, and trigrams. Applying Singular
Value Decomposition (SVD) to the TF-IDF ma-
trix, we reduce the vector space to 100 dimen-
sions, which Zhang et al. (2011) found to improve
classifier performance.

Starting with the approach taken by McCoy et
al. (2015), who used aggregate cosine similarity
scores to compute domain similarity directly from
their TF-IDF vector space model, we extend this
method by training a suite of three-layer multi-
layer perceptron (MLP) and radial basis function
(RBF) neural networks using a variety of param-
eters to compare performance. We employ the
Keras deep learning library (Chollet et al., 2015)
using a TensorFlow backend (Abadi et al.) for this
task. The architectures of our highest performing
MLP and RBF models are summarized in Table 4.
Prototype vectors for the nodes in the hidden layer
of our RBF model are selected via k-means clus-
tering (MacQueen et al., 1967) on each domain
paragraph megadocument individually. The RBF
transfer function for each hidden layer node is as-
signed the same width, which is based off the max-
imum Euclidean distance between the centroids
that were computed using k-means.

To prevent overfitting to the training data, we
utilize a dropout rate (Srivastava et al., 2014) of
0.2 on the input layer of all models and 0.5 on the
MLP hidden layer.

Since our classification problem is multiclass,
multilabel, and open-world, we employ seven
nodes with sigmoid activations in the output layer,
one for each risk factor domain. This allows us
to identify paragraphs that fall into more than one
of the seven domains, as well as determine para-
graphs that should be classified as Other. Unlike
the traditionally used softmax activation function,
which is ideal for single-label, closed-world clas-
sification tasks, sigmoid nodes output class like-
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Figure 1: Data pipeline for training and evaluating our risk factor domain classifiers.

lihoods for each node independently without the
normalization across all classes that occurs in soft-
max.

We find that the risk factor domains vary in
the degree of homogeneity of language used, and
as such certain domains produce higher simi-
larity scores, on average, than others. To ac-
count for this, we calculate threshold similar-
ity scores for each domain using the formula
min=avg(sim)+α*σ(sim), where σ is standard de-
viation and α is a constant, which we set to
0.78 for our MLP model and 1.2 for our RBF
model through trial-and-error. Employing a gen-
eralized formula as opposed to manually identify-
ing threshold similarity scores for each domain has
the advantage of flexibility in regards to the target
data, which may vary in average similarity scores
depending on its similarity to the training data. If a
paragraph does not meet threshold on any domain,
it is classified as Other.

5 Results and Discussion

Table 5 shows the performance of our models on
classifying the paragraphs in our gold standard. To
assess relative performance of feature representa-
tions, we also include performance metrics of our
models without MWEs. Because this is a multil-
abel classification task we use macro-averaging to
compute precision, recall, and F1 scores for each
paragraph in the testing set. In identifying do-
mains individually, our models achieved the high-
est per-domain scores on Substance (F1≈ 0.8) and
the lowest scores on Interpersonal and Mood (F1
≈ 0.5). We observe a consistency in per-domain
performance rankings between our MLP and RBF
models.

The wide variance in per-domain performance
is due to a number of factors. Most notably,
the training examples we extracted from RPDR –
while very comparable to our target OnTrackTM

Precision Recall F1
Aggregate Cosine
Similarity Scores

0.602 0.563 0.574

MLP Baseline
(No MWEs)

0.611 0.567 0.579

RBF Baseline
(No MWEs)

0.603 0.618 0.606

MLP
(w/ MWEs)

0.717 0.666 0.681

Appearance 0.886 0.414 0.564
Interpersonal 0.548 0.453 0.496
Mood 0.691 0.430 0.530
Occupation 0.826 0.461 0.592
Substance 0.920 0.703 0.797
Thought Content 0.926 0.590 0.721
Thought Process 0.654 0.617 0.635
Other 0.632 0.798 0.710

RBF
(w/ MWEs)

0.684 0.630 0.645

Appearance 0.670 0.490 0.566
Interpersonal 0.410 0.493 0.448
Mood 0.655 0.399 0.496
Occupation 0.720 0.501 0.598
Substance 0.866 0.730 0.792
Thought Content 0.892 0.547 0.678
Thought Process 0.569 0.691 0.624
Other 0.651 0.650 0.651

Table 5: Overall and domain-specific Precision, Recall,
and F1 scores for our models. The first row computes
similarity directly from the TF-IDF matrix, as in (Mc-
Coy et al., 2015). All other rows are classifier outputs.

data – may not have an adequate variety of con-
tent and range of vocabulary. Although using key-
word and MWE matching to create our training
corpus has the advantage of being significantly
less labor intensive than manually labeling every
paragraph in the corpus, it is likely that the ho-
mogeneity of language used in the training para-
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Figure 2: 2-component linear discriminant analysis of the RPDR training data.

graphs is higher than it would be otherwise. Addi-
tionally, all of the paragraphs in the training data
are assigned exactly one risk factor domain even if
they actually involve multiple risk factor domains,
making the clustering behavior of the paragraphs
more difficult to define. Figure 2 illustrates the
distribution of paragraphs in vector space using 2-
component Linear Discriminant Analysis (LDA)
(Johnson and Wichern, 2004).

Despite prior research indicating that similar
classification tasks to ours are more effectively
performed by RBF networks (Scheirer et al., 2014;
Jain et al., 2014; Bendale and Boult, 2015), we
find that a MLP network performs marginally bet-
ter with significantly less preprocessing (i.e. k-
means and width calculations) involved. We can
see in Figure 2 that Thought Process, Appearance,
Substance, and – to a certain extent – Occupation
clearly occupy specific regions, whereas Interper-
sonal, Mood, and Thought Content occupy the
same noisy region where multiple domains over-
lap. Given that similarity is computed using Eu-
clidean distance in an RBF network, it is diffi-
cult to accurately classify paragraphs that fall in

regions occupied by multiple risk factor domain
clusters since prototype centroids from the risk
factor domains will overlap and be less differen-
tiable. This is confirmed by the results in Table
5, where the differences in performance between
the RBF and MLP models are more pronounced
in the three overlapping domains (0.496 vs 0.448
for Interpersonal, 0.530 vs 0.496 for Mood, and
0.721 vs 0.678 for Thought Content) compared to
the non-overlapping domains (0.564 vs 0.566 for
Appearance, 0.592 vs 0.598 for Occupation, 0.797
vs 0.792 for Substance, and 0.635 vs 0.624 for
Thought Process). We also observe a similarity
in the words and phrases with the highest TF-IDF
scores across the overlapping domains: many of
the Thought Content words and phrases with the
highest TF-IDF scores involve interpersonal rela-
tions (e.g. ‘fear surrounding daughter’, ‘father’,
‘family history’, ‘familial conflict’) and there is
a high degree of similarity between high-scoring
words for Mood (e.g. ‘meets anxiety criteria’,
‘cope with mania’, ‘ocd’8) and Thought Content
(e.g. ‘mania’, ‘feels anxious’, ‘feels exhausted’).

8Obsessive-compulsive disorder
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MWEs play a large role in correctly identifying
risk factor domains. Factoring them into our mod-
els increased classification performance by 15%,
a marked improvement over our baseline model.
This aligns with our expectations that MWEs com-
prised of a quotidian vocabulary hold much more
clinical significance than when the words in the
expressions are treated independently.

Threshold similarity scores also play a large
role in determining the precision and recall of our
models: higher thresholds lead to a smaller num-
ber of false positives and a greater number of false
negatives for each risk factor domain. Conversely,
more paragraphs are incorrectly classified as Other
when thresholds are set higher. Since our classi-
fier will be used in future work as an early step
in a data analysis pipeline for determining read-
mission risk, misclassifying a paragraph with an
incorrect risk factor domain at this stage can lead
to greater inaccuracies at later stages. Paragraphs
misclassified as Other, however, will be discarded
from the data pipeline. Therefore, we intention-
ally set a conservative threshold where only the
most confidently labeled paragraphs are assigned
membership in a particular domain.

6 Future Work and Conclusion

To achieve our goal of creating a framework for
a readmission risk classifier, the present study per-
formed necessary evaluation steps by updating and
adding to our model iteratively. In the first stage
of the project, we focused on collecting the data
necessary for training and testing, and on the do-
main classification annotation task. At the same
time, we began creating the tools necessary for
automatically extracting domain relevance scores
at the paragraph and document level from patient
EHRs using several forms of vectorization and
topic modeling. In future versions of our risk fac-
tor domain classification model we will explore
increasing robustness through sequence modeling
that considers more contextual information.

Our current feature set for training a machine
learning classifier is relatively small, consisting
of paragraph domain scores, bag-of-words, length
of stay, and number of previous admissions, but
we intend to factor in many additional features
that extend beyond the scope of the present study.
These include a deeper analysis of clinical nar-
ratives in EHRs: our next task will be to extend
our EHR data pipeline by distinguishing between

clinically positive and negative phenomena within
each risk factor domain. This will involve a series
of annotation tasks that will allow us to generate
lexicon-based and corpus-based sentiment analy-
sis tools. We can then use these clinical sentiment
scores to generate a gradient of patient improve-
ment or deterioration over time.

We will also take into account structured data
that have been collected on the target cohort
throughout the course of this study such as
brain based electrophysiological (EEG) biomark-
ers, structural brain anatomy from MRI scans
(gray matter volume, cortical thickness, cortical
surface-area), social and role functioning assess-
ments, personality assessment (NEO-FFI9), and
various symptom scales (PANSS10, MADRS11,
YMRS12). For each feature we consider adding,
we will evaluate the performance of the classifier
with and without the feature to determine its con-
tribution as a predictor of readmission.
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A new depression scale designed to be sensitive
to change. The British journal of psychiatry,
134(4):382–389.

Harvey J Murff, Fern FitzHenry, Michael E Matheny,
Nancy Gentry, Kristen L Kotter, Kimberly Crimin,
Robert S Dittus, Amy K Rosen, Peter L Elkin,
Steven H Brown, et al. 2011. Automated identifica-
tion of postoperative complications within an elec-
tronic medical record using natural language pro-
cessing. Jama, 306(8):848–855.

Vinod Nair and Geoffrey E Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In Proceedings of the 27th international conference
on machine learning (ICML-10), pages 807–814.

Mark Olfson, David Mechanic, Carol A Boyer,
Stephen Hansell, James Walkup, and Peter J Wei-
den. 1999. Assessing clinical predictions of early
rehospitalization in schizophrenia. The Journal of
nervous and mental disease, 187(12):721–729.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. Journal of machine
learning research, 12(Oct):2825–2830.
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Abstract
We present an operational component of a
real-world patient triage system. Given a spe-
cific patient presentation, the system is able
to assess the level of medical urgency and is-
sue the most appropriate recommendation in
terms of best point of care and time to treat.
We use an attention-based convolutional neu-
ral network architecture trained on 600,000
doctor notes in German. We compare two ap-
proaches, one that uses the full text of the med-
ical notes and one that uses only a selected
list of medical entities extracted from the text.
These approaches achieve 79% and 66% preci-
sion, respectively, but on a confidence thresh-
old of 0.6, precision increases to 85% and
75%, respectively. In addition, a method to de-
tect warning symptoms is implemented to ren-
der the classification task transparent from a
medical perspective. The method is based on
the learning of attention scores and a method
of automatic validation using the same data.

1 Introduction

Several intelligent triage systems have recently
been developed that attempt to evaluate automati-
cally the risk related to specific patient conditions
and direct patients to the appropriate care provider
(Semigran et al., 2015). The work presented here
is part of an interactive triage system being devel-
oped for industrial applications. The system takes
patient demographics and symptoms as input, as-
sesses their current medical conditions and sug-
gests where and by when the patients should seek
medical care. A key feature of the system is the
detection of warning symptoms, namely, red flags.
This is crucial to distinguish potential emergencies
from common or less urgent cases and therefore
provides the medical rationale behind a given rec-
ommendation. In addition, for triage systems that
involve a dialogue with patients through multi-
ple question-and-answer interactions (such as Ada

(2018)), warning symptom detection is fundamen-
tal to determine the most informative questions to
ask patients.

We propose a model that assesses patient risk
and detects warning symptoms based on a large
volume of doctor notes in German, sometimes
even mixed with Swiss German expressions. In
this context, assessing patient risk can be regarded
as a supervised text classification task, where the
content of the medical records represents the fea-
ture space, and the recommendations assigned by
medical professionals are the ground truth labels.
The use of recurrent neural networks (RNN) has
been proposed to solve text classification tasks
(Tang et al., 2015). However, the proposed RNN
models must be modified to be consistent with the
requirement that warning symptoms must be de-
tected, because in RNNs it is generally not possi-
ble to know which hidden states are most relevant.

To address these challenges, we propose an
integrated approach to assess patient risk and
detect warning symptoms simultaneously using
an attention-based convolutional neural network
(ACNN), which is a combination of a convo-
lutional neural network (CNN) and an attention
mechanism (Kim, 2014; Yang et al., 2016; Du
et al., 2017). To the best of our knowledge, such
an integrated approach is applied for the first time
to the medical domain.

The main contributions of this paper are
twofold. First, we propose a neural network ar-
chitecture that can be used simultaneously for
text classification and the detection of important
words. Comparing our model to other neural ar-
chitectures of similar complexity, we achieve com-
petitive classification results. The model is espe-
cially useful to explain the recommendation ratio-
nale in classification scenarios, where the given in-
put consists of a set of extracted entities, rather
than full text. Second, a formal pipeline to detect

139



warning symptoms based on learned importance
factors is applied in an industrial application. Our
model identifies symptoms that indicate a medical
emergency. These warning symptoms can then be
used by intelligent medical care services or in an
ontology.

2 Related Work

2.1 Text Classification with Deep Learning

Traditional text classification approaches repre-
sent documents with sparse lexical features, such
as n-grams, and use a linear model or kernel meth-
ods on this representation (Wang and Manning,
2012; Joachims, 1998). More recently, deep learn-
ing technologies have been applied to text cate-
gorization problems. RNNs are designed to han-
dle sequences of any length and capture long-term
dependencies. Like sequence-based (Tang et al.,
2015) and tree-structured (Tai et al., 2015) mod-
els, they have achieved remarkable results in doc-
ument modeling.

Moreover, CNN models have achieved high ac-
curacy on text categorization. For example, Kim
(2014) used one convolutional layer (with multi-
ple widths and filters) followed by a max pooling
layer over time. Johnson and Zhang (2015) built a
model that uses up to six convolutional layers, fol-
lowed by three fully connected classification lay-
ers. Conneau et al. (2016) published a model with
a 32-layer character-level CNN, that achieved a
significant improvement on a large dataset. Mod-
els that combine CNN and RNN components for
document classification also yield competitive re-
sults on several public datasets (Zhou et al., 2015;
Lai et al., 2015).

To the best of our knowledge, not many re-
search efforts have focused on augmenting CNNs
for text classification with attention mechanisms.
In fact, attention layers are more typically coupled
with RNNs in order to better handle long-term de-
pendencies (Yang et al., 2016). Interestingly, Du
et al. (2017) used a CNN not as a classifier, but
to compute the attention weights to apply to the
hidden layers of a RNN. An example of combin-
ing attention layers with a CNN is the work by
Shen and Huang (2016). However, the authors
do not augment the CNN features using attention
weights. They use an attention mechanism to com-
pute sentence-level features, which they then con-
catenate to the convolutional features to ultimately
perform the classification.

2.2 Intelligent Triage Systems

Intelligent triage systems inform patients where
and when they should seek medical care, based
on methods such as expert rules, Bayesian infer-
ence and deep learning (Semigran et al., 2015).
For example, Symptomate (2018) uses a Bayesian
network and a medical database for triage advice.
Clinical records written by medical experts have
also been used to make triage suggestions with
deep learning technologies. Li et al. (2017) uses
a shallow CNN model to predict a patient’s dis-
eases using the corresponding admission notes.
Nigam (2016) applied a LSTM model to the multi-
label classification task of assigning ICD-9 labels
to medical notes.

3 Methodology

3.1 Data Processing

To build the triage application described here, we
used 600,000 case records written in German and
collected over the past five years. This is only
50% of the total available data, as we selected only
those cases treated by top-ranked doctors. Case
records contain demographic data such as age and
gender, previous illnesses, and a full-text descrip-
tion of the patient’s current medical condition. Po-
tential diagnoses consistent with the symptom de-
scription are listed.

The descriptions in the records are expressed in
formal medical language as well as in layman’s
terminology. The notes are not always written in
complete sentences and include misspellings, di-
alect vocabulary, non-standard medical abbrevia-
tions and inconsistent punctuation. This is a chal-
lenge for the linguistic processing of case files.

The original case records are very unevenly
distributed over ten recommendation classes (a
combination of a point-of-care and a time-to-treat
class). To mitigate this problem and for the pur-
pose of this work, the original classes, (emer-
gency, urgent), (grundversorger, urgent), (special-
ist, urgent), (grundversorger, within a day), (spe-
cialist, within a day), (grundversorger, not ur-
gent), (specialist, not urgent), (telecare, –), were
merged, with the help of healthcare profession-
als, into three categories: Urgent Care, General
Practice, Telecare. The categorization of cases is
shown in Table 1.
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Recommendations Number of Cases

Urgent Care 270,000
General Practice 104,000

Telecare 244,000

Table 1: Ground truth distribution for the reduced
classes. Urgent Care = Patient needs to seek medi-
cal care within a short time period; General Practice =
Patient requires medical attention in a physical consul-
tation, but not urgently; Telecare = In-person medical
appointment not required, instructions over the phone
are sufficient.

3.1.1 NLP Pipeline
A natural language processing (NLP) pipeline
extracted medically relevant concepts associated
with each written case. The pipeline consisted
of the following stages: (1) data preprocessing
for misspelling correction and abbreviation ex-
pansion, (2) named entity recognition (NER) and
(3) concept clustering. Acronyms and abbrevi-
ations used unambiguously were linked to the
corresponding entities directly in the dictionaries.
Ambiguous acronyms and abbreviations were re-
solved, when possible, using algorithms that in-
clude context for disambiguation. For NER, we
used a rule-based medical entity extraction sys-
tem built with IBM Watson Explorer, using al-
gorithms based on dictionary look-up and ad-
vanced rules. This allowed us to detect 51 en-
tity types in the following categories: anatomy,
physiology, symptoms, diseases, medical proce-
dures, medicines, negated symptoms, negated dis-
eases, ability/inability of, foreign-body objects,
negations, patient information, symptom charac-
terization, disease characterization, time expres-
sions. The distinction between symptoms and
diagnosis was made using existing ontologies,
where these semantic types were assigned with
the help of a team of clinical experts. The dic-
tionaries used in the NER were built partially
based on existing German-language medical dic-
tionaries and ontologies (UMLS mapped German
terms, ICD10, Meddra, etc.) and partially using
the list of words contained in the case records.
The dictionaries therefore contain a mapping of
technical and layman’s terms. The NLP pipeline
was designed to detect and resolve the negated
mentions of the entities listed above (using Ger-
man language-specific negation particles or ex-
pressions), which are very frequent in this type
of records. Only 31 entity types in the categories

symptoms, diseases, ability/inability of, negated
symptoms, negated diseases were included in the
current final list. The average number of extracted
annotations per case was 70 for all entities, but
only 17 for the selected entities. Performance was
evaluated using the manual annotations of a set of
ground truth cases performed by a team of clin-
ical experts. Concept clustering is a hierarchical
procedure that allowed us to group annotations de-
scribing the same medical concept. The same en-
tity may be expressed in a variety of forms (com-
pound vs. simple nouns, dialect or common lan-
guage vs. medical terminology). Concept clus-
tering is performed either at the dictionary level or
by algorithms based on similarity between lemmas
associated with the annotations.

Table 2 lists the concepts extracted from an
original case record after preprocessing by the de-
scribed NLP pipeline.

key value
Gender Male

Class Urgent Care

Content “Seit heute beschwert sich
der Patient über heftige
Brustschmerzen; Fieber 37,4°C;
Schwierigkeiten beim Atmen,
leichte Kopfschmerzen.”

Entities starke Brustschmerzen
Fieber 36-38°C
Atembeschwerde
leichte Kopfschmerzen

Table 2: (key,value)-pairs of an original patient case
file and extracted entities.

In this paper, we will benchmark the classifica-
tion approach of using the extracted concepts with
respect to the one of using the full text.

3.2 Model Architecture
The overall architecture of the attention-based
CNN is shown in Fig. 1. It consists of several
components: a word embedding look-up layer ob-
tained using word2vec (Mikolov et al., 2013), a
CNN-based n-gram encoder, an n-gram level at-
tention layer and several fully-connected layers.
By means of word embeddings, each word is rep-
resented as a real-valued vector. The word em-
bedding look-up layer is a word embedding table
T ∈ Rn×k, where n is the total vocabulary size
and k is the embedding dimension. The parame-
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Figure 1: Model Architecture.

ters of the embedding table were fine-tuned during
the training phase.

3.2.1 N-Gram Encoder
We used a 2D convolution layer (Kim, 2014) to
encode the word sequence into n-gram represen-
tations, thus capturing contextual information. For
a given document, a 2D convolution filter w ∈
Rm×k was applied to a window of m words to
produce a new feature. A feature ci was generated
from a window of words xi:i+m−1 by

ci = Relu(w · xi:i+m−1 + b). (1)

This filter was applied to each possible window of
words in the sentence x1:m, x2:m+1, .....xn−m+1:n

to produce a feature map:

c = [c1, c2, ......, cn−m+1], (2)

with c ∈ Rn−m+1. By applying multiple filters
(denoted f ) on xi:i+m−1, we obtained a new rep-
resentation of the document. By setting different
values for m, we obtained different n-gram repre-
sentations of the documents. This operation was
useful in our application setting because these lay-
ers create local region embeddings by n-grams.
Moreover, this allowed us to compute the atten-
tion factors for a combination of several symp-
toms. This in turn enabled us to detect pairs and
even triplets of symptoms that are harmless if they
appear individually, yet become red flags when
they appear together. For example, the individual
symptoms pain in arm and sudden nausea are no
cause for concern. However, if a patient experi-
ences both, this might indicate an impending heart
attack.

3.2.2 N-Gram Level Attention Layer
For each n-gram representation, we wanted to
derive a corresponding fully-connected represen-

tation for the document. As different n-grams
are of different importance to the document, we
introduced an attention mechanism to extract n-
grams that are relevant to the meaning of the doc-
ument and aggregated the representation of those
informative n-grams to form a document vector.
The relevant n-grams then became candidates for
warning symptoms. More specifically, the atten-
tion mechanism was defined such that:

uit = tanh(Wwvit + bw), (3)

where vit refers to the tth row of ith-gram repre-
sentation. That is, we first fed the n-gram anno-
tations vit through a one-layer neural network to
obtain uit as a hidden representation of vit. Then
we measured the importance of the word as the
similarity of uit with a word-level context vector
uw and obtained a normalized importance weight
αit through a softmax function:

αit =
exp(uTituw)∑
t exp(u

T
ituw)

. (4)

The context vector uw can be regarded as a high-
level representation of a fixed query “what is the
most informative word?” used in memory net-
works (Sukhbaatar et al., 2015; Kumar et al.,
2016). Context vector uw was randomly initial-
ized and jointly learned during the training pro-
cess. Thereafter, we computed the document vec-
tor si as a weighted sum of the n-gram annotations
based on the weights:

si =
∑

t

αitvit. (5)

Finally, all n-gram document level representations
were flattened into a one-dimensional vector (flat
connection layer in Fig. 1) plus patient gender and
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age (a+ 1 in Fig. 1). This vector was then fed into
a multilayer perceptron (MLP) for classification.

3.3 Warning Symptom Detection

Warning symptoms, or red flags, indicate the need
for urgent medical care. The ACNN model is able
to distinguish the importance of each symptom in
the final classification. Thereafter, we calculated
the attention score for each symptom as follows:

score(sj) =

∑
ci∈C Φ(ci, sj)f(ci, sj)

occur(sj)
, (6)

f(ci, sj) =
att(sj)

max
sk∈ci

att(sk)
, (7)

where Φ(ci, sj) is equal to 1 if symptom sj is con-
tained in case record ci and zero elsewhere; C is
the set of urgent care cases in the data; occur(si)
is the total occurrences of symptom si; att(sk)
are the attention weights returned by the ACNN.
The attention weights gave us a measurement of
the warning level of the symptoms.

This procedure was applied for all classes to de-
tect the most important symptoms that drive the
model’s prediction. As expected for the other
classes, the model assigns high attention weights
to non-warning symptoms.

4 Results

4.1 Patient Risk Assessment Experiment

4.1.1 Training Details
We conducted a detailed evaluation of this model
on both the original full-text dataset and a dataset
of a few selected medical entities (see Sec-
tion 3.1.1 for details) denoted for simplicity as a
symptoms dataset. The machine learning frame-
work where all the neural network models have
been implemented was based on TensorFlow and
Keras. The vocabulary size, average document
size and maximum document length are 134,000,
62.9 and 959 words for the full-text dataset;
and 20,000, 14.15 and 94 for the symptoms
dataset. We used 90% of the data for training,
5% for validation, and 5% for test randomly sam-
pled. Both datasets were preprocessed by re-
moving stop words and low-occurrence words and
zero-padding the documents. We learned 200-
dimensional word embeddings on our datasets
with word2vec over 25 iterations. The embeddings
were different for each dataset.

We tuned our parameters on a 30,000 valida-
tion set and report the result on another 30,000
test set. For model-specific parameters, we used
grid search to find the optimal values. We used
a cross-entropy loss function with 256-mini-batch
updating and Adam optimizer for five epochs.
The learning rate was between 0.001 and 0.003;
regularization was performed by weight decay of
0.0001 and a dropout of 0.8 was applied to every
MLP layer. The attention vector size was set up to
100, and the window size was set from 1 to 5. For
each n-gram extraction, we used up to 128 filters
for 2D convolution.

4.1.2 Model Comparison
In this section, we compare our system to the fol-
lowing approaches:
CLSTM (Zhou et al., 2015) applies a CNN model
on text and feeds consecutive window features di-
rectly to a LSTM model.
Kim CNN (Kim, 2014) uses 2D convolution win-
dows to extract an n-gram representation followed
by max-pooling.
BiGRU Attention Network (Yang et al., 2016)
consists of RNNs applied on both word and sen-
tence level to extract a hidden state. An attention
mechanism is applied after the bidirectional gated
recurrent units.

The results on the datasets with the full text and
the symptoms only are shown in Tables 3 and 4,
respectively. All the analyzed models show simi-
lar performance in the classification task. For all
models, the performance decreases as we move
from the full text dataset to the symptoms dataset
because the medical and contextual information
also diminishes by taking into account only the ex-
tracted symptom concepts.

4.1.3 Result Analysis
In this section, we compare our ACNN model with
the state-of-the-art deep learning models to obtain
a benchmark on our triage use case. We also de-
scribe how our approach, a combination of con-
volutional neural networks and attention mecha-
nisms, equals the performance of existing models
with the advantage of being explainable.

Kim CNN uses 2D convolution windows to ex-
tract n-gram representations. Max pooling was
then applied to each of the filter outputs. A sin-
gle value was retained for each feature map. This
might work well for short sentences containing
only a few “leading” words indicating the cate-
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Model P(f1) R(f1) F(f1) P(f2) R(f2) F(f2) P(f3) R(f3) F(f3)

KIM CNN 82.3 80.5 81.9 69.2 65.4 68.4 82.2 86.1 83.0
CLSTM 78.2 82.6 79.0 66.9 62.4 66.0 83.4 80.7 82.8
BiGRU Attention Net 74.9 80.2 75.9 62.6 59.0 61.9 80.8 76.6 79.9
ACNN 80.5 81.1 80.7 67.6 60.9 66.1 82.0 84.8 82.6

Table 3: Prediction results in % for the different architectures on full text, where P(fk), R(fk), F(fk) are precision,
recall and f-score divided by class, and where f1, f2, f3 are urgent care, general practice and telecare, respectively.
Similar values were obtained by conducting several experiments and averaging the results.

Model P(s1) R(s1) F(s1) P(s2) R(s2) F(s2) P(s3) R(s3) F(s3)

KIM CNN 70.5 73.6 71.1 55.2 40.6 51.5 66.5 70.6 67.3
CLSTM 70.0 71.6 70.3 53.8 40.1 50.4 65.4 70.8 66.4
BiGRU Attention Net 69.2 72.5 69.9 53.0 43.1 50.7 66.7 68.4 67.0
ACNN 72.5 68.2 71.6 51.9 47.8 51.0 65.5 72.0 66.5

Table 4: Same as Table 3 but on symptoms dataset, where s1, s2, s3 are urgent care, general practice and telecare
cases, respectively.

Figure 2: Visualization of attention factors from neural network used to explain recommendation rationale. Each
line represents the (translated) symptoms extracted for a patient case file. The darker the color, the higher the
attention factor for a symptom.

gory. For longer documents, however, all informa-
tion about n-grams is lost apart from the strongest
signal. The presence of highly important symp-
toms in clinical data is the reason why this model
performs well especially for urgent care and tele-
care classes. This hypothesis is supported by the
number of symptoms with large attention scores
found in the ACNN model for these classes.

The BiGRU Attention Network applies an at-
tention layer after bidirectional GRU components.
For a given word in a sentence, it encodes informa-
tion about the word context in that sentence. How-
ever, compared to a 2D convolution window, only
a single context window is used. It is not trivial to
choose the optimal window size. Thus, it is dif-
ficult to detect warning symptom pairs or triplets.
For 2D convolution in our model, identifying such
pairs or triplets would be more straightforward be-
cause attention factors are also learned for 2 and 3-
grams. Another limitation of GRU models is that
they rely on fully sequential data. In our use case,
however, the data is composed of several separate

phrases, words or incomplete sentences.
Our ACNN combines the merits of 2D convo-

lution and attention mechanisms by stacking 2D
convolution layers to extract contextual informa-
tion and an attention mechanism to assign impor-
tance factors to different symptoms and combina-
tions thereof.

4.2 Warning Symptom Detection

Owing to the lack of ground truth, we used the fol-
lowing evaluation method to detect warning symp-
toms with the ACNN. First, we measured the re-
call of the ACNN on urgent care cases contain-
ing only symptom concepts. Then, a new dataset
was created by removing from each case record
the 1-gram with the highest attention score, calcu-
lated as described in Section 3.3. For urgent cases,
we expected the removed 1-grams to be highly im-
portant signals of medical urgency, hence warning
symptoms. For instance, starke Brustschmerzen
would be removed from the case described in Sec-
tion 3.1.1. We then compared the ACNN recall
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for the urgent cases on the new dataset (Atten-
tion Drop) with respect to the recall on the orig-
inal symptoms dataset (Baseline). This procedure
is performed on all the classes for validation. The
decrease in recall demonstrates the importance of
the detected warning symptoms in order to classify
urgent cases correctly. To verify that the detected
warning symptoms are indeed highly informative,
we furthermore generated datasets in which either
random symptoms (Random Drop) or symptoms
that appear most frequently in urgent cases (Fre-
quency Drop) are dropped.

As shown in Table 5, dropping the attention-
detected warning symptoms led to the largest de-
crease in performance. The difference became
even more distinct if two symptoms instead of one
were removed from the cases.

Performance also decreased for the urgent care
and general practice classes, whereas almost a flat
behavior was found for telecare class, as expected.
In the latter case, random, frequency, attention
drops showed the same results because several
features had the same attention scores. Manual
inspection of the symptoms with the highest at-
tention scores further supports these results. The
darker the color of the symptom in Figure 2, the
higher its attention factor in the model. In the ex-
amined samples, darker colors did indeed correlate
with symptoms that made patients require urgent
care, such as vomiting blood and electric shock.

With single or double removals for the full-text
dataset, a much lower decrease in performance
was observed because of the higher number of fea-
tures per case.

4.3 Explainable Deep Learning

In current research, but especially in medical in-
dustry applications, transparent or explainable
machine learning models are becoming increas-
ingly important. Some machine learning models
have become so complex, they are black boxes.
End users need to understand why a certain rec-
ommendation was made.

In our application, the attention mechanism
on which we based our warning (and non-
warning) symptom detection represents a transpar-
ent method of reasoning why a given case belongs
to a certain class.

For instance, by analyzing the patient symptoms
with the highest attention scores, it becomes ap-
parent why a case would be predicted to be urgent,

general practice or telecare. Table 6 shows some
examples with high/low attention scores computed
using 1-gram attention values for urgent care, gen-
eral practice and telecare classes. As can be seen,
the symptoms with the highest score in the ur-
gent cases are the most severe, whereas the symp-
toms in the telecare cases are less severe. In
other words, symptoms with a high/low score for
a given class are the most/least relevant ones for
that class. As expected, if the model predicts
an urgent (non-urgent) class, the model assigns
a higher weight to warning (non-warning) symp-
toms. The computation of 1-gram feature scores
results in 2,000 (3,600), 734 (3,700), 1,500 (3,800)
features with scores of > 0.8 (< 0.2) for s1, s2
and s3, respectively. The use of an attention layer
on n-gram representations allowed us to compute
feature relevance including correlations between
pairs, triplets, etc. An example of scores of feature
pairs obtained by extracting the attention weights
for the 2-grams is shown in Tables 7 and 8. Strong
correlation between feature pairs is found for the
cases where the score of the pair is much higher
than those of the single features. The compu-
tation of 2-gram feature scores results in 12,000
(28,000), 4,800 (13,000), 10,000 (24,000) features
with scores of > 0.8 (< 0.2) for s1, s2 and s3, re-
spectively.

4.4 Confidence

To reach higher performance in an operative triage
application, we define a confidence score in the
classification based on which the system decides
whether to trust the recommendation. In Table 9
and Table 10 we show the same results obtained
in Tables 3 and 4, respectively, discarding all test
cases in which the predicted probability of the
classifier was lower than 0.6. With the chosen
threshold, we discarded roughly 30% cases. Over-
all a performance improvement of between 5%
and 10% is observed. In future work, we plan to
apply additional techniques, e.g., based on hier-
archical decision trees, to minimize medical risk
even further.

5 Conclusion

We have described an attention-based CNN
model to assess patient risk and to detect warning
symptoms, which will be used in an industrial
application for medical triage. We achieved a
precision of 79% on the full-text dataset and
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Dataset P(s1) R(s1) F(s1) P(s2) R(s2) F(s2) P(s3) R(s3) F(s3)

Baseline 72.5 68.2 71.6 51.9 47.8 51.0 65.5 72.0 66.7
Random Drop 71.7 65.7 70.4 49.9 44.2 48.6 65.8 72.8 67.1
Frequency Drop 71.7 65.7 70.4 50.9 46.0 49.8 66.0 73.5 67.4
Attention Drop 70.3 61.3 68.2 48.0 40.9 46.4 66.3 74.6 67.8
2 Random Drops 70.8 62.8 69.0 47.6 40.2 45.9 66.0 73.3 67.3
2 Frequency Drops 70.3 61.2 68.3 49.0 42.6 47.6 66.6 75.6 68.2
2 Attention Drops 67.5 53.6 64.2 44.0 34.8 41.8 67.0 77.0 68.8

Table 5: Different datasets and the model’s precision, recall and f-score in %, where s1, s2, s3 are urgent care,
general practice and telecare symptoms dataset, respectively.

s1 score s2 score s3 score

shortness of breath 1.0 intermittent shoulder pain 1.0 back distortion 1.0
(Atemnot) (intermittierende Schulterschmerzen) (Rückenzerrung)
pain after accident 1.0 severely itchy wound 1.0 abrasion on the back 1.0
(Schmerzen nach Unfall) (stark juckende Wunde) (Schürfung am Rücken)
foreign body in esophagus 1.0 purulent nasal discharge 1.0 toenail injury 1.0
(Fremdkörper im Ösophagus) (eitriger Nasenausfluss) (Zehennagelverletzung)
severe rectal bleed 1.0 neck abscess 1.0 itching forehead 1.0
(blutet stark rektal) (Abszess am Nacken) (Juckreiz an der Stirn)
itching back 0.05 no pain when walking 0.03 stabbed with knife 0.03
(Juckreiz am Rücken) (beim Laufen keine Schmerzen) (Messerstich)
pain in thumb 0.04 throat is normal 0.01 ear bleeding 0.02
(Daumenschmerz) (Hals normal) (Ohrenblutung)
nail injury 0.03 blister on tongue 0.01 hardened lower abdomen 0.01
(Nagelverletzung) (Blase auf der Zunge) (verhärteter Unterbauch)
wart on foot 0.01 can drink normally 0.003 difficulty breathing 0.005
(Warze am Fuss) (kann normal trinken) (Schwierigkeiten beim Atmen)

Table 6: Symptoms (translated from German into English) scores divided by class using 1-gram attention values
(only a few examples with high/low scores shown here). The corresponding German terms are given in parentheses.

(fi, fj) score of fi score of fj score of (fi, fj)

(acute abdominal pain, severe abdominal pain) 0.86 0.39 1.0
(akute Bauchschmerzen, starke Bauchschmerzen)
(loss of consciousness, head injury) 0.32 0.55 1.0
(Bewusstseinsverlust, Schädelverletzungen)
(epigastric pain, colic) 0.35 0.26 1.0
(Oberbauchschmerzen, Kolik)
(pneumonia, respiratory tract inflammation) 0.45 0.24 0.92
(Pneumonie, Atemwegentzündung)
(severe vomiting, dehydration) 0.44 0.56 0.87
(starkes Erbrechen, Dehydration)
(very high blood pressure, hypertensive crisis) 0.49 0.78 0.86
(Blutdruck stark erhöht, hypertensive Krise)

Table 7: Symptoms (translated from German into English) scores using 2-gram attention values (only a few high
scores shown here) for s1. The corresponding German terms are given in parentheses.

66% on the symptoms set. On a confidence
threshold of 0.6, precision increases to 85% and
75%, respectively. The learned attention weights
allowed us to compute the symptom relevance,

i.e., the attention score, which is then used to
extract warning symptoms more precisely and to
make the recommendation rationale transparent.
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(fi, fj) score of fi score of fj score of (fi, fj)

(chronic back pain, back pain) 0.29 0.08 1.0
(chronische Rückenschmerzen, Rückenschmerzen)
(patella pain, knee pain) 0.26 0.21 0.79
(Schmerzen an der Kniescheibe, Knieschmerzen)
(chronic anemia, food allergy) 0.18 0.17 0.66
(chronische Anämie, Nahrungsmittelallergie)
(rheumatoid arthritis, joint pain) 0.13 0.13 0.59
(rheumatoide Arthritis, Gelenkschmerzen)
(colonoscopy, blood in stool) 0.22 0.22 0.59
(Darmspiegelung, Blut im Stuhlgang)
(fatigue, chronic anemia) 0.07 0.18 0.58
(Müdigkeit, chronische Anämie)

(non-swollen lymph nodes, viral infection) 0.20 0.31 1.0
(keine Lymphknotenschwellung, virale Entzündung)
(conjunctivitis, slight redness) 0.32 0.17 1.0
(Konjunktivitis, leichte Rötung)
(abnormally frequent urination, no complication) 0.26 0.63 1.0
(hufiges Urinieren, keine Komplikation)
(bladder infection, no pregnancy) 0.29 0.21 0.96
(Harnblasenentzündung, keine Schwangerschaft)
(local reaction, itchiness) 0.31 0.17 0.92
(Lokalreaktion, Juckreiz)
(gastroenteritis, no travel abroad) 0.42 0.23 0.90
(Gastroenteritis, kein Auslandaufenthalt)

Table 8: Symptoms (translated from German into English) scores divided by class using 2-gram attention values
(only a few high scores shown here) for s2 (upper), s3 (lower) panel. The corresponding German terms are given
in parentheses.

Model P(f1) R(f1) F(f1) P(f2) R(f2) F(f2) P(f3) R(f3) F(f3)

KIM CNN 87.8 86.3 87.5 73.0 78.6 74.0 90.6 90.0 90.4
CLSTM 84.4 88.4 85.2 76.2 66.5 74.0 88.4 87.6 88.3
BiGRU Attention Net 76.5 82.2 77.6 65.1 60.7 64.2 82.5 78.2 81.6
ACNN 85.3 87.3 85.6 77.3 65.1 74.5 87.1 89.5 87.6

Table 9: Same as Table 3 applying a threshold to the probabilities of 0.6.

Model P(s1) R(s1) F(s1) P(s2) R(s2) F(s2) P(s3) R(s3) F(s3)

KIM CNN 75.6 86.0 77.5 65.0 45.5 59.8 77.5 72.0 76.3
CLSTM 76.5 83.2 77.8 66.8 44.5 60.7 75.2 75.2 75.2
BiGRU Attention Net 73.2 76.8 73.4 58.4 45.1 55.1 70.5 72.5 70.9
ACNN 77.0 81.5 77.9 62.8 60.0 60.3 75.7 74.9 75.5

Table 10: Same as Table 4 applying a threshold to the probabilities of 0.6.
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Abstract

Transfer learning (TL) proposes to enhance
machine learning performance on a problem,
by reusing labeled data originally designed for
a related problem. In particular, domain adap-
tation consists, for a specific task, in reusing
training data developed for the same task but
a distinct domain. This is particularly relevant
to the applications of deep learning in Natural
Language Processing, because those usually
require large annotated corpora that may not
exist for the targeted domain, but exist for side
domains. In this paper, we experiment with TL
for the task of Relation Extraction (RE) from
biomedical texts, using the TreeLSTM model.
We empirically show the impact of TreeLSTM
alone and with domain adaptation by obtain-
ing better performances than the state of the
art on two biomedical RE tasks and equal per-
formances for two others, for which few an-
notated data are available. Furthermore, we
propose an analysis of the role that syntactic
features may play in TL for RE.

1 Introduction

A bottleneck problem for training deep learning-
based architecture on text is the availability of
large enough annotated training corpora. This is
especially an issue in highly specialized domains
such as those of biomedicine. TL approaches ad-
dress this problem by leveraging existing labeled
data originally designed for related tasks or do-
mains (Weiss et al., 2016). However, adaptation
between dissimilar domains may lead to negative
transfer, i.e. transfer that decreases the perfor-
mance for the target domain. In this article, we ap-
ply a TL strategy using the TreeLSTM model for
the task of biomedical Relation Extraction (RE).
We propose an analysis of the syntactic features of
source and target domain corpora to provide ele-
ments of interpretation for the improvements we
obtained.

Figure 1: Example of relationship typed as Weak
Confidence Association between two named entities:
a SNP (single nucleotide polymorphism) and a Pheno-
type, from the SNPPhenA corpus.

Relation Extraction (RE) aims at identifying in
raw and unstructured text all the instances of a pre-
defined set of relations between identified entities.
A relationship takes the form of an edge between
two or more named entities as illustrated in Figure
1. We are considering here binary RE that can be
seen as a classification task by computing a score
for each possible relation type, given a sentence
and two identified entities.

Deep learning methods have demonstrated good
ability for RE (Zeng et al., 2014), but one of
their drawbacks is that, in order to obtain reason-
able performances, they generally require a large
amount of training data, i.e., text corpora where
entities and relationships between them are anno-
tated. The assembly of this kind of domain- and
task-specific corpora, such as those of interest in
biomedicine, is time consuming and expensive be-
cause it involves complex entities (e.g., genomic
variations, complex phenotypes), complex rela-
tionships (which may be hypothetical, contextu-
alized, negated, n-ary) and requires trained anno-
tators. This explains why only few and relatively
small (i.e., few hundreds of sentences) corpora are
available for some biomedical RE tasks, making
these resources particularly valuable. Distinct ap-
proaches, such as TL or distant supervision (Mintz
et al., 2009) have been particularly explored to
overcome this limit. With the latter approach,
existing relationships available in knowledge- or
data-bases are used to enrich the training set, with-
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out considering more labeled corpora .
Domain adaptation is a type of TL that allows

taking advantage of data annotated for a source
domain to improve the performances in a related
target domain (Weiss et al., 2016). However, even
if the source and target domain share the same
language (i.e., English), thus a common syntax,
TL between domains may lead to negative transfer
since specific source domains may use specific vo-
cabularies as well as specific formulations that are
inadequate to the target domain. Hence, we need
to better understand and characterize what makes a
source corpus potentially helpful, or harmful, with
regard to a RE task.

The contribution of this paper is twofold. First,
we show that, compared to a baseline Convo-
lutional Neural Network (CNN)-based model, a
syntax-based model (i.e., the TreeLSTM model)
can better benefit from a TL strategy, even with
very dissimilar additional source data. We conduct
our experiments with two biomedical RE tasks and
relatively small associated corpora, SNPPhenA
(Bokharaeian et al., 2017) and EU-ADR (van Mul-
ligen et al., 2012) as target corpora and three
larger RE corpora, Semeval 2013 DDI (Herrero-
Zazo et al., 2013), ADE-EXT (Gurulingappa et al.,
2012), reACE (Hachey et al., 2012) as source cor-
pora. Second, we propose a syntax-based analy-
sis, using both quantitative criteria and qualitative
observations, to better understand the role of syn-
tactic features in the TL behavior.

2 Related work

2.1 Deep Learning Models for Relation
Extraction

Deep learning models, based on continuous word
representations have been proposed to overcome
the problem of sparsity inherent to NLP (Huang
and Yates, 2009). In Collobert et al. (2011), the
authors proposed a unified CNN architecture to
tackle various NLP problems traditionally handled
with statistical approaches. They obtained state-
of-the-art performances for several tasks, while
avoiding the hand design of task specific features.

Zeng et al. (2014) showed that CNN models can
also be applied to RE. In this study, they learn
a vectorial sentence representation, by applying a
CNN model over word and word position embed-
dings, which is used to feed a softmax classifier
(Bishop, 2007). To improve the performance of
RE, authors, such as Xu et al. (2015) and Yang

et al. (2016), consider elements of syntax within
the embedding provided to the model.

Beside CNN models that incorporate syntac-
tic knowledge in their embeddings, other ap-
proaches proposed neural networks (NN) in which
the topology is adapted to the syntactic structure
of the sentence. In particular, Recursive Neural
Network (RNN) have been proposed to adapt to
tree structures resulting from constituency pars-
ing (Socher et al., 2013; Legrand and Collobert,
2014). In this vein, Tai et al. (2015) introduced
a TreeLSTM, a generalization of LSTM for tree-
structured network topologies, which allows pro-
cessing trees with arbitrary branching factors.

The first model to use RNN for RE was pro-
posed by Liu et al. (2015). The authors introduced
a CNN-based model applied on the shortest depen-
dency path between two entities, augmented with
a RNN-based feature designed to model subtrees
attached to the shortest path. Miwa and Bansal
(2016) introduced a variant of the TreeLSTM that
allows, like the model used in this paper, to take
the whole dependency tree into account and not
only the shortest path between two entities.

In this paper, we compare two deep learn-
ing strategies for RE: (1) the MultiChannel CNN
(MCCNN) model (Quan et al., 2016), which has
been successfully applied to the task of protein-
protein interaction extraction without using any
syntactic feature as input and (2) the TreeLSTM
model (Tai et al., 2015), which is designed for con-
sidering dependency trees. These two models are
detailed in section 3.

2.2 Transfer learning

TL allows to overcome the lack of training data
for a given target task by transferring knowledge
from source data not originally designed for that
purpose (Weiss et al., 2016). One can distinguish
multitask learning in which performances on a
given task are improved using information con-
tained in the training signals of auxiliary related
tasks (Caruana, 1997) from domain adaptation in
which only one task is considered but its appli-
cation domains differ (Ben-David et al., 2010).
While the former is a form of inductive transfer
in which the auxiliary task introduces an inductive
bias during training, the latter is a form of trans-
ductive transfer.

Domain adaptation approaches have been pro-
posed for RE, including kernel based methods
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Figure 2: The MCCNN model with three channels,
two CNN kernels of size 2 (CNN2) and 3 (CNN3).
Red words correspond to the entities.

such as Plank and Moschitti (2013) focusing on
unsupervised domain adaptation (i.e., without any
labeled target data) and deep learning based ones
such as (Fu et al., 2017; Zhao et al., 2017) focus-
ing on domain adversarial learning (an approach
which ensures that the feature distributions over
the source and target domains are made similar us-
ing an extra domain classifier at train time). Dif-
ferently, our approach is a case of multi-source
domain adaptation (i.e., implying that we have la-
beled data, both in target and source corpora) and
does not involve adversarial training.

Negative transfer occurs when the information
learned from a source domain and task has a nega-
tive impact on the performances of the target task.
Despite the fact that negative transfer is a major is-
sue in TL, to our knowledge only few works have
been conducted to overcome this problem (Weiss
et al., 2016). Most of them use a relatedness met-
rics to select the elements of the source that are the
most related to the target. For instance, Seah et al.
(2013) defined a positive transferability measure
that allows removing irrelevant source data. Ge
et al. (2014) also focused on domain adaptation
from multiple sources. They proposed a method to
avoid negative learning caused by unrelated or ir-
relevant source domains, using a weighting mech-
anism based on a relatedness metrics between the
source and target data.

In this work, we experiment with a domain
adaptation method on the RE task using the TreeL-

LSTM

Warfarin

LSTM

interacts

rs

LSTM

with

LSTM

ardeparin

Scorer

s(rs)

Figure 3: The TreeLSTM model. Each node takes
as input the representation of its children. Red words
correspond to the entities.

STM model, with relatively small biomedical cor-
pora as target corpora and, larger biomedical or
general domain corpora as source corpora. We
also provide elements of interpretation of the im-
pact of syntactic dependency structures on TL. In
this matter, and unlike Seah et al. (2013) or Ge
et al. (2014), the relatedness measures used in this
work emphasizes the key role of syntax in TL with
TreeLSTM.

3 Models

We compare in this article the performances of the
MCCNN and TreeLSTM models. Both models
compute a fixed-size vector representation for a
whole sentence by composing input embeddings.
A score is computed for each possible type of re-
lationship (e.g., negative, positive or speculative)
between two identified entities.

In this section, we first introduce the embed-
ding input layer, which is common to both ap-
proaches (i.e., MCCNN and TreeLSTM); Then,
we detail how each approach composes sequences
of embedding in order to compute a unique vec-
torial sentence representation; Finally, we present
the scoring layer, which is common to both ap-
proaches.

3.1 Input layer

Both models are fed with word embeddings (i.e.,
continuous vectors) of dimension dw, along with
extra entity embeddings of size de. These embed-
dings are concatenated to form the input of the
model. Formally, given a sentence of N words,
w1, w2, . . . , wN , each word wi ∈ W is first em-
bedded in a dw-dimensional vector space by ap-
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Corpus Subcorpus Train Size Test Size #Entity #Relation
name sent. rel. sent. rel. Types Types

Target corpora
SNPPhenA – 362 935 121 365 2 3

drug-disease 244 176 4 3
EU-ADR drug-target 247 310 – – 4 3

target-disease 355 262 4 3

Source corpora

SemEval DrugBank 5,675 3,805 973 889 4 4
2013 DDI MEDLINE 1,301 232 326 95 4 4
ADE-EXT – 5,939 6,701 – – 2 1
reACE – 5,984 2,486 – – 4 5

Table 1: Main characteristics of our target and source corpora. Two corpora are divided into subcorpora. The sizes
of the training and test corpora are reported in term of number of sentences (sent.) and annotated relationships
(rel.). EU-ADR, ADR-EXT and reACE have no proper test corpus.

plying a lookup-table operation: LTW (wi) =
Wwi , where the matrix W ∈ Rdw×|W| repre-
sents the parameters to be trained in this lookup-
table layer. The dictionary W is composed of
all the words of the given corpus. Each column
Wwi ∈ Rdw corresponds to the vector embedding
of the wi

th word in our dictionaryW .
Besides, entity embeddings (coming from a

simple 3-elements dictionary) enable to distin-
guish between words which compose either the
first entity, the second entity or are not part of any
entity. They are respectively called first entity, sec-
ond entity and other embeddings. Finally, word
and entity embeddings are concatenated to form
the input corresponding to a given word. Let’s
denote xi the concatenated input corresponding to
the ith word.

3.2 Composition layers

Both models take the embeddings as input and
output a fixed-size representation rs of size ds,
which corresponds to the whole sentence with two
identified entities. Accordingly, one sentence with
more than two entities will lead to one embedding
for each pair of entities. This section details the
two models used in this study.

3.2.1 MCCNN

The MCCNN models applies a variable kernel size
CNN to multiple input channels of word embed-
dings. Inspired by the three-channel RGB im-
age processing models, it considers different em-
bedding channels (i.e., different word embeddings
versions for each word) allowing to capture differ-
ent aspects of input words.

More formally, given an input sequence
x1, . . . , xN , applying a kernel to the ith window
of size k is done using the following formula:

C = h(
N−k+1∑

j=1

W [xi, . . . , xi+k−1]
j + b)

where [ ]j denotes the concatenation of inputs
from channel j, W ∈ R(dw+de)×dh and b ∈ Rdh

are the parameters, dh is the size of the hidden
layer, h is a pointwise non-linear function such
as the hyperbolic tangent and c is the number of
input channels. For each kernel, a fixed size rep-
resentation rh ∈ Rdh is then obtained by applying
a max-pooling over time (here, the time means the
position in the sentence).: rh = maxC

We denote K the number of kernels with dif-
ferent sizes. A sentence representation rs ∈ Rds

(with ds = K ∗ dh) is finally obtained by concate-
nating the output corresponding to the K kernels
rs = [r1h, . . . , r

k
h] , where rkh corresponds to the

output of the kth kernel. Figure 2 illustrates the
structure of a two-channel CNN, with two kernels
of size 2 and 3, on a four-words sentence.

3.2.2 TreeLSTM
The TreeLSTM model, and more specifically its
Child-Sum version, (Tai et al., 2015) processes the
dependency tree associated with an input sentence
in a bottom-up manner. This model is suitable for
processing dependency trees since it handles trees
with arbitrary branching factors and no order be-
tween children of a node. This is done by recur-
sively processing the nodes of the tree, using at
each iteration, the representations of the children
of the current node as input. The transition func-
tion for a node j and a set of children C(j) can be
found in the original paper (Tai et al., 2015) using
xj ∈ Rdw+de as input for node j. The TreeL-
STM outputs a sentence representation rs ∈ Rds

corresponding to the output state oj of the top tree
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node (i.e., the root node of the dependency tree
that spans all the others). Figure 3 illustrates the
structure of the TreeLSTM computed for a four-
words sentence.

3.3 Scoring layer

Both the MCCNN and TreeLSTM models output
a unique vector representation rs ∈ Rds that takes
the entire sentence into account, as well as two
identified entities. This representation is used to
feed a single layer NN classifier, which outputs
a score vector with one score for each possible
type of relationship. This vector is obtained us-
ing the formula: s(rs) = W (s)rs + b(s), where
W (s) ∈ Rds×|S| and b(s) ∈ R|S| are the trained
parameters of the scorer, |S| is the number of pos-
sible relation types. The scores are interpreted as
probabilities using a softmax layer (Bishop, 2007).

4 Datasets

We explore how RE tasks that focus on a type of
relationship associated with scarce resources may
take advantage from larger corpora developed for
distinct domains. To this purpose, we selected (i)
two small target biomedical corpora and (ii) three
larger source corpora. All are publicly available
and detailed in the following section. Table 3 sum-
marizes their main characteristics.

4.1 Target corpora

SNPPhenA (Bokharaeian et al., 2017) is a corpus
of abstracts of biomedical publications, obtained
from PubMed (Fiorini et al., 2017), annotated with
two types of entities: single nucleotide polymor-
phisms (SNPs) and phenotypes. Relationships be-
tween them are annotated and classified in 3 types:
positive, negative and neutral.
EU-ADR (van Mulligen et al., 2012) is a corpus of
PubMed abstracts annotated with drugs, diseases
and drug targets (proteins/genes or gene variants)
entities. It is composed of 3 subcorpora of 100
abstracts each, encompassing annotations of ei-
ther target-disease, target-drug or drug-disease re-
lationships. Annotated relationships are classified
in 3 types: positive, speculative and negative asso-
ciations (PA, SA and NA respectively). In (Bravo
et al., 2015), performances are assessed over the
TRUE class, which is composed of the PA, SA and
NA types, in contrast with the FALSE class.

4.2 Source corpora

SemEval 2013 DDI (Drug-Drug Interaction)
(Herrero-Zazo et al., 2013) consists of texts from
DrugBank and MEDLINE annotated with drugs.
Drug are categorized in 4 categories: drug, brand,
group and drug n (i.e., active substances not ap-
proved for human use). Relationships are classi-
fied in 4 types: mechanism, effect, advice and int
(default category, when no detail is provided).
ADE-EXT (Adverse Drug Effect corpus, ex-
tended) (Gurulingappa et al., 2012) consists of
MEDLINE case reports, annotated with drugs and
conditions (e.g., diseases, signs and symptoms),
along with untyped relationships between them.
reACE (Edinburgh Regularized Automatic Con-
tent Extraction) (Hachey et al., 2012) consists of
English broadcast news and newswire annotated
with organization, person, fvw (facility, vehicle
or weapon) and gpl (geographical, political or lo-
cation) entities along with relationships between
them. Relationships are classified in five types:
general-affiliation, organisation-affiliation, part-
whole, personal-social and agent-artifact.

5 Experiments

5.1 Training and Experimental Settings

Our models were trained by minimizing the log-
likelihood over the training data. All parame-
ters (weights, biases and embeddings) were it-
eratively updated via backpropagation for the
MCCNN and backpropagation Through Struc-
ture (Goller and Kuchler, 1996) for the TreeL-
STM. Hyper-parameters were tuned using a 10-
fold cross-validation by selecting the values lead-
ing to the best averaged performance, and fixed
for the remaining experiments. Word embed-
dings were pre-trained on ˜3.4 million PubMed
abstracts (corresponding to all those published be-
tween Jan. 1, 2014 and Dec. 31, 2016) using the
method described in Lebret and Collobert (2014).

MCCNN model. Following Kim (2014) both
channels were initialized with pre-trained word
embeddings, but gradients were backpropagated
only through one of the channels. Hyper-
parameters were fixed to dw = 100, de = 10,
dh = 100 for each of the 2 channels, ds =
2×dh = 200. We used two kernels of size 3 and 5
respectively. We applied a dropout regularization
after the embedding layers (Srivastava et al., 2014)
with a dropout probability fixed to 0.25.
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Test Corpus Model Train corpus P R F σF

SNPPhenA alone 58.9 73.8 65.5 4.1
TreeLSTM + SemEval 2013 DDI 65.2 71.1 68.0 4.7

+ ADE-EXT 62.8 72.1 67.2 3.4
SNPPhenA + reACE 61.8 74.3 67.1 3.6

SNPPhenA alone 55.1 75.0 63.3 4.8
MCCNN + SemEval 2013 DDI 55.3 74.4 63.3 4.9

+ ADE-EXT 56.1 73.2 63.2 4.8
+ reACE 53.2 70.9 60.6 4.1

EU-ADR drug-disease alone 74.8 84.1 79.1 12.3
TreeLSTM + SemEval 2013 DDI 74.8 90.6 82.0 13.1

+ ADE-EXT 73.9 88.2 80.4 13.7
EU-ADR + reACE 74.3 91.1 79.3 14.3
drug-disease EU-ADR drug-disease alone 73.3 94.7 80.2 14.2

MCCNN + SemEval 2013 DDI 72.6 87.9 76.6 14.3
+ ADE-EXT 73.0 85.5 76.0 14.5
+ reACE 74.1 91.5 79.2 13.8

EU-ADR drug-target alone 72.4 90.6 80.2 10.9
TreeLSTM + SemEval 2013 DDI 71.9 95.5 82.5 8.5

+ ADE-EXT 70.2 96.7 80.9 9.2
EU-ADR + reACE 70.4 96.5 80.8 9.3
drug-target EU-ADR drug-target alone 74.5 92.3 81.0 9.3

MCCNN + SemEval 2013 DDI 74.9 88.8 80.0 10.6
+ ADE-EXT 76.3 87.4 80.3 10.1
+ reACE 73.4 92.1 80.5 7.8

EU-ADR target-disease alone 77.0 89.7 82.7 6.4
TreeLSTM + SemEval 2013 DDI 77.4 91.6 83.9 8.2

+ ADE-EXT 77.7 89.5 83.3 6.9
EU-ADR + reACE 75.9 91.7 83.0 7.7
target-disease EU-ADR target-disease alone 76.9 91.8 82.6 7.7

MCCNN + SemEval 2013 DDI 77.6 90.6 82.5 7.1
+ ADE-EXT 75.5 87.4 81.8 10.1
+ reACE 77.1 91.2 82.0 6.8

Table 2: Results of our TL strategy in terms of precision (P), recall (R) and f-measure (F). σF is the standard
deviation of the f-measure. The + in the column Train corpus indicates that we trained our model using the target
corpus plus one additional source corpus.

TreeLSTM model. Dependency trees were
derived from parsing trees obtained using the
Charniak-Johnson parser trained on GENIA and
PubMed data (McClosky and Charniak, 2008).
Hyper-parameters were fixed to dw = 100, de =
10, dh = 200 and ds = 200. We applied a dropout
regularization after every TreeLSTM unit and af-
ter the embedding layers. The dropout probability
was fixed to 0.25. All the parameters are initial-
ized randomly except the word embeddings.

We evaluated performances in terms of preci-
sion (P), recall (R) and f-measure (F). For multi-
label classifications, we report the macro-average
performance1. For SNPPhenA, we performed a
cross-validation using 10% of the corpus for the
validation and the provided test corpus for testing
(which is about 30% the size of the training cor-

1The macro-average metric is less impacted by classes
with few test instances (and thus a high variance). For this
reason, it is more representative of the performance of our
model.

pus). Because no test corpus is provided with EU-
ADR, we performed a 10-fold cross-validation us-
ing 10% of the corpus for the validation and 10%
for the test of our models.

5.2 Transfer learning experiment

In this subsection, we present our TL strategy and
its results. Following a standard practice in deep
learning, the transfer learning is done by training
models in parallel while using shared represen-
tations, as illustrated by (Collobert et al., 2011).
In other terms, for each experiment, the same
network, initialized with random weights, is used
for each corpus (i.e., same embedding layer and
TreeLSTM weights), except for the scorer, which
is adapted to each corpus as the number and types
of relationships may change. During the train-
ing phase, using a standard stochastic gradient de-
scent procedure (Robbins and Monro, 1985), we
randomly pick training sentences from the mixed
corpus (i.e., target + one source training corpora).
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Test corpus Work (train corpus) P R F
SNPPhena Bokharaeian et al. (2017) (SNPPhenA) 56.6 59.8 58.2

This work (SNPPhenA + SemEval 2013 DDI) 64.5 75.2 69.4
EU-ADR Bravo et al. (2015) (EU-ADR drug-disease) 70.2 93.2 79.3
drug-disease This work (EU-ADR drug-disease + SemEval 2013 DDI) 74.8 90.6 82.0
EU-ADR Bravo et al. (2015) (EU-ADR drug-target) 74.2 97.4 83.3
drug-target This work (EU-ADR drug-target + SemEval 2013 DDI) 73.5 95.6 83.1
EU-ADR Bravo et al. (2015) (EU-ADR target-disease) 75.1 97.7 84.6
target-disease This work (EU-ADR target-disease + SemEval 2013 DDI) 78.7 91.4 84.6

Table 3: Performance comparison between the state of the art (Bokharaeian et al., 2017; Bravo et al., 2015) and
this work in terms of precision (P), recall (R) and F-measure (F). Results reported for this work are ensembles of
the 5 best models obtained.

Figure 4: Dependency parse tree of a sentence from SNPPhena expressing a relation between the entities rs429358
and dementia. The shortest dependency path between the two entities is shown in bold.

This training procedure is done, starting from dif-
ferent random initialization for each fold of our
cross-validation. Table 2 presents the results of
the TL study. Each results is an average of 100
experiment (10 experiments for each fold start-
ing from different random initialization). We ob-
served that for the TreeLSTM model, additional
source corpora consistently improved the perfor-
mances. More interestingly, this phenomenon oc-
curs even for corpora of distinct types of entities
such as the combination of SNPPhenA and Se-
mEval 2013 DDI and, to a lesser extend, with
the corpus that is outside of the biomedical do-
main, reACE. We note that the pre-trained em-
beddings were obtained using biomedical sources.
This may affect the TL performance with reACE
that is not of the biomedical domain. Also, we
did not observed any benefit of the TL strategy for
the MCCNN model, which performances decrease
slightly in comparison with the baseline experi-
ments.

5.3 Comparison with the state of the art

Table 3 presents a comparison of performances
obtained with our approach versus two state-of-
the-art systems applied to the RE tasks associ-
ated respectively with SNPPhenA (Bokharaeian
et al., 2017) and EU-ADR (Bravo et al., 2015).
Our results are obtained using, for each fold, an
ensemble of the 5 best models for this fold, ac-
cording to the validation. The ensembling was
done by averaging the scores s(rs) of each in-
dividual model, following Legrand and Collobert

(2014). We report the 10-folds average perfor-
mance. Both state-of-the-art systems use a com-
bination of a shallow linguistic kernel with a ker-
nel that exploits deep syntactic features. Our ap-
proach outperforms the performances reported for
SNPPhenA and one EU-ADR subtasks and lead to
similar performances for the two remaining EU-
ADR subtasks.

6 On the role of syntactic features in
transfer learning

Empirical results suggest that the TreeLSTM
model is more positively-influenced by syntac-
tic similarity between source and target corpora
than by domain closeness. Indeed, the TreeLSTM
model explicitly includes the syntactic structure
of the sentences in the network topology. Thus,
a source corpus, such as reACE, that share nei-
ther entity nor vocabulary with the target corpus
proved to be helpful. We propose in the following
an analysis of the role of the syntactic features. We
also provide real examples illustrating similarities
between corpora and comment them.

Syntactic features. We propose three com-
parisons based on patterns extracted from short-
est paths between two entities in dependency
graphs. Shortest path proved to be effective for
RE (Bunescu and Mooney, 2005; Cellier et al.,
2010). From a shortest path (as between rs429358
and dementia in Figure 4), we extract 3 differ-
ent patterns. The first one is made with the part-
of-speech (POS) and dependency tags (DT): for
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example, in Figure 4, ”NN nsubj *JJ* nmod NN
nmod NN”2. The second and the third patterns are
built by keeping only either the POS or the DT.
The patterns associated with our running example
are then: ”NN *JJ* NN NN” and ”nsubj ** nmod
nmod”. For a given pattern, the syntactic simi-
larity score is obtained using the following proce-
dure: Given 2 corpora, (1) we first extract all the
shortest path pattern that appear between two re-
lated entities. (2) For each corpus, we compute the
pattern distribution (i.e., the list of patterns, along
with their frequency) by normalizing over all the
patterns in the corpus. (3) The score is then com-
puted with the cosine similarity between the pat-
tern distributions of two corpora. Table 4 shows
the cosine similarity measures between target and
source corpora for the three different pattern dis-
tributions. We observe that, for the two target cor-
pora, the performance gain obtained using the TL
strategy using a given source corpus can be related
to the cosine similarity with this corpus: the higher
cosine similarity lead to the best transfer TL.

Source corpora
DDI ADE reACE

POS + DT

So
ur

ce
co

rp
or

a

SNPPhena 0.53 0.22 0.13
EU-ADR 0.24 0.20 0.09

POS only
SNPPhena 0.80 0.70 0.35
EU-ADR 0.77 0.68 0.32

DT only
SNPPhena 0.53 0.23 0.14
EU-ADR 0.25 0.24 0.10

Table 4: Cosine similarity score between target and
source corpora for the three different pattern distribu-
tions. POS is part of speech pattern and DT is depen-
dency type pattern.

Dictionary coverage. On the opposite, we ob-
served that the efficiency of TL in our experiments
can not be fully explained by the lexical similar-
ity between source and target corpora. As shown
in Table 5, the vocabulary overlap with the target
corpora is almost equivalent whether we are con-
sidering DDI or ADE (53.4 vs. 51.2 and 58.9 vs.
60.5), whereas performances obtained with DDI
were better than those obtained with ADE. Un-
surprisingly, it is lower for reACE which is not a

2The stars mark the lowest common ancestor of the two
entities in the dependency tree and are used to prevent similar
pattern with different common ancestors to be considered the
same. Note that the patterns are not directed, thus the two
patterns ”NN nsubj *JJ* nmod NN nmod NN” and ”NN nmod
NN nmod *JJ* nsubj NN” are equivalent.

biomedical corpus.

DDI ADE reACE
SNPPhenA 53.4 51.2 39.8
EU-ADR 58.9 60.5 38.3

Table 5: Dictionary coverage. Percentage of words
from the target copora present in the source corpora.

Lexical and semantic paradigms. We com-
plete this analysis with few examples illustrat-
ing the lexical and semantic heterogeneity of sen-
tences that may instantiate a same pattern. Ta-
ble 6 provides 4 patterns and their instantiations
in source and target corpora. One can observe
that sentences instantiating a same pattern seems
to have no particular similarity when considering
lexical and semantic paradigms. A similar hetero-
geneity is observed when considering the lowest
common ancestor term (or the head) of the pat-
terns. Table 7 lists the most frequent lowest com-
mon ancestor in each corpus. Again, we observe
no direct link with learning improvement.

7 Conclusion

In this paper, we empirically showed that a TL
strategy can benefit biomedical RE tasks when us-
ing the TreeLSTM model, whereas it is mainly
harmful with a model that does not consider syn-
tax. This is of great interest for specific do-
mains, such those of biomedicine, for which few
annotated resources are available. Our TL ap-
proach led (i) to better performances than the state
of the art for two biomedical RE tasks: SNP-
phenotype and drug-disease RE; and (ii) to state-
of-the-art results for two others focusing on target-
disease and target-drug relationships. Interest-
ingly, we showed that even a general domain cor-
pus (reACE) may carry useful information and
lead to improved performances. We proposed an
analysis with syntax-based metrics and examples
to provide elements of interpretation of this behav-
ior and emphasize the key role of syntax in TL for
RE. An exciting direction would be to explore this
transfer strategy with Electronic Health Records
of various origin.
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raine Université d’Excellence” (15-IDEX-0004)
and by the Snowball Inria Associate Team.

156



Pattern Corpus Example of instantiation

*NN*
conj
NN

SNPPhenA

DDI

ppmod
*NN*
ppmod
NN
ppmod
NN

EU-ADR

DDI

NN
pmod
*NN*
ppmod
NN

SNPPhenA

reACE

NN
dep
*VBN*
ppmod
NN

SNPPhenA

reACE

Table 6: Examples of patterns and of their instantiation in corpora. Red words correspond to entities.

SNPPhenA EU-ADR DDI ADE reACE
associated (25.2) analyzed (5.8) entity (17.8) entity (30.1) entity (60.6)

entity (12.2) associated (4.3) administered (4.1) developed (11.1) is (2.2)
genotyped (5.4) entity (2.9) increase (3.0) associated (4.1) was (1.9)
association (4.4) is (2.9) administration (2.7) is (2.7) said (1.4)

showed (3.8) polymorphisms (2.4) reported (2.6) induced (2.3)
observed (3.3) over-represented (2.4) interact (2.6) case (1.6)

genes (2.6) showed (2.4) reduce (2.5) following (1.4)

Table 7: Terms corresponding to the lowest common ancestor in the POS + DT patterns. Their relative frequency
in each corpus is provided in parenthesis. Entity means that the term is one of the two entities.
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Abstract

Rapidly expanding volume of publications in
the biomedical domain makes it increasingly
difficult for a timely evaluation of the latest lit-
erature. That, along with a push for automated
evaluation of clinical reports, present oppor-
tunities for effective natural language process-
ing methods. In this study we target the prob-
lem of named entity recognition, where texts
are processed to annotate terms that are rele-
vant for biomedical studies. Terms of inter-
est in the domain include gene and protein
names, and cell lines and types. Here we re-
port on a pipeline built on Embeddings from
Language Models (ELMo) and a deep learning
package for natural language processing (Al-
lenNLP). We trained context-aware token em-
beddings on a dataset of biomedical papers us-
ing ELMo, and incorporated these embeddings
in the LSTM-CRF model used by AllenNLP
for named entity recognition. We show these
representations improve named entity recogni-
tion for different types of biomedical named
entities. We also achieve a new state of the art
in gene mention detection on the BioCreative
II gene mention shared task.

1 Introduction

Last decade witnessed substantial improvements
in machine learning methods and their application
to natural language processing tasks. Recently, Pe-
ters et al. (2018) introduced ELMo (Embeddings
from Language Models), a system for deep con-
textualized word representation, and showed how
it can be used in existing task-specific deep neural
networks. The method improves the state of the
art over a variety of NLP tasks such as question
answering, word sense disambiguation, sentiment
analysis, and named entity recognition. The de-
velopers of the tool also provide an ELMo model
pre-trained on the Billion-word Language Model
(LM) dataset (Chelba et al., 2014) as an off-the-

shelf tool for use in a wide variety of NLP tasks
and domains.

This begs the question of how the performance
of downstream analysis would improve if the
model were to be adapted to work with domain-
specific texts. In this paper, we investigate the
effect of an in-domain training set for ELMo in
Named Entity Recognition (NER) applications.
Our contributions are as follows:

1. Off-the-shelf ELMo has room for improve-
ment in domain-specific applications

2. ELMo consistently improves biomedical
named entity recognition when trained on in-
domain data

3. Such improvement can be achieved even
when the in-domain training dataset is
smaller than the Billion-word LM data.

4. The resulting model achieves the highest
precision/recall/F1 scores so far on BioCre-
ative II Gene mention detection shared task
(BC2GM).

We explain ELMo and AllenNER, the named
entity recognizer we used, in sections 2 and sec-
tion 3. Then, we describe our datasets in section 4,
and we move on to report the results in section 5.

2 ELMo

ELMo (Peters et al., 2018) is a system that pro-
duces context-aware embeddings for word tokens.
Similar to traditional context-independent word
embeddings such as GloVe (Pennington et al.,
2014) and Word2Vec (Mikolov et al., 2013),
ELMo representations can be used as input to a
neural network for downstream tasks. Though,
ELMo is different from the traditional word em-
beddings in that it gives the representation of the
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Figure 1: ELMo is a bidirectional LSTM for language modelling where the next or precedent tokens are predicted
from the softmax layers over forward and backward LSTMs respectively.

word in the context of the specific given sentence;
hence it is a context-aware word token representa-
tion as opposed to a word type representation.

It is trained using a language modeling objec-
tive function, where the objective is to predict the
next word in the sequence; either sequentially left
to right or right to left. As such, it can be viewed
as learning a token level representation of words
for a task that can be trained on unannotated data.
These word representations can then be used for a
task that is trained on labeled data. In our case, the
task is biomedical named-entity recognition.

Figure 1 shows the architecture of ELMo as
a recurrent language modelling network. The
input to this system is a sequence of words
w1w2 . . . wi . . . wn. First, each word is converted
to a context-independent embedding by a convo-
lutional neural network (CNN) over its charac-
ters. These character-based representations are
then fed into a two-layer bidirectional long short-
term memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997) recurrent neural network. Output of
the second layers of the forward and backward
LSTMs are fed to a soft-max layer to predict wi+1

and wi−1, respectively, at each position i.
Task-specific learned weights can be used later

to combine all layers in ELMo model at position
i and form the task-specific ”ELMo representation
of wi”.

Peters et al. (2018) showed that different layers
in this deep recurrent model learn different aspects
of a given token. The lower layers learn more syn-
tactic features whereas higher layers learn the con-
textual aspects of the word. They linearly com-

bined the layers using task-dependent weights,
and their experiments show that for Named Entity
Recognition tasks, the layers are combined with
effectively the same weights.

3 Named Entity Recognition with
AllenNLP

In our pipeline, we couple ELMo embeddings to
AllenNLP (Gardner et al., 2017) for NER tasks.

AllenNLP uses a bidirectional two-layer
LSTM-CRF (Lample et al., 2016) to perform
NER as a sequence tagging task. Each word is
tagged with an output that marks if it is at the
beginning (B), in the middle (I), at the end (E or
L), or outside (O) of an entity type. One-word
entities are also marked (as S or U). For example
B-Gene and I-Gene stand for beginning and inside
of a Gene, whereas B-DNA and E-DNA stand for
beginning and ending of a DNA entity type.

AllenNLP embeds the input words using a Con-
volutional Neural Network over characters. Rei
et al. (2016) showed that word embeddings from
character compositions outperform lookup em-
beddings such as word2vec, when used for named
entity recognition.

AllenNLP combines the layers in ELMo Model
using learned task-specific weights, concatenates
the result for each token to context-independent
word embeddings, and feed the concatenation into
the LSTM-CRF as illustrated in Figure 2.

4 Datasets

We collected a focused domain-specific subset
of PubMed Central (PMC) documents, and used
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Figure 2: Architecture of LSTM-CRF (Lample et al., 2016) with ELMo. Traditional word embeddings and ELMo
representations are concatenated and fed into a bidirectional LSTM. A CRF layer on top of bidirectional LSTM
takes local label dependencies into account. At training time the log likelihood of gold label sequences is maxi-
mized. At test time, Viterbi (Viterbi, 1967) algorithm is used to decode the complete label sequence. -CLT in the
labels of the example indicate cell type entity.

them for training ELMo. This dataset is described
in detail in section 4.1. We report results on two
benchmark datasets, which we describe in sec-
tions 4.2 and 4.3.

4.1 ELMo Training Set
We downloaded the text files of a subset
of PMC documents that are available at
ftp://ftp.ncbi.nlm.nih.gov/pub/pmc in May
2018, and picked 3960 full-text documents
that had a Medical Subject Heading (Mesh)
term ’cancer’. We ran StanfordNLP/CoreNLP
toolkit (Manning et al., 2014) on these documents
for sentence splitting and tokenization. Tokens of
each sentence were joined with space character
in between to form the sentences in the training
set. This dataset contains about 21 million tokens,
and is substantially smaller than the One Billion
Word Benchmark (Chelba et al., 2014) that Peters
et al. (2018) used for training ELMo but contains
in-domain text that is more likely to benefit the
biomedical text analysis of interest in this paper.

4.2 BC2GM
BC2GM is the data set for BioCreative II Gene
Mention detection shared task (Smith et al., 2008).
This dataset contains 15000 training and 5000 test
sentences, all from PubMed abstracts. Gold anno-
tations give the gene mentions by providing the
sentence ID, the start and end characters of the
mention (ignoring all space characters), and the
mention itself.

4.3 JNLPBA
JNLPBA (Kim et al., 2004) is the dataset for a
shared task on biomedical entity detection. Its
training set contains 2000 GENIA (Kim et al.,
2003) abstracts, which the authors had collected

by searching MEDLINE abstracts for Mesh terms
’human’, ’blood cells’ and ’transcription factors’.
The test set contain 404 abstracts, half of which
are from the same domain and the other half are
from a super-domain of ’blood cells’ and ’tran-
scription factors’. The documents are annotated
for protein, DNA, RNA, cell line, and cell type
entity classes.

5 Results

Table 1 shows the leading results in the litera-
ture (top four rows) in comparison with our results
(bottom three rows) on BC2GM dataset.

In the year it was held, Ando (2007) had
won the challenge with a semi-supervised sys-
tem equipped with a lexicon and a combination
of several classifiers. Gimli (Campos et al., 2013)
is a supervised method based on conditional ran-
dom fields (CRF) (Lafferty et al., 2001) with
hand-engineered features that was the state of
the art for gene mention detection before Graph-
NER (Sheikhshab et al., 2018) obtained a higher
F-score. GraphNER, obtained the distributions
over labels from the CRF and propagated them on
a graph of 3-grams similarities constructed over
BC2GM.

Rei et al. (2016) set the previous state of the
art on BC2GM by applying an LSTM-CRF based
system with attention to characters. Our baseline,
AllenNER (described in detail in section 3) is sim-
ilar to their system, except AllenNER uses a con-
volutional neural network (CNN) over characters
instead of using attention mechanism.

Our results, the lower part of Table 1, show
that using the off-the-shelf ELMo, that is trained
on the one Billion word language model bench-
mark (Chelba et al., 2014), improves the preci-
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Model Prec. (%) Rec. (%) F1 (%)
Ando (2007) 88.48 85.97 87.21
Gimli (2013) 90.22 84.32 87.17

GraphNER (2018) 89.18 85.57 87.34
Rei et al. (2016) - - 87.99

AllenNER with no ELMo (Baseline) 88.05 88.72 88.39
AllenNER + off-the-shelf ELMO 89.03 87.95 88.49

AllenNER + ELMO Trained In-Domain 89.86 89.59 89.72*

Table 1: Leading results in the literature (up) in comparison with our results (down) on BC2GM dataset

Model protein DNA RNA cell line cell type
AllenNER with no ELMo (Baseline) 70.47 70.87 63.94 57.17 73.55

AllenNER + off-the-shelf ELMO 69.96 70.56 65.38 59.70 73.21
AllenNER + ELMO Trained In-Domain 75.08* 73.13 65.17 61.15 75.87*

Table 2: F1-scores (%) for different entity types in JNLPBA dataset

sion on the expense of recall, modestly improving
the F1 score. When ELMo is trained on approxi-
mately 21 million in-domain tokens both precision
and recall are considerably improved resulting in
a more than 1 percentage point improvement in
the F1-score. A significance test using sigf (Padó,
2006) showed that this improvement is statistically
significant (p < 10−5), and the one from off-the-
shelf ELMo is not (p > 0.02).

Table 2 shows our F1 scores on JNLPBA. It
is evident from the table that using ELMo leads
to salient improvements over the baseline if it is
trained in-domain. The off-the-shelf ELMo has
improved the performance for RNA and cell line
entity types but hurt the performance for protein,
DNA, and cell type. In-domain ELMo always ob-
tains the best performance with the exception of
RNA entity type where it is competitive with off-
the-shelf ELMo and considerably better than the
baseline.

Statistical significance tests using sigf (Padó,
2006) showed that most differences in Table 2 are
not statistically significant after Bonferroni cor-
rection for multiple testing. The only statistically
significant improvements are those of in-domain
ELMo for protein and cell type mention detec-
tions over both off-the-shelf ELMo and baseline.
This could be due to the fact that proteins and
cell types are more frequent in JNLPBA when
compared to other entities. Still, it is interest-
ing to note that in-domain trained ELMo model is
consistently performed better than the alternative
ELMo models in all but one NER task. Table 3
shows the frequencies of different entity types in
training and test sets of JNLPBA.

Our results on JNLPBA are not the state of the
art. Habibi et al. (2017) report F1 scores as high as

Entity type Training Test
protein 30,269 5,067
DNA 9,533 1,056
RNA 951 118
cell type 6,718 1,921
cell line 3,830 500

Table 3: Frequencies of different entity types in train-
ing and test sets of JNLPBA

77.25% for protein and 63.31% for cell line entity
types when they use word embeddings trained on
the union of (nearly 23 million) PubMed abstracts,
(nearly 700,000) PMC full articles, and (approxi-
mately four million) English Wikipedia articles as
input to an LSTM-CRF. Nevertheless, our results
show the positive effect of using in-domain trained
ELMo representations compared to a very strong
baseline. We believe new state of the art will be
achieved if in-domain ELMo representations are
used to augment current state-of-the-art systems.

6 Conclusion

We show that token level context-aware embed-
dings trained on an auxiliary task of language
modeling using the ELMo toolkit can be used
to consistently improve biomedical named entity
recognition tasks, but only when the pre-trained
embeddings are trained on in-domain biomedical
data. Using this technique we produce a new state
of the art result on the BioCreative II dataset for
gene mention detection.
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Abstract
Neural network models are oftentimes re-
stricted by limited labeled instances and resort
to advanced architectures and features for cut-
ting edge performance. We propose to build
a recurrent neural network with multiple se-
mantically heterogeneous embeddings within
a self-training framework. Our framework
makes use of labeled, unlabeled, and social
media data, operates on basic features, and is
scalable and generalizable. With this method,
we establish the state-of-the-art result for both
in- and cross-domain for a clinical temporal re-
lation extraction task.

1 Introduction

Neural network methods have obtained spectacular
successes in the fields of computer vision (He et al.,
2016; Krizhevsky et al., 2012), speech recogni-
tion (Hinton et al., 2012; Graves and Jaitly, 2014),
and machine translation (Sutskever et al., 2014),
where large datasets are available for training. For
extracting information from text, however, perfor-
mance gains have been minimal or non-existent,
with published work emphasizing that such perfor-
mance parity is not obtainable without extensive
feature engineering. Unlike other settings that have
seen performance gains, information extraction
tasks related to text typically have much smaller
supervised training sets, and the neural network al-
gorithms presumably do not see enough instances
to optimally tune the large parameter space.

In this paper, we examine the important informa-
tion extraction task of temporal relation extraction
from clinical text. The state-of-the-art for this task
is a machine learner with a heavily-engineered set
of features (Sun et al., 2013; Lin et al., 2016a). The
identification of temporal relations from the clini-
cal text in the electronic medical records has been
drawing growing attention because of its potential
to provide accurate fine-grained analyses of many

medical phenomena (e.g., disease progression, lon-
gitudinal effects of medications), with many clini-
cal applications such as question answering (Das
and Musen, 1995; Kahn et al., 1990), clinical out-
comes prediction (Schmidt et al., 2005), and recog-
nition of temporal patterns and timelines (Zhou and
Hripcsak, 2007; Lin et al., 2014). Obtaining large
supervised datasets for clinical tasks is expensive
and difficult, so it has been challenging to show
meaningful improvements from the recent explo-
sion of sophisticated neural network methods.

Our hypothesis is that the range of interesting
phenomena found in clinical data is much broader
than what is covered by available gold standard
datasets for temporal information extraction. The
results of Clinical TempEval 2017 (Bethard et al.,
2017) strongly support this latter point, as the
performance of submitted systems drops severely
when trained on gold instances in one domain
and tested on a new domain. We are thus in-
spired to make use of unlabeled data in addi-
tion to gold standard data with a simple semi-
supervised learning method–self-training and com-
bine it with varieties of pre-trained word embed-
dings to overcome gaps in training data coverage.
In self-training (Yarowsky, 1995; Riloff et al., 2003;
Maeireizo et al., 2004), a classifier is first trained
on existing labeled data, and then applied to unla-
beled data (typically a much larger amount). The
predicted instances above a confidence threshold
are added to the training set and the classifier is
re-trained. Self-training is especially attractive in
a neural network setting because the primitive fea-
ture types used by these networks (i.e., tokens) are
computationally more efficient to obtain than the
sophisticated features typically used by feature en-
gineering methods.

For pre-training, we investigate the use of multi-
ple external data sources to train word embeddings
that form the input layer of the model. Since our
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Figure 1: A RNN-based Self-training Framework

task is in the clinical setting, we use available clini-
cal data sources, but also experiment with general
domain sources trained on much larger datasets.

Besides showing that neural network approaches
to information extraction can outperform feature-
engineering approaches, we find that self-training
works better in the neural network setting than
with existing state-of-the-art feature-engineering
approaches. Finally, we show that these methods
generalize to new clinical domains better than the
feature-engineering approaches we compare them
to, obtaining state-of-the-art performance in an un-
supervised domain adaptation setting.

2 Related Work

In recent years, several shared tasks on temporal
relation extraction from clinical text have been or-
ganized. Among them, the i2b2 temporal chal-
lenge evaluates the i2b2 corpus (Sun et al., 2013),
and Clinical TempEval series (Bethard et al., 2015,
2016, 2017) evaluate systems using the THYME
corpus (Styler IV et al., 2014), which is annotated
with time expressions (TIMEX3), events (EVENT),
and temporal relations (TLINK) per an extension
of the TimeML specifications (Pustejovsky et al.,
2003; Pustejovsky and Stubbs, 2011). Challenge
participants develop methods to extract EVENT
and TIMEX3 entities, CONTAINS relations and
document creation time relations. Herein, we focus
on CONTAINS relation, which signals an EVENT
occurs entirely within the temporal bounds of an
narrative container. The narrative container is
either another EVENT or TIMEX3.

Conventional learning methods, such as support
vector machines (SVM) and conditional random
fields (CRF) (Sun et al., 2013), have been devel-

oped for this task. Neural networks used in gen-
eral relation extraction (Hashimoto et al., 2013;
Socher et al., 2012), have also been adopted in
clinical temporal relation extraction, such as struc-
tured perceptron (Leeuwenberg and Moens, 2017),
convolutional neural networks (CNNs) (Dligach
et al., 2017; Lin et al., 2017) and Long Short-Term
memory (LSTM) networks (Tourille et al., 2017;
Dligach et al., 2017). Classifiers are usually trained
and tested in the same domain for the same med-
ical condition, e.g. models are trained and tested
on the colon cancer set of the THYME corpus for
Clinical TempEval 2015 and 2016 (Bethard et al.,
2015, 2016).

Clinical TempEval 2017 introduces the task of
domain adaptation, as the most frequent use case
would be the application of a model on a do-
main different from the domain it was trained on.
The source domain of Clinical TempEval 2017 is
colon cancer clinical text while the target domain
is brain cancer clinical text. Few domain adap-
tation techniques are applied by the participants:
1) modeling unknown words to accommodate un-
seen vocabulary in the new domain; 2) using pre-
trained domain-independent word embeddings; 3)
for supervised domain adaptation, assigning higher
weights to samples from the new domain during
model training. The performance on the domain
adaptation task plummetted. Other domain adap-
tation methods used in general relation extraction
include (Nguyen et al., 2014; Nguyen and Grish-
man, 2014; Plank and Moschitti, 2013).

Semi-supervised learning has been a popular ap-
proach for improving coverage and model general-
izability for various information extraction tasks by
exploring unlabeled data. Besides semi-supervised
methods developed for feature-based learners (Le
and Kim, 2015; Li and Zhou, 2010), there are
such algorithms for deep neural network struc-
tures (DNN) (Laine and Aila, 2016; Kingma et al.,
2014). Self-training or bootstrapping is a stan-
dard and straightforward semi-supervised learn-
ing method and widely used (Agichtein and Gra-
vano, 2000; Pantel and Pennacchiotti, 2006; Green-
wood and Stevenson, 2006; Rosenfeld and Feld-
man, 2007; Xu, 2008; Xu et al., 2007, 2010). To our
best knowledge, we are the first to use self-training
in a deep neural network setting for a clinical re-
lation extraction task. Our motivation lies in two
folds: 1) Self-training is computationally efficient
as there is no other parallel learning goals such
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as minimizing the reconstruction errors in Genera-
tive Adversarial Networks-based semi-supervised
learning. With primitive features, DNN-based self-
training can effectively and efficiently evaluate a
large amount of instances; 2) We hypothesize that
not all unlabeled data are useful. Our goal is to
use a straightforward method like self-training to
study the unlabeled space and help to select the
most informative instances.

3 Data

We collect a variety of external data sources,
described below, to supplement the THYME
dataset (Styler IV et al., 2014).

3.1 Labeled Clinical Data

Our labeled data is the THYME corpus (Styler IV
et al., 2014) used for the Clinical TempEval tasks.
The corpus contains internal medicine, oncology,
pathology, and radiology reports for 200 colon can-
cer patients and 200 brain cancer patients for a total
of 1200 notes. Following the unsupervised domain
adaptation setting of Clinical TempEval 2017, we
use colon cancer notes for model development, and
brain cancer notes for cross-domain validation.

3.2 Unlabeled Clinical Data

We augment the labeled data with additional clini-
cal notes for colon cancer patients for a total of
27, 157 notes (average length=135 words) from
the same medical center as the THYME corpus
from Section 3.1. On average, each patient has
125 notes of varied types – primary care, specialty
care, pathology, radiology, etc. This set includes all
electronic medical record notes at a single medical
center for the 200 colon cancer THYME patients.
We use it to automatically derive additional train-
ing instances, and refer to these generated instances
as silver instances. We do not have access to ad-
ditional unlabeled out-of-domain data (i.e. brain
cancer clinical notes).

3.2.1 Clinical Word Embeddings
To train word embeddings with good vocabulary
coverage and high representational power, we took
advantage of the clinical notes from MIMIC-III
(Medical Information Mart for Intensive Care)
dataset (Johnson et al., 2016). The publicly avail-
able MIMIC III contains 879 million words from
Beth Israel Deaconess Medical Center’s Intensive
Care Unit. We merged MIMIC-III data with the

unlabeled colon cancer set above and trained 300-
dimension embeddings with fastText (Joulin et al.,
2016) and skip-gram (Guthrie et al., 2006) models.

3.2.2 Social Media Word Embeddings
While unlabeled clinical data provides a domain-
matched source for training embeddings, additional
data can be freely obtained from social media posts
about colon cancer. To explore the benefits of extra
coverage of such datasets versus the domain speci-
ficity of clinical embeddings, we obtain another
set of embeddings using user-generated content
about colon cancer from two social media plat-
forms, namely Twitter and Reddit. For this purpose,
we first generate a keyword list from two sources:
a) the most frequent medical terms in the unlabeled
colon cancer notes, these include any term that
maps to the Unified Medical Language System con-
cept unique identifiers (UMLS CUIs) (Bodenreider,
2004), b) the most frequent terms that map to ICD-
9 billing codes related to colon cancer. These two
lists results in a total number of 143 keywords. We
use these keywords as a filter to collect 1.7 million
publicly-available tweets about colon cancer. In
addition, we collect 19K Reddit posts that contain
at least one mention of colon cancer. We remove
all occurrences of usernames, hash tags, URLs,
and non-ASCII characters from the resulting data
and employ fastText (Joulin et al., 2016) to obtain
social media word embeddings.

In addition to the above embeddings, we uti-
lize the Google News embeddings1 trained by
word2vec (Mikolov et al., 2013).

4 Methods

We develop a self-training framework to generate
additional (silver) instances of CONTAINS relation
(see Figure 1, lower-right). We focus on within-
sentence CONTAINS relations and set aside all
cross-sentence relations based on two motivations.
First, the majority of the gold standard CONTAINS
relations occur within a sentence.2 Second, a sen-
tence is a complete semantic and syntactic struc-
ture, which makes it an ideal unit for a sequence
model, like RNN, to operate on. We therefore ig-
nore cross-sentence CONTAINS links and focus
on within-sentence CONTAINS relations. In addi-

1https://code.google.com/archive/p/word2vec/
24, 3654 within-sentence vs. 743 cross-sentence CON-

TAINS relations in colon cancer test set. We note that it is
impractical to link all cross-sentence events and/or time ex-
pressions pairs due to the large number of potential links.
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tion, since we use the official Clinical TempEval
2017 scoring tool, our models are penalized for the
missed cross-sentence relations.

4.1 Preprocessing

We process the labeled and unlabeled clinical
data through the sentence detection and tokeniza-
tion modules of Apache cTAKES3. For the la-
beled clinical data, we use gold standard event
and time expression annotations and their time
classes (Styler IV et al., 2014) for both model de-
velopment and final validation. For the unlabeled
clinical text data, we use the cTAKES event anno-
tator (Lin et al., 2016a) and time expression anno-
tator (Miller et al., 2015) to automatically annotate
event and time expressions along with their time
classes (e.g., TIME, DATE, SET). Both labeled and
unlabeled corpora are transformed to lower case as
shown in Figure 2.

4.2 Instance Representation

We first create a dataset of within-sentence
CONTAINS-relation candidates from the colon
cancer text of the labeled clinical data. Given all
gold standard events and time expressions within
a sentence, we link every pair of events, and ev-
ery event to a time expression (if present) to form
CONTAINS candidates.

To mark the position of the relational arguments
in a candidate pair, we adopt the same xml-tag
marked-up token sequence representation as pre-
vious work (Dligach et al., 2017), and encode the
time expression with its time class (Lin et al., 2017)
for better generalizability. Figure 2 illustrates the
marked-up token sequence representations for all
three relational candidates, in which the event in
an event-time relation pair is marked by 〈e〉 and
〈/e〉 and the time expression is marked by 〈t〉 and
〈/t〉. The time expression is further encoded by its
time class, 〈t〉 〈date〉 〈/t〉, which is a gold standard
attribute of a time expression annotation (Styler IV
et al., 2014). Event-event instances are marked
with additional indexes 1 and 2, e.g. a 〈e1〉 surgery
〈/e1〉 is 〈e2〉 scheduled 〈/e2〉 on march 11.

We also follow previous best practice in apply-
ing transitive closure to existing gold CONTAINS
relations on the training data (Mani et al., 2006; Lin
et al., 2016a). Depending on the order of the rela-
tional arguments, there are three types of gold stan-
dard relational labels, CONTAINS, CONTAINED-

3http://ctakes.apache.org

A
EVENT1

surgery was
EVENT2

scheduled on
TIME

March 11, 2014
⇓

Candidate 1: a 〈e〉 surgery 〈/e〉 was scheduled on
〈t〉 〈date〉 〈/t〉;
Candidate 2: a surgery was 〈e〉 scheduled 〈/e〉 on
〈t〉 〈date〉 〈/t〉;
Candidate 3: a 〈e1〉 surgery 〈/e1〉 was 〈e2〉
scheduled 〈/e2〉 on march

Figure 2: Representations of event-event and event-
time relational candidates in a sentence

BY, and NONE.

4.3 Bidirectional RNN Classifier

We use a bi-directional recurrent neural network
to model the relational context similar to the state-
of-the-art model (Tourille et al., 2017). As shown
in Figure 1 (upper-left), each token in the token
sequence input is represented by one set of clinical
embeddings and one set of additional embeddings
(either cancer-related social media embeddings or
Google news embeddings) to capture the semantics
exhibited by clinical and non-clinical terms.

As described in section 3.2.1, the clinical em-
beddings are derived from combining the MIMIC
III and unlabeled colon cancer datasets. For the
unlabeled colon cancer data, we use the extracted
relational candidates as shown in Figure 2 to train
embeddings, so that all xml-tag marked-up tokens
and time-class tokens, e.g. 〈/e〉, 〈/e1〉, 〈/t〉, 〈/date〉,
are represented. For each set of embeddings, an
UNK token represents out-of-vocabulary words to
accommodate unseen words in a new domain. Ta-
ble 1 shows the coverage of each embedding set and
their combinations over the labeled colon cancer
training set. We will show the effect of the different
embedding combinations in the experiments.

The two sets of embeddings for a given token
are concatenated and fed into the two sequences of
hidden states of RNN: forward states and backward
states. The output of the two states is concatenated
and fed into a dense layer and through a softmax
layer to predict three relational labels as described
in section 4.2. We evaluate two RNN models,
Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) and Gated recurrent units
(GRUs) (Chung et al., 2014).

We implement the network in Keras (Chollet,
2015) with Theano (Theano Development Team,
2016) backend. We train our models with a batch
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corpora word# coverage
(1) Clinical 136K 94.66%
(2) Cancer-related social media 60K 76.67%
(3) Google News 3M 83.69%
(1) + (2) 171K 95.69%
(1) + (3) 3M 95.70%

Table 1: Embedding word coverage (percentage of
words in the THYME corpus covered by the vocab-
ulary in each corpora); Clinical embeddings derived
from the combination of MIMIC and unlabeled colon
cancer datasets, see section 3.3; Cancer-related embed-
ddings derived from the combination of relevant Reddit
posts and tweets, see section 3.4

size of 256, Stochastic Gradient Descent using
Adam optimizer (Kingma and Ba, 2014), and a
learning rate of 0.0001, on a GTX TitanX GPU.
The hyper-parameters are optimized through a ran-
dom search algorithm (Li et al., 2016) and the size
of the hidden states of the forward and backward re-
current neural networks are set 512. We keep 10%
of the training samples as a validation split, and ap-
plied a 0.5 dropout ratio and 0.0001 L2-regularized
penalties to the embedding layers. For the high-
precision model, we increased the weight of the
L2-regularizer from 0.0001 to 0.001.

4.4 Self-Training

We apply the high-precision bi-directional RNN
model trained on the labeled data to generate
CONTAINS predictions on the unlabeled colon
cancer data for silver annotations. We retain in-
stances with a confidence score as generated by the
softmax function of greater than 0.9 (a higher
threshold will result in too few positive instances,
a lower threshold will result in disproportionately
many negative instances). We find that a lower
threshold leads to low quality predictions and a
higher threshold generates too few CONTAINS re-
lations. The retained silver instances are merged
with the gold ones and input into the bi-directional-
RNN for a second-round of training.

As a comparison, we use self-training with the
state-of-the-art SVM model (Lin et al., 2016a,b) to
generate silver relations. The SVM-based THYME
system is the latest release of Apache cTAKES
v4 temporal module. For a comparison with the
best setting of RNN-based self-training, we add all
positive (CONTAINS, CONTAINED-BY) silver
relations with the confidence threshold of greater
than 0.9 to the gold training data of THYME corpus

method all silver positive silver
joint bi-lstm 1.533M 19,441
SVM event-time 1.244M 57,462
SVM event-event 2.521M 36,960

Table 2: Number of generated silver training instances

and then retrain the SVM model.
Table 2 shows the number of silver instances

generated by each learning algorithm. The high-
precision bi-directional RNN model (joint-bi-lstm)
is built upon LSTM networks with clinical and so-
cial media embeddings, and trained on the training
split of the colon cancer set of THYME corpus.

5 Experiments

We experimented with several combinations of clin-
ical and cancer-related social media and Google
news embeddings. We tested three modes of merg-
ing silver instances with gold annotations (Figure 1,
lower right): 1) Posi-Merge: merging the positive
predictions (i.e. CONTAINS and CONTAINED-
BY relations) with the gold relations; 2) sub-Merge:
merging a subset of the silver data (a random sam-
ple of 45K silver samples including CONTAINS,
CONTAINED-BY, and NONE relations) with the
gold relations; and 3) all-Merge: merging all sil-
ver data with the gold relations. After merging,
we shuffled gold and silver instances together to
balance the batch-wise computation.

Models utilizing self-training were trained on
the gold colon cancer training set of the THYME
corpus and silver instances predicted from the un-
labeled colon cancer data. Models were tested on
the gold colon cancer and gold brain cancer de-
velopment sets of the THYME corpus, comparing
in-domain and cross-domain performance to select
the best models for testing. The best models were
tested on the gold colon cancer and brain cancer
test sets (Clinical TempEval 2017 test sets).

All models were evaluated with the metrics preci-
sion (P), recall (R) and F1-score (F), using the stan-
dard Clinical TempEval evaluation script, where
the P and R definitions are enhanced through tem-
poral closure (UzZaman and Allen, 2011; UzZa-
man et al., 2012): when calculating precision, we
run temporal closure on the gold relations but not
on the system-generated ones; when calculating
recall, we run temporal closure on the system-
generated relations but not on the gold ones.
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6 Results

Table 3 shows performance of the THYME sys-
tem and various bi-directional RNN methods on
the colon cancer and brain cancer development
sets. For RNNs, we evaluated both LSTM and
GRU models. For embedding combinations, we
tested using the clinical embedding alone (C), us-
ing both clinical and cancer-related social media
embeddings (CS), using both clinical and Google
News embeddings (CG), and using Google News
Embeddings alone (G). For ways to merge sil-
ver samples with gold instances we tested no-self-
training in which no silver instances were used,
all-Merge in which all silver instances were used,
sub-Merge in which a subset of silver samples were
used, and Posi-Merge in which only the positive
silver instances were used. Among all settings,
bi-LSTM CG Posi-Merge and bi-LSTM CS Posi-
Merge achieved the best F1-score (F1b) on the
brain development set; bi-LSTM CS Posi-Merge
had the best F1-score (F1c) on the colon develop-
ment set. These two best performing neural mod-
els along with the THYME no-self-training system
were tested on the Clinical TempEval test splits.

Table 4 shows that the bi-LSTM models out-
perform the SVM-based THYME system and the
Clinical TempEval 2017 top system, especially on
the cross-domain experiments. The THYME sys-
tem performance on the colon test set is 0.621 F1
which is an improvement over previously reported
results (Lin et al., 2016b). The THYME system
result on the brain cancer test is reported here for
the first time. Note that the THYME system was
trained on all gold colon cancer annotations (train-
ing, development and test), while the bi-LSTM
models were trained on gold training colon cancer
data and positive silver colon cancer samples. The
best Clinical TempEval result on the gold colon
cancer test set – 0.613 F1-score – is reported by the
LIMSI-COT system which makes use of cTAKES-
generated features (Tourille et al., 2017). The best
Clinical TempEval result on the gold brain cancer
test set – 0.34 F1-score – is achieved by the GUIR
system (MacAvaney et al., 2017), while LIMSI-
COT obtains 0.33 cross-domain F1-score.

7 Discussion

7.1 Comparison with SVM Self-Training

The top two rows of Table 3 show that the self-
training technique did not improve the SVM-based

THYME system. While recall reached its peak
with the self-trained SVM, the precision trade-off
was disastrous and F1 suffers dramatically. Our in-
terpretation of this result is that the SVM is simply
adjusting its class priors, labeling more instances as
positive, but its fixed feature set and linear model
constrain it from learning anything of interest from
the silver data. The SVMs we use have extensively-
engineered representations that were implicitly fit
to the training and development sets of the colon
cancer data. These feature sets may not have the
representational power to find useful new patterns
in the silver data. In contrast, the neural network
models learn to extract features in their lower lay-
ers, and when given new data (e.g., silver data from
self-training), the representation learning parts of
the model are able to adapt and potentially find new
patterns. This suggests that self-training for neu-
ral networks has higher potential than for SVMs,
and that in the SVM setting, self-training should be
accompanied by additional feature engineering.

Another difference between the models is that
the SVM model relies on sophisticated linguistic
features (parse trees, event and time expression at-
tributes) that cannot be as reliably extracted from
silver data. A token-sequence neural model, in con-
trast, makes use of very basic features and main-
tains a relatively accurate performance on the unla-
beled data. It is possible that SVM performance is
actually hurt by the lower quality features available
from the silver training instances it encounters.

It is also worth noting that extracting additional
silver instances for the SVM model is slower as
it takes longer to generate the complex features
that the SVM models use, while the token-based
features of the neural model are extremely fast.

For all these reasons, we believe that neural
networks are a more practical solution and better
suited for a semi-supervised learning framework
such as self-training.

7.2 Impact of Embeddings

Adding a broader range of embeddings as input
to the bi-LSTM self-trained models improved the
performance for the cross-domain task (rows 6-8 of
table 3). It is possible that the clinical embeddings,
even though trained on the mixture of MIMIC III
and unlabeled colon cancer corpora, still do not
provide semantic representation for the brain can-
cer notes. The diseases, symptoms, procedures,
linguistic choices, etc. may vary substantially be-
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Model F1 drop ratio: colon cancer relations brain cancer relations
(F1c-F1b)/F1c P R F1c P R F1b

1. THYME no-self-training 15.46% 0.661 0.587 0.621 0.533 0.518 0.525
2. THYME Posi-Merge 27.11% 0.185 0.608 0.284 0.123 0.664 0.207
3. bi-lstm CS no-self-training 16.59% 0.711 0.541 0.615 0.514 0.511 0.513
4. bi-lstm CS all-Merge 8.87% 0.727 0.431 0.541 0.582 0.428 0.493
5. bi-lstm CS sub-Merge 10.48% 0.712 0.549 0.620 0.567 0.543 0.555
6. bi-lstm C Posi-Merge 13.50% 0.712 0.551 0.622 0.528 0.549 0.538
7. bi-lstm CS Posi-Merge 9.63% 0.690 0.567 0.623 0.523 0.609 0.563
8. bi-lstm CG Posi-Merge 10.63% 0.684 0.584 0.630 0.513 0.624 0.563
9. bi-gru CS Posi-Merge 10.43% 0.702 0.559 0.623 0.522 0.600 0.558
10. bi-lstm G Posi-Merge 14.33% 0.673 0.530 0.593 0.475 0.545 0.508

Table 3: Model performance of CONTAINS relation on colon cancer and brain cancer development sets. C:
clinical embeddings representation; CS: clinical and social media embeddings representation; CG: clinical and
Google News embeddings representations; G: Google News embeddings. all-Merge: all silver instances added to
gold training data; Posi-Merge: positive silver instances added to gold training data; sub-Merge: a subset of silver
data added to gold training data.

Model F1 drop ratio colon cancer relations brain cancer relations
(F1c-F1b)/F1c P R F1 P R F1

best Clinical TempEval 44.54% 0.657 0.575 0.613 0.52 0.25 0.34
THYME no-self-training 15.46% 0.661 0.587 0.621 0.533 0.518 0.525
bi-lstm CS Posi-Merge 13.14% 0.700 0.563 0.624 0.520 0.566 0.542
bi-lstm CG Posi-Merge 13.04% 0.692 0.576 0.629 0.514 0.585 0.547

Table 4: CONTAINS relations on colon cancer and brain cancer test set

tween these two cancer populations. Cancer-related
social media and Google News embeddings come
in with additional word coverage and more gen-
eral semantic representations and thus help with
the cross-domain performance. Word coverage in-
crements are shown in Table 1. However, using
non-clinical (Google News) embeddings on its own
(row 10 of table 3) decreased both in-domain and
cross-domain performance, even worse than the
THYME system (row 1). It’s possible that even
though Google News embedding have good word
coverage, general senses dominate clinical-specific
senses, demonstrating the need for some clinical-
specific data.

One interesting fact is that the cancer-related
social media embedding has a much smaller vo-
cabulary size than the Google News embeddings.
Still, the CS option achieves the same F1-score
as the CG option on the gold development brain
set. Because of its better coverage and general
semantic representation, CG option performs the
best on the colon development set and the test sets
of both colon and brain cancer data as shown in
Table 4. We experimented with concatenating all
three embeddings (clinical, cancer-related social

media, and Google News), but did not observe any
performance improvements.

7.3 Sampling of Silver Instances

Adding all high-confidence silver data to the gold
training data clearly hurts performance (row 4).
One possible explanation is the negative-to-positive
instance ratio which is much higher in the silver
data (80:1) than in the gold data (8:1). Adding
the highly unbalanced silver samples may weight
the system towards predicting the negative class,
thus row 4 has higher precision but lower recall.
Adding a random subset of silver samples to the
gold samples provides additional information with-
out skewing the class distribution, and we observe
that in this setting the bi-LSTM model outperforms
the THYME system, row 5 of Table 3. However,
this setup may provide unpredictable performance
due to the randomness of sampling the silver data.

The best merging option is the Posi-Merge. The
models in rows 6-9 of Table 3 all outperform the
THYME system, even for a single clinical embed-
ding setting in row 6 of Table 3. Posi-Merge pro-
vides a stable sample of the silver data, strength-
ens the positive signals and achieves good cross-
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domain performance.

7.4 Analysis of Improvements

We are interested in understanding the different
contributions of self-training and pre-trained em-
beddings. Embeddings can provide a kind of adap-
tation for words in a new domain that are similar to
words in the training data (e.g., brain in the brain
cancer corpus may behave similarly to colon in a
colon cancer corpus). However, self-training may
still provide benefit if there are words in the test set
that do not have correlates in the training data, but
that can be found in the silver data. In these cases,
confident silver instances provide information to
the neural network about how these words should
be integrated into the learned representations for
predicting the relation category.

To investigate this possibility, we visualized the
embeddings for gold training data, silver data, and
development set data, all for colon cancer patients.
We hope to find a sub-space in the embedding space
where there is overlap between words in the sil-
ver data and development, but no nearby words
from the training data. Figure 3 shows a visual-
ized scatter-plot (Maaten and Hinton, 2008) of one
such space, showing words from gold training set
(blue), silver data (red), and the gold development
set (yellow), given the clinical embedding. The
upper-left cluster of silver words encloses several
words occurring in the development set which are
not represented or even close to the nearest words
from the training set visualized in the lower right
corner. Figure 3 shows that through self-training
the vocabulary coverage is extended to less repre-
sented areas thus the model variance error is re-
duced which makes the model more generalizable.

7.5 LSTM vs. GRU

Given the same settings (rows 7 and 9 of Table 3),
a GRU model performs similarly to a LSTM model
for the in-domain task, but differently for the cross-
domain task. GRUs are related to LSTMs, both
utilize gating mechanisms to manage the vanishing
gradient problem, though GRUs have fewer pa-
rameters. The performance difference may not be
meaningful; we selected the LSTM for the test set
evaluation due to its nominally better performance.
However, given the small magnitude of these differ-
ences, future work may investigate whether GRUs
may have advantages in reducing overfitting.

Figure 3: A part of T-SNE-visualized space

Stereotactic
EVENT

biopsy done
TIME

3-11-2014
EVENT

led to a
EVENT

diagnosis of grade 4
EVENT

astrocytoma .

Figure 4: System annotations for a brain cancer sen-
tence. Each arrow represents a CONTAINS relation.

7.6 Error Analysis

By comparing the error outputs of the THYME
system and the best self-trained bi-LSTM system
of Table 3 (rows 1 and 8) on the gold brain cancer
development set, we find that the THYME system
tends to pick up short-distance relation pairs, while
the bi-LSTM model performs well on both short-
and long- distance relations. One such example is
shown in Figure 4. It represents a complex set of
relations between four events and one time expres-
sion. All marked entities are participating in at least
one CONTAINS relation, e.g. CONTAINS (3-11-
2014, biopsy), CONTAINS (3-11-2014, led), CON-
TAINS (biopsy, led), CONTAINS (biopsy, diagno-
sis), CONTAINS (biopsy, astrocytoma). The link
between two of the events, biopsy and astrocytoma,
spans almost across the entire sentence. The bi-
LSTM model predicts all relations correctly even
without the assistance of transitive closure. We hy-
pothesize that the benefit is due to the bidirectional
setting of the LSTM model, which models the sen-
tence structure very well. With the additional silver
instances, two sets of embedding representations,
and the memory capabilities, the self-trained bi-
LSTM model adapts to a new domain to cover both
short- and long-distance relations.
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8 Conclusion

We show that neural models for temporal infor-
mation extraction are able to take advantage of
self-training. Compared with SVM models that
leverage sophisticated features, our RNN-based
self-training framework for temporal relation ex-
traction operates on primitive features, models the
sentence structure well, and is highly scalable and
generalizable. Our RNN framework establishes a
new state-of-the-art result for Clinical TempEval
2017 domain adaptation task. Experiments with
externally-trained embeddings suggest that health-
related social media or large scale general-domain
text data can complement domain-specific text for
a domain adaptation task. We will open source our
learning framework in the near future.
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Abstract

We present metrics for listwise temporal or-
dering of events in clinical notes, as well as a
baseline listwise temporal ranking model that
generates a timeline of events that can be used
in downstream medical natural language pro-
cessing tasks.

1 Introduction

For medical narratives such as clinical notes, event
and time information can be useful in automated
classification and prediction tasks. For example,
the timeline of a patient’s medical history can be
used to predict whether they will be readmitted to
the hospital within a certain time window. A medi-
cal timeline can also be used for other tasks such as
disease classification, and for summarizing a pa-
tient history for physicians.

Because events are not necessarily mentioned in
chronological order in such documents, once the
individual events are identified, the model needs
to determine the temporal relationships between
them. Temporal relations are categorical labels
that describe how two events are related. These
relations can be binary (related or not) or simple
(BEFORE, AFTER, OVERLAP), or they can capture
more complex relationships such as partial overlap
or adjacency. A popular temporal relation scheme
for clinical notes is the CONTAINS relation, which
specifies whether a time phrase or event subsumes
another event.

However, most temporal relation methods use
pairwise classification, which can result in incon-
sistent relationships and which requires classify-
ing n2 pairs of events, many of which have no de-
fined relation. What is needed is an overall time-
line of medically relevant events that ideally can
capture event duration and overlap. A listwise or-
dering of events inherently captures all pairwise

relationships between events and prevents incon-
sistencies that can arise in pairwise ordering.

While ranking methods have generally been ap-
plied to information retrieval tasks such as search-
ing, we can view temporal ordering as a ranking
task. In this work, we examine a baseline listwise
ranking method for events in clinical notes and we
establish a set of metrics for evaluating listwise
temporal ordering of these events.

1.1 Listwise vs. pairwise ordering

Temporal relation extraction is typically framed
as a pairwise classification problem: generate all
pairs of events in a document, and then deter-
mine what type of temporal relation exists be-
tween them, if any. The major problem with this
approach is that the vast majority of event pairs
have no relationship, or the relation between them
is unknown. This results in an unbalanced clas-
sification problem, and there is no guarantee that
the predicted pairwise relations are consistent with
one another. Because of the sparsity of annotated
long-distance relations, many pairwise classifica-
tion models have been limited to events mentioned
within the same sentence or within some small
window of the text. It is often difficult for humans
to analyze the relations from an entire document
quickly, especially when they are inconsistent.

In contrast, a document-level list inherently
captures pairwise relations between all events in
the document, regardless of whether or not they
appear in the same sentence. Thus, we choose to
represent the events as a temporally ordered list
instead of as pairs of temporal relations.

However, since pairwise relations often capture
relationships that are more complex than just BE-
FORE, AFTER, and OVERLAP, we add time infor-
mation to the events in the reference list when
available. This information includes event start,
end, and overlap times, based on the annotated re-
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lationships to time phrases in the text. For this
work, we sort the list by event start time, but in
principle we could sort by end time or examine
event overlaps. All time information can be either
exact, relative (before or after a certain time), or
unknown.

2 Related work

Most existing work on temporal relation extrac-
tion for clinical text relies on human-labeled spans
and relations. The input to these models is usually
pairs of events (or events and times) that a human
has identified as being related, and all the model
has to do is decide the type of relation. However,
given an unlabeled dataset the task is much more
difficult – the system must first identify the events
and time phrases, decide which pairs are related,
and then determine the type of each relation. Der-
czynski (2017) covers the general topic of tempo-
ral ordering of events in text.

For the medical domain, the Clinical TempEval
task at SemEval (Bethard et al., 2017) has multiple
tasks that involve identification of events, time ex-
pressions, and attributes in clinical notes, as well
as relation classification. SemEval 2015 also had
a task on cross-document event ordering, although
the data was in the news domain (Minard et al.,
2015).

Additionally, most recent work has focused on
small relation sets, such as narrative container re-
lations (CONTAINS, NO-RELATION), which were
originally introduced by Pustejovsky and Stubbs
(2011), or simple relations (BEFORE, AFTER,
OVERLAP, NONE), although some work has at-
tempted to classify with Allen’s complete set of
13 temporal relations (Allen, 1984).

Dligach et al. (2017) and Lin et al. (2017)
achieved state-of-the-art performance on identi-
fying container relations in the THYME corpus
(Styler et al., 2014); however, they considered
only relations in which both entities appear in
the same sentence. This is a limitation in many
temporal relation systems. Since clinical notes
are often long and may refer to distant entities
such as the admission or discharge date, cross-
sentence relations should not be ignored. Tourille
et al. (2017) identified cross-sentence container re-
lations in the THYME corpus, in addition to intra-
sentence relations, using a bi-directional LSTM.
They used word and character embeddings of
gold-standard event attributes and attributes gen-

erated by cTAKES (Savova et al., 2010).
Tannier and Muller (2011) addressed relation

closure in temporal graphs with all 13 Allen rela-
tions. In our current work we deal only with sim-
ple relations, but this is something we would like
to expand in the future.

For our ranking model, we build upon List-
Net (Cao et al., 2007), which describes a listwise
approach to ranking. The ranking function is a
linear neural network which assigns a relevance
score for each document in a set related to a query
(such as in a document retrieval task). The loss
function is typically based on top-k probability,
i.e., the probability of a given document being
ranked among the top k documents with respect to
a query. More recent work such as IntervalRank
(Moon et al., 2010) used isotonic regression with
a maximum margin criteria to optimize for correct
relative rankings.

3 Data

3.1 Dataset

We use the THYME corpus (Styler et al., 2014),
which contains de-identified clinical notes with
human-annotated times, events, and temporal re-
lations, using the TimeML schema (Pustejovsky
et al., 2003). This dataset is publicly available
with a data use agreement. We use the provided
train/dev/test split and the gold-standard EVENT,
TIMEX3, and temporal relation annotations, in-
cluding document creation time (DCT) relations.

For now, our listwise ordering method can rep-
resent only simple relations (BEFORE, AFTER,
OVERLAP), so we map the BEFORE/OVERLAP re-
lation and ENDS-ON relation to BEFORE (since we
are ranking by start time), we transform AFTER

relations to BEFORE, and all other relations in the
THYME dataset to OVERLAP (including the CON-
TAINS relation).

One of the limitations of the annotations in the
THYME dataset is that event annotations are al-
ways applied to just a single word, even though
there are many instances where the event would
be better represented by a phrase. Unfortunately,
this is common in temporally annotated datasets.

3.2 Converting gold-standard pairwise
relations to list representations

In order to evaluate listwise ordering methods,
we need a reference list to compare against. To
our knowledge, all temporally annotated clinical
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fever MRI treatment
BEFORE BEFORE

OVERLAP

Figure 1: Example of the type of cycle in the temporal
graph where the OVERLAP link would be dropped.

datasets have pairwise annotations, so we con-
vert these pairwise relations into reference lists
for training our model. We use the graph of
gold-standard pairwise event relations to extract a
grouped listwise ordering. This is not a straight-
forward process, since not all event pairs are anno-
tated. The vast majority of relations are between
event and the document creation time (DCT),
which makes it difficult to determine how events
are related to each other when there is no explicit
annotation for that pair.

First, we take only the gold-standard event–
event relations and create a directed graph repre-
sentation1. Unfortunately, we find that some of
these graphs have cycles, which indicate incon-
sistent orderings in the gold-standard annotation
(such as A BEFORE B, B BEFORE C, C OVER-
LAP A). We have no choice but to drop some re-
lation links in order to resolve these cycles. We
choose to drop OVERLAP links, since these are
the least specific, as the relation it does not spec-
ify how the events overlap. Since we are order-
ing by start time, for two events to have different
ranks means only that one starts before the other;
it doesn’t mean that they don’t overlap. Therefore
we favor preserving the BEFORE relations. In to-
tal, 30 OVERLAP links were removed from the test
set. See Figure 1 for a fabricated example of the
type of inconsistency where the OVERLAP link is
dropped.

We then augment the graph with transitive and
time-based relations. For annotated event–time re-
lations, we add the associated time information to
the event, along with the part of the interval that
the time specifies (start, end, or overlap). We use
the Python dateparser module to convert the string
representation to an ISO date–time format. We
then compare the time intervals of every pair of
events to discover more BEFORE and AFTER re-

1AFTER relations are inverted to become BEFORE re-
lations, and INITIALIZES and FINISHES are converted to
BEGINS-ON and ENDS-ON respectively.

lations. We compare the start and end times of
events first, and if that information is not available,
we compare the overlap times of the two events.

Lastly, we group the events that all have the
same incoming and outgoing relations and have
either overlap relations or no specified relations
with each other. This results in a number of ‘bins’,
which can each contain one or more events, and
all of the relations from the individual events. We
then order these bins according to the BEFORE

and AFTER relations between bins, which are pre-
served from the individual events. All events in the
same bin are assigned the same rank. The final list
of events, including associated time information,
can be easily viewed and understood by humans.

We verify that the output list preserves the pair-
wise relations by checking that for each event–
event relation in the original set, the events are
ordered correctly in the list. For time–event re-
lations, we check that the associated interval in-
formation is consistent with the time relation. As
discussed above, we are forced to ignore some of
the OVERLAP links and leave the events in sep-
arate bins because combining them would create
conflicts between the merged edges. We also note
that there may be many variants of the listwise or-
dering that are consistent with the pairwise gold-
standard relations.

The list conversion code is available at https:
//github.com/sjeblee/chrononet.

4 Listwise evaluation metrics

Traditional ranking models are usually evaluated
according to normalized discounted cumulative
gain (NDCG) and mean average precision (MAP).
However, both of these metrics are focused on the
top k ranked documents, which makes sense for a
document retrieval task but is not an appropriate
metric for temporal ranking, where we care about
the ordering of all events.

Here we present two listwise ranking metrics, in
addition to the standard pairwise recall:

Mean squared error (MSE)

MSE =
∑y∈Y (rankt(y)− rankp(y))2

|Y | (1)

where Y is the set of events, rankt is the correct
rank, and rankp is the predicted rank. This is an
absolute metric that measures how correct the rank
score is for each individual event. However, this
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does not measure how correct the relative rankings
are, so we introduce a second metric:

Pairwise ordering accuracy (POA)

POA =
pO + pE

|LO|+ |LE |
(2)

pO = ∑
u,v∈LO

{
1, if rankp(u)< rankp(v)
0, otherwise

(3)

pE = ∑
u,v∈LE

{
1, if |rankp(u)− rankp(v)| ≤ ε
0, otherwise

(4)
where LO is the set of ordered pairs (u,v) in the
reference list such that rankt(u) < rankt(v) (i.e.,
event u is ranked before event v), and LE is the set
of pairs (u,v) where rankt(u) = rankt(v).

Since the ranking model may output slightly
different rank values for events that are close to-
gether, we consider rank values to be the same if
they are within ε of each other. For this paper we
set ε = 0.01, and rank values are between 0 and 1
inclusive, with 0 being the earliest start time.

Although this metric looks at pairs of events,
it measures the overall accuracy of the whole list.
If two events are swapped but are otherwise in
roughly the correct position in the list, POA will
penalize the model less than it would for an event
that is placed far away from its correct position.

Gold-standard pairwise relation recall (GPR)
From the list output, it is easy to extract all event–
event relation pairs. From these we can compute
the pairwise classification accuracy. Since many
event–event relations are not present in the gold-
standard annotations, we report recall only.

5 Models

For our ranking model we use an open-source im-
plementation of ListNet2, substituting rank MSE
as the loss function.

The model input is the concatenation of an em-
bedding vector and a normalized vector of nu-
merical features. The embedding vector contains
the word embedding of the event text concate-
nated with the word embeddings of the previous
and next 3 words, and the second feature vector
contains the gold-standard event attributes and the

2https://github.com/shiba24/
learning2rank

Model MSE POA GPRB GPRO

Reference list .000 1.000 .844 .246

ListNet .072 .517 .420 .254
Text order .148 .413 .640 .000
Random ordering .170 .366 .485 .000
Pairwise NN – – .186 .624

Table 1: Listwise ordering on the THYME test set.
MSE: mean squared error, POA: list pairwise ordering
accuracy, GPRB: gold-standard pairwise relation recall
of BEFORE relations, GPRO: overlap relations

Model P R F1

Pairwise NN .006 .540 .011
Pairwise NN (no NONE) .841 .851 .825

Table 2: Pairwise relation classification on the
THYME test set. The first pairwise neural network
(NN) model includes all possible pairs, including
NONE relations. The second model is restricted to only
pairs that are known to have a relation. P: precision, R:
recall

span start of the event. We use publicly available
word embeddings trained on Wikipedia, PubMed,
and PMC (Pyysalo et al., 2013). The target rank
of each event is the position in the reference list,
scaled to [0,1]. Any number of events can share
the same rank.

The pairwise classification model is a feed-
forward neural network implemented in PyTorch
(Paszke et al., 2017), with one hidden layer with
256 nodes and ReLU activations, trained for 10
epochs. Each event pair is represented with the
same features as the ranking model, and the scaled
character distance between the two events in the
text. The goal of this classification model is not to
beat the state of the art, but rather to compare the
listwise method to a simple pairwise model.

6 Results

Table 1 shows the accuracy of the ListNet rank-
ing model according to the listwise metrics (MSE
and POA), as well as gold-standard pair relation
recall (GPR). As a baseline, we include the results
from random ranking (every event is randomly as-
signed a ranking value between 0 and 1), and rank-
ing by the order of mention in the text (since many
events are indeed mentioned in chronological or-
der). Scores from random ranking are averaged
over 10 runs. We also include GPR results from
the pairwise classification model for comparison.

180



While the ListNet ranking model has plenty of
room for improvement in terms relative ordering,
it outperforms both the random ordering and the
order of mention in the text.

Table 2 shows the accuracy of the pairwise clas-
sification with respect to the gold-standard annota-
tions. We cannot extract a listwise ordering from
the pairwise model results because the predicted
relations have cycles. In addition, most temporal
relation models using THYME data have used the
full set of relations or only container relations, and
thus are not comparable to this model.

7 Discussion and future work

For many health-related NLP tasks, listwise order-
ing offers several benefits over pairwise ordering.
The list avoids cycles and inconsistent pair rela-
tions, and is also a more compact representation –
all pairwise relations can be inferred from the list.
Moreover, the list of events and associated time
information is easy for humans to review.

Although simple listwise ordering does not cap-
ture more-finely grained interval temporal rela-
tions such as partial event overlap and endpoint
relations, the inclusion of interval time informa-
tion for each event allows us to choose how to or-
der them. For example, we could choose to order
the list by end time instead of start time. In the
future we hope to represent more-complex event
relations and handle relative time phrases.

8 Conclusion

We have shown that events in clinical text can be
ordered in a listwise fashion, which prevents many
of the issues that occur in pairwise classification.
The metrics presented here are an alternative to
pairwise-only metrics, which we hope will serve
as a foundation for further listwise temporal or-
dering work in the medical domain.
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Abstract

For psychiatric disorders such as schizophre-
nia, longer durations of untreated psychosis
are associated with worse intervention out-
comes. Data included in electronic health
records (EHRs) can be useful for retrospec-
tive clinical studies, but much of this is stored
as unstructured text which cannot be directly
used in computation. Natural Language Pro-
cessing (NLP) methods can be used to ex-
tract this data, in order to identify symptoms
and treatments from mental health records,
and temporally anchor the first emergence of
these. We are developing an EHR corpus an-
notated with time expressions, clinical entities
and their relations, to be used for NLP devel-
opment. In this study, we focus on the first
step, identifying time expressions in EHRs for
patients with schizophrenia. We developed a
gold standard corpus, compared this corpus to
other related corpora in terms of content and
time expression prevalence, and adapted two
NLP systems for extracting time expressions.
To the best of our knowledge, this is the first
resource annotated for temporal entities in the
mental health domain.

1 Introduction and Background

For psychiatric disorders such as schizophre-
nia, prolonged periods of time without treatment
are associated with worse intervention outcomes
(Kisely et al., 2006). The number of days be-
tween first symptom onset and initiation of ade-
quate treatment is defined as duration of untreated
psychosis (DUP). For patients with schizophrenia,
a longer DUP has been linked to poorer cognitive
function at the time of first presentation (Lappin

et al., 2007). In addition, it has been shown to pre-
dict more severe symptoms and greater social and
functional impairment (Hill et al., 2012). There-
fore, identifying and reducing the DUP could sig-
nificantly improve both clinical and functional
outcomes. Starting from this observation, there is
an increasing interest in measuring the DUP across
large clinical samples, to provide a quality mea-
sure for mental health services, and in develop-
ing international guidelines aimed at reducing this
value, thus improving outcomes at different levels
(Connor et al., 2013).

Routinely collected data from health services,
such as electronic health records (EHRs), can be
useful for large-scale retrospective clinical stud-
ies. In mental health services, a large proportion
of clinically relevant information is recorded only
in open text fields. To make this information avail-
able for computational analysis, Natural Language
Processing (NLP) methods can be used (Meystre
et al., 2008; Wang et al., 2018). When applying
NLP techniques to the clinical domain, one crucial
task involves the identification of temporal infor-
mation. In general, for temporal information mod-
eling, three different steps are typically outlined:
(i) the identification of relevant concepts, such as
symptoms (hallucinations) and treatments (Cloza-
pine), (ii) the identification of time expressions
(May 1st), and (iii) the identification of tempo-
ral relations between entity pairs ({hallucinations}
BEFORE {Clozapine}).

Over the past years, methods for temporal in-
formation extraction have been developed with
promising results, mainly based on the ISO-
TimeML specification language that was devel-
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oped for the general NLP domain (Pustejovsky
et al., 2010). In the clinical domain, a few manu-
ally annotated corpora (gold standards) have been
created. As part of the Informatics for Integrat-
ing Biology and the Bedside (i2b2) project, a set
of 310 de-identified discharge summaries from an
Intensive Care Unit (ICU) were annotated with
events, time expressions, and temporal relations
(Sun et al., 2013a). This corpus was then used
for organizing the 2012 i2b2 Challenge on tem-
poral relation extraction (Sun et al., 2013b). In
the oncology field, Styler IV et al. developed a
corpus of 1,254 de-identified EHR notes, anno-
tated for both clinical and temporal information
(THYME corpus) (Styler IV et al., 2014). This
corpus has been used in different NLP challenges,
among which Clinical TempEval 2015 and 2016
focused on temporal information extraction (440
and 591 documents, respectively) (Bethard et al.,
2015, 2016). In both these corpora, four main
TimeML types of time expressions (TIMEXes)
are defined: Date, Duration, Frequency (or Set),
and Time. The THYME corpus also includes two
additional TIMEX types specific to the oncology
domain: PrePostExp (expressions indicating Pre-
and Post-operational concepts) and Quantifier (ex-
pressions like twice or four times).

Compared to other clinical domains, mental
health records are characterized by a greater extent
of narrative portions, describing symptomology
and health progression without relying on struc-
tured fields. In this framework, relevant tempo-
ral information (e.g., associated to symptom on-
set or treatment initiation) is not always well rep-
resented by current temporal models. For exam-
ple, identifying expressions like at age 8 or in 3rd
year of secondary school is not straightforward,
especially as regards the normalization phase (e.g.,
converting 6th May 2018 to “2018-05-06”).

Our long-term goal is to accurately identify
symptoms and treatments from mental health
records, and anchoring these on a timeline, to be
able to calculate DUP and other clinically relevant
temporal constructs on a large patient cohort. To
address this long-term goal, we are developing a
corpus with annotations that cover all necessary
elements (time expressions, clinical entities and
their relations).

In this study, we focus on one subgoal: address-
ing the problem of accurately identifying time ex-
pressions in mental health records related to pa-

tients who have been diagnosed with schizophre-
nia. Our aim was (i) to develop a gold standard
corpus with time expression annotations, (ii) to an-
alyze and compare typical time expressions in this
corpus with other clinical corpora that have been
annotated with time information (i2b2 2012, Clin-
ical TempEval 2016), and (iii) to perform a feasi-
bility study on adapting existing NLP systems for
extracting time expressions.

2 Materials and Methods

2.1 Data
In this study, we used anonymized1 mental
health records from the Clinical Record Interac-
tive Search (CRIS) database (Perera et al., 2016)2.
This database was derived in 2008 from the
EHR system adopted by a large mental health-
care provider in southeast London: the South Lon-
don and Maudsley National Health Service (NHS)
Foundation Trust (SLaM).

Mental health records for patients who had re-
ceived a diagnosis related to schizophrenia were
extracted. To identify these patients, we queried
the CRIS database for patients who had been doc-
umented with an ICD-10 code for this disease
(F20*) or, if not documented with a structured
code, we relied on the output of an NLP tool which
extracts diagnoses from free text (based on the
keyword “schizophrenia”) (Perera et al., 2016), re-
sulting in 8,483 documents for 1,691 patients3. To
make the task feasible for manual annotation and
relevant to the clinical use-case, two main docu-
ment sample steps were taken:

1. Only documents that were written within 3
months of first presentation to mental health
services were extracted, on the assumption
that these early documents would most likely
contain the richest description of the patient’s
clinical history and presenting complaints re-
lated to relevant symptoms;

2. From these documents, only the longest doc-
ument (in terms of total number of charac-
ters) for each patient was extracted to be used
for annotation, on the assumption that this

1Textual portions are automatically anonymized by re-
moving patient and relative identifiers, such as names and
postal codes.

2This database has ethical approval for secondary analysis
(Oxford REC C, reference 08 H0606 71+5).

3Data were extracted on March 31st 2016 for patients ac-
cepted in services after January 1st 2012.
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document most likely would contain most in-
formation about the patient history;

From the extracted set, a random sample of 52
documents (one document per patient) was used
in the time expression annotation task for creating
our corpus.

2.2 Time Expression Annotations

As a first step for the extraction of psychosis
symptom onset, it is necessary to identify all the
time expressions occurring inside the text (e.g.,
May 2012, a year ago). These expressions can
then be used at a later stage, to link each men-
tioned symptom to the corresponding date or time.

To enable the development of an accurate tem-
poral extraction system, we manually annotated
the available corpus with occurrences of time ex-
pressions, marking both TIMEX spans and types
(e.g., Date). To facilitate this task, we pre-
pared domain-specific annotation guidelines, in-
spired by the guidelines used in the 2012 i2b2
challenge (Sun et al., 2013a) and the THYME
project (Styler IV et al., 2014).

In addition, we performed a comparative analy-
sis with existing corpora (i2b2 2012 and Clinical
TempEval 2016), to highlight similarities and dif-
ferences, and to gain deeper knowledge in domain-
specific characteristics related to how time infor-
mation is documented in clinical text.

Comparison to Related Corpora and
Guidelines Adaptation
Both the i2b2 2012 and the Clinical TempEval
2016 corpora are characterized by relatively short
notes, with content organized in semi-structured
sections (e.g., “History of present illness”, “Hos-
pital course”). To develop guidelines tailored
to the mental health domain, we manually re-
viewed a few example documents to identify ini-
tial domain-specific requirements. In our corpus,
most documents have few or no systematic sec-
tion, with clinical and temporal information scat-
tered across many different paragraphs. Moreover,
symptoms and their onset are frequently associ-
ated to vague dates, as opposed to most events
documented within the ICU and the oncology do-
main (e.g., problems, exams, operations). As
a consequence, we found that the examples in-
cluded in the i2b2 2012 and THYME guidelines
did not capture all the time expressions that are
typical of the mental health domain, and we de-

cided to adapt them in order to simplify and clar-
ify the annotation task. First, we only kept the
TIMEX types that were relevant to the considered
clinical use-case4: Date (e.g., in May 2012, yes-
terday), Time (e.g., in the morning, 3 pm), Du-
ration (e.g., for three years, over the past two
weeks), and Frequency (e.g., daily, twice a week).
Within Dates, we explicitly included generic ex-
pressions such as past and current, to enable tem-
poral contextualization of events that cannot be an-
chored to specific TIMEXes. As for Frequencies,
we put a particular focus on medication-related
TIMEXes and domain-specific expressions (e.g.,
OD for “once daily”). We also defined an addi-
tional TIMEX type for “age-related” expressions,
to capture clinically relevant temporal patient in-
formation. Although this type is not included in
common TimeML models, it has been previously
investigated as it can encompass relevant tempo-
ral information in a clinical setting (Wang et al.,
2016). In this study, besides looking at the pa-
tient’s current age (e.g., 28-year-old man), we in-
cluded all the expressions that rely on the date of
birth in order to be correctly normalized (see Sec-
tion 3.1). The final guidelines, which were writ-
ten and revised by two NLP researchers, describe:
the annotation task and goal, the TimeML TIMEX
types (with sentences taken from the reference
guidelines), and the domain-specific TIMEX types
and examples.

Annotation Process
Annotations were carried out by three medical stu-
dents, using the eHOST annotation tool (South
et al., 2012). The students were all native En-
glish speakers and in their 1st-3rd year of med-
ical studies. The corpus was randomly divided
into five batches of documents (9-13 documents
in each batch), and each batch was independently
annotated by two different annotators. After the
completion of the first batch (development set, 10
documents), we jointly discussed issues that had
arisen during the annotation process, to refine and
reach a consensus on improvements and edits in
the guidelines. As a result, we added specific rules
for the time expressions that had caused disagree-
ments, and removed ambiguous sentences and ex-
amples. For instance, we found that “dates” and
“durations” were sometimes hard to distinguish,
and created specific rules to disambiguate those

4PrePostExp and Quantifier TIMEX types were not con-
sidered.
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(e.g., over the last week should be annotated as
a Duration, and not a Date). The updated guide-
lines were then applied to annotate the remaining
documents. When all batches had been double-
annotated, we carried out an adjudication phase in
order to create a gold standard corpus. The adjudi-
cator decided which annotations to include in the
gold standard in case of disagreement between an-
notators, added missing annotations and omitted
or corrected erroneous ones.

2.3 Automated Time Expression Extraction

In this study, we explored two well-known time
expression taggers, SUTime (Chang and Manning,
2012) and HeidelTime (Strötgen and Gertz, 2010),
which were developed and evaluated on general
domain corpora. When applied to the TempEval-
2 newspaper data, both systems achieved state-
of-the-art performance (F1 scores of 92% and
86%, respectively, for time expression identifica-
tion) (Verhagen et al., 2010). Moreover, they have
previously been used for the automatic processing
of clinical narratives (Jindal and Roth, 2013; Wang
et al., 2016).

Both SUTime and HeidelTime use a list of pat-
tern matching rules, built on regular expressions,
to recognize and normalize time expressions in-
side the text. As a main difference, while SUTime
links relative TIMEXes (such as yesterday) to the
document creation date, HeidelTime uses different
normalization strategies depending on documents’
types (e.g., news, narratives).

To adapt the systems to the mental health do-
main, we first evaluated their original versions
on the development set5, to see what the in-
crease in performance over non-domain-specific
rules would be. Then, we manually reviewed
the TIMEXes present in the development set, and
modified and added rules as needed. The perfor-
mance of the updated systems was then evaluated
on a validation set, consisting of two batches (23
documents in total). To allow for future develop-
ment and evaluation, we did not use the remain-
ing batches (test set, 19 documents) in this study.
The documents we used to adapt and evaluate the
temporal taggers were from the adjudicated gold
standard corpus.

5To compute the performance of the original systems,
we used: the SUTime grammar included in the Stanford
CoreNLP (https://stanfordnlp.github.io/CoreNLP/ ) distribu-
tion dated 2017-06-09, and the HeidelTime resources in-
cluded in the GATE (https://gate.ac.uk/ ) distribution 8.3.

2.4 Evaluation Metrics

To assess the quality of the developed corpus,
we calculated inter-annotator agreement (IAA) for
each annotated batch, using the metrics that were
used for i2b2 2012 (average of precision and
recall) and Clinical TempEval 2016 (F1 score).
First, we computed the average of precision and
recall: the entities marked by one annotator were
used as the gold reference, while the entities iden-
tified by the second annotator were considered
as the system’s output (switching these two roles
would not change the final result). Moreover, we
measured the F1 score (i.e., the harmonic mean of
precision and recall), which provides a good way
to quantify agreement for entity extraction tasks
(Hripcsak and Rothschild, 2005).

To evaluate the performance of SUTime and
HeidelTime, we defined: (i) true positives (TP),
as the gold TIMEXes that were found in the sys-
tem’s output; (ii) false negatives (FN), as the gold
TIMEXes that were not found in the system’s out-
put; and (iii) false positives (FP), as the system
TIMEXes that were not found among gold an-
notations. In this case, we assessed the system’s
performance in terms of precision, recall, and F1
score.

3 Results

3.1 Time Expression Annotations

The total number of gold TIMEXes in our cor-
pus is 3,413, with an average of 65.6 annotations
per document6. Table 1 reports the prevalence
of TIMEX types in the corpus, divided into de-
velopment, validation, and test sets. Overall, the
majority of TIMEXes are represented by Dates
(55.8%). Durations, Times, and Frequencies ac-
count for 16.5%, 10.7%, and 8.1%, respectively.

As mentioned, we defined a new TIMEX type
referring to the patient’s age: “Age-related”. This
type was assigned to 8.9% of all TIMEXes. Some
examples include:

• at the age of 8: requires adding 8 years to the
date of birth for normalization;

• when he was a child: requires the date of
birth and a shared definition of “child years”
for normalization;

6Annotators worked 20-24 hours, and annotated 2/3 of the
corpus each (33-39 docs): the average time required for cor-
pus development was around 35-40 minutes per document.

186



development set validation set test set total
# documents 10 23 19 52
# TIMEXes 964 (96.4/doc) 1,401 (60.9/doc) 1,048 (55.2/doc) 3,413 (65.6/doc)
Date 593 (61.5%) 803 (57.3%) 507 (48.4%) 1,903 (55.8%)
Duration 148 (15.3%) 215 (15.3%) 200 (19.1%) 563 (16.5%)
Time 94 (9.8%) 129 (9.2%) 143 (13.6%) 366 (10.7%)
Frequency 60 (6.2%) 127 (9.1%) 89 (8.5%) 276 (8.1%)
Age-related 69 (7.2%) 127 (9.1%) 109 (10.4%) 305 (8.9%)

Table 1: TIMEX annotation results: prevalence of types in our corpus.

• since his teens: requires the date of birth and
a shared definition of “teens years” for nor-
malization;

• during his first year (implicitly referring to
the first year of university): requires the date
of birth and the usual timing of university for
normalization;

With respect to IAA, we computed results on
TIMEX spans (without considering the different
TIMEX types, as this was not calculated for the
corpora used for comparison), for both partial and
exact matches. In the first case, the average of pre-
cision and recall was 78%, and the F1 score was
77%. In the second case, both metrics resulted in
60%.

For partial matches, the IAA per batch was
in the range of 73.6%-83.7% (average of preci-
sion and recall), and 73.5%-83.3% (F1 score).
We also computed the percentage of TIMEX type
matches for those time expressions that the anno-
tators agreed on with respect to overlapping spans,
resulting in 91% percentage match.

3.2 Comparison to Related Corpora
In Table 2, our corpus is compared to the i2b2
2012 and the Clinical TempEval 2016 corpora.
Specifically, the table reports the size, the num-
ber of TIMEXes, the type prevalence7, and the
IAA values for the three considered corpora. To
allow comparing TIMEX types among these cor-
pora, we merged Clinical TempEval annotations as
follows: PrePostExp time expressions were con-
sidered among Dates, while Quantifier time ex-
pressions were considered as Frequencies. No
modifications were required in order to compare
the i2b2 2012 corpus. Also, since we added the

7These numbers were computed on released data, for
i2b2 2012, and on publicly available annotations, for Clini-
cal TempEval 2016.

new TIMEX type Age related, we were not able
to compare these annotations in either corpus.

3.3 Temporal Expression Extraction System
Adaptation

In this work, we used SUTime and HeidelTime to
identify TIMEX spans in the developed corpus8.
The results of this domain adaptation are shown
in Table 3. First, we ran the original versions of
the two systems on the development set, obtain-
ing an F1 score of 72.5% for SUTime and 63.6%
for HeidelTime (allowing partial matches). As ex-
pected, these scores are much lower than those ob-
tained on general domain corpora (92% and 86%
F1 scores on TempEval-2 newspaper data). Af-
ter tuning the systems’ rules on the development
set, we achieved scores of 79.7% and 77.3%, re-
spectively. By running the updated systems on the
validation set, we obtained a final result of 79.5%
and 75.8%, respectively.

It is important to mention that, although the
original version of SUTime included rules to cap-
ture some “age” expressions (e.g., 28-year-old),
these were considered as Durations. In the original
version of HeidelTime, instead, these expressions
were explicitly excluded, as they were probably
not considered as proper time expressions. This
is one of the reasons why the original version of
HeidelTime had much lower recall than SUTime
(Table 3, “HeidelTime original” row).

4 Discussion

Extracting temporal information from mental
health records is particularly challenging, as this
domain is characterized by a large proportion of
free-text and heterogeneity in self-reported expe-
riences (i.e., mental health symptoms), circum-

8For determining Age-related TIMEXes, we applied a set
of post-processing rules to the output of the two temporal tag-
gers.
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Our corpus i2b2 2012 Clinical TempEval 2016
Domain Mental health Intensive care Oncology
# documents 52 310 591
# tokens 206,661 (3,974/doc) 178,000 (574/doc) 550,487 (931/doc)
# TIMEXes 3,413 (1.65/100tok) 4,184 (2.35/100tok) 7,863 (1.43/100tok)

Prevalence

Date: 55.8% Date: 68.4% Date: 76.1%
Duration: 16.5% Duration: 17.8% Duration: 10.6%
Time: 10.7% Time: 3.1% Time: 3.4%
Frequency: 8.1% Frequency: 10.7% Frequency: 9.9%
Age related: 8.9% Age related: NA Age related: NA

IAA (Avg P-R)
Partial: 78% Partial: 89%

NA
Strict: 60% Strict: 73%

IAA (F1 score)
Partial : 77%

NA
Partial: NA

Strict : 60% Strict: 73%

Table 2: Comparison between our corpus, i2b2 2012, and Clinical TempEval 2016. IAA: inter-annotator agree-
ment; Avg P-R: average of precision and recall; NA: not applicable (TIMEX type not annotated or IAA metric not
calculated in these corpora).

Set System P R F1

dev
SUTime original 71.4% 73.6% 72.5%
HeidelTime original 71.7% 57.2% 63.6%

dev
SUTime updated 72.9% 87.8% 79.7%
HeidelTime updated 73.6% 81.3% 77.3%

valid
SUTime updated 72.8% 87.7% 79.5%
HeidelTime updated 70.5% 81.9% 75.8%

Table 3: SUTime and HeidelTime results. P: precision; R: recall.

stances (e.g., social support networks, recent or
past stressful experiences, psychoactive substance
use), and treatment and outcomes. In this study,
we annotated time expressions related to patients
with schizophrenia in EHRs. The documents
in our corpus are long when compared to sim-
ilar corpora (3,974 tokens/doc), and include a
large proportion of relevant time expressions (65.6
TIMEXes/doc). In addition, they might con-
tain information taken from structured forms (e.g.,
questions, references to health care legislation),
which are not relevant to the patient’s clinical his-
tory, but could still include references to time.

4.1 Comparison to Related Corpora

When comparing our corpus to other related cor-
pora, there are differences in the documentation
types that can have an impact on the develop-
ment of temporal information extraction systems.
For instance, the discharge summaries in the 2012
i2b2 corpus each start with the admission and dis-
charge date, which are annotated as TIMEXes.

Similarly, the Clinical TempEval 2016 documents
are organized in sections with semi-structured date
information, that can be useful to then link and an-
chor clinically relevant events in the documents.
The documents in our corpus, on the contrary, in-
clude various paragraphs describing both past and
current events related to the patient, without nec-
essarily following a predefined structure.

Regarding TIMEX types, there was a greater
prevalence of Date expressions in the i2b2 2012
(ICU domain) and Clinical TempEval 2016 (on-
cology domain) corpora, as compared to our cor-
pus (Table 2). This might relate to the fact that,
in the ICU and oncology clinical settings, treat-
ment episodes are likely to be shorter and changes
in physical health parameters and onset/duration
of treatment occur over shorter periods of time.
As another interesting observation, our corpus is
characterized by a higher prevalence of the Time
type, which is probably due to the fact that many
events are described as happening at a specific
time of day (this morning, at night). It is important
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to point out that in both i2b2 2012 and Clinical
TempEval 2016, age-related information was not
marked. One reason for this might be that these
types of constructs were not considered useful for
the use-cases that these corpora were developed
for.

As regards the IAA, we obtained a value
of 60%/78% (strict/partial) for the average of
precision and recall, and a value of 60%/77%
(strict/partial) for the F1 score. Although these re-
sults are lower in comparison to those of i2b2 2012
and Clinical TempEval 2016 (Table 2), this can be
considered a promising result, given the intrinsic
complexity of the mental health domain. As an
important remark, the difference between partial
and strict IAA measures indicates that identifying
the spans of time expressions is not straightfor-
ward. This is also reflected in the results obtained
on the i2b2 2012 corpus. In our case, the main rea-
son for disagreement was the inclusion/exclusion
of prepositions or determiners in TIMEX spans
(e.g., for three years instead of three years). We
also analyzed disagreements in TIMEX type as-
signments. Differentiating between Date and Du-
ration was one of the main disagreements (ac-
counting for 42% of disagreements). For instance,
an expression like this week was assigned Date (in-
terpreted as a point in time) by one annotator, and
Duration (interpreted as a period) by another.

4.2 Domain-specific Time Expressions
As an interesting result of the annotation task, we
identified a set of time expressions which were not
present in the other corpora, but which are essen-
tial to allow capturing symptom onset. As previ-
ously mentioned, these expressions are those re-
lated to the age of the patient, which account for
8.9% of all TIMEXes (Table 1). Despite not be-
ing particularly frequent, Age-related TIMEXes
can be crucial to determine the first onset of symp-
toms, which is often reported by patients or their
relatives in a vague way. For example, extract-
ing these kinds of expressions is essential for sen-
tences like9:

• she first experienced hallucinations at the
age of 18

• he started hearing voices when he was 15

• he has been experiencing these symptoms
since his teens

9The reported sentences have been paraphrased.

Besides defining a new TIMEX type, we also
found some example TIMEXes that are specific to
the analyzed domain and were not present in the
compared corpora. As a first example, we iden-
tified a few expressions that are related to drug
prescriptions, such as OD (i.e., once daily) and
NOCTE (i.e., every night). Moreover, we noticed
that the expression 15 minute is often used as a
Frequency, rather than a Duration, as this is the
usual interval of time used to observe patients with
schizophrenia (e.g., “he was placed on 15 minute
visual observations”). Determining the correct in-
terpretation is not straightforward, as this relies
on domain knowledge (in the sentence I went for
a 15-minute walk, the same TIMEX represents a
Duration). As another interesting example, we re-
alized that, in the field of mental health, the ex-
pressions /7, /12, and /52 can be used to refer to
days (3/7 ago = three days ago), months (for 3/12
= for three months), and weeks (in 2/52 = in two
weeks), respectively. In our corpus, we found a
total of 12 expressions of this kind (4 Dates, 6 Du-
rations, and 2 Age related). To normalize them, it
is possible to create specific rules that map the dif-
ferent patterns to the corresponding temporal val-
ues.

4.3 Time Expression System Adaptation

We applied SUTime and HeidelTime on the devel-
opment set through an iterative process (Table 3).
By running the two original versions of the sys-
tems, we found that SUTime performed better than
HeidelTime, especially in terms of recall (73.6%
versus 57.2%): this is probably due to the fact that,
in our annotation schema, we included a few ex-
pressions which were already taken into account
by the first system, but not by the second (e.g.,
28 years old, past). In the adaptation process, we
identified false negatives (FNs) for both systems,
and then refined rules to capture them. It is im-
portant to point out that, in this preliminary exper-
iment, we focused on improving the systems’ per-
formance for partial matches, rather than identify-
ing exact TIMEX spans. While a few of the per-
formed adaptations involved general domain rules
(e.g., dates in the form “dd/MM” were not recog-
nized by SUTime), we mostly needed to address
TIMEXes specific to the mental health domain.
By adding extraction rules for these expressions,
we were able to reduce the number of FNs, thus
obtaining an improvement in recall from 73.6%
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to 87.8%, for SUTime, and from 57.2% to 81.3%
for HeidelTime (development set). As for preci-
sion, lowering the number of FPs was not triv-
ial, as these rule-based systems cannot distinguish
between time expressions that are patient-related
(thus relevant to our goal) and those that are not
(e.g., form-related).

After an error analysis, we found a few non-
trivial TIMEXes that were not correctly captured
by the system and will require further adapta-
tion/improvement. For instance, SUTime was not
able to identify age-related expressions like be-
tween the ages of 10 and 12 and Time intervals
like 9.30-10. On the other hand, ambiguous words
such as present (as in present at the appointment)
and minutes (as in minutes of the meeting) were
erroneously considered as TIMEXes. Also, all the
time expressions that were included in form-like
paragraphs (e.g., The Activities of Daily Living in-
clude...) were counted among false positives, as
we were not interested in extracting these.

In this study, the best final F1 score was ob-
tained with the adapted version of SUTime (79.5%
on the validation set), which represents a promis-
ing result if compared to the IAA of 77% (F1
score). This could reflect the fact that time expres-
sions often follow specific patterns: by adequately
tuning extraction rules, it is possible to obtain a
good extraction performance, which can be even
higher than that of a human annotator (this is par-
ticularly true for recall).

4.4 Limitations and Future Work

As a main limitation of this work, we only ad-
dressed the extraction of TIMEX spans and types,
without dealing with TIMEX value normaliza-
tion, which would require assigning a standardized
value to each TIMEX. For instance, the expression
for three years should be normalized as P3Y, while
the expression at the age of 8 would require the
date of birth in order to be correctly normalized.
We are in the process of extending our TIMEX an-
notations with normalized values. In future work,
we will use these annotations to develop suitable
rules for time expression extraction and value nor-
malization. Moreover, while adapting TIMEX ex-
traction systems, we did not write contextual rules
to disambiguate expressions that can belong to dif-
ferent types depending on their context, although
we did disambiguate these during manual annota-
tion (e.g., at night was marked as a Time, when

referring to a single episode, or as a Frequency,
when referring to a drug prescription). As a future
improvement, we will address this task by dealing
with the context in which time expressions appear,
for example, by using word embeddings to repre-
sent each word with automatically derived contex-
tual features (Mikolov et al., 2013). Finally, since
we are interested in assessing the usability of SU-
Time and HeidelTime in other clinical domains,
we plan to extend the adaptability study presented
in this work to other clinical corpora, such as the
i2b2 and Clinical TempEval corpora used for com-
parison here.

As previously mentioned, the extraction of time
expressions represents a first step towards our final
goal, i.e., the identification of symptom onset and
DUP in free text. The next step will involve the an-
notation of clinically relevant entities (symptoms
primarily), to be linked to the available temporal
information. Extracting entities such as symptoms
could be done by knowledge-based approaches
based on keyword lists, or using word embedding
models (or a combination of both). We are cur-
rently exploring different alternatives. As for tem-
poral linking, we will need to refer each clinical
entity to a specific time expression. For example,
given the sentence he first experienced hallucina-
tions in 2008, the following link should be identi-
fied: “{2008} CONTAINS {hallucinations}”. To
reach this goal, we are currently experimenting
with the annotation of a set of documents, where
relevant events and time expressions have been
pre-annotated by using automatic approaches.

5 Conclusion

In this paper, we described the annotation of time
expressions in mental health records related to
schizophrenia, thus creating an annotated corpus.
To the best of our knowledge, this is the first gold
standard developed in this domain for a specific
mental health use-case: onset and DUP extrac-
tion. In addition, this is the first study explic-
itly incorporating age-related information, which
is not captured by current temporal models. As an
important aspect, we also assessed the adaptabil-
ity of two existing rule-based TIMEX extraction
systems to the new analyzed use-case, obtaining
promising results.

Due to governance regulations, the corpus an-
notated in this study cannot be made publicly
available. However, there are procedures in place
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to provide researchers with controlled access to
the CRIS database. Moreover, the developed
guidelines and the adapted versions of SUTime
and HeidelTime have been made publicly avail-
able10, and could be easily reused or adapted for
other temporal information extraction tasks.
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Stéphane M Meystre, Guergana K Savova, Karin C
Kipper-Schuler, and John F Hurdle. 2008. Extract-
ing information from textual documents in the elec-
tronic health record: a review of recent research.
Yearbook of medical informatics, pages 128–144.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Gayan Perera, Matthew Broadbent, Felicity Callard,
Chin-Kuo Chang, Johnny Downs, Rina Dutta, An-
drea Fernandes, Richard D Hayes, Max Henderson,
Richard Jackson, Amelia Jewell, Giouliana Kadra,
Ryan Little, Megan Pritchard, Hitesh Shetty, Alex
Tulloch, and Robert Stewart. 2016. Cohort pro-
file of the South London and Maudsley NHS Foun-
dation Trust Biomedical Research Centre (SLaM
BRC) Case Register: current status and recent en-
hancement of an Electronic Mental Health Record-
derived data resource. BMJ Open, 6(3).

James Pustejovsky, Kiyong Lee, Harry Bunt, and Lau-
rent Romary. 2010. Iso-timeml: An international
standard for semantic annotation. In LREC.

Brett R South, Shuying Shen, Jianwei Leng, Tyler B
Forbush, Scott L DuVall, and Wendy W Chapman.
2012. A prototype tool set to support machine-
assisted annotation. In Proceedings of the 2012

191



Workshop on Biomedical Natural Language Pro-
cessing, pages 130–139.

Jannik Strötgen and Michael Gertz. 2010. Heideltime:
High quality rule-based extraction and normaliza-
tion of temporal expressions. In Proceedings of the
5th International Workshop on Semantic Evaluation,
pages 321–324.

William F Styler IV, Steven Bethard, Sean Finan,
Martha Palmer, Sameer Pradhan, Piet C de Groen,
Brad Erickson, Timothy Miller, Chen Lin, Guergana
Savova, and James Pustejovsky. 2014. Temporal an-
notation in the clinical domain. Transactions of the
Association for Computational Linguistics, 2:143–
154.

Weiyi Sun, Anna Rumshisky, and Ozlem Uzuner.
2013a. Annotating temporal information in clini-
cal narratives. Journal of biomedical informatics,
46:S5–S12.

Weiyi Sun, Anna Rumshisky, and Ozlem Uzuner.
2013b. Evaluating temporal relations in clinical
text: 2012 i2b2 challenge. Journal of the American
Medical Informatics Association, 20(5):806–813.

Marc Verhagen, Roser Sauri, Tommaso Caselli, and
James Pustejovsky. 2010. Semeval-2010 task 13:
Tempeval-2. In Proceedings of the 5th international
workshop on semantic evaluation, pages 57–62.

Wei Wang, Kory Kreimeyer, Emily Jane Woo, Robert
Ball, Matthew Foster, Abhishek Pandey, John Scott,
and Taxiarchis Botsis. 2016. A new algorithmic ap-
proach for the extraction of temporal associations
from clinical narratives with an application to med-
ical product safety surveillance reports. Journal of
biomedical informatics, 62:78–89.

Yanshan Wang, Liwei Wang, Majid Rastegar-Mojarad,
Sungrim Moon, Feichen Shen, Naveed Afzal, Sijia
Liu, Yuqun Zeng, Saeed Mehrabi, Sunghwan Sohn,
and Hongfang Liu. 2018. Clinical information ex-
traction applications: A literature review. Journal of
biomedical informatics, 77:34–49.

192



Proceedings of the 9th International Workshop on Health Text Mining and Information Analysis (LOUHI 2018), pages 193–203
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

Evaluation of a Sequence Tagging Tool for Biomedical Texts

Julien Tourille1,6, Matthieu Doutreligne1,2, Olivier Ferret3,
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Abstract

Many applications in biomedical natural lan-
guage processing rely on sequence tagging as
an initial step to perform more complex analy-
sis. To support text analysis in the biomedical
domain, we introduce Yet Another SEquence
Tagger (YASET), an open-source multi pur-
pose sequence tagger that implements state-of-
the-art deep learning algorithms for sequence
tagging. Herein, we evaluate YASET on part-
of-speech tagging and named entity recogni-
tion in a variety of text genres including ar-
ticles from the biomedical literature in En-
glish and clinical narratives in French. To
further characterize performance, we report
distributions over 30 runs and different sizes
of training datasets. YASET provides state-
of-the-art performance on the CoNLL 2003
NER dataset (F1=0.87), MEDPOST corpus
(F1=0.97), MERLoT corpus (F1=0.99) and
NCBI disease corpus (F1=0.81). We believe
that YASET is a versatile and efficient tool that
can be used for sequence tagging in biomedi-
cal and clinical texts.

1 Introduction

Many applications in biomedical Natural Lan-
guage Processing (NLP), including relation ex-
traction or text classification, rely on sequence tag-
ging as an initial step to perform more complex
analysis. To support text analysis in the biomed-
ical domain, we present Yet Another SEquence
Tagger (YASET), an open-source multi-purpose
sequence tagger written in Python. YASET aims at
providing NLP researchers with fast and accurate
implementations of cutting-edge deep learning se-
quence tagging models. YASET is built using Ten-
sorFlow (Abadi et al., 2015), an open source soft-
ware library for numerical computation. The code
is licensed under the version 3 of the GNU Gen-

eral Public License1 and is freely available on-
line2. The main contributions of this work are:

• a fast and accurate implementation of
a state-of-the-art sequence tagging model
based on Long Short-Term Memory Net-
works (LSTMs) (Hochreiter and Schmidhu-
ber, 1997). The architecture is similar to the
one described in Lample et al. (2016) and is
able to process mini-batches for faster train-
ing. Furthermore, YASET supports the use
of handcrafted features in combination with
word and character embeddings;

• an easy-to-use interface based on a central
configuration file that is used to setup exper-
iments, with default parameters that are suit-
able for most sequence tagging tasks;

• an evaluation on various biomedical corpora
and on the CoNLL 2003 corpus, studying the
stability of our model and the effect of train-
ing data size. We compare YASET perfor-
mance with state-of-the-art results published
in the literature.

2 Related Work

Several open-source implementations for se-
quence tagging based on neural network architec-
tures have become available over the last years.
Lample et al. (2016) provide a Python implemen-
tation3 for the two models presented in their pa-
per. They are implemented with Theano (Al-Rfou
et al., 2016), a Python library for deep learning.

1https://www.gnu.org/licenses/gpl-3.0.
en.html

2https://github.com/jtourille/yaset
3https://github.com/glample/tagger
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NeuroNER4 (Dernoncourt et al., 2017) targets
non-expert users and is based on Lample’s Bi-
LSTM model. The authors intended to make the
tool easy to use by providing automatic format
conversion from the brat format (Stenetorp et al.,
2012) to the input format and from the output for-
mat to the brat format. The tool produces sev-
eral plots during training for performance analy-
sis. It is implemented in Python and makes use
of the TensorFlow library. Both implementations
of the Bi-LSTM model suffer from a very long
training time which makes them cumbersome to
use. YASET offers a faster implementation of the
model by allowing mini-batch training and by us-
ing the pipeline API of TensorFlow.

Rei and Yannakoudakis (2016) released a
Python implementation5 of different models pre-
sented in their works (Rei and Yannakoudakis,
2016; Rei et al., 2016; Rei, 2017). One major dif-
ference with YASET resides in the possibility to
use a language modeling objective during training.

Recently, Yang and Zhang (2018) introduced
NCRF++6, a tool presented as the neural ver-
sion of CRF++7 and implemented with Py-
Torch (Paszke et al., 2017). The tool is very close
to YASET, with the possibility to define hand-
crafted word features and to perform nbest decod-
ing.

Another type of neural network model, based
on Convolutional Neural Networks (CNNs) for
character level representation, is presented in Ma
and Hovy (2016). The authors implemented the
architecture with PyTorch. The code is freely
available online8. The same type of architecture
is implemented in the tool released by Reimers
and Gurevych (2017). It is implemented with
Keras (Chollet et al., 2015) and is freely available
online9.

Outside the peer-reviewed scientific environ-
ment, many other implementations are freely
available online. However, we will not review
them in this paper.

4https://github.com/
Franck-Dernoncourt/NeuroNER

5https://github.com/marekrei/
sequence-labeler

6https://github.com/jiesutd/NCRFpp
7https://taku910.github.io/crfpp
8https://github.com/XuezheMax/

NeuroNLP2
9https://github.com/UKPLab/

emnlp2017-bilstm-cnn-crf

3 Neural Network Model

There is currently one neural network model im-
plemented in YASET. This model is mostly based
on Lample et al. (2016). However, similar ar-
chitectures are presented in other work (Collobert
et al., 2011; Ma and Hovy, 2016; Rei and Yan-
nakoudakis, 2016; Rei et al., 2016). Other network
architectures will be implemented in the future.

3.1 Main Component
Our approach relies on LSTMs. The architecture
of our model is presented in Figure 1. For a given
sequence of tokens, represented as vectors, we
compute representations of left and right contexts
of the sequence at every token. These represen-
tations are computed using two LSTMs (forward
and backward LSTM in Figure 1).

Figure 1: YASET neural network architecture
overview. The example is extracted from the THYME
corpus (Styler IV et al., 2014) used during the shared
tasks Clinical TempEval (Bethard et al., 2015, 2016,
2017). One of the objectives was to extract medical
events. In the example, the event Surgery is marked as
a medical event with the type N/A.

These representations are concatenated and
passed through a tanh activation layer whose size
is equal to the size of the concatenated vector.

Finally, the output of the last layer is linearly
projected to a n-dimensional vector representing
the number of categories. Following previous
work (Dernoncourt et al., 2017; Lample et al.,
2016; Ma and Hovy, 2016), we add a final Condi-
tional Random Field (CRF) layer to take into ac-
count the previous label during training and pre-
diction.
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3.2 Input Embeddings
Vectors representing tokens are built by concate-
nating a character-based embedding, a word em-
bedding and one embedding per feature.

An overview of the embedding computation is
presented in Figure 2. Following Lample et al.
(2016), the character-based representation is com-
puted with a Bi-LSTM whose parameters are de-
fined by users. First, a random embedding is
generated for every character in the training cor-
pus. Token characters are then processed with a
forward and backward LSTM architecture. The
final character-based representation results from
the concatenation of the forward and backward
representations. The character-based representa-
tion is then concatenated to a pre-trained word-
embedding and one embedding per feature. We
apply dropout on the final input embedding.

Figure 2: YASET input embedding computation
overview. Embeddings result from the concatenation
of a pre-trained word embedding, a character-level rep-
resentation of the token and one embedding per cate-
gorical feature.

4 Tool Overview

In this section, we present a general overview of
YASET. First we describe input data formats (se-
quences and pre-trained word embeddings). Then
we present the input pipeline, the network training
phase, the implemented evaluation metrics and the
management of its parameters.

4.1 Input and Output Data
YASET takes CoNLL-like10 formatted files as in-
put. Sequences are separated by empty lines and
there must be one token per line. For each token,

10http://universaldependencies.org/
docs/format.html

the first and last columns are reserved namely for
the token itself and the token label. Each token
must have a label.

Users can add several categorical features. Fea-
ture columns must be specified in the configura-
tion file by providing their indexes. Besides the
first and last columns, and the feature columns,
users can add other columns. They will be ignored
by the system.

YASET can take training and development files
as input but can also create development instances
if there is no development file provided by users.
In this case, users can specify the train/dev split ra-
tio and may specify a random seed for experiment
reproducibility.

Train and development instances consistency is
checked upon startup. Each label and feature val-
ues from the development instances must appear
in the train instances. An example of YASET in-
put file format is presented in Figure 3.

In prediction mode, test data is supplied in
the same format, without the token label column,
which will be added with the predicted labels.
...
Lien NNP I-NP I-PER
. . O O

China NNP I-NP I-LOC
says VBZ I-VP O
time NN I-NP O
right RB I-ADVP O
for IN I-PP O
Taiwan NNP I-NP I-LOC
talks NNS I-NP O
. . O O

BEIJING VBG I-VP I-LOC
1996-08-22 CD I-NP O
...

Figure 3: Example extracted from the CoNLL 2003
shared task corpus (Sang and Meulder, 2003). For each
token (col. #1), there is a label (col. #4, IOB format)
and two categorical features (cols. #2 and #3), the part-
of-speech tag and a chunk label (IOB format).

4.2 Word Embeddings
YASET supports embeddings in the
word2vec (Mikolov et al., 2013b) or Gen-
sim (Řehůřek and Sojka, 2010) formats. Other
formats of embeddings, for instance FastText (Bo-
janowski et al., 2017) or Glove (Pennington et al.,
2014), must first be converted to either accepted
format.
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Out Of Vocabulary (OOV) tokens can be ad-
dressed by two strategies. In the first one, users
provide a vector for OOV tokens. In this case,
the vector is expected to be part of the provided
word embedding matrix and users must specify the
vector ID. In the second strategy, we follow the
methodology described in Lample et al. (2016).
We insert a randomly initialized vector in the em-
bedding matrix that will be used for OOV tokens.
Then we replace singletons in the training corpus
by the OOV token with a probability of p, which
is defined by users. Word embeddings can be fine-
tuned during training in both cases by setting the
appropriate flag to true in the configuration file.

4.3 Input Pipeline
Minimizing the memory footprint was one of the
core objectives during the development of the tool.
YASET leverages the pipeline API of TensorFlow
to build a lightweight and fast input pipeline. In-
put instances are stored in the binary TensorFlow
format. This avoids the need to store the whole
dataset in memory. Mini-batches are extracted
randomly and fed to the network.

Training instances can be bucketized according
to their lengths. This possibility can speedup train-
ing with large corpora. Buckets boundaries are
automatically computed. To assert effective ran-
domization during training, buckets will contain
enough instances for several mini-batches.

4.4 Neural Network Training
YASET alternates between two phases during
training. In the iteration phase, mini-batches are
extracted from the input pipeline and fed to the
neural network model. Optimization is performed
according to the parameters set by users in the con-
figuration file.

At the end of each iteration, YASET enters the
evaluation phase where the current model state is
used to make predictions on the development in-
stances. The performance score is logged for fur-
ther analysis and a snapshot of the model is kept
if the performance score is the best obtained so far
on the development instances. Since model snap-
shots can take a lot of memory, we only keep the
best one, i.e. the one that performs best on the de-
velopment instances.

Network training is performed via back-
propagation. Users can select the neural network
model architecture (only one available for now),

the maximum number of iterations n and the pa-
tience criterion p. Training will stop if the max-
imum number n is reached or if there are p iter-
ations without performance improvement on the
development instances.

Users can also set several parameters related to
the learning algorithm such as the initial learning
rate, and gradient clipping and exponential decay
factors. Finally, users can select the mini-batch
size, the number of CPU cores to use and the eval-
uation metric.

Another set of parameters are related to the neu-
ral network model. These parameters allow to se-
lect the dropout rate and the different hidden layer
and embedding sizes.

4.5 Metrics
Model performance is measured on the develop-
ment instances at the end of each iteration. Two
metrics are currently implemented in YASET: ac-
curacy and CoNLL. The former measures the frac-
tion of correctly predicted labels among all the
predicted labels. The latter is an entity-based met-
ric which outputs precision, recall and F1-measure
scores. Precision measures the fraction of cor-
rectly predicted entities among all predicted enti-
ties. Recall assesses the fraction of correctly pre-
dicted entities among all the entities that should
have been detected. F1-measure is the harmonic
mean of precision and recall. The implementa-
tion of the CoNLL metric is inspired by the of-
ficial evaluation script used during the CoNLL-
2003 shared task (Sang and Meulder, 2003) and
by the Python portage of the script by Sampo
Pyysalo11. In the case of performance evaluation
with the CoNLL metric, token labels must follow
either the IOB, IOBE or IOBES tagging scheme12.

4.6 Parameters
YASET parameters are fully customizable and
centralized in one configuration file which is used
to setup experiments. YASET also targets end-
users from a broader community by providing hy-
perparameter value suggestions and insights on
how to choose them for various sequence-tagging
situations.

11https://github.com/spyysalo/
conlleval.py

12Inside, Outside, Begin, End, Single

196



5 Experiments

We demonstrate the performance of YASET by
applying the model to four different corpora se-
lected to cover a variety of languages, text gen-
res, sequence types and annotation densities. We
focus our effort on biomedical texts, using Med-
Post (Smith et al., 2004), a corpus of biomedi-
cal abstracts annotated with Part-of-Speech (PoS)
tags, the NCBI Disease corpus (Islamaj Do-
gan and Lu, 2012), a dataset of biomedical ab-
stracts annotated with disease related entities and
MERLoT (Campillos et al., 2018), a corpus of
clinical documents written in French which were
annotated with two different Named Entity Recog-
nition (NER) tag sets (Protected Health Informa-
tion (PHI) and biomedical entities).

We also apply YASET on the CoNLL 2003 En-
glish NER corpus (Sang and Meulder, 2003), a
classic benchmark corpus for NER in the general
domain.

5.1 Presentation of the Corpora
We use the corpus partition provided with the
dataset distributions when available. For NCBI
and CoNLL 2003, models are trained on the train
sets and evaluated on the test sets while the devel-
opment sets are used to determine early stopping.
For MERLoT and MedPost, partition details are
outlined below. The code used to preprocess and
analyze the corpora is available online13.

The MedPost corpus is a collection of tok-
enized MEDLINE abstracts annotated with PoS
tags. It contains 6,701 sentences (≈182,000 to-
kens). The corpus is divided in 13 files of differ-
ent sizes, from which we extracted one file to serve
as development set (tag mb.ioc). The tag set con-
tains originally 63 unique entities that we grouped
in a coarser set of 51 entities. Grouping affected
punctuation signs, which were assigned a unique
PUNCT tag.

The NCBI corpus contains 793 MEDLINE ab-
stracts with 11,350 annotations of diseases and
disease modifiers. There are 4 different entities.
Train and development sets contain 6,594 sen-
tences (≈151,000 tokens).

MERLoT is a French clinical corpus with sev-
eral levels of annotations. It contains 500 med-
ical reports with a total of 25,087 sentences
(≈177,000 tokens). We used it for two tasks. The

13https://github.com/strayMat/
bio-medical_ner

first one is de-identification with a tag set com-
prising 11 types of PHI (e.g. names, dates). The
second one is medical NER with 19 entity classes
(e.g. anatomy, disorder).

The medical entity annotations include nested
entities. Because this study aims to experiment
on a variety of datasets using the same model, we
did not attempt to extract several levels of nested
entities. When nested entities occur, our experi-
ments only addressed the outer layer correspond-
ing to the largest entity. For example, the mention
“cancer du sein” (breast cancer) was originally
annotated with one DISORDER entity (cancer du
sein, breast cancer) and one ANATOMY entity
(sein, breast). Nested entity removal reduced the
annotations to only one tag per token and in this
case, the DISORDER annotation was kept while
the ANATOMY annotation was removed. In to-
tal, 5,218 entities (8.4% of the complete set) were
pruned. For our experiments, we also removed
the headers and footers of the documents, which
were not available to annotators working towards
the gold standard and could cause ambiguities
with some entity classes (e.g. person or hospi-
tal). This results in a smaller corpus, compared to
the corpus used for de-identification experiments
(≈123,000 tokens).

The CoNLL 2003 corpus is a common dataset
for evaluating NER algorithms. It is based on the
Reuters corpus (Lewis et al., 2004) and is the only
dataset outside the biomedical domain used in our
experiments. The training and development set
together contain 18,451 sentences (≈256,000 to-
kens) annotated with 4 unique entities.

A detailed overview of the corpus characteris-
tics is available in Table 1.

5.2 Experimental Setup
In this section, we present the experimental setup
used for our experiments. First, we describe how
we selected the hyper-parameters. Then, we detail
the pre-trained word embeddings that were used in
this work. Finally, we present the neural network
training parameters.

5.2.1 Hyper-parameter Selection
We used Hyperopt14 (Bergstra et al., 2011, 2013)
to select a set of hyper-parameters that performed
well on the MERLoT de-identification dataset.
Due to heavy computation times, we re-used this

14http://hyperopt.github.io/hyperopt/
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Corpus # sent. # tok. # ann. Entities

Name: MedPost
Task: POS
Domain: MEDLINE abstracts

6,701 182,319 182,319
(100%)

51 POS tagging detailed in Smith et al. (2004)

Name: NCBI disease
Task: NER
Domain: MEDLINE abstracts

7,279 151,005 11,350
(7.5%)

DiseaseClass, SpecificDisease, Composite-
Mention, Modifier

Name: MERLoT medical
Task: NER
Domain: Medical reports from the
Hepato-gastro-enterology and Nutrition
ward

5,137 123,942 56,680
(46%)

Concept Idea, MedicalProcedure, Hospital,
Persons, Temporal, BiologicalProcessOrFunc-
tion, Devices, Measurement, Disorder, As-
pect, Chemicals Drugs, Dosage, SignOrSymp-
tom, Anatomy, Localization, Livingbeings,
Strength, AdministrationRoute, Drugform

Name: MERLoT de-identification
Task: NER
Domain: Same as MERLoT medical

25,599 177,158 31,723
(18%)

first name, last name, initials, address, zip code,
town, date, hospital, identifier, phone number,
email

Name: CoNLL 2003
Task: NER
Domain: News articles from the Reu-
ters corpus

18,451 256,145 42,646
(17%)

PER, ORG, LOC, MISC

Table 1: Overview of the corpora. The number of annotations corresponds to the number of annotated tokens to
be comparable to the size of the corpus measured in number of tokens

set of hyper-parameters on the other datasets. Pa-
rameter search space includes the number of units
of the character Bi-LSTM, the number of units
of the main Bi-LSTM, the dimension of the char-
acter embeddings and the dropout rate. The re-
tained setup uses character embeddings of size 24,
32 units for the character-level Bi-LSTM, 64 units
for the main Bi-LSTM and a dropout rate of 0.5.

5.2.2 Embeddings
Pre-trained word embeddings were shown to boost
the performance in various NLP tasks (Collobert
et al., 2011; Mikolov et al., 2013a) and specifically
in NER (Lample et al., 2016; Dernoncourt et al.,
2017).

For each corpus, we used pre-trained word em-
beddings created with datasets that were consis-
tent in genre and domain with the corpora used
in this work. All word embedding models were
computed using word2vec. For CoNLL 2003, we
trained a model on Google News. For NCBI dis-
ease and MedPost, which both comprise abstracts
from biomedical articles, we trained a model on
the PubMed corpus. For MERLoT, we trained a
model on the corpus from which MERLoT is ex-
tracted. It contains about 138,000 clinical notes
written in French (Campillos et al., 2018).

For each of these word vector models, we com-
puted low-dimensional representations by apply-
ing Principal Component Analysis (PCA) on the
original high-dimensional word vectors (300 di-

mensions). During hyper-parameter search, we
varied the dimension of the word embeddings and
observed important impacts on the performance
(up to 2.5 points of F1). We finally picked word
vectors of dimension 25 (reduced by PCA), which
showed to be the most efficient. This choice im-
proved the scores as well as diminished drastically
the computation times.

We also ran a few experiments using Fast-
Text (Bojanowski et al., 2017) embeddings
trained on Wikipedia. Preliminary results on
CoNLL 2003 show a major performance improve-
ment. An analysis of the impact of the word em-
bedding model on performance will be conducted
in following work.

5.2.3 Training
In all our experiments, the network was trained us-
ing the Adam optimizer (Kingma and Ba, 2015)
with an initial learning rate of 0.001. Early-
stopping was set to 10 epochs.

6 Results

In this section, we present the performance ob-
tained on the corpora using the experimental setup
described in the previous section. First, we report
corpus-specific results. Then, we study the impact
of the corpus size on performance.
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Figure 4: Distributions of F1 scores for the four corpora over 30 trainings for each corpus. Vertical lines refer to
each sample. The scales are specific to each dataset for a proper visualization of each distribution.

6.1 Corpus Specific Results
Reimers and Gurevych (2017) report that neu-
ral network model training is highly non-
deterministic and is subject to the random seed
choice. Because of this variability during the train-
ing phase, it is crucial to report results on numer-
ous trainings. Therefore we ran 30 experiments
for each task presented in this work. We report F1-
score statistics in Table 2. We also plot F1-score
distributions for each task in Figure 4.

Our experiments show that performance varies
across datasets, reflecting the heterogeneous diffi-
culties of the tasks, inherent to the nature of the
labels and the quality of the annotations. We no-
tice that the standard deviations are similar for all
NER tasks. It suggests that the variability of the
score is independent from the task and mainly due
to the model architecture. Previous work perfor-
mances are reported in Table 3 for every dataset.

Task Dataset Mean F1 σ Max. Diff.

NER NCBI disease 81.33 0.83 3.27 (4.1%)
NER MERLoT medical 82.87 0.36 1.40 (1.7%)
NER CoNLL 2003 87.31 0.41 1.76 (2.0%)
POS MedPost 97.83 0.39 1.44 (1.5%)
NER MERLoT de-identification 99.40 0.14 0.568 (0.57%)

Table 2: Performance (%) of YASET on the 4 datasets.

Although our model does not show state-of-the-art
performances for all of them, it obtains competi-
tive results, demonstrating the generalization abil-
ity of the selected shared set of hyper-parameters
and embeddings.

Dataset Model F1

NCBI
Dang et al. (2018) 84.41
Islamaj Dogan and Lu (2012) 81.80
This paper 81.33

MERLoT med.a Campillos et al. (2018) 81.40
This paper 82.87

CoNLL 2003

Lample et al. (2016) 90.94
Ma and Hovy (2016) 91.21
Yang and Zhang (2018) 91.35
Peters et al. (2018) 92.22
This paper 87.31

MedPosta Smith et al. (2004) 97.43
This paper 97.83

MERLoT PHI Grouin and Névéol (2014) 94.00
This paper 99.40

a Corpora where the experimental set-up differed between
our experiments and that of prior work. For MEDPOST,
we used 51 categories instead of 63; for MERLoT med.
we removed nested entities.

Table 3: State of the art results obtained in prior work
on the datasets.
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Figure 5: Effect of the training set size on the F1 score for the MERLoT dataset with de-identification annotations.
These scores are computed over 6 training iterations per chunk. Vertical bars show the standard deviation σ.

6.2 Performance According to Training Data
Size

The development of a labeled dataset for training
annotation models is often a heavy investment in
time and resources. Having some insight on the
performance of the model for different training
data sizes is crucial. Thus, we investigate the im-
pact of this parameter on model performance. Fo-
cusing on the de-identification task of MERLoT,
we split the training set into 20 subsets of equal
sizes. Then, we built sub-training sets of grow-
ing size, that we refer as chunks. This resulted in
20 chunks where small chunks are subsets of the
bigger one. Finally, we train YASET 6 times on
each chunk, measuring how the performance im-
proves with the size of the chunks. Figure 5 shows
the progression of the F1-score according to the
number of tokens. Table 4 presents the model per-
formance according to the dataset size.

Dataset 5% 10% 25% 50% 100%

MERLoT PHI 91.79
(0.55)

95.86
(0.47)

97.60
(0.30)

98.41
(0.33)

99.06
(0.19)

Table 4: Performance (F1) against train set size (as per-
centage of the total training set indicated on the first
row). Standard errors appear between parentheses.

We observe that the performance improves log-
arithmically with every chunk added in the train-
ing data as shown in Table 4. This finding is sim-
ilar to the observation of Sun et al. (2017) for vi-
sion tasks. Further addition of data will slightly
improve the performance as the maximum perfor-
mance plateau is almost reached.

7 Conclusion and Future work

We propose an easy-to-use annotation tool im-
plementing a state-of-the-art Bi-LSTM-CRF neu-
ral architecture. We apply the tool to PoS tag-
ging and NER on clinical, biomedical and gen-
eral domain texts. By running multiple experi-
ment for each dataset, we confirm previous obser-
vations that neural network training is highly non-
deterministic and dependent on the random seed
choice.

Although we did not search for optimal hyper-
parameters for each task, we obtain high perfor-
mance in all our experiments, suggesting that tai-
loring hyper-parameters for a specific task im-
proves only lightly the performance of the model
and the neural network architecture implemented
in YASET is robust with regards to the perfor-
mance obtained.

Concerning the impact of the training dataset
size on model performance, we confirm the intu-
ition that adding more data allows to improve the
performance of neural network models. However,
result analysis suggests that the growth is logarith-
mic with the training data size.

One limitation of our model is its inability to di-
rectly handle nested entities such as those found in
the MERLoT medical dataset and commonly used
in the biomedical and clinical domains. When
filtering these nested entities, specific classes are
heavily impacted, including anatomy, disorder, lo-
calization, and medical procedure entities. Sev-
eral strategies have been proposed to handle such
cases. Campillos et al. (2018) present a 3-
layer CRF model that annotates different non-
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overlapping clinical entities at each layer. Ju et al.
(2018) present a dynamic end-to-end neural net-
work model capable of handling an undetermined
number of nesting levels. Katiyar and Cardie
(2018) model the task as an hypergraph whose
structure is learned with an LSTM network.

Future research will focus on the influence of
word embedding models which were shown to sig-
nificantly impact on performance. Specifically,
models taking into account sub-token informa-
tion (Bojanowski et al., 2017) or emphasizing con-
text (Peters et al., 2018) should be further ex-
plored. Moreover, other neural network models
for NER such as the ones proposed by Rei et al.
(2016) and Ma and Hovy (2016) will be investi-
gated and implemented in YASET. Having a cen-
tralized implementation of different NER models
will allow us to compare their performances on
various corpora.
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et al. 2018. A French Clinical Corpus with Com-
prehensive Semantic Annotations: Development of
the Medical Entity and Relation LIMSI annOtated
Text corpus (MERLOT). Language Resources and
Evaluation, 52(2):571–601.

François Chollet et al. 2015. Keras. https://
github.com/fchollet/keras.

Ronan Collobert, Jason Weston, Léon Bottou, et al.
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Abstract

The Impression section of a radiology report
summarizes crucial radiology findings in nat-
ural language and plays a central role in com-
municating these findings to physicians. How-
ever, the process of generating impressions by
summarizing findings is time-consuming for
radiologists and prone to errors. We propose to
automate the generation of radiology impres-
sions with neural sequence-to-sequence learn-
ing. We further propose a customized neural
model for this task which learns to encode the
study background information and use this in-
formation to guide the decoding process. On
a large dataset of radiology reports collected
from actual hospital studies, our model outper-
forms existing non-neural and neural baselines
under the ROUGE metrics. In a blind exper-
iment, a board-certified radiologist indicated
that 67% of sampled system summaries are
at least as good as the corresponding human-
written summaries, suggesting significant clin-
ical validity. To our knowledge our work rep-
resents the first attempt in this direction.

1 Introduction

The radiology report documents and communi-
cates crucial findings in a radiology study. As
shown in Figure 1, a standard radiology report
usually consists of a Background section that de-
scribes the exam and patient information, a Find-
ings section, and an Impression section (Kahn Jr
et al., 2009). In a typical workflow, a radiologist
first dictates the detailed findings into the report,
and then summarizes the salient findings into the
more concise Impression section based also on the
condition of the patient.

The impressions are the most significant part
of a radiology report that communicate the find-
ings. Previous studies have shown that over 50%
of referring physicians read only the impression
statements in a report (Lafortune et al., 1988;

Background: history: swelling; pain. technique: 3
views of the left ankle were acquired. comparison: no
prior study available.

Findings: there is normal mineralization and alignment.
no fracture or osseous lesion is identified. the ankle mor-
tise and hindfoot joint spaces are maintained. there is no
joint effusion. the soft tissues are normal.

Human Impression:
normal left ankle radiographs.

Extractive Baseline:
there is no joint effusion.

Pointer-Generator:
normal right ankle.

Our model:
normal radiographs of the left ankle.

Figure 1: An example radiology report with study
background information organized into a Background
Section, and radiology findings in a Findings Sec-
tion. The human-written summary (or impression) and
predicted summaries from different models are also
shown. The extractive baseline does not summarize
well, the baseline pointer-generator model generates
spurious sequence, while our model gives correct sum-
mary by incorporating the background information.

Bosmans et al., 2011). Despite its importance, the
generation of the impression statements is error-
prone. For example, crucial findings may be for-
gotten, which would cause significant miscommu-
nications (Gershanik et al., 2011). Additionally,
the process of writing the impression statements is
time-consuming and highly repetitive with the dic-
tation of the findings. This suggests a crucial need
to automate the radiology impression generation
process.

In this work, we propose to automate the
generation of radiology impressions with neural
sequence-to-sequence learning. In particular, we
argue that this task could be viewed as a text sum-
marization problem, where the source sequence is
the radiology findings and the target sequence the
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impression statements. We collect a dataset of ra-
diology reports from actual hospital radiographic
studies, and find that this task involves both ex-
tractive summarization where descriptions of ra-
diology observations can be taken directly from
the findings, and abstractive summarization where
new words and phrases, such as conclusions of
the study, need to be generated from scratch. We
empirically evaluate existing popular summariza-
tion systems on this task and find that, while ex-
isting neural models such as the pointer-generater
network can generate plausible summaries, they
sometimes fail to model the study background in-
formation and thus generate spurious results. To
solve this problem, we propose a customized sum-
marization model that properly encodes the study
background information and uses the encoded in-
formation to guide the decoding process.

We show that our model outperforms existing
non-neural and neural baselines on our dataset
measured by the standard ROUGE metrics. More-
over, in a blind experiment, a board-certified radi-
ologist indicated that 67% of sampled system sum-
maries are at least as good as the reference sum-
maries written by well-trained radiologists, sug-
gesting significant clinical validity of the resulting
system. We further show through detailed analy-
sis that our model could be reliably transferred to
radiology reports from another organization, and
that the model can sometimes summarize radiol-
ogy studies for body parts unseen during training.

To review, our main contributions in this paper
include: (i) we propose to summarize radiology
findings into impression statements with neural
sequence-to-sequence learning, and to our knowl-
edge our work represents the first attempt in this
direction; (ii) we propose a new customized sum-
marization model to this task that improves over
existing methods by better leveraging study back-
ground information; (iii) we further show via a ra-
diologist evaluation that the summaries generated
by our model have significant clinical validity.

2 Related Work

Early Summarization Systems. Early work on
summarization systems mainly focused on extrac-
tive approaches, where the summaries are gener-
ated by scoring and selecting sentences from the
input. Luhn (1958) proposed to represent the in-
put by topic words and score each sentence by the
amount of topic words it contains. Kupiec et al.

(1995) scored sentences with a feature-based sta-
tistical classifier. Steinberger and Jezek (2004) ap-
plied latent semantic analysis to cluster the top-
ics and then select sentences that cover the most
topics. Meanwhile, various graph-based methods,
such as the LexRank (Mihalcea and Tarau, 2004)
and the TextRank algorithm (Erkan and Radev,
2004), were applied to model sentence depen-
dency by representing sentences as vertices and
similarities as edges. Sentences are then scored
and selected via modeling of the graph properties.

Neural Summarization Systems. Summariza-
tion systems based on neural network models en-
able abstractive summarization, where new words
and phrases are generated to form the summaries.
Rush et al. (2015) first applied an attention-based
neural encoder and a neural language model de-
coder to this task. Nallapati et al. (2016) used re-
current neural networks for both the encoder and
the decoder. To address the limitation that neural
models with a fixed vocabulary cannot handle out-
of-vocabulary words, a pointer-generator model
was proposed which uses an attention mechanism
that copies elements directly from the input (Nal-
lapati et al., 2016; Merity et al., 2017; See et al.,
2017). See et al. (2017) further proposed a cover-
age mechanism to address the repetition problem
in the generated summaries. Paulus et al. (2018)
applied reinforcement learning to summarization
and more recently, Chen and Bansal (2018) ob-
tained improved result with a model that first se-
lects sentences and then rewrites them.

Summarization of Radiology Reports. Most
prior work that attempts to “summarize” radiol-
ogy reports focused on classifying and extracting
information from the report text (Friedman et al.,
1995; Hripcsak et al., 1998; Elkins et al., 2000;
Hripcsak et al., 2002). More recently, Hassanpour
and Langlotz (2016) studied extracting named en-
tities from multi-institutional radiology reports us-
ing traditional feature-based classifiers. Goff and
Loehfelm (2018) built an NLP pipeline to identify
asserted and negated disease entities in the impres-
sion section of radiology reports as a step towards
report summarization. Cornegruta et al. (2016)
proposed to use a recurrent neural network archi-
tecture to model radiological language in solving
the medical named entity recognition and nega-
tion detection tasks on radiology reports. To our
knowledge, our work represents the first attempt

205



at automatic summarization of radiology findings
into natural language impression statements.

3 Task Definition

We now give a formal definition of the task of
summarizing radiology findings. Given a passage
of findings represented as a sequence of tokens
x = {x1, x2, . . . , xN}, with N being the length
of the findings, our goal is to find a sequence of
tokens y = {y1, y2, . . . , yL} that best summarizes
the salient and clinically significant findings in x,
with L being an arbitrary length of the summary.1

Note that the mapping between x and y can either
be modeled in an unsupervised way (as done in un-
supervised summarization systems), or be learned
from a dataset of findings-summary pairs.

4 Models

In this section we introduce our model for the
task of summarizing radiology findings. As our
model builds on top of existing work on neu-
ral sequence-to-sequence learning and the pointer-
generator model, we start by introducing them.

4.1 Neural Sequence-to-Sequence Model
At a high-level, our model implements the sum-
marization task with an encoder-decoder architec-
ture, where the encoder learns hidden state repre-
sentations of the input, and the decoder decodes
the input representations into an output sequence.

For the encoder, we use a Bi-directional Long
Short-Term Memory (Bi-LSTM) network. Given
the findings sequence x = {x1, x2, . . . , xN}, we
encode x into hidden state vectors with:

h = Bi-LSTM(x), (1)

where h = {h1, h2, . . . , hN}. Here hN combines
the last hidden states from both directions in the
encoder.

After the entire input sequence is encoded, we
generate the output sequence step by step with a
separate LSTM decoder. Formally, at the t-th step,
given the previously generated token yt−1 and the
previous decoder state st−1, the decoder calculates
the current state st with:

st = LSTM(st−1, yt−1). (2)

We then use st to predict the output word. For the
initial decoder state we set s0 = hN .

1While the name “impression” is often used in clinical set-
tings, we use “summary” and “impression” interchangably.

The vanilla sequence-to-sequence model that
uses only st to predict the output word has a major
limitation: it generates the entire output sequence
based solely on a vector representation of the in-
put (i.e., hN ), which may result in significant in-
formation loss. For better decoding we therefore
employ the attention mechanism (Bahdanau et al.,
2015; Luong et al., 2015), which uses a weighted
sum of all input states at every decoding step.

Given the decoder state st and an input hidden
state hi, we calculate an input distribution at as:

eti = v> tanh(Whhi +Wsst), (3)

at = softmax(et), (4)

where Wh, Ws and v are learnable parameters.2

We then calculate a weighted input vector as:

h∗t =
∑

i

atihi. (5)

h∗t encodes the salient input information that is
useful at decoding step t. Lastly, we obtain the
output vocabulary distribution at step t as:

P (yt|x, y<t) = softmax(V ′ tanh(V [st;h
∗
t ])), (6)

where V ′ and V are learnable parameters.

4.2 Pointer-Generator Network
While the encoder-decoder framework described
above can generate impressions from a fixed vo-
cabulary, the model can clearly benefit from being
able to “copy” salient observations directly from
the input findings. To add such “copying” capacity
into the model, we use a pointer-generator network
similar to the one described in See et al. (2017).

The main idea is that at each decoding step t,
we allow the model to either generate a word from
the vocabulary with a generation probability pgen,
or copy a word directly from the input sequence
with probability 1− pgen. We model pgen as:

pgen = σ(w>h∗h∗t + w>s st + wyyt−1), (7)

where yt−1 denotes the previous decoder output,
wh∗ , ws and wy learnable parameters and σ a
sigmoid function. For the copy distribution, we
reuse the attention distribution at calculated in (4).
Therefore, the overall output distribution in the
pointer-generator network is:

P (yt|x, y<t) = pgenPvocab(yt)+(1−pgen)
∑

i:xi=yt

ati,

(8)
2For clarity we leave out the bias terms in all linear layers.
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Figure 2: Overall architecture of our summarization model.

where Pvocab(yt) is the same as the output distri-
bution in (6).

4.3 Incorporating Study Background
Information

The background part of a radiology report is also
important, since crucial information such as the
purpose of the study, the body part involved and
the condition of the patient are often mentioned
only in the background. A straightforward way
of incorporating the background information is
to prepend all the background text to the find-
ings, and treat the entire sequence as input to the
pointer-generator network. However, as we show
in Section 6, this naive method in fact hurts the
summarization quality, presumably because the
model cannot sufficiently distinguish between the
findings and the background information, which
as a result leads to insufficient modeling of both
the findings and the background. To solve this,
we propose to encode the background text with a
separate attentional encoder, and use the resulting
background representation to guide the decoding
process in the summarization model (Figure 2).

For clarity we now use xb to denote the back-
ground token sequence, and x to denote the actual
findings section. Our goal is then to find y that
maximizes P (y|x,xb). To do this, we again ob-
tain the hidden state vectors h of the findings sec-
tion as in (1). Similarly, we obtain the hidden state
vectors of the background text with xb as input us-
ing a separate Bi-LSTM encoder:

hb = Bi-LSTMb(xb). (9)

Next, we calculate a distribution over hb as:

e′i = v′> tanh(Wbh
b
i +WhhN ), (10)

a′ = softmax(e′), (11)

where Wb and Wh are learnable parameters and
hN the last hidden state of the findings encoder.
The distribution a′ models the importance of to-
kens in the background section. We then obtain a
weighted representation of the background text as:

b =
∑

i

a′ih
b
i , (12)

where vector b has the same size as hb, and en-
codes the salient background information.

Lastly, we use the background vector b to guide
the decoding process, by modifying the recurrent
kernel of the decoder LSTM in (2) to be:




it
ft
ot
ut


 =




σ
σ
σ

tanh


W ·



st−1
yt−1
b


 , (13)

ct = ft · ct−1 + it · ut, (14)

st = ot · tanh(ct), (15)

where it, ft, ot denotes the input, forget, and out-
put gates, W the weight matrix and ct the inter-
nal cell of the LSTM repectively, and · represents
an element-wise multiplication. Again for clarity
we leave out the bias terms in (13). As a result,
every state in the decoding process is directly in-
fluenced by the information encoded by the back-
ground vector b. The rest of the model, including
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Figure 3: Number of examples split by body part in the
collected Stanford Hospital dataset.

the calculation of the vocabulary distribution and
the copy distribution, remains the same.

5 Experiments

To test the effectiveness of our summarization
model, we collected reports of radiographic stud-
ies from the picture archiving and communication
system (PACS) at the Stanford Hospital. We de-
scribe our data collection process, baseline models
and experimental setup in this section, and present
the results and discussions in Section 6.

5.1 Data Collection

Reports of all radiographic studies from 2000 to
2014 were collected. We first tokenized all reports
with Stanford CoreNLP (Manning et al., 2014),
and filtered the dataset by excluding reports where
(1) no findings or impression section can be found;
(2) multiple findings or impression sections can be
found but cannot be aligned; or (3) the findings
have fewer than 10 words or the impression has
fewer than 2 words.

We removed body parts where only a small
number of cases are available, and included re-
ports of the top 12 body parts in the PACS system
to maintain generalizability. For common body
parts with more than 10k reports (e.g., chest), we
subsampled 10k reports from them.

This results in a dataset with a total of 87,127
reports. We further randomly split the dataset
into a 70% training (60,990), a 10% development
(8,712) and a 20% test set (17,425). We show the
dataset statistics split by body part in Figure 3.

5.2 Baseline Models

For our main experiments, we compare our model
against several competitive non-neural and neural
systems on the collected dataset. Unless otherwise
stated, the baseline models take only the findings

section as input.3

S&J-LSA. This is an extractive approach de-
scribed by Steinberger and Jezek (2004), which
applies Latent Semantic Analysis (LSA) to sum-
marization. It first scores “concept” clusters by ap-
plying singular value decomposition to the term-
by-sentence co-occurence matrix derived from the
passage. Sentences with the top scored concepts
are then kept as the summaries.

LexRank. LexRank is another popular extrac-
tive model introduced by Erkan and Radev (2004).
In LexRank, a passage is represented as a graph
of sentences, and a connectivity matrix based on
intra-sentence cosine similarity is used as the ad-
jacency matrix of the graph. Sentences are scored
by the eigenvector centrality in the graph, and the
highest scored sentences are kept.

Pointer-Generator. We also run the baseline
pointer-generator model introduced by See et al.
(2017). We find the “coverage” mechanism de-
scribed in the paper did not improve summary
quality in our task and therefore did not use it
for simplicity. We compare our model with two
versions of the pointer-generator model: one with
only the findings section as input and another one
with the background sections prepended to the
findings section as input.

5.3 Experimental Setup
Evaluation Metrics. In our main experiments
we evaluate the models with the widely-used
ROUGE metric (Lin, 2004). We report the F1

scores for ROUGE-1, ROUGE-2 and ROUGE-L,
which measure the word-level unigram-overlap,
bigram-overlap and the longest common sequence
between the reference summary and the system
predicted summary respectively.

Word Vectors. To enable knowledge transfer
from a larger corpus, we applied the GloVe algo-
rithm (Pennington et al., 2014) to a corpus of 4.5
million radiology reports of all modalities (e.g.,
X-ray, CT) and body parts. We used the result-
ing 100-dimensional word vectors to initialize all
word embedding layers in our neural models, and
empirically found this to improve the performance
of our neural models by about 1 ROUGE-L score.

3We find that when the background section is prepended
to the input, the extractive baseline models may select sen-
tences in the background part as the summary, resulting in
deteriorated performance.

208



System ROUGE-1 ROUGE-2 ROUGE-L

Extractive Baseline: S&J-LSA 29.39 16.27 27.38
Extractive Baseline: LexRank 30.48 17.09 28.49
Pointer-Generator 46.51 33.39 45.07
Pointer-Generator (⊕ Background) 45.39 32.60 44.05
Our model 48.56 35.25 47.06

Table 1: Main results on the test set of the Stanford reports. “⊕Background” represents prepending the background
section to the findings section to form the input to the model. All the ROUGE scores have a 95% confidence interval
of at most ±0.50 as calculated by the official ROUGE script.

Implementations & Model Details. For the two
non-neural extractive baselines, we use their open
implementations.4 For both of them, we select the
top N scored sentences to form the summary and
treat N as a hyperparameter. We use N = 3 in
our experiments as it yields best scores on the dev
set. We implemented all neural models with Py-
Torch.5 To train the neural models we append
a special <EOS> token to the end of every ref-
erence summary. We then employ the standard
teacher-forcing with the reference summaries and
optimize the negative log-likelihood loss using the
Adam optimizer (Kingma and Ba, 2015). We tune
all hyperparameters on the dev set. We use 2-layer
Bi-LSTM for all encoders, and set the hidden size
to be 100 for each direction; 1-layer LSTM for the
decoder and set the hidden size to be 200. During
inference, we employ the standard beam search
with a beam size of 5. We stop decoding when-
ever a <EOS> token is predicted, and otherwise
use a maximum output sequence length of 100.

6 Results & Analysis

6.1 Main Results

We present results of our main experiments in
Table 1. We find that the two non-neural ex-
tractive models perform comparably, and both
are able to obtain non-trivial subsequence over-
lap with the reference summaries as measured
by ROUGE scores. However, a baseline neural
pointer-generator that combines the sequence gen-
eration and the copy mechanism beats the non-
neural baselines substantially on all metrics. We
confirm that naively incorporating the study back-
ground information by prepending the background
section directly to the input findings in the pointer-
generator model in fact hurts the performance

4https://github.com/miso-belica/sumy
5https://pytorch.org/

(noted by ⊕ Background). In comparison, our
model benefits from using the separately encoded
background vector to guide the decoding process,
and achieves best scores on all ROUGE metrics.

We also present sampled test examples and sys-
tem output in Figure 4. We find that compared
to the non-neural extractive baselines, the neural
models are not limited by sentences in the findings
section and therefore generate summaries of bet-
ter quality. For example, the neural models learn
to compose the summary by combining observa-
tion phrases from different sentences, or by gen-
erating new conclusive phrases such as “negative
study”. Compared to the pointer-generator model,
our model learns to correctly utilize relevant back-
ground information (e.g., previous study or exam
information) to improve the summary.

6.2 Clinical Validity with Radiologist
Evaluation

One potential shortcoming of the ROUGE met-
rics is that they only measure the similarity be-
tween the predicted summary and the reference
summary, but do not sufficiently reflect the overall
grammaticality or utility of the predictions. There-
fore, we also conducted evaluations with a board-
certified radiologist to understand the clinical va-
lidity of our system generated summaries.

In this evaluation, we randomly sampled 100
examples from our test set. We ran our best
model over these 100 examples, and presented
each example along with the corresponding sys-
tem predicted summary and reference human-
written summary to the radiologist. We randomly
ordered the predicted and reference summary such
that the correspondence cannot be guessed from
the order. The radiologist was asked to select
which of the two summaries was better, or that
they have roughly equal quality.

Table 2 presents the result. For 51 examples, the
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Background: radiographic examination of the
abdomen. clinical history: xx years of age, male,
please obtain upright and lateral decub. compar-
ison: abdominal x-ray <date>. procedure com-
ments: two views of the abdomen.

Findings: median sternotomy wires are seen in
the anterior chest wall in addition to several me-
diastinal clips and an aicd. trace bilateral pleu-
ral effusions are noted. interval increase in small
bowel dilatation compared to previous study with
multiple air-fluid levels, consistent with small
bowel obstruction. there is a paucity of colonic
gas. no pneumoperitoneum.

Background: three views of the right shoulder
and three views of the left shoulder: <date>.
clinical history: an xx-year-old female with bi-
lateral shoulder pain.

Findings: three views of the right shoulder con-
sisting of external rotation, axillary, and scapu-
lar views demonstrate no evidence of fracture or
dislocation. the joint spaces are well-maintained
without evidence of degenerative change. there is
normal mineralization throughout. three views of
the left shoulder . . . are well-maintained without
evidence of degenerative change. mineralization
is normal throughout.

Background: three views of the abdomen:
<date>. comparison: <date>. clinical history:
a xx-year-old male status post hirschsprung’s dis-
ease repair.

Findings: the supine, left-sided decubitus and
erect two views of the abdomen show increased
dilatation of the small bowel since the prior exam
on <date>. there are multiple air-fluid levels,
suggesting bowel obstruction. no free intraperi-
toneal gas is present.

Human: small bowel dilatation with multiple
air-fluid levels and colonic decompression con-
sistent with small bowel obstruction.

Human: unremarkable radiographs of bilateral
shoulders.

Human: increased dilatation of the small bowel
with multiple air-fluid levels, suggesting bowel
obstruction. no free intraperitoneal gas.

Extractive Baseline: median sternotomy wires
are seen in the anterior chest wall in addition to
several mediastinal clips and an aicd.

Extractive Baseline: three views of the right
shoulder consisting of external rotation, axillary,
and scapular views demonstrate no evidence of
fracture or dislocation.

Extractive Baseline: the supine, left sided decu-
bitus and erect two views of the abdomen show
increased dilatation of the small bowel since the
prior exam on <data>.

Pointer-Generator: interval increase in bowel
dilatation, consistent with bowel obstruction.

Pointer-Generator: no evidence of fracture or
dislocation of the right shoulder.

Pointer-Generator: increased dilatation of
small bowel, suggesting small bowel obstruction.

Our model: interval increase in small bowel
dilatation compared to abdominal x-ray dated
<date> with multiple air-fluid levels, consistent
with small bowel obstruction.

Our model: unremarkable bilateral shoulders. Our model: increased dilatation of small bowel,
suggesting bowel obstruction. no free intraperi-
toneal gas.

Figure 4: Sampled test examples and system predictions from the Stanford dataset. First example: our model
learns to relate the summary with a previous study mentioned only in the background section. Second: our model
correctly summarizes the body part involved in the study. Third: our model correctly includes more crucial infor-
mation as found in the human summary.

Category Percentage

Human Summary Wins 33
System Prediction Wins 16
Roughly Equal Quality 51

Table 2: Radiologist evaluation result on 100 sampled
test examples. For a total of 67 examples, the radiol-
ogist indicated that the system summary is at least as
good as the human-written summary.

radiologist indicated that the human-written and
system-generated summaries are equivalent. For
16 examples, the radiologist preferred the system
summary, and for the remaining 33 examples, the
radiologist preferred the human-written summary.
Note that under our setting, a randomly generated
sequence would have almost zero chance to be in-
dicated as good as the human-written summary.
We therefore believe the result suggests significant
clinical validity of our system.

6.3 Does the model transfer to reports from
another organization?

Deploying a clinical NLP system at an organiza-
tion different from the one where the training data
comes from is a common need. However, this is
challenging in that medical practitioners includ-
ing radiologists from different organizations tend

System ROUGE-1 ROUGE-2 ROUGE-L

LexRank 15.42 5.65 14.60
Our model 35.02 20.79 34.56

Table 3: Cross-organization evaluation results on the
Indiana University chest x-ray dataset. All the ROUGE
scores have a 95% confidence interval of at most±1.10
as calculated by the official ROUGE script.

to go through different training and follow differ-
ent templates or styles when writing medical text.
Here we aim to understand the cross-organization
transferability of our summarization model.

We use the publicly available Indiana Uni-
versity Chest X-ray Dataset (Demner-Fushman
et al., 2015), which consists of chest X-ray images
paired with the corresponding radiology reports.
We filtered the reports with the same set of rules
and arrived at a collection of 2,691 unique reports.
We used this dataset as the test set, and ran our best
model trained on our own dataset directly on it.
The results are shown in Table 3 and sampled ex-
amples are shown in the first two columns of Fig-
ure 5. We find that our model again outperforms
the baseline extractive model substantially in this
transfer setting, and the generated summaries are
both grammatical and clinically meaningful.
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Cross-organization Cross-organization Cross-body part: Knee

Background: indication: xxxx year old male
with end-stage renal disease on hemodialysis

Findings: the heart size is mildly enlarged. there
is tortuosity of the thoracic aorta. no focal
airspace consolidation, pleural effusions or pneu-
mothorax. no acute bony abnormalities.

Background: indication: xxxx year old female,
hypoxia. comparison: pa lateral views of the
chest dated xxxx.

Findings: bilateral emphysematous again noted
and lower lobe fibrotic changes. postsurgical
changes of the chest including cabg procedure,
stable. stable valve artifact. there are no focal ar-
eas of consolidation. no large pleural effusions.
no evidence of pneumothorax. . . . contour ab-
normality of the posterior aspect of the right 7th
rib again noted, stable.

Background: radiographic examination of the
knee: <date> <time>. clinical history: xx-
year-old man with right knee pain. comparison:
none. procedure comments: 2 views of the right
knee were performed.

Findings: there is no visible fracture or
malalignment. likely small joint effusion. mild
fullness in the popliteal region of the right knee
may represent a baker ’s cyst. mild soft tissue
swelling along the medial aspect of the knee is
present.

Human: cardiomegaly without acute pulmonary
findings.

Human: no acute cardiopulmonary abnormality.
stable bilateral emphysematous and lower lobe fi-
brotic changes.

Human: no acute bony abnormality. likely joint
effusion and soft tissue swelling along the medial
aspect of the knee.

Our model: mild cardiomegaly. no radiographic
evidence of acute cardiopulmonary process.

Our model: stable postsurgical changes of the
chest as described above. no evidence of pneu-
mothorax.

Our model: mild soft tissue swelling along
the medial aspect of the knee. no fracture or
malalignment.

Figure 5: First two columns: sampled examples from the Indiana University dataset and system output in the cross-
organization evaluation. Last column: sampled test example of a “knee” study in our cross-body part evaluation.

Body Part ROUGE-1 ROUGE-2 ROUGE-L

Chest 31.24 17.99 30.38
Abdomen 28.90 17.23 27.83
Knee 48.78 35.07 47.49

Table 4: Cross-body part evaluation results of our neu-
ral model on the Stanford dataset. All the ROUGE
scores have a 95% confidence interval of at most±0.75
as calculated by the official ROUGE script.

6.4 Does the model transfer to body parts
unseen during training?

Radiology studies conducted on different body
parts often include vastly different observations
and diagnosis. For example, while “lung base
opacity” is a common observation in chest radio-
graphic studies, it does not exist in musculoskele-
tal studies. In practice, an organization may not
have adequate report data that covers some rare
body parts. It is therefore interesting to test to what
extent our summarization model can generalize to
reports for body parts unseen during training.

We study this by simulating the condition where
a specific body part is not present in the train-
ing data. Given the entire dataset D, and a sub-
set of the dataset DB that corresponds to a body
part B, we reserved the entire subset DB as test
data, and used D − DB for training (90%) and
validation (10%). Table 4 presents the evalua-
tion results for body part “chest”, “abdomen” and
“knee”. We find that for “chest” and “abdomen”,
the system summaries degrade substantially when
the corresponding data were not seen during train-
ing. However, the predicted summaries degrade

Category Percentage

Good Summary 63

Missing Critical Info. 24
Inaccurate/Spurious Info. 8
Redundant 4
Ungrammatical 6

Table 5: Error analysis on 100 sampled dev examples
from the Stanford dataset.

less for “knee” when reports of it were not seen
during training, presumably because the model
can learn to summarize reasonably well from re-
ports of other close musculoskeletal studies such
as “ankle” or “elbow” studies. We confirm this by
examining the model predictions: in the example
shown in the last column of Figure 5, the model
learns to compose the summary with salient obser-
vations such as “tissue swelling” and “fracture”,
while being able to copy the anatomy “knee” (un-
seen during training) from the findings section.

6.5 What is the model missing on?

Lastly, we run a detailed error analysis on 100
sampled dev examples. We focus on four types
of errors: (1) missing critical information, if the
predicted summary fails to include some clinically
important information; (2) inaccuate/spurious in-
formation, if the predicted summary contains ob-
servations or conclusions that are inaccurate, or
that do not exist in the findings; (3) redundant
summary, if the predicted summary is repetitive or
over-verbose; and (4) ungrammatical summary, if
the predicted summary contains significant gram-
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Error type: missing critical information Error type: redundant summary Error type: ungrammatical summary

Background: radiographic examination of the
lumbar spine: <time>. clinical history:
<age>, lower back pain. comparison: none.
procedure comments: 4 views of the lumbar
spine.

Findings: five non-rib bearing lumbar type ver-
tebral bodies are present. there is trace retrolis-
thesis of l5 on s1. there is no evidence of in-
stability on flexion and extension views. the
spinal alignment is otherwise normal. the disc
spaces and vertebral body heights are preserved.
there is no visible fracture. no visible facet joint
arthropathy or pars defects.

Background: radiographic examination of the
shoulder: <time>. clinical history: <age>
years of age, pain in joint involving shoulder re-
gion. comparison: outside study dated <date>.
procedure comments: single axillary view of the
left shoulder.

Findings: single axillary view of the shoulder
again demonstrates a highly comminuted frac-
ture of the humeral head and likely fracture of the
scapular body. the humeral head appears located
on the glenoid.

Background: radiographic examination of the
shoulder: <time>. clinical history: <age>
years of age, xray exam of lower spine 2 or 3
views. x-ray exam of right shoulder complete.
comparison: none. procedure comments: three
views of the right shoulder.

Findings: a calcification of the rotator cuff is
seen above the greater tuberosity. there is no frac-
ture or malalignment. the soft tissues and visual-
ized lung are unremarkable.

Human: trace retrolisthesis of l5 on s1 with no
evidence of instability with motion. otherwise
normal lumbar spine.

Human: redemonstration of a highly commin-
uted fracture of the humeral head and likely frac-
ture of the scapular body . the humeral head ap-
pears to be located on the glenoid .

Human: no acute bony or joint abnormality, but
there is calcification of the rotator cuff that may
be due to calcific tendinitis.

Our model: no acute bony or articular abnor-
mality.

Our model: highly comminuted fracture of the
scapular body and likely fracture of the scapular
body.

Our model: calcification acute bony or joint ab-
normality.

Figure 6: Examples of different types of errors that our system makes on the Standord dataset. Words that are
missing from or are erroneously included in the model predictions are highlighted in red.

matical errors. For each example, we examine
whether it contains any of the errors by comparing
it with the reference summary; otherwise we clas-
sify it as a good summary. Note that an example
can be assigned to more than one error categories.

We include examples of different error types in
Figure 6, and present the result of error analysis
in Table 5. We find that 63% examples are qual-
itatively close to the reference summary, which
aligns well with the radiologist evaluation result.
Among the four error categories, missing critical
information is the most common error with 24%
examples, suggesting that the summaries may be
improved with explicit modeling of the impor-
tance of different radiology findings. We also find
through qualitative analysis that the model tends to
miss on followup procedures recommended by the
human radiologist, since these procedures are of-
ten not included in the findings section and gener-
ating them needs significant understanding of the
study and domain knowledge.

7 Conclusion

In this paper we proposed to generate radiology
impressions from findings via neural sequence-to-
sequence learning. We proposed a customized
neural model for this task which uses encoded
background information to guide the decoding
process. We collected a dataset from actual hos-
pital studies and showed that our model not only
outperforms non-neural and neural baselines, but
also generates summaries with significant clinical
validity and cross-organization transferability.
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