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Abstract

Surface realization is a nontrivial task
as it involves taking structured data and
producing grammatically and semanti-
cally correct utterances. Many compet-
ing grammar-based and statistical models
for realization still struggle with relatively
simple sentences. For our submission to
the 2018 Surface Realization Shared Task,
we tackle the shallow task by first gen-
erating inflected wordforms with a neural
sequence-to-sequence model before incre-
mentally linearizing them. For lineariza-
tion, we use a global linear model trained
using early update that makes use of fea-
tures that take into account the dependency
structure and dependency locality. Us-
ing this pipeline sufficed to produce sur-
prisingly strong results in the shared task.
In future work, we intend to pursue joint
approaches to linearization and morpho-
logical inflection and incorporating a neu-
ral language model into the linearization
choices.

1 Introduction

We participated in the surface track of the 2018
Surface Realization Shared Task (Mille et al.,
2018, SRST ’18). In the surface track, task inputs
were created by extracting sentences in 10 lan-
guages from the Universal Dependency treebanks
corpus, scrambling the words and converting them
to their citation form. The task was then to gen-
erate a natural and semantically adequate sentence
by inflecting and ordering the words.

Our aims in participating in the shared task were
twofold. First, we aimed to investigate the ex-
tent to which neural sequence-to-sequence mod-
els developed for the 2016 and 2017 SIGMOR-

PHON shared tasks on morphological reinflec-
tion (Faruqui et al., 2016; Kann and Schütze,
2016) could be adapted to the more realistic set-
ting for generation of SRST ’18. Second, we
aimed to investigate the extent to which depen-
dency locality (Gibson, 2000) features previously
shown to be important for grammar-based genera-
tion in English (White and Rajkumar, 2012) and in
corpus-based studies of syntactic choice (Temper-
ley, 2007; Liu, 2008; Gildea and Temperley, 2010;
Rajkumar et al., 2016) would also prove effective
with incremental, dependency-based linearization
(Liu et al., 2015; Puduppully et al., 2016) across
languages.

At an overview level, our system treats the task
of surface realization as a simple two-stage pro-
cess. First, we convert uninflected lexemes to
fully inflected wordforms using the grammatical
features supplied by the UD corpus; and second,
we incrementally linearize the inflected words us-
ing the supplied syntactic dependencies, grammat-
ical features and locality-based features that take
dependency length and phrase size into account.
A simple rule-based detokenizer attaches punctu-
ation to adjacent words in a final step. The system
was trained using only the supplied data. We leave
for future work investigating ways to jointly make
inflection and linearization choices and to incor-
porate a neural language model.

2 Background

The intuition behind using neural and statistical
models for learning morphology originated with
what Ackerman et al. (2009) referred to as the
Paradigm Cell Filling Problem (PCFP). For any
given learner, human or machine, there exists no
input such that exposing the learner to that input
will also expose the learner to every possible in-
flected wordform. Nevertheless, humans can rou-
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Person Singular Plural
1st ich singe ???
2nd du singst ???
3rd ??? sie singen
Person Singular Plural
1st ??? wir hören
2nd ??? ihr hört
3rd er/sie/es hört ???

Table 1: For SRST ’18, our hypothesis is that
our system will not see every fully inflected word
form in the training data. For example, given
partial paradigms for the German verbs for SIN-
GEN (‘to sing’) and HÖREN (‘to hear’), we should
have enough information for our system to learn
the paradigm of TRINKEN, given only its citation
form.

tinely and accurately fill in paradigm tables for
wordforms they may have never even produced
before. For any language learner, the PCFP states
that a learner must take incomplete input (as seen
in Table 1) and be able to produce fully inflected
paradigm tables for novel words (e.g. Table 2).

Person Singular Plural
1st ich trinke wir trinken
2nd du trinkst ihr trinkt
3rd er/sie/es trinkt sie trinken

Table 2: The inferred paradigm for TRINKEN (‘to
drink’) as learned by the partial paradigms for SIN-
GEN (‘to sing’) and HÖREN (‘to hear’) from Table
1.

There has been extensive work computationally
to combat the PCFP (Nicolai et al., 2015; Dur-
rett and DeNero, 2013) and multiple shared tasks
(Cotterell et al., 2016, 2017). Recently, models
utilizing recurrent neural networks have proven
most effective at the PCFP and have produced
state-of-the-art results in the last two SIGMOR-
PHON shared tasks (Kann and Schütze, 2016).
Although we think this approach lends itself to
our task, in that we need to produce fully inflected
wordforms along with linearizing them, Kann and
Schütze’s system has only been tested on SIG-
MORPHON data and, to our knowledge, has never
been used in a downstream task such as surface re-
alization.

Turning now to dependency locality, Rajku-

mar et al. (2016) provide an overview of the
literature on how locality considerations affect
syntactic choice in human language production.
The tendency to minimize dependency length
has a long history of study going back to Be-
haghel’s (1932) principle of end weight. More re-
cently, Hawkins (1994; 2004) and Gibson (2000)
have advanced theories contending that ease of
production and comprehension favors a preference
for dependency locality, bolstered not only by the
corpus studies cited earlier but also a wide range
of experimental studies. Rajkumar et al. (2016)
additionally demonstrate a significant preference
for dependency locality in syntactic choice even
in the presence of strong controls for surprisal and
memory depth. In Section 6, we show that the fea-
tures we designed to capture locality preferences
yield impressive gains on automatic metric scores
across languages in the context of our incremental
linearization system.

3 Morphological Inflection

As an initial stage in our realization process, we
first predict the fully inflected wordforms from
the supplied lexemes. We inflect the morpholog-
ical forms before linearization in order to allow
the surface forms to be used as features for lin-
earization, but acknowledge that these steps would
ideally be done jointly. For English, a high re-
source language, morphological inflection is rel-
atively simple to do with existing rule-based re-
sources like MorphG.1 To predict fully inflected
word forms in other languages as well, we ex-
ploit recent advances in neural machine translation
(NMT) as implemented by Kann and Schütze in
the two most recent SIGMORPHON shared tasks.
Their system is based on Bahdanau et al.’s (2014)
attention-based NMT architecture and models the
task of wordform prediction as a kind of transla-
tion of one sequence to another.

Figure 1 shows the original architecture devel-
oped by Faruqui et al. (2016). Given Kann and
Schütze’s success in adapting this architecture to
work with the SIGMORPHON data, we adopt
their architecture hypothesizing that it will gener-
alize to the SRST ’18 data. The architecture uses
gated recurrent units (Chung et al., 2015, GRU),
a kind of recurrent neural network, whose hidden
state ht depends on the current input xt, the pre-
vious hidden state ht−1, and nonlinear function f

1https://github.com/knowitall/morpha

https://github.com/knowitall/morpha


41

Figure 1: A graphical representation of the architecture originally introduced by Faruqui et al. (2016)
and adapted by Kann and Schütze (2016) to handle SIGMORPHON2016 input. A bidirectional GRU
creates an encoding of the input wordform and supplied features. That encoding is subsequently fed to
the decoder GRU along with the original input wordform.

at time t. Similarly, context c for a given sequence
is defined as the output from nonlinear function q
over all the hidden states from time step 1 to t over
the length of sequence x.

ht = f(xt, ht−1) (1)

c = q(h1, ..., hTx) (2)

Since we used a bidirectional GRU, we set hj
to be the the concatenated vectors of the forwards
and backwards encoding of the sequence:

hj =

[−→
hTj ,
←−
hTj

]T
(3)

We define inference (the decoding step) of out-
put y given input sequence x as a distribution of
possible output strings:

p(y|x) =
Ty∏
t=1

p(yt|{y1, ..., yt − 1}, st, ct) (4)

This distribution is derived from the product of
previous individual outputs y1, y2, ..., yt−1 up to
the current time step t to produce the most likely
output yt. Output y is also dependent on st (the
hidden state of the decoder) and context ct (the
weighted sum of annotations produced by the en-
coder):

ci =
Tx∑
j=1

αijhj (5)

Where we calculate weights αij for hj as:

αij =
exp(eij)∑Tx

k=1 exp(eik)
(6)

eij = a(si−1, hj) (7)

We used standard cross-entropy loss, 300 hid-
den units for both the encoder and decoder. We
followed Kann and Schütze by training the model
using minibatches of 20 and Adadelta (Zeiler,
2012). For the datasets, we used the entirety of
the supplied training data, but only used a random
sample of 6000 items from the development set to
speed up training. Models for each language were
trained until wordform prediction accuracy on the
development set was over 98% or up to 30 epochs
with early stopping. Dropout was set to 0.5.

Table 3 shows our system’s performance in se-
lecting fully inflected wordforms on the develop-
ment set. We also supply two competing baselines
as a point of comparison: one in which our sys-
tem just copies the citation form supplied and one
where it only selects the most common inflected
wordform seen in training. By and large, we see
tremendous improvements in selecting the correct
wordform.

Our final feature set included any features sup-
plied by the data, in addition to features from im-
mediate children and parents in the dependency
tree. We made use of all features from a given
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Language
Model ar cs en es fi fr it nl pt ru
Lemma 11.5 32.9 67.0 45.5 24.9 48.9 50.8 62.9 51.5 6.2
Majority 50.7 43.0 67.5 59.2 26.2 58.5 58.9 65.1 60.3 34.1
MED 92.3 91.7 89.2 99.2 98.6 98.3 92.1 88.5 96.1 90.1

Table 3: Morphological inflection results on the development set compared to baseline results of simply
copying the lemma or using the most frequent inflected wordform.

word and any features from any parent word. We
also chose to exclusively add features from chil-
dren with argument relations (i.e. dobj, nsubj,
csubj, etc.), with the intuition that, for example,
the argument of a verb would influence a given
verb’s inflection, while an adverb might not. To
illustrate this, as seen in Figure 2, in the frag-
ment DIT IS MOOI ... (‘That is beautiful’), the
features from DIT facilitate properly inflecting the
verb ZIJN (‘to be’) as IS (‘is’) and not BENT or
BEN (‘are’ or ‘am’ respectively), since the feature
‘Person=3’ is not encoded in the copula, but rather
in the pronoun. Meanwhile the advmod relation is
not helpful in informing our system how to inflect
ZIJN.

Dit is mooi . . .

nsubj advmod

Figure 2: An example (from the Dutch training
set) of how child dependencies with argument re-
lations help with inflection, while other modifier
relations do not. The person features in DIT help
to realize ZIJN as IS and not BENT or BEN. How-
ever, the features from the advmod relation are not
helpful.

4 Linearization

Previous work on dependency-based surface re-
alization (Bangalore and Rambow, 2000; Filip-
pova and Strube, 2007, 2009; Guo et al., 2008;
Bohnet et al., 2010, 2011; Guo et al., 2011; Zhang
and Clark, 2015) has emphasized bottom-up ap-
proaches that make relatively little use of depen-
dency locality. For this task, we opted to follow
Liu et al. (2015); Puduppully et al. (2016) in taking
an incremental approach to linearization so as to
be compatible with future work incorporating neu-
ral language models (Wen et al., 2015; Dušek and
Jurcicek, 2016; Konstas et al., 2017) while giving
greater emphasis to locality considerations.

<s> from the AP story this comes :

next root

case
det

obl
nsubj

det punct

Figure 3: Example candidate realization, with AP
as the next word and remaining words (with dotted
dependencies) still in the randomized input order.

In our approach, a candidate realization is a
(partial) permutation of the input words. Candi-
dates are generated by extending a previous candi-
date with an input word that has not yet been cho-
sen, as illustrated in Figure 3. Since the number
of candidates is factorial in the number of input
words, beam search is employed with scores com-
puted using a global linear model. By tracking the
way in which the input words are permuted, fea-
tures can be calculated both from the candidate se-
quence as well as from the input dependency tree.

To further constrain linearization choices, pro-
jective outputs can be enforced by ensuring that
all output phrases are continuous. To do so, we
calculate the successors of the previous word and
require the next word choice to be a descendant
of one of the successors. If the previous word has
child words in the dependency tree that have not
yet been linearized, then the successors are the as-
yet-unselected children. Otherwise, the successors
include the unrealized parent and siblings of the
previous word; if all those words have been cov-
ered, successors are calculated by recursing up the
tree.

Since we found that 2.5% of the English devel-
opment trees contained non-projective trees (even
ignoring punctuation as a source of discontinu-
ity), we opted to allow non-projective outputs
to be generated. To do so, we used a discon-
tinuity feature to encourage the model to learn
that most choices should yield continuous phrases,
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Events Base Predictors Locality Predictors
next word trigram word, stem and POS
dependency ordering whether initial or final; parent and

child stems, POSs, grammatical fea-
tures and dep relation; sibling stem,
POS and dep rel

difference in log binned size of sib-
ling subtree

completed arc whether projective; parent and child
stems, POSs and dep relation

log binned dependency length

discontinuity trigram POS; bigram dep relation;
relation of extraposed dep

log binned size of extraposed subtree

Table 4: Linearization features, which combine events with different base and locality predictors.

where the next word is taken to introduce a dis-
continuity if it is not a descendant of the pre-
vious word’s successors. A benefit of this soft
approach to enforcing projectivity is that all se-
quences can be generated in principle. Note that
our approach to calculating successors is simi-
lar to (though simpler than) the aforementioned
transition-based approaches while also allowing
limited non-projectivity.

We used scikit-learn’s implementation2 of the
passive-aggressive classifier (Crammer et al.,
2006) for our global linear model. The model was
trained discriminatively using early update with
the additional requirement that the gold candi-
date be top-ranked in the beam (Puduppully et al.,
2016). Mini-batches were processed in parallel
by averaging the updated models. To encourage
faster training, we averaged the models after each
mini-epoch of only a few mini-batches, rather than
waiting to the end of an entire training epoch.
Nevertheless, we suspect that the models were un-
dertrained as training often failed to reach the end
of longer sentences even after 12 hours of training
using between 12 and 28 processors (not all lan-
guages were given 28 processors to obtain faster
throughput). Looking at the training curve for
English, we obtained good performance after 10
epochs but the BLEU score on the development set
was still generally increasing when training timed
out at 30 epochs.

Our feature set is summarized in Table 4.
Features are based on four kinds of events that
are calculated as each word is added: next-word
events, dependency-ordering events, completed-
arc events and discontinuity events. A variety of
predictors are extracted for each kind of event,
as shown in the table. Base features include

2http://scikit-learn.org

trigram word-, POS- and stem-sequences, parent
and child stems, dependency relations, parent and
child grammatical features, and whether a word
is initial or final in its phrase. Locality-based
features additionally include binned dependency
length for completed arcs, binned difference in
size of sibling subtrees and binned size of any
extraposed dependent subtree. For lookahead, an-
cestor ordering features are calculated in the same
way as the head-dependent ordering features, so
for example starting a sentence with a determiner
entails that its head noun will precede its parent
(e.g. the main verb). Features are count-based and
constructed by combining each event with each of
its predictors and each pair of two predictors. For
example, when adding AP in Figure 3 as the next
word, one of the constructed features pairs the
previous two POS tags with the next-word event
as next word=AP:prev2 pos=IN:prev pos=DT

and its count is incremented.

For ease of implementation, we limited the
model to count-based features. By contrast, in
previous work with a bottom-up, chart-based re-
alizer, White and Rajkumar (2012) found it help-
ful to include a feature whose value was the total
dependency length of a constituent. In the incre-
mental setting here, we expect that the binned rel-
ative size of siblings is the most helpful locality-
based feature for ordering, as the binned depen-
dency length feature likely does not become avail-
able in a timely fashion in the beam search with
long dependencies. In future work, we plan to
investigate ways to better model the total depen-
dency length incrementally by accumulating the
sum of open dependencies in candidate realiza-
tions.

http://scikit-learn.org
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Language
BLEU ar cs en es fi fr it nl pt ru
NoLoc 27.5 47.5 56.8 57.9 33.1 34.6 36.7 23.5 44.1 45.8
Dev 29.3 53.7 68.9 65.0 35.9 38.4 42.3 26.2 48.0 56.6
Test 25.6 53.2 66.3 65.3 37.5 38.2 42.1 25.5 47.6 57.9
DIST
NoLoc 40.1 53.6 66.1 53.5 55.8 51.9 51.0 47.7 74.3 51.9
Dev 42.7 58.1 71.9 62.9 56.3 55.0 55.1 47.4 73.5 58.9
Test 46.7 58.1 70.2 61.5 58.7 53.7 59.7 57.8 66.0 59.9
NIST
NoLoc 7.39 13.0 11.4 12.1 9.18 8.64 8.54 7.27 8.92 13.6
Dev 7.50 13.4 12.2 12.7 9.40 8.90 8.92 7.45 9.24 14.1
Test 7.15 13.5 12.0 12.7 9.56 8.00 8.70 7.33 9.13 14.2

Table 5: Automatic metric results for combined system on development and test sets, along with ablation
results with no locality features (NoLoc) for the dev set.

5 Results

Many of our results were turned in late because
of library compatibility issues: in particular, since
Kann and Schütze’s code is based on an outdated
version of Theano, which is difficult to support, we
could not port the morphology inflection system to
more powerful computing clusters and were thus
limited to training on a single unit with only one
GPU. Nevertheless, we were careful to perform no
further development after the deadline, and the or-
ganizers encouraged us to submit results for all of
the languages when we could.

Automatic metric results for the combined
morphological inflection and linearization system
(with rule-based detokenizer) appear in Table 5,
along with no-locality ablation results discussed
in the next section. Results for the development
and test sets were fairly consistent across all three
automatic metrics used in the shared task. Based
on the test results shared with the participants, our
combined system was among the top performers
for all languages, with particularly strong BLEU
results for Arabic, Czech, Spanish, Finnish, Por-
tuguese and Russian (French, Italian and Dutch
may have suffered from undertrained linearization
models). Metric scores varied widely across the
languages, though the variation was largely con-
sistent with that observed by other participants,
suggesting that some languages are more chal-
lenging than others for surface realization (or at
least more difficult to achieve high metric scores
with).

6 Analysis and Discussion

6.1 Morphological Inflection

Compared to previous work in the context of the
SIGMORPHON shared tasks, the SRST ’18 in-
put and output vocabulary for the morphologi-
cal inflection system was much larger. Having
a larger search space seems to have affected lan-
guages non-uniformly. Although we have differ-
ent feature sets, Spanish and Russian seem to be
unaffected where as Dutch and English scores are
drastically lower than expected.

At the actual sub-word level, sequence to se-
quence models are unable to take account of con-
text originating from outside the input sequence.
For example, we observe that the model frequently
confuses when to use English ‘a’ and ‘an’, since
the information necessary to make this prediction
does not occur within the character sequence for
the word. In future work, an architecture that
jointly performs linearization and morphological
inflection could address this issue.

Another error type seen at the sub-word level is
that although the system learns what affixes look
like in a given language, it does not always learn
exactly how to apply them, as often seen with Rus-
sian. For example, when the system should pro-
duce UCHENYJ (‘scientist)’ and instead produces
UCHENOGO, it is confusing the adjectival ending
of -OGO for the nominal ending -YJ, both of which
however mean masculine, singular, and genitive.
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Language
ar cs en es fi fr it nl pt ru

Rate 8.25 12.3 2.43 9.21 7.04 4.11 5.16 8.96 10.6 7.16
Recall 16.2 16.9 16.7 13.8 9.57 6.00 3.45 35.7 18.6 26.9
Precision 25.0 62.0 47.1 44.7 52.9 15.8 25.0 34.9 68.8 23.8

Table 6: Non-projective dependency prevalence, recall and precision in the development set.

. . . at such a ridiculously high price that . . . too high for . . .

det:predet

mark

advcl

Figure 4: Example from the development set where a non-projective adverbial clause dependency from
such to high is successfully reproduced, enhancing fluency.

6.2 Linearization

To examine the impact of the dependency local-
ity features, we trained an ablated model with no
locality features and compared its performance on
the development set to the full model, as shown
in Table 5. The ablated model performed worse
for all languages with BLEU & NIST, and for
most languages with DIST. Moreover, the locality-
based features achieved impressive gains in BLEU
scores ranging between 2 and 12 points, with the
most dramatic gains for Spanish, Russian and En-
glish.

We also investigated whether the full model bet-
ter approximated the total dependency length of
the gold development sentences than the ablated
model, but the results were inconclusive, with the
full model coming closer to gold for some lan-
guages but not others. With better incremental
features for modeling total dependency length, we
plan to investigate in future work whether locality-
based features can indeed better match the gold to-
tal dependency length in an incremental setting, as
found in our earlier work with a bottom-up, chart-
based realizer (White and Rajkumar, 2012). Nev-
ertheless, we did find many examples such as the
one in Table 7 where the locality-based features
helped to ameliorate search errors. In the table, the
realization using the ablated model (NoLoc) fails
to linearize the dependents al Sadr - ’s anywhere
near their head Muqtada, mistakenly leaving them
till the end of the sentence where they contribute to
a much higher total dependency length than in the

gold sentence (Gold) or the realization using the
full model (Dev). Note that the full model does
not correctly order the name Muqtada al-Sadr ei-
ther, but the realization is still much easier to in-
terpret as intended. As an aside, the realization
also includes another local ordering error, before
only three months; we expect that incorporating a
neural language model in future work will resolve
many problems of this kind.

Turning now to non-projectivity, we found that
sentences with extraposed phrases like those in the
gold sentences were sometimes successfully gen-
erated. Table 6 shows that the percentage of sen-
tences in the development set with at least one
non-projective dependency ranged from a low of
2.5% for English to over 12% for Czech.3 Re-
call of the gold non-projective dependencies was
generally low, while precision was generally more
reasonable, reaching 62% for Czech. Restricting
outputs to be projective generally led to small de-
creases in BLEU scores on the development set,
with English and Czech seeing the largest drops
of 1.5 and 3.3 points, respectively, though Finnish
and Russian witnessed improvements of nearly 1
BLEU point. An example illustrating the success-
ful realization of a non-projective dependency ap-
pears in Figure 4; by contrast, if only projective
dependencies are allowed, the best possible real-
ization would still be the quite unnatural . . . at a

3A dependency between a head and its dependent was
considered projective if all the intervening words (ignoring
punctuation tokens) in the linearized sequence were descen-
dants of the head.
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Gold: the Coalition decision to provoke a fight
with Muqtada al - Sadr ’s movement only three
months before the Coaliti on Provisional Au-
thority goes out of business has to be seen as
a form of gross incompetence in governance .
(deplen 84)
NoLoc: the Coalition decision to pro-
voke a fight with Muqtada movement be-
fore three months only the Provisional Coali-
tion Authority goes out of business has to
be seen as a form of gross incompetence
in governance . al Sadr - ’s (deplen 144)
Dev: the Coalition decision to provoke a
fight with Muqtada - Sadr al ’s movement be-
fore only three months the Coalition Provisional
Authority goes out of business has to be seen as
a form of gross incompetence in governance .
(deplen 90)

Table 7: Example from the development set show-
ing how locality-based features help ameliorate
search errors (with total dependency length in
parentheses).

ridiculously high price such that . . . .

7 Conclusion

We have shown surprisingly competitive results by
modeling realization as a two-stage process where
we first generate morphologically inflected word-
forms using a neural sequence-to-sequence model
and then incrementally linearize those wordforms
using a global linear model. We additionally show
that NMT systems, which have been producing
state-of-the-art results in morphological reinflec-
tion, can be generalized and integrated into other
tasks. We also find that dependency structure and
dependency locality are highly informative in the
linearization step and allow us to also generate
some cases of non-projectivity. In future work,
we intend to pursue coupling the learning of mor-
phological inflection and linearization into a single
process and using a neural language model to help
with linearization choices.
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