
Proceedings of the Workshop on Deep Learning Approaches for Low-Resource NLP, pages 77–86
Melbourne, Australia July 19, 2018. c©2018 Association for Computational Linguistics

77

Low-rank passthrough neural networks

Antonio Valerio Miceli Barone ∗

School of Informatics, The University of Edinburgh
amiceli@inf.ed.ac.uk

Abstract

Various common deep learning architec-
tures, such as LSTMs, GRUs, Resnets
and Highway Networks, employ state
passthrough connections that support
training with high feed-forward depth
or recurrence over many time steps.
These “Passthrough Networks” architec-
tures also enable the decoupling of the
network state size from the number of
parameters of the network, a possibility
has been studied by Sak et al. (2014)
with their low-rank parametrization of
the LSTM. In this work we extend this
line of research, proposing effective,
low-rank and low-rank plus diagonal
matrix parametrizations for Passthrough
Networks which exploit this decoupling
property, reducing the data complexity
and memory requirements of the network
while preserving its memory capacity.
This is particularly beneficial in low-
resource settings as it supports expressive
models with a compact parametrization
less susceptible to overfitting. We present
competitive experimental results on sev-
eral tasks, including language modeling
and a near state of the art result on
sequential randomly-permuted MNIST
classification, a hard task on natural data.

1 Overview

Deep neural networks can perform non-trivial
computations by the repeated the application of
parametric non-linear transformation layers to
vectorial data. This staging of many computa-
tion steps can be done over a time dimension

∗Work partially done while affiliated with University of
Pisa.

for tasks involving sequential inputs or outputs of
varying length, yielding a recurrent neural net-
work, or over an intrinsic circuit depth dimension,
yielding a deep feed-forward neural network, or
both. Training these deep models is complicated
by the exploding and vanishing gradient problems
(Hochreiter, 1991; Bengio et al., 1994).

Various network architectures have been pro-
posed to ameliorate the vanishing gradient prob-
lem in the recurrent setting, such as the LSTM
(Hochreiter and Schmidhuber, 1997; Graves and
Schmidhuber, 2005), the GRU (Cho et al., 2014),
the RHN (Zilly et al., 2016), etc. Similar meth-
ods have also been applied in the feed-forward set-
ting with architectures such as Highway Networks
(Srivastava et al., 2015), Deep Residual Networks
(He et al., 2015), and so on. All these archi-
tectures are based on a single structural principle
which, in this work, we will refer to as the state
passthrough. We will thus refer to these architec-
tures as Passthrough Networks.

In many settings, especially low-resource natu-
ral language processing tasks, the main difficulty
in training neural networks is the trade-off be-
tween the network representation power and its
training data complexity, which is related to the
number of trainable parameters.

On one hand, the number of parameters can
be thought as the number of tunable “knobs” that
need to be set to represent a function, on the other
hand, it also constrains the size of the partial re-
sults that are propagated inside the network. In
typical fully connected networks, a layer acting on
a n-dimensional state vector has O(n2) parame-
ters stored in one or more matrices, but there can
be many functions of practical interest that are
simple enough to be represented by a relatively
small number of bits while still requiring some
sizable amount of memory in order to be com-
puted. Therefore, representing these functions on



78

a fully connected neural network can be wasteful
in terms of number of parameters. The full pa-
rameterization implies that, at each step, all the in-
formation in each state component can affect all
the information in any state component at the next
step. Classical physical systems, however, consist
of spatially separated parts with primarily local in-
teractions, long-distance interactions are possible
but they tend to be limited by propagation delays,
bandwidth and noise. Therefore it may be bene-
ficial to bias our model class towards models that
tend to adhere to these physical constraints by us-
ing a parametrization which reduces the number
of parameters required to represent them. This can
be accomplished by imposing some constraints on
the n×nmatrices that parametrize the state transi-
tions. One way of doing this is to impose a convo-
lutional structure on these matrices (LeCun et al.,
2004; Krizhevsky et al., 2012), which corresponds
to strict locality and periodicity constraints as in a
cellular automaton. These constraints work well in
certain domains such as vision, but may be overly
restrictive in other domains.

The state passthrough allows for a systematic
decoupling of the network state size from the num-
ber of parameters: since by default the state vector
passes mostly unaltered through the layers, each
layer can be made simple enough to be described
only by a small number of parameters without af-
fecting the overall memory capacity of the net-
work, effectively spreading the computation over
the depth or time dimension of the network, but
without making the network “thin”. This has
been exploited by some convolutional passthrough
architectures (Srivastava et al., 2015; He et al.,
2015; Kaiser and Sutskever, 2015), or architec-
tures with addressable read-write memory (Graves
et al., 2014; Danihelka et al., 2016).

In this work we propose simple but effective
low-dimensional parametrizations that exploit this
decoupling based on low-rank or low-rank plus di-
agonal matrix decompositions. Our approach ex-
tends the LSTM architecture with a single projec-
tion layer proposed by Sak et al. (2014) which has
been applied to speech recognition, natural lan-
guage modeling (Józefowicz et al., 2016), video
analysis (Sun et al., 2015), etc. We provide ex-
perimental evaluation of our approach on GRU
and LSTM architectures on various machine learn-
ing tasks, including a near state of the art result
for the hard task of sequential randomly-permuted

MNIST image recognition (Le et al., 2015).

2 Model

2.1 Passthrough networks

A (fixed-width) neural network can be described
as a dynamical system with a n-dimensional state
vector x(t) ∈ Rn that transforms an input u into
an output y over multiple time steps T .

Passthrough networks can be defined as net-
works where the state evolves according to a tran-
sition function f which has a special form such
that, at each step t the state vector x(t) is prop-
agated to the next step modified only by some
(nearly) linear, element-wise transformation.

We define a network to have a state passthrough
on x if x evolves as

x(t) = π(t)� τ(t) + x(t− 1)� γ(t) (1)

where π is the next state proposal, τ is the state
transform, γ is the state carry and � denotes
element-wise vector multiplication.

Additional non-passthrough state vectors may
be also present1.

As concrete example, we can describe the fully
connected Gated Recurrent Unit (GRU) by Cho
et al. (2014) as

ω(t) = σ(θWωu(t) + θUωx(t− 1))

γ(t) = σ(θWγu(t) + θUγx(t− 1))

τ(t) = 1⊗n − γ(t)
π(t) = g(θWπu(t) + θ(Uπ)(x(t− 1)� ω(t)))

(2)
where g is the hyperbolic tangent, σ is the lo-

gistic sigmoid, θWω , θWγ , θWπ ∈ Rn×m are input
parameter matrices and θUω , θUγ , θUπ ∈ Rn×n are
the recurrent parameter matrices (bias vectors θb

not shown). ω(t) is the reset gate which is specific
to the GRU architecture.

2.2 Low-rank passthrough networks

We can impose a low-rank constraint on the state
transition matrices by rewriting each of them as
the product of two matrices, where the inner di-
mension d is a model hyperparameter.

In the case of the GRU of eq. 2 we can redefine

1For instance the LSTM has a passthrough “cell” state and
a non-passthrough “hidden” state.



79

x̂ (t−1)

f γ

f τ

f π

+ x̂ (t)

x

W

a)

x

R

b)

L

x

R

c)

L

0

0

D

+

Figure 1: Left: Generic state passthrough hidden layer, optional per-timestep input u(t) is not shown.
Right: a) Full matrix parametrization. b) Low-rank parametrization. c) Low-rank plus diagonal
parametrization.

the recurrent parameter matrices as

θ(Uω) = θ(Lω) · θ(Rω)

θ(Uγ) = θ(Lγ) · θ(Rγ)

θ(Uπ) = θ(Lπ) · θ(Rπ)
(3)

where θ(L ) ∈ Rn×d and θ(R ),∈ Rd×n. When
d < n/2 this result in a reduction of the number
of trainable parameters of the model.

Even when n/2 ≤ d < n, while the total num-
ber of parameter increases, the number of degrees
of freedom of the model still decreases, because
low-rank factorization are unique only up to arbi-
trary d × d invertible matrices, thus the number
of independent degrees of freedom of a low-rank
layer is 2nd− d2.

This low-rank constraint can be thought as
a bandwidth constraint on the computation per-
formed at each step: the R matrices first project
the state into a smaller subspace, extracting the in-
formation needed for that specific step, then the L
matrices project it back to the original state space,
spreading the selected information to all the state
components that need to be updated.

In this parametrization, which we denote as un-
tied low-rank, we allow each parameter matrix to
be parametrized independently by a pair of R and
L matrices. This extends the approach of Sak
et al. (2014) for the LSTM architecture, which we
denote here as tied low-rank, where they instead
force the R matrices to be the same for all the
functions of the state transition.

A low-rank parametrization can be also applied
to the input matrices of recurrent neural networks,
in fact, the input embedding layer commonly used
in NLP applications results in a tied low-rank
parametrization of the input whenever the embed-
ding size is lower than the RNN state size.

Low-rank passthrough architectures are univer-
sal in that they retain the same representation
classes of their parent architectures. This equiva-
lence can be realized in the worst case by exploit-
ing a depth-rank tradeoff (e.g. either O(n) rank
and O(T ) depth or O(1) rank and O(nT ) depth)2.

2.3 Low-rank plus diagonal passthrough
networks

As we show in the experimental section, on some
tasks the low-rank constraint may prove to be ex-
cessively restrictive if the goal is to train a model
with fewer parameters than one with arbitrary ma-
trices. A simple extension is to add to each low-
rank parameter matrix a diagonal parameter ma-
trix, yielding a matrix that is full-rank but still
parametrized in a low-dimensional space. For in-
stance, for the GRU we modify eq. 3 to

θ(Uω) = θ(Lω) · θ(Rω) + θ(Dω)

θ(Uγ) = θ(Lγ) · θ(Rγ) + θ(Dγ)

θ(Uπ) = θ(Lπ) · θ(Rπ) + θ(Dπ)

(4)

2In the case of recurrent networks, depth is intended as
the recurrence depth (Zilly et al., 2016).



80

where θ(D ) are trainable diagonal parameter ma-
trices.

It may seem that adding diagonal parameter ma-
trices is redundant in passthrough networks. After
all, the state passthrough itself can be considered
as a diagonal matrix applied to the state vector,
which is then additively combined to the new pro-
posed state computed by the fπ function. How-
ever, since the state passthrough completely skips
over all non-linear activation functions, these for-
mulations are not equivalent. In particular, the
low-rank plus diagonal parametrization may help
in recurrent neural networks which receive input
at each time step, since it allows each component
of the state vector to directly control how much
input signal is inserted into it at each step. We
demonstrate the effectiveness of this model for the
sequence copy, sequential MNIST and language
modeling tasks described in the experiments sec-
tion.

3 Experiments

We applied the Low-rank GRU (LR-GRU) and
Low-rank plus diagonal GRU (LRD-GRU) archi-
tectures to a subset of sequential benchmarks de-
scribed in the Unitary Evolution Recurrent Neu-
ral Networks (uRNN) article by Arjovsky et al.
(2015), specifically the memory task, the addi-
tion task and the sequential randomly permuted
MNIST task. For the memory tasks, we also con-
sidered two different variants proposed by Dani-
helka et al. (2016) and Henaff et al. (2016) which
are hard for the uRNN architecture. We chose to
compare against the uRNN architecture because
it set state of the art results in terms of both
data complexity and accuracy and because it is
an architecture with similar design objectives as
low-rank passthrough architectures, namely a low-
dimensional parametrization and the mitigation of
the vanishing gradient problem, but it is based on
quite different principles.

We also applied these architectures to a
character-level language modeling task on the
Penn Treebank corpus. For the language modeling
task, we also experimented with Low-rank plus di-
agonal LSTMs.

3.1 Memory task

The input of an instance of this task is a sequence
of T = N + 20 discrete symbols in a ten sym-
bol alphabet ai : i ∈ 0, . . . 9, encoded as one-hot

vectors. The first 10 symbols in the sequence are
“data” symbols i.i.d. sampled from a0, . . . , a7,
followed byN−1 “blank” a8 symbols, then a dis-
tinguished “run” symbol a9, followed by 10 more
“blank” a8 symbols. The desired output sequence
consists of N + 10 “blank” a8 symbols followed
by the 10 “data” symbols as they appeared in the
input sequence. Therefore the model has to re-
member the 10 “data” symbol string over the tem-
poral gap of size N , which is challenging for a
recurrent neural network when N is large. In our
experiment we set N = 500, which is the hard-
est setting explored in the uRNN work. The train-
ing set consists of 100, 000 training examples and
10, 000 validation/test examples. The architecture
is a GRU with a dense n × 10 output matrix fol-
lowed a (biased) softmax. We train to minimize
the cross-entropy loss.

We were able to solve this task using a GRU
with full recurrent matrices with state size n =
128, learning rate 1× 10−3, mini-batch size 20,
initial bias of the carry functions (the “update”
gates) 4.0, however this model has many more
parameters, nearly 50, 000 in the recurrent layer
only, than the uRNN work which has about 6, 500,
and it converges much more slowly than the
uRNN. We were not able to achieve convergence
with a pure low-rank model without exceeding
the number of parameters of the fully connected
model, but we achieved fast convergence with a
LRD-GRU model with d = 50, with other hyper-
parameters set as above. This model has still more
parameters (39, 168 in the recurrent layer, 41, 738
total) than the uRNN model and converges more
slowly but still reasonably fast, reaching test cross-
entropy < 1× 10−3 nats and almost perfect clas-
sification accuracy in less than 35, 000 updates.

In order to obtain a fair comparison, we also
train a uRNN model with state size n = 721, re-
sulting in approximately the same number of pa-
rameters as the LRD-GRU models. This model
very quickly reaches perfect accuracy on the train-
ing set in less than 2, 000 updates, but overfits
w.r.t. the test set.

We also consider two variants of this task which
are difficult for the uRNN model. For both these
tasks we used the same settings as above except
that the task size parameter is set at N = 100 for
consistency with the works that introduced these
variants. In the variant of Danihelka et al. (2016),
the length of the sequence to be remembered is



81

0 100 200 300 400 500 600
Minibatch number (hundreds)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Cr
os

s-
en

tr
op

y 
(n

at
s)

Sequence copy with fixed lag N=500

LRD-GRU
URNN

0 100 200 300 400 500 600
Minibatch number (hundreds)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Cr
os

s-
en

tr
op

y 
(n

at
s)

Variable-length sequence copy with fixed lag N=100

LRD-GRU
LRD-GRU-WN
URNN

0 100 200 300 400 500 600 700 800 900
Minibatch number (hundreds)

0.00

0.05

0.10

0.15

0.20

Cr
os

s-
en

tr
op

y 
(n

at
s)

Sequence copy with variable lag N=100

LRD-GRU
LRD-GRU-WN
URNN

0 20 40 60 80 100 120 140 160
Minibatch number (hundreds)

0.0

0.2

0.4

0.6

0.8

1.0
M

ea
n 

sq
ua

re
d 

er
ro

r
Addition T=750

LR-GRU
LRD-GRU

0 1000 2000 3000 4000 5000
Minibatch number (hundreds)

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 %

Permuted sequential MNIST

n=128, d=24
n=512, d=4

0 2000 4000 6000 8000 10000
Minibatch number (hundreds)

0

20

40

60

80

100

Ac
cu

ra
cy

 %

Permuted sequential MNIST (low-rank plus diagonal)

n=64, d=24
n=128, d=24
n=256, d=24
n=128 (baseline)

Figure 2: Top row and middle left: LRD-GRU and uRNN on the sequence copy tasks, cross-entropy
on validation set. Middle right: LR-GRU and LRD-GRU on the addition task, mean squared error on
validation set. Bottom row: LR-GRU (left) and LRD-GRU (right) on the permuted sequential MNIST
task, accuracy on validation set, horizontal line indicates 90% accuracy.



82

randomly sampled between 1 and 10 for each se-
quence. They manage to achieve fast convergence
with their Associative LSTM architecture with
65, 505 parameters, and slower convergence with
standard LSTM models. Our LRD-GRU architec-
ture, which has less parameters than their Associa-
tive LSTM, performs comparably or better, reach-
ing test cross-entropy < 1× 10−3 nats and almost
perfect classification accuracy in less than 30, 000
updates. In the variant of Henaff et al. (2016),
the length of the sequence to be remembered is
fixed at 10 but the model is expected to copy it af-
ter a variable number of time steps randomly cho-
sen, for each sequence, between 1 and N = 100.
The authors achieve slow convergence with a stan-
dard LSTM model, while our LRD-GRU architec-
ture achieves fast convergence, reaching test cross-
entropy < 1× 10−3 nats and almost perfect clas-
sification accuracy in less than 38, 000 updates,
and perfect test accuracy in 87, 000 updates.

We further train uRNN models with state size
n = 721 on these variants of the memory task. We
found that the uRNN learns faster than the LRD-
GRU on the variable length, fixed lag task (Dani-
helka et al., 2016) but fails to converge within our
training time limit on the fixed length, variable lag
task (Henaff et al., 2016).

Training the LRD-GRU on these tasks in-
curs sometimes in numerical stability problems
as discussed in sec. 3.5.1. In order to sys-
temically address these issues, we also trained
models with weight normalization (Salimans and
Kingma, 2016) and weight row max-norm con-
straints. These models turned out to be more stable
and in fact converge faster, performing on par with
the uRNN on the variable length, fixed lag task.

Training curves are shown in figure 2 (top and
middle left).

3.2 Addition task

For each instance of this task, the input sequence
has length T and consists of two real-valued com-
ponents, at each step the first component is in-
dependently sampled from the interval [0, 1] with
uniform probability, the second component is
equal to zero everywhere except at two randomly
chosen time step, one in each half of the sequence,
where it is equal to one. The result is a single real
value computed from the final state which we want
to be equal to the sum of the two elements of the
first component of the sequence at the positions

where the second component was set at one. In
our experiment we set T = 750.

The training set consists of 100, 000 training ex-
amples and 10, 000 validation/test examples. We
use a LR-GRU and a LRD-GRU with 2× n input
matrix, n × 1 output matrix and (biased) identity
output activation. We train to minimize the mean
squared error loss. We use state size n = 128,
maximum rank d = 24. This results in approx-
imately 6, 140 parameters in the recurrent hidden
layer. Learning rate was set at 1× 10−3, mini-
batch size 20, initial bias of the carry functions
(the “update” gates) was set to 4.

We trained on 14, 500 mini-batches, obtaining a
mean squared error on the test set of 0.003 for both
parametrizations, which is a better result than the
one reported in the uRNN article, in terms of train-
ing time and final accuracy. The training curves
are shown in figure 2 (middle right).

3.3 Sequential MNIST task

This task consists of handwritten digit classifica-
tion on the MNIST dataset with the caveat that the
input is presented to the model one pixel value at
time, over T = 784 time steps. To further increase
the difficulty of the task, the inputs are reordered
according to a random permutation (fixed for all
the task instances).

We use LR-GRUs and a LRD-GRUs with 1×n
input matrix, n × 10 output matrix and (biased)
softmax output activation. Learning rate was set
at 5× 10−4, mini-batch size 20, initial bias of the
carry functions (the “update” gates) was set to 5.

Results are presented in table 1 and training
curves are shown in figure 2 (bottom row). All
these models except the one with the most extreme
bottleneck (n = 512, d = 4) exceed the reported
uRNN test accuracy of 91.4%, although they con-
verge more slowly (hundred of thousands updates
vs. tens of thousands of the uRNN). Also note that
the LRD-GRU is more accurate than the full-rank
GRU with the same state size, while the LR-GRU
is slightly less accurate (in terms of test accuracy),
indicating the utility of the diagonal component of
the parametrization for this task.

These are on par with more complex architec-
tures with time-skip connections (Zhang et al.,
2016) (reported test set accuracy 94.0%). To our
knowledge, at the time of this writing, the best
result on this task is the LSTM with recurrent
batch normalization by Cooijmans et al. (2016)



83

Table 1: Sequential permuted MNIST results

Architecture state size max rank params val. accuracy test accuracy

Baseline GRU 128 - 51.0 k 93.0% 92.8%
LR-GRU 128 24 20.2 k 93.4% 91.8%
LR-GRU 512 4 19.5 k 92.5% 91.3%
LRD-GRU 64 24 10.3 k 93.1% 91.9%
LRD-GRU 128 24 20.6 k 94.1% 93.5%
LRD-GRU 256 24 41.2 k 95.1% 94.7%

(reported test set accuracy 95.2%). The architec-
tural innovations of these works are orthogonal to
our own and in principle they can be combined to
it.

3.4 Character-level language modeling task
This standard benchmark task consist of predict-
ing the probability of the next character in a sen-
tence after having observed the previous charters.
Following Zaremba et al. (2014), we use the Penn
Treebank English corpus, with standard training,
validation and test splits. As a baseline we use a
single layer GRU either with no regularization or
regularized with Bayesian recurrent dropout (Gal,
2015).

In our experiments we primarily consider the
LRD-GRU, both with tied and untied projection
matrices. We set the state size and maximum rank
to either reduce the total number of parameters
compared to the baselines or to keep the number
of parameters approximately the same while in-
creasing the memory capacity. We also compare
with the LR-GRU. Results are shown in table 2.

Our LRD-GRU reduces the model per-character
perplexity (the base-2 exponential of the bits-per-
character entropy). Both the tied and untied ver-
sions perform equally when the state size is the
same, but the tied version performs better when
the number of parameters is kept the same, pre-
sumably due to the increased memory capacity of
the state vector. Our best model has an extreme
bottleneck, over a hundred of times smaller than
the state size, while the word-level language mod-
els trained by Józefowicz et al. (2016) use bottle-
necks of four to eight times smaller than the state
size. This difference is likely due to our usage of
the “plus diagonal” parametrization, in fact, the
plain LR-GRU with such an extreme bottleneck
fails to even approach the baselines.

In terms of absolute perplexity, our results are
worse than published ones (e.g. Graves (2013)),

although they may not be directly comparable
since published results generally use different
training and evaluation schemes, such as preserv-
ing the network state between different sentences.

We ran additional experiments using LSTM ar-
chitectures, similar to Graves (2013), although
we still could not obtain the same baseline per-
formance even using the Adam optimizer (using
SGD+momentum yields even worse results). In
fact, we obtained approximately the same perplex-
ity as our baseline GRU model with the same state
size.

We applied the Low-rank plus diagonal
parametrizations to our LSTM architecture main-
taining the same number of parameters as the
baseline. We obtained notable perplexity improve-
ments over the baseline.

3.5 Experimental details
3.5.1 Low-rank GRUs
In our experiments (except language modeling)
we optimized using RMSProp (Tieleman and Hin-
ton, 2012) with gradient component clipping at
1. Code is available online 3. Our code is based
on the published uRNN code4 (specifically, on
the LSTM implementation) by the original authors
for the sake of a fair comparison. In order to
achieve convergence on the memory task however,
we had to slightly modify the optimization proce-
dure, specifically we changed gradient component
clipping with gradient norm clipping (with NaN
detection and recovery), and we added a small
ε = 1× 10−8 term in the parameter update for-
mula. No modifications of the original optimizer
implementation were required for the other tasks.

In order to address the numerical instability is-
sues in the memory tasks, we also consider a vari-
ant of our LRD-GRU where apply weight nor-

3 https://github.com/Avmb/lowrank-gru
4https://github.com/amarshah/complex_

RNN

https://github.com/Avmb/lowrank-gru
https://github.com/amarshah/complex_RNN
https://github.com/amarshah/complex_RNN


84

Table 2: Character-level language modeling results

Architecture dropout tied state size max rank params test char perplexity

Baseline GRU No - 1000 - 3.11 M 2.96
Baseline GRU Yes - 1000 - 3.11 M 2.92
Baseline GRU Yes - 3298 - 33.0 M 2.77
Baseline LSTM Yes - 1000 - 4.25 M 2.92

LRD-GRU No No 1000 64 0.49 M 2.92
LRD-GRU No No 3298 128 2.89 M 2.95
LRD-GRU Yes No 3298 128 2.89 M 2.86
LRD-GRU Yes No 5459 64 2.69 M 2.82
LRD-GRU Yes Yes 5459 64 1.99 M 2.81
LRD-GRU No Yes 1000 64 0.46 M 2.90
LRD-GRU Yes Yes 4480 128 2.78 M 2.86
LRD-GRU Yes Yes 6985 64 2.54 M 2.76
LR-GRU Yes Yes 6985 64 2.54 M 9.88
LRD-LSTM Yes No 1740 300 4.25 M 2.86

malization as described by Salimans and Kingma
(2016) to all the parameter matrices except the out-
put one and the diagonal matrices. All these ma-
trices have trainable scale parameters, except for
the projection (R) matrices. We further apply a
hard constraint on the matrices row norms by clip-
ping them at 10 after each update. We disable NaN
detection and recovery during training. The ratio-
nale behind this approach, in addition to the gen-
eral benefits of normalization, is that the low-rank
parametrization potentially introduces stability is-
sues because the model is invariant to the simulta-
neous multiplication of a row of an R-matrix by a
scalar s and the division of the corresponding col-
umn of the L-matrix by s, which in principle al-
lows the parameters of either matrix to grow very
large in magnitude, eventually resulting in over-
flows or other pathological behavior. The weight
row max-norm constraint can counter this prob-
lem. But the constraint alone could make the op-
timization problem harder by restricting and dis-
torting the parameter space. Fortunately we can
counter this by weight normalization which makes
the model invariant to the row-norms of the param-
eter matrices.

In the language modeling experiment, the char-
acter vocabulary size is 51, we use no character
embeddings. Training is performed with Adam
with learning rate 1× 10−3. Bayesian recurrent
dropout was adapted from the original LSTM ar-
chitecture of Gal (2015) to the GRU architecture
as in Sennrich et al. (2016).

Our implementation is based on the “dl4mt” tu-
torial5 and the Nematus neural machine translation
system 6. The code is available online 7.

3.5.2 Low-rank LSTMs
For our LSTM experiments, we modified the
implementation of LSTM language model with
Bayesian recurrent dropout by Gal (2015)8. In
order to match the setup of Graves (2013) more
closely, we used a vocabulary size of 49, no em-
bedding layer and one LSTM layer. We the Adam
optimizer with learning rate 2× 10−4. The low-
rank plus diagonal parametrization is applied on
the recurrence matrices as in the GRU models.
The code is available online9.

4 Conclusions

We proposed low-dimensional parametrizations
for passthrough neural networks based on low-
rank or low-rank plus diagonal decompositions
of the n × n matrices that occur in the hidden
layers. We experimentally compared our models
with state of the art models, obtaining competi-
tive results including a near state of the art for
the randomly-permuted sequential MNIST task,

5https://github.com/nyu-dl/
dl4mt-tutorial

6https://github.com/EdinburghNLP/
nematus

7https://github.com/Avmb/dl4mt-lm/
tree/master/lm

8https://github.com/yaringal/
BayesianRNN

9 https://github.com/Avmb/lowrank-lstm

https://github.com/nyu-dl/dl4mt-tutorial
https://github.com/nyu-dl/dl4mt-tutorial
https://github.com/EdinburghNLP/nematus
https://github.com/EdinburghNLP/nematus
https://github.com/Avmb/dl4mt-lm/tree/master/lm
https://github.com/Avmb/dl4mt-lm/tree/master/lm
https://github.com/yaringal/BayesianRNN
https://github.com/yaringal/BayesianRNN
https://github.com/Avmb/lowrank-lstm


85

and improvements over the baselines on a lan-
guage modeling task. We showed that the LRD
parametrization outperforms the LR parametriza-
tion in almost all task and never underpeforms it,
which highlight as the main contribution of this
work. Therefore recommend to always include a
diagonal parameter matrix whenever a low-rank
parametrization is used. We also presented a
weight row-norm constraint trick to improve op-
timization stability for these kind of architectures
with multiplicative symmetries.

References
Martin Arjovsky, Amar Shah, and Yoshua Bengio.

2015. Unitary evolution recurrent neural networks.
CoRR, abs/1511.06464.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gra-
dient descent is difficult. Neural Networks, IEEE
Transactions on, 5(2):157–166.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Fethi Bougares, Holger Schwenk, and Yoshua
Bengio. 2014. Learning phrase representations
using rnn encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078.

T. Cooijmans, N. Ballas, C. Laurent, Ç. Gülçehre, and
A. Courville. 2016. Recurrent Batch Normalization.
ArXiv e-prints.

I. Danihelka, G. Wayne, B. Uria, N. Kalchbrenner,
and A. Graves. 2016. Associative Long Short-Term
Memory. ArXiv e-prints.

Yarin Gal. 2015. A theoretically grounded applica-
tion of dropout in recurrent neural networks. arXiv
preprint arXiv:1512.05287.

Alex Graves. 2013. Generating sequences with
recurrent neural networks. arXiv preprint
arXiv:1308.0850.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works, 18(5):602–610.

Alex Graves, Greg Wayne, and Ivo Danihelka.
2014. Neural turing machines. arXiv preprint
arXiv:1410.5401.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Deep residual learning for image recog-
nition. arXiv preprint arXiv:1512.03385.

M. Henaff, A. Szlam, and Y. LeCun. 2016. Orthogonal
RNNs and Long-Memory Tasks. ArXiv e-prints.

Sepp Hochreiter. 1991. Untersuchungen zu dynamis-
chen neuronalen netzen. Diploma, Technische Uni-
versität München.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Rafal Józefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring
the limits of language modeling. arXiv preprint
arXiv:1602.02410.

Lukasz Kaiser and Ilya Sutskever. 2015. Neural gpus
learn algorithms. CoRR, abs/1511.08228.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep con-
volutional neural networks. In Advances in neural
information processing systems, pages 1097–1105.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hin-
ton. 2015. A simple way to initialize recurrent
networks of rectified linear units. arXiv preprint
arXiv:1504.00941.

Yann LeCun, Fu Jie Huang, and Leon Bottou. 2004.
Learning methods for generic object recognition
with invariance to pose and lighting. In Computer
Vision and Pattern Recognition, 2004. CVPR 2004.
Proceedings of the 2004 IEEE Computer Society
Conference on, volume 2, pages II–97. IEEE.

Hasim Sak, Andrew W Senior, and Françoise Bea-
ufays. 2014. Long short-term memory recurrent
neural network architectures for large scale acoustic
modeling. In INTERSPEECH, pages 338–342.

Tim Salimans and Diederik P Kingma. 2016. Weight
normalization: A simple reparameterization to ac-
celerate training of deep neural networks. arXiv
preprint arXiv:1602.07868.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Edinburgh neural machine translation sys-
tems for wmt 16. arXiv preprint arXiv:1606.02891.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen
Schmidhuber. 2015. Highway networks. arXiv
preprint arXiv:1505.00387.

Chen Sun, Sanketh Shetty, Rahul Sukthankar, and
Ram Nevatia. 2015. Temporal localization of fine-
grained actions in videos by domain transfer from
web images. In Proceedings of the 23rd Annual
ACM Conference on Multimedia Conference, pages
371–380. ACM.

Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture
6.5 - rmsprop,.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329.

http://arxiv.org/abs/1511.06464
http://arxiv.org/abs/1603.09025
http://arxiv.org/abs/1602.03032
http://arxiv.org/abs/1602.03032
http://arxiv.org/abs/1602.06662
http://arxiv.org/abs/1602.06662
http://arxiv.org/abs/1511.08228
http://arxiv.org/abs/1511.08228


86

Saizheng Zhang, Yuhuai Wu, Tong Che, Zhouhan
Lin, Roland Memisevic, Ruslan Salakhutdinov, and
Yoshua Bengio. 2016. Architectural complex-
ity measures of recurrent neural networks. arXiv
preprint arXiv:1602.08210.

Julian Georg Zilly, Rupesh Kumar Srivastava,
Jan Koutnı́k, and Jürgen Schmidhuber. 2016.
Recurrent highway networks. arXiv preprint
arXiv:1607.03474.


