
ACL 2018

Relevance of Linguistic Structure in Neural Architectures for
NLP

Proceedings of the Workshop

July 19, 2018
Melbourne, Australia

c©2018 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-948087-42-1

ii

Preface

Welcome to the ACL Workshop on the Relevance of Linguistic Structure in Neural Architectures for
NLP (RELNLP). The workshop took place on July 19th 2018, collocated with the 56th Annual Meeting
of the Association for Computational Linguistics in Melbourne, Australia.

There is a long standing tradition in NLP focusing on fundamental language modeling tasks such as
morphological analysis, POS tagging, parsing, WSD or semantic parsing. In the context of end-user NLP
tasks, these have played the role of enabling technologies, providing a layer of representation upon which
more complex tasks can be built. However, in recent years we have witnessed a number of success stories
involving end-to-end architectures trained on large data and making little or no use of a linguistically-
informed language representation layer. This workshop’s focus was on the role of linguistic structures in
the neural network era. We aimed to gauge their significance in building better, more generalizable NLP.

The workshop has accepted 2 oral presentations and a total of 7 poster presentations. The program also
included four invited speakers as well as a panel discussion. We would like to thank our speakers: Chris
Dyer, Emily Bender, Jason Eisner and Mark Johnson as well as our program committee for their work in
assuring high quality and on time reviews.

Georgiana Dinu, Miguel Ballesteros, Avirup Sil, Sam Bowman, Wael Hamza, Anders Søgaard, Tahira
Naseem and Yoav Goldberg

iii

Organizers:

Georgiana Dinu, Amazon AWS
Miguel Ballesteros, IBM Research
Avirup Sil, IBM Research
Sam Bowman, NYU
Wael Hamza, Amazon Alexa
Anders Søgaard, University of Copenhagen
Tahira Naseem, IBM Research
Yoav Goldberg, Bar Ilan University

Program Committee:

Eneko Agirre, Basque Country University, Spain
Yonatan Belinkov, CSAIL, MIT, USA
Jose Camacho-Collados, Sapienza-Universty of Rome, Italy
Xavier Carreras, Naver Labs Europe, France
Ryan Cotterell, Johns Hopkins University, USA
Jacob Eisenstein, Georgia Institute of Technology, USA
Jason Eisner, Johns Hopkins University, USA
Katrin Erk, University of Texas at Austin, USA
Luis Espinosa-Anke, Cardiff University, UK
Manaal Faruqui, Google Research, USA
Orhan Firat, Google Research, USA
Markus Freitag, Google Research, USA
Ramón Fernández-Astudillo, Unbabel, Portugal
Matt Gardner, Allen Institute for Artificial Intelligence, USA
Carlos Gómez-Rodrígez, University of A Coruña, Spain
Benjamin Han, Microsoft AI + R, USA
Douwe Kiela, FAIR, USA
Eliyahu Kiperwasser, Bar-Illan University, Israel
Adhiguna Kuncoro, Deepmind and University of Oxford, UK
Sandra Kübler, Indiana University, USA
Mirella Lapata, University of Edinburgh, UK
Tao Lei, ASAPP, New York, NY
Roger Levy, MIT, USA
Haitao Mi, Ant Financial, USA
Maria Nadejde, University of Edinburgh, UK
Ramesh Nallapati, Amazon, USA
Karthik Narasimhan, Open AI, USA
Joakim Nivre, Uppsala University, Sweden
Barbara Plank, University of Groeningen, Netherlands
Tamara Polajnar, Cambridge University/Mrs. Wordsmith, UK
Alessandro Raganato, Sapienza-Universty of Rome, Italy
Sebastian Ruder, Insight Research Centre for Data Analytics, Ireland
Alexander Rush, Harvard University, USA
Karl Stratos, Toyota Technological Institute at Chicago, USA
Sara Stymme, Uppsala University, Sweden

v

Yulia Tsetkov, Carnegie Mellon University, USA
Eva Maria Vecchi, University of Stuttgart, Germany
Adina Williams, NYU, USA
Bing Xiang, Amazon AWS, USA

Invited Speakers:

Chris Dyer, DeepMind, Carnegie Mellon University
Emily Bender, University of Washington
Jason Eisner, Johns Hopkins University
Mark Johnson, Macquarie University

vi

Table of Contents

Compositional Morpheme Embeddings with Affixes as Functions and Stems as Arguments
Daniel Edmiston and Karl Stratos . 1

Unsupervised Source Hierarchies for Low-Resource Neural Machine Translation
Anna Currey and Kenneth Heafield . 6

Latent Tree Learning with Differentiable Parsers: Shift-Reduce Parsing and Chart Parsing
Jean Maillard and Stephen Clark . 13

Syntax Helps ELMo Understand Semantics: Is Syntax Still Relevant in a Deep Neural Architecture for
SRL?

Emma Strubell and Andrew McCallum . 19

Subcharacter Information in Japanese Embeddings: When Is It Worth It?
Marzena Karpinska, Bofang Li, Anna Rogers and Aleksandr Drozd . 28

A neural parser as a direct classifier for head-final languages
Hiroshi Kanayama, Masayasu Muraoka and Ryosuke Kohita . 38

Syntactic Dependency Representations in Neural Relation Classification
Farhad Nooralahzadeh and Lilja Øvrelid . 47

vii

Conference Program

Thursday, June 19, 2018

8:50–9:00 Opening Remarks

Session 1

9:00–10:00 Invited Talk: Chris Dyer

10:00–10:20 Compositional Morpheme Embeddings with Affixes as Functions and Stems as Ar-
guments
Daniel Edmiston and Karl Stratos

10:20–11:00 Break

Session 2

11:00–12:00 Invited Talk: Mark Johnson

12:00–12:20 Unsupervised Source Hierarchies for Low-Resource Neural Machine Translation
Anna Currey and Kenneth Heafield

12:20–13:30 Lunch

Session 3

13:30–14:30 Poster session

14:30–15:30 Invited Talk: Jason Eisner

15:30–16:00 Break

Session 4

16:00–17:00 Invited Talk: Emily Bender

17:00–18:00 Panel discussion

ix

Proceedings of the Workshop on the Relevance of Linguistic Structure in Neural Architectures for NLP, pages 1–5
Melbourne, Australia, July 19, 2018. c©2018 Association for Computational Linguistics

Compositional Morpheme Embeddings with Affixes as Functions and
Stems as Arguments

Daniel Edmiston
University of Chicago

danedmiston@uchicago.edu

Karl Stratos
Toyota Technical Institute at Chicago

stratos@ttic.edu

Abstract

This work introduces a linguistically
motivated architecture, which we label
STAFFNET, for composing morphemes to
derive word embeddings. The principal
novelty in the work is to treat stems as
vectors and affixes as functions over vec-
tors. In this way, our model’s architecture
more closely resembles the composition-
ality of morphemes in natural language.
Such a model stands in opposition to
models which treat morphemes uniformly,
making no distinction between stem and
affix. We run this new architecture on a de-
pendency parsing task in Korean—a lan-
guage rich in derivational morphology—
and compare it against a lexical base-
line, along with other sub-word architec-
tures. STAFFNET shows competitive per-
formance with the state-of-the-art on this
task.

1 Introduction

This work proposes a novel architecture for the
composition of morphemes to derive word embed-
dings. The architecture is motivated by linguistic
considerations and is designed to mirror the com-
position of morphemes in natural language. This
means making a hard distinction between affix and
stem (e.g. between content morphemes like stem
dog and functional morphemes like plural affix -s
in the word dogs), and recognizing the function-
argument relation between them. We reflect this
in our architecture by treating stems as vectors in
Rn, and affixes as functions (either linear or non-
linear, depending on model) from Rn to Rn. Given
the importance of stems and affixes in the architec-
ture, we label it St(em)Aff(ix)Net.

We test the viability of the linguistically moti-
vated STAFFNET on a dependency parsing task in
Korean—a language rich in derivational morphol-
ogy. Here, we achieve promising results for in-
fusing explicit linguistic analyses into NLP archi-
tectures. Specifically, the architecture achieves re-
sults which significantly outperform simple word-
embedding baselines, and are competitive with
other sub-word architectures which constitute the
current state-of-the-art for this task in Korean
(Stratos, 2017).

We therefore submit the following as our con-
tributions:

• We introduce a novel architecture for the
composition of word-embeddings which is
explicitly designed to mirror composition of
morphologically complex words in natural
language.

• Our novel architecture achieves state-of-the-
art performance in every case (see Table 1),
suggesting linguistic structure can be viable
for real-world NLP tasks.

2 Related Work

This work falls under a large body of work on
incorporating linguistically sound structures into
neural networks for more effective text represen-
tation. One such line of work is sub-lexical mod-
els. In these models, word representations are en-
riched by explicitly modeling characters (Ma and
Hovy, 2016; Kim et al., 2016) or morphemes
(Luong et al., 2013; Botha and Blunsom, 2014;
Cotterell et al., 2016). For languages with com-
plex orthography, sub-character models have also
been proposed. Previous works consider model-
ing graphical components of Chinese characters
called radicals (Sun et al., 2014; Yin et al., 2016)
and syllable-blocks of Korean characters—either

1

as atomic (Choi et al., 2017) or as non-linear func-
tions of underlying jamo letters through Unicode
decomposition (Stratos, 2017).

The present work also aims to incorporate sub-
word information into word embeddings, and does
so by modeling morphology. However, this work
differs from those above in the means of compo-
sition, as our method is based principally on func-
tion application. Here, we take derivational mor-
phemes (i.e. affixes) as functions, and stems as ar-
guments. Broadly speaking, this work can be seen
as an extension of Baroni et al. (2014)’s compo-
sitional distributional semantic framework to the
sub-word level. At a more narrow level, our work
is reminiscent of Baroni and Zamparelli (2010),
who model adjectives as matrices and nouns as
vectors, and work like Hartung et al. (2017), which
seeks to learn composition functions in addition to
vector representations.

3 Architecture and Linguistic Motivation

The intuition behind the decision to treat stems
and affixes differently is that to do otherwise is to
miss a key linguistic generalization with regard to
the composition of complex words. Furthermore,
we argue that to include stems and affixes in the
same space for comparison is akin to doing the
same for, say, real numbers and functions over real
numbers. In the same way that the squaring oper-
ation is defined as a function of its input, we argue
that an affix has meaning only insofar as the effect
it produces on its stem.

Regarding the behavior of morpheme compo-
sition in natural language, we know that stems
can compose to form compounds, and affixes can
attach successively to a stem. However, affixes
cannot exist in isolation—they must attach to a
stem. We seek for our architecture to display each
of these properties: compounding, successive af-
fix attachment, and inability to represent an affix
on its own. Therefore, in order to induce compo-
sitional morpheme representations, we learn not
only vectors for stems, but also a weight matrix
and bias for each affix.

To accomplish this, we use the Komoran part-
of-speech tagger included in the KoNLPy1 toolkit,
and have a trained theoretical linguist separate out
the stem parts of speech from the affix parts of
speech. We then parse Korean words into con-
stituent stems and affixes, and compute the com-

1Documentation for which is available at konlpy.org.

치즈버거들이

들이(=affixes)

이

NOM

들

PL

치즈버거(=stems)

버거

BURGER

치즈

CHEESE

Figure 1: Decomposition of 치즈버거들이
(=cheese.burger-PL.NOM)

positional representation of a word from these
constituent parts using a dynamic neural-network
architecture. The architecture can be conceptually
broken into three steps: (i) decomposing the word
into its constituent stems and affixes, (ii) comput-
ing the composite stem representation, and then
(iii) iteratively applying (equivalent to function
composition) the affix functions over the stem rep-
resentation.

To illustrate how the architecture works in de-
tail, we consider the morphologically complex
Korean word for “cheeseburgers” marked with
nominative case: 치즈버거들이(=cheese.burger-
PL.NOM).

First, the word is decomposed by our part-of-
speech tagger into a list of stems, [cheese, burger],
and a list of affixes, [PL, NOM]. This decomposi-
tion is as in Figure 1. Given a list of stems, we de-
cide how to construct a stem representation made
from the elements in that list. If the stem list has
only a single member, we simply return that stem’s
representation as the full stem representation.

Since cheese.burger is a compound stem, we
must go through the step of constructing a com-
posite stem representation. To do this, we first run
a vanilla bi-directional RNN over the stem se-
quence (the choice of a vanilla BiRNN rather than
a more powerful mechanism capable of capturing
long distance dependencies rests on the apparent
fact that Korean morphological dependencies are
strictly local, lacking phenomena like circumfixes
or non-concatenative morphology). This produces
an intermediate output for each stem in the se-
quence, e<t>, which we weight and then sum to-
gether for the composite stem representation.

In order to calculate the proper weighting
for each stem, w<t>, we compare each out-
put of the RNN via cosine-similarity with a
pre-trained embedding of the full sequence of

2

stems, in this case 치즈버거, or cheeseburger
with no affixes attached.2 This gives us scores
s<1> = cos(cheeseburger, cheese) and s<2> =
cos(cheeseburger, burger). We softmax the se-
quence [s<1>, s<2>], giving us our weights w<1>

and w<2>. The composite stem representation is
then the sum of our weighted intermediate scores,
i.e.

∑
tw

<t> · e<t>.
Presumably, since the word cheeseburger acts

more like burger than cheese, burger will receive
a higher cosine similarity and thus be weighted
more. In this way, our system has a natural and
dynamic way of weighting stems.

Now that we have a composite stem represen-
tation, we can feed it iteratively as an argument
to the affix list. Here, each affix is represented ei-
ther as a non-linear function λx.tanh(W · x + b)
in the model we call STAFFNET NON-LINEAR, or as
a linear function λx.W · x + b in the model we
call STAFFNET LINEAR (though there is still non-
linearity in the RNN calculating the composite
stem representations). The models are otherwise
identical, and in each case W and b are learn-
able parameters. The STAFFNET NON-LINEAR com-
putation graph for the example 치즈버거들이(=
cheese.burger-PL.NOM), or cheeseburgers in the
nominative case, is as in Figure 2.

4 Performance on Parsing Task

In order to test the efficacy of our composition
method, we ran experiments for both our lin-
ear and non-linear models on a dependency pars-
ing task using a publicly available Korean tree-
bank (McDonald et al., 2013).3 Word vectors were
composed as described above in 100 dimensions,
and then these representations were inserted into
the BiLSTM model of Kiperwasser and Goldberg
(2016).4 We then compared our results to the orig-
inal results in McDonald et al. (2013) and to those
reported in Stratos (2017) for various sub-word
architectures also run with Kiperwasser & Gold-
berg’s parser. These results were all trained on a
training set of 5,425 sentences over 30 epochs,
with the best model being chosen from a dev set
of 603 sentences. Finally, the test set consisted of
298 examples. The results are summarized in Ta-
ble 1.

2The pre-trained embeddings are word2vec (Mikolov
et al., 2013), skip-gram-induced embeddings with a window
of 5.

3https://github.com/ryanmcd/uni-dep-tb
4https://github.com/elikip/bist-parser

CHEESEd BURGERd

h<1> h<2>

e<1> e<2>

λx.cos(x,
−→
cb) λx.cos(x,

−→
cb)

softmax

× ×
∑

CHEESEBURGERd

λx.tanh(WPL · x + bPL)

λx.tanh(WNOM · x + bNOM)

CHEESE.BURGER-PL.NOMd

Figure 2: Composition of complex word
cheese.burger-PL.NOM

System embedding UAS LAS
McDonald13 word 71.22 55.85

K&G16 word 90.00 82.77
Stratos17 syllable 94.75 90.81

letter 94.59 90.77
syllable/letter 94.79 91.19
word/syl/let 95.17 92.31

STAFFNET stem & affix 95.17 92.89
NON-LINEAR word/stem & affix 95.06 92.93

STAFFNET stem & affix 95.48 93.43
LINEAR word/stem & affix 95.17 93.32

Table 1: System comparison

A quick examination of Table 1 shows that
our systems significantly outperform lexical base-
lines, showing that the incorporation of sub-word
information in a linguistically motivated fash-
ion can demonstrate good performance on NLP
tasks. Furthermore, our models are highly com-
petitive with competing sub-word architectures.
Both STAFFNET models achieve virtually identi-
cal results with those in Stratos (2017), with the
STAFFNET LINEAR model slightly edging out the
others. It is perhaps surprising that neither the

3

addition of non-linearity to affix transformations,
nor the concatenation of lexical representations to
STAFFNET representations appear to make any
significant change in results.

It is worth noting that the jump provided by in-
corporating sub-word information is significantly
higher for LAS than UAS when compared to the
lexical baselines.5 This could be due to the simple
fact that there is more room for improvement in
LAS than UAS, but we speculate below on a po-
tentially more interesting explanation based on the
apparent role of (certain types of) morphology in
natural language.

5 Discussion

It is no surprise that incorporating sub-word in-
formation outperforms more basic, lexically tok-
enized systems, and given the results in Table 1, it
is easy to be optimistic with regard to the idea of
incorporating sub-word information in a linguisti-
cally motivated fashion.

But what’s interesting is not so much the fact
that STAFFNET outperformed lexical baselines,
it is how it did it. In the best case, STAFFNET

outperformed K&G’s BiLSTM model with simple
word embeddings by 5.48 in UAS, but by 10.66
in LAS. We hypothesize that this jump was not
simply due to there being more room for improve-
ment in LAS. Rather, we speculate that this signif-
icant improvement in LAS was due to the apparent
role of certain types of morphology in natural lan-
guage, particularly case morphology. The role of
case morphology in natural language is to mark
relations between syntactic constituents. An ex-
plicit marker for syntactic relations like case mor-
phology is likely to aid in a task like LAS, where
the goal is to label these syntactic relationships.
This is especially true for Korean, where case mor-
phology is both regular and frequent. We hypothe-
size that morphologically aware architectures like
STAFFNET are well suited to leverage this infor-
mation when labelling arcs.

It may be asked why the syllable-based embed-
dings of Stratos (2017) also showed such a strong
improvement over lexical baselines in LAS ver-
sus UAS (82.77 to 90.81 and 90.00 to 94.75), but
this may have to do with the nature of the lexical

5Labeled Attachment Score, or LAS, refers to the percent-
age of correct assignments of words to their heads along with
the correct label. Unlabaled Attachment Score, or UAS, refers
only to the percentage of correct attachments, regardless of
label.

makeup of the Korean language. The vocabulary
of the Korean language is, depending on dictio-
nary, made up of between 52% and 69% of words
of Chinese origin, known as hanja. These hanja
are single-syllable, meaning-bearing units, mean-
ing it’s very likely that syllable embeddings im-
plicitly capture a great deal of meaningful lexical
content in a way that similar sub-word architec-
tures (e.g. fastText; Bojanowski et al., 2016) in lan-
guages like English cannot. Furthermore, many of
the most common case-markings in Korean con-
sist of a lone syllable, meaning this system too
would have a strong advantage at implicitly cap-
turing case meaning, and therefore have an advan-
tage when labelling arcs. It is less clear what to
make of the effectiveness of compositional letter
embeddings for Korean, though this representation
has by far the smallest number of parameters and
yet still shows state-of-the-art performance, mak-
ing it the most practical choice of sub-word archi-
tecture for Korean.

6 Conclusion and Future Work

This paper introduced a novel architecture,
STAFFNET, for composing word embeddings us-
ing morphemes as atomic units. It was novel in
that it made a distinction between stem represen-
tations and affix representations, the former being
vectors and the latter being (non-)linear functions
over those vectors. The intuition is to more closely
mimic how natural language is thought to handle
morphological composition and make a distinc-
tion between the lexically contentful and the func-
tional. We tested the mettle of this architecture in
a dependency parsing task, where it showed very
strong results, slightly outperforming the state-of-
the-art.

In addition to the practical import of achiev-
ing state-of-the-art performance in a novel way,
we argue that this exercise has been both useful
and enlightening from a linguistic viewpoint. Use-
ful in that a linguistically motivated system shows
strong performance and emerges as a candidate
for sub-word architectures (at least in morpholog-
ically rich languages like Korean), and enlighten-
ing in that the manner in which these composi-
tional morphemes improve upon the lexical base-
line is disproportionate in helping the parser label
its arcs. We speculate that this is because the na-
ture of relations between syntactic entities is often
reflected in the morphology, and this is especially

4

true in languages rich in case morphology.
We see future work going forward in any of

three directions:

• Improving upon the system described here;
we rely on the Komoran part-of-speech tag-
ger for decomposing words—is there a bet-
ter way to do this? Was the choice of vanilla
BiRNN for composite stem representation a
good one? Could we achieve even higher re-
sults with more sophisticated networks?

• Testing this architecture on other languages.
Korean is rich in case morphology. Would our
system show such improvement over lexical
baselines on languages with more impover-
ished morphology?

• Can this type of architecture be successful at
the level of syntax, as a means of deriving
compositional sentence embeddings?

Acknowledgments

The authors would like to thank John Goldsmith
and Liwen Zhang for stimulating discussion re-
lated to STAFFNET.

References
Marco Baroni, Raffaella Bernardi, and Roberto Zam-

parelli. 2014. Frege in space: A program for compo-
sitional distributional semantics. Linguistic Issues
in Language Technology, 9:241–346.

Marco Baroni and Roberto Zamparelli. 2010. Nouns
are vectors, adjectives are matrices: Representing
adjective-noun constructions in semantic space. In
Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages
1183–1193.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching word vectors with
subword information.

Jan A Botha and Phil Blunsom. 2014. Compositional
morphology for word representations and language
modelling. In ICML, pages 1899–1907.

Sanghyuk Choi, Taeuk Kim, Jinseok Seol, and Sang-
goo Lee. 2017. A syllable-based technique for word
embeddings of Korean words. In Proceedings of
the First Workshop on Subword and Character Level
Models in NLP, pages 36–40.

Ryan Cotterell, Hinrich Schütze, and Jason Eisner.
2016. Morphological smoothing and extrapola-
tion of word embeddings. In Proceedings of
the 54th Annual Meeting of the Association for

Computational Linguistics, volume 1, pages 1651–
1660.

Matthias Hartung, Fabian Kaupmann, Soufian Jebbara,
and Philipp Cimiano. 2017. Learning composition-
ality functions on word embeddings for modelling
attribute meaning in adjective-noun phrases. In
Proceedings of the 15th Conference of the European
Chapter of the Association for Computational
Linguistics, volume 1, pages 54–64.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Thirtieth AAAI Conference on Artificial
Intelligence.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional lstm feature representations. In Transactions
of the Association for Computational Linguistics,
volume 4, pages 313–327.

Thang Luong, Richard Socher, and Christopher D
Manning. 2013. Better word representations with
recursive neural networks for morphology. In
CoNLL, pages 104–113.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. In
Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1064–1074, Berlin, Ger-
many. Association for Computational Linguistics.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuzman
Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Os-
car Täckström, Claudia Bedini, Núria Bertomeu
Castelló, and Jungmee Lee. 2013. Universal de-
pendency annotation for multilingual parsing. In
Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics, vol-
ume 2, pages 92–97.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Karl Stratos. 2017. A sub-character architecture for
Korean language processing. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 721–726, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Yaming Sun, Lei Lin, Nan Yang, Zhenzhou Ji, and
Xiaolong Wang. 2014. Radical-enhanced Chinese
character embedding. In International Conference
on Neural Information Processing, pages 279–286.
Springer.

Rongchao Yin, Quan Wang, Rui Li, Peng Li, and Bin
Wang. 2016. Multi-granularity Chinese word em-
bedding. In Proceedings of the Empiricial Methods
in Natural Language Processing.

5

Proceedings of the Workshop on the Relevance of Linguistic Structure in Neural Architectures for NLP, pages 6–12
Melbourne, Australia, July 19, 2018. c©2018 Association for Computational Linguistics

Unsupervised Source Hierarchies for Low-Resource Neural Machine
Translation

Anna Currey
University of Edinburgh

a.currey@sms.ed.ac.uk

Kenneth Heafield
University of Edinburgh

kheafiel@inf.ed.ac.uk

Abstract

Incorporating source syntactic infor-
mation into neural machine translation
(NMT) has recently proven success-
ful (Eriguchi et al., 2016; Luong et al.,
2016). However, this is generally done
using an outside parser to syntactically
annotate the training data, making this
technique difficult to use for languages or
domains for which a reliable parser is not
available. In this paper, we introduce an
unsupervised tree-to-sequence (tree2seq)
model for neural machine translation; this
model is able to induce an unsupervised
hierarchical structure on the source sen-
tence based on the downstream task of
neural machine translation. We adapt the
Gumbel tree-LSTM of Choi et al. (2018)
to NMT in order to create the encoder.

We evaluate our model against sequen-
tial and supervised parsing baselines on
three low- and medium-resource language
pairs. For low-resource cases, the unsuper-
vised tree2seq encoder significantly out-
performs the baselines; no improvements
are seen for medium-resource translation.

1 Introduction

Neural machine translation (NMT) is a widely
used approach to machine translation that is of-
ten trained without outside linguistic information.
In NMT, sentences are typically modeled using
recurrent neural networks (RNNs), so they are
represented in a continuous space, alleviating the
sparsity issue that afflicted many previous ma-
chine translation approaches. As a result, NMT
is state-of-the-art for many language pairs (Ben-
tivogli et al., 2016; Toral and Sánchez-Cartagena,
2017).

Despite these successes, there is room for
improvement. RNN-based NMT is sequential,
whereas natural language is hierarchical; thus,
RNNs may not be the most appropriate models for
language. In fact, these sequential models do not
fully learn syntax (Bentivogli et al., 2016; Linzen
et al., 2016; Shi et al., 2016). In addition, al-
though NMT performs well on high-resource lan-
guages, it is less successful in low-resource sce-
narios (Koehn and Knowles, 2017).

As a solution to these challenges, researchers
have incorporated syntax into NMT, particularly
on the source side. Notably, Eriguchi et al. (2016)
introduced a tree-to-sequence (tree2seq) NMT
model in which the RNN encoder was augmented
with a tree long short-term memory (LSTM) net-
work (Tai et al., 2015). This and related techniques
have yielded improvements in NMT; however, in-
jecting source syntax into NMT requires parsing
the training data with an external parser, and such
parsers may be unavailable for low-resource lan-
guages. Adding syntactic source information may
improve low-resource NMT, but we would need a
way of doing so without an external parser.

We would like to mimic the improvements that
come from adding source syntactic hierarchies
to NMT without requiring syntactic annotations
of the training data. Recently, there have been
some proposals to induce unsupervised hierarchies
based on semantic objectives for sentiment anal-
ysis and natural language inference (Choi et al.,
2018; Yogatama et al., 2017). Here, we apply
these hierarchical sentence representations to low-
resource neural machine translation.

In this work, we adapt the Gumbel tree-LSTM
of Choi et al. (2018) to low-resource NMT, allow-
ing unsupervised hierarchies to be injected into
the encoder. We compare this model to sequen-
tial neural machine translation, as well as to NMT
enriched with information from an external parser.

6

Our proposed model yields significant improve-
ments in very low-resource NMT without requir-
ing outside data or parsers beyond what is used in
standard NMT; in addition, this model is not sig-
nificantly slower to train than RNN-based models.

2 Neural Machine Translation

Neural machine translation (Cho et al., 2014;
Kalchbrenner and Blunsom, 2013; Sutskever et al.,
2014) is an end-to-end neural approach to ma-
chine translation consisting of an encoder, a de-
coder, and an attention mechanism (Bahdanau
et al., 2015). The encoder and decoder are usu-
ally LSTMs (Hochreiter and Schmidhuber, 1997)
or gated recurrent units (GRUs) (Cho et al., 2014).
The encoder reads in the source sentence and cre-
ates an embedding; the attention mechanism cal-
culates a weighted combination of the words in the
source sentence. This is then fed into the decoder,
which uses the source representations to generate
a translation in the target language.

3 Unsupervised Tree-to-Sequence NMT

We modify the standard RNN-based neural ma-
chine translation architecture by combining a se-
quential LSTM decoder with an unsupervised
tree-LSTM encoder. This encoder induces hier-
archical structure on the source sentence without
syntactic supervision. We refer to models contain-
ing this encoder as (unsupervised) tree2seq.

In this section, we present our unsupervised
tree2seq model. Section 3.1 describes the
subword-level representations, while section 3.2
explains how the Gumbel tree-LSTM is used to
add hierarchies in the encoder. We address top-
down representations of the phrase nodes in sec-
tion 3.3 and explain the attention mechanism in
section 3.4.

3.1 Word Node Representations

The hierarchical encoder consists of word nodes
(nodes corresponding to the subwords of the
source sentence) and phrase nodes (internal nodes
resulting from the induced hierarchies). In order to
obtain representations of the word nodes, we run
a single-layer bidirectional LSTM over the source
sentence; we refer to this LSTM as the leaf LSTM.

3.2 Phrase Node Representation

Our proposed unsupervised tree-LSTM encoder
uses a Gumbel tree-LSTM (Choi et al., 2018) to

obtain the phrase nodes of the source sentence.
This encoder introduces unsupervised, discrete hi-
erarchies without modifying the maximum like-
lihood objective used to train NMT by leverag-
ing straight-through Gumbel softmax (Jang et al.,
2017) to sample parsing decisions.

In a Gumbel tree-LSTM, the hidden state hp

and memory cell cp for a given node are computed
recursively based on the hidden states and mem-
ory nodes of its left and right children (hl, hr, cl,
and cr). This is done as in a standard binary tree-
LSTM as follows:




i
fl
fr
o
g



=




σ
σ
σ
σ

tanh




(
W

[
hl

hr

]
+ b

)
(1)

cp = fl � cl + fr � cr + i� g (2)

hp = o� tanh (cp) (3)

where W is the weight matrix, b is the bias vector,
σ is the sigmoid activation function, and � is the
element-wise product.

However, the Gumbel tree-LSTM differs from
standard tree-LSTMs in that the selection of nodes
to merge at each timestep is done in an unsuper-
vised manner. At each timestep, each pair of adja-
cent nodes is considered for merging, and the hid-
den states ĥi for each candidate parent represen-
tation are computed using equation 3. A compo-
sition query vector q, which is simply a vector of
trainable weights, is used to obtain a score vi for
each candidate representation as follows:

vi =
exp

(
q · ĥi

)

∑
j exp

(
q · ĥj

) (4)

Finally, the straight-through Gumbel softmax
estimator (Jang et al., 2017) is used to sample
a parent from the candidates ĥi based on these
scores vi; this allows us to sample a hard parent
selection while still maintaining differentiability.

This process continues until there is only one re-
maining node that summarizes the entire sentence;
we refer to this as the root node. At inference time,
straight-through Gumbel softmax is not used; in-
stead, we greedily select the highest-scoring can-
didate. See Choi et al. (2018) for a more detailed
description of Gumbel tree-LSTMs.

7

Thus, this encoder induces a binary hierarchy
over the source sentence. For a sentence of length
n, there are n word nodes and n− 1 phrase nodes
(including the root node). We initialize the de-
coder using the root node; attention to word and/or
phrase nodes is described in section 3.4.

3.3 Top-Down Encoder Pass
In the bottom-up tree-LSTM encoder described in
the previous section, each node is able to incorpo-
rate local information from its respective children;
however, no global information is used. Thus, we
introduce a top-down pass, which allows the nodes
to take global information about the tree into ac-
count. We refer to models containing this top-
down pass as top-down tree2seq models. Note
that such a top-down pass has been shown to aid
in tree-based NMT with supervised syntactic in-
formation (Chen et al., 2017a; Yang et al., 2017);
here, we add it to our unsupervised hierarchies.

Our top-down tree implementation is similar
to the bidirectional tree-GRU of Kokkinos and
Potamianos (2017). The top-down root node h↓

root

is defined as follows:

h↓
root = h↑

root (5)

where h↑
root is the hidden state of the bottom-

up root node (calculated using the Gumbel tree-
LSTM described in section 3.2).

For each remaining node, including word
nodes, the top-down representation h↓

i is com-
puted from its bottom-up hidden state representa-
tion h↑

i (calculated using the Gumbel tree-LSTM)
and the top-down representation of its parent h↓

p

(calculated during the previous top-down steps)
using a GRU:

[
z↓i
r↓i

]
= σ

(
Wtdh↑

i +Utdh↓
p + btd

)
(6)

h̃↓
i = tanh

(
Wtd

h h↑
i +Utd

h

(
r↓i � h↓

p

)
+ btd

h

)

(7)

h↓
i =

(
1− z↓i

)
h↓
p + z↓i h̃

↓
i (8)

where Wtd, Utd, Wtd
h , and Utd

h are weight ma-
trices; btd and btd

h are bias vectors; and σ is the
sigmoid activation function. Note that we do not
use different weights for left and right children of
a given parent.

Each node needs a final representation to sup-
ply to the attention mechanism. Here, the top-
down version of each node is used, because the
top-down version captures both local and global
information about the node.

The decoder is initialized with the top-down
representation of the root node. Note, however,
that this is identical to the bottom-up representa-
tion of the root node, so no additional top-down
information is used to initialize the decoder. Since
the root node contains information about the entire
sentence, this allows the decoder to be initialized
with a summary of the source sentence, mirroring
standard sequential NMT.

3.4 Attention to Words and Phrases

The standard and top-down tree2seq models take
different approaches to attention. The standard
(bottom-up) model attends to the intermediate
phrase nodes of the tree-LSTM, in addition to the
word nodes output by the leaf LSTM. This fol-
lows what was done by Eriguchi et al. (2016). We
use one attention mechanism for all nodes (word
and phrase), making no distinction between dif-
ferent node types. Note that without the attention
to the phrase nodes, the bottom-up tree2seq model
would be almost equivalent to standard seq2seq,
since the word nodes are created using a sequen-
tial LSTM (the only difference would be the use
of the root node to initialize the decoder).

When the top-down pass (section 3.3) is added
to the encoder, the final word nodes contain hier-
archical information from the entire tree, as well
as sequential information. Therefore, in the top-
down tree2seq model, we attend to the top-down
word nodes only, ignoring the phrase nodes. We
argue that attention to the phrase nodes is unneces-
sary, since the word nodes summarize the phrase-
level information; indeed, in preliminary experi-
ments, attending to phrase nodes did not yield im-
provements.

4 Experimental Setup

4.1 Data

The models are tested on Tagalog (TL)↔ English
(EN), Turkish (TR)↔ EN, and Romanian (RO)↔
EN. These pairs were selected because they range
from very low-resource to medium-resource, so
we can evaluate the models at various settings. Ta-
ble 1 displays the number of parallel training sen-
tences for each language pair.

8

Language Pair Sentences
TL↔EN 50 962
TR↔EN 207 373
RO↔EN 608 320

Table 1: Amount of parallel sentences for each
language pair after preprocessing.

The TR↔EN and RO↔EN data is from
the WMT17 and WMT16 shared tasks, respec-
tively (Bojar et al., 2017, 2016). Development
is done on newsdev2016 and evaluation on new-
stest2016. The TL↔EN data is from IARPA
MATERIAL Program language collection release
IARPA MATERIAL BASE-1B-BUILD v1.0. No
monolingual data is used for training.

The data is tokenized and truecased with the
Moses scripts (Koehn et al., 2007). We use byte
pair encoding (BPE) with 45k merge operations to
split words into subwords (Sennrich et al., 2016).
Notably, this means that the unsupervised tree en-
coder induces a binary parse tree over subwords
(rather than at the word level).

4.2 Baselines
We compare our models to an RNN-based atten-
tional NMT model; we refer to this model as
seq2seq. Apart from the encoder, this baseline
is identical to our proposed models. We train the
seq2seq baseline on unparsed parallel data.

For translations out of English, we also consider
an upper bound that uses syntactic supervision; we
dub this model parse2seq. This is based on the
mixed RNN model proposed by Li et al. (2017).
We parse the source sentences using the Stanford
CoreNLP parser (Manning et al., 2014) and lin-
earize the resulting parses. We parse before apply-
ing BPE, and do not add any additional structure
to segmented words; thus, final parses are not nec-
essarily binary. This is fed directly into a seq2seq
model (with increased maximum source sentence
length to account for the parsing tags).

4.3 Implementation
All models are implemented in OpenNMT-
py (Klein et al., 2017). They use word embedding
size 500, hidden layer size 1000, batch size 64,
two layers in the encoder and decoder, and dropout
rate 0.3 (Gal and Ghahramani, 2016). We set max-
imum sentence length to 50 (150 for parse2seq
source). Models are trained using Adam (Kingma
and Ba, 2015) with learning rate 0.001. For tree-
based models, we use a Gumbel temperature of

BLEU TL→EN TR→EN RO→EN
seq2seq 17.9 11.1 29.3
tree2seq 26.1 12.8 28.6
top-down tree2seq 25.3 13.2 28.6

Table 2: BLEU for the baseline and the unsuper-
vised tree2seq systems on *→EN translation.

BLEU EN→TL EN→TR EN→RO
seq2seq 15.9 8.5 27.3
parse2seq 17.1 9.0 28.4
tree2seq 23.1 9.7 27.3
top-down tree2seq 22.5 9.8 27.0

Table 3: BLEU for the baselines and the unsuper-
vised tree2seq systems on EN→* translation.

0.5, which performed best in preliminary experi-
ments. The tree-LSTM component of the unsu-
pervised tree2seq encoders has only a single layer.

We train until convergence on the validation set,
and the model with the highest BLEU on the vali-
dation set is used to translate the test data. During
inference, we set beam size to 12 and maximum
length to 100.

5 Results

5.1 Translation Performance

Tables 2 and 3 display BLEU scores for our un-
supervised tree2seq models translating into and
out of English, respectively. For the lower-
resource language pairs, TL↔EN and TR↔EN,
the tree2seq and top-down models consistently im-
prove over the seq2seq and parse2seq baselines.
However, for the medium-resource language pair
(RO↔EN), the unsupervised tree models do not
improve over seq2seq, unlike the parse2seq base-
line. Thus, inducing hierarchies on the source side
is most helpful in very low-resource scenarios.

5.2 Unsupervised Parses

Williams et al. (2017) observed that the parses
resulting from Gumbel tree-LSTMs for sentence
classification did not seem to fit a known formal-
ism. An examination of the parses induced by
our NMT models suggests this as well. Further-
more, the different models (tree2seq and top-down
tree2seq) do not seem to learn the same parses
for the same language pair. We display example
parses induced by the trained systems on a sen-
tence from the test data in Table 4.

9

Example Parse
EN→TR tree2seq (((others have) (((dismissed him) as) a)) (j@@ (oke .)))
EN→TR top-down ((((others have) dismissed) (him as)) ((a (j@@ oke)) .))
EN→RO tree2seq (((others have) dismissed) (him (((as a) joke) .)))
EN→RO top-down (others (((have ((dismissed him) (as a))) joke) .))

Table 4: Induced parses on an example sentence from the test data.

Language Pair tree2seq top-down
EN→TL 22.1% 16.4%
EN→TR 29.3% 21.3%
EN→RO 27.2% 27.2%
TL→EN 12.7% 22.7%
TR→EN 27.7% 22.9%
RO→EN 30.8% 11.4%

Table 5: Recombined subwords in the test data.

5.3 Subword Recombination

The unsupervised parses are trained over sub-
words; if the induced hierarchies have a linguis-
tic basis, we would expect the model to combine
subwords into words as a first step. For each
model, we calculate the percentage of subwords
that are recombined correctly; the results are in
Table 5. Corroborating the observations in the pre-
vious section, only a very low percentage of sub-
words are correctly recombined for each model.
This indicates that the parses the model learns are
likely not linguistic. In addition, subword recom-
bination does not seem to correlate with transla-
tion performance.

6 Related Work

Most work on adding source hierarchical informa-
tion to neural machine translation has used super-
vised syntax. Luong et al. (2016) used a multi-task
setup with a shared encoder to parse and trans-
late the source language. Eriguchi et al. (2016)
introduced a tree-LSTM encoder for NMT that
relied on an external parser to parse the training
and test data. The tree-LSTM encoder was im-
proved upon by Chen et al. (2017a) and Yang
et al. (2017), who added a top-down pass. Other
approaches have used convolutional networks to
model source syntax. Chen et al. (2017b) enriched
source word representations by extracting infor-
mation from the dependency tree; a convolutional
encoder was then applied to the representations.
Bastings et al. (2017) fed source dependency trees
into a graph convolutional encoder.

Inducing unsupervised or semi-supervised hi-
erarchies in NMT is a relatively recent research
area. Gehring et al. (2017a,b) introduced a fully

convolutional model for NMT, which improved
over strong sequential baselines. Hashimoto and
Tsuruoka (2017) added a latent graph parser to
the encoder, allowing it to learn dependency-like
source parses in an unsupervised manner. How-
ever, they found that pre-training the parser with
a small amount of human annotations yielded the
best results. Finally, Kim et al. (2017) introduced
structured attention networks, which extended ba-
sic attention by allowing models to attend to latent
structures such as subtrees.

7 Conclusions

In this paper, we have introduced a method for in-
corporating unsupervised structure into the source
side of NMT. For low-resource language pairs, this
method yielded strong improvements over sequen-
tial and parsed baselines. This technique is useful
for adding hierarchies to low-resource NMT when
a source-language parser is not available. Further
analysis indicated that the induced structures are
not similar to known linguistic structures.

In the future, we plan on exploring ways of in-
ducing unsupervised hierarchies on the decoder.
Additionally, we would like to try adding some
supervision to the source trees, for example in the
form of pre-training, in order to see whether actual
syntactic information improves our models.

Acknowledgements

This research is based upon work supported in part
by the Office of the Director of National Intel-
ligence (ODNI), Intelligence Advanced Research
Projects Activity (IARPA), via contract # FA8650-
17-C-9117. The views and conclusions contained
herein are those of the authors and should not be
interpreted as necessarily representing the official
policies, either expressed or implied, of ODNI,
IARPA, or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute
reprints for governmental purposes notwithstand-
ing any copyright annotation therein.

10

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations.

Joost Bastings, Ivan Titov, Wilker Aziz, Diego
Marcheggiani, and Khalil Sima’an. 2017. Graph
convolutional encoders for syntax-aware neural ma-
chine translation. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing. Association for Computational Linguis-
tics.

Luisa Bentivogli, Arianna Bisazza, Mauro Cettolo, and
Marcello Federico. 2016. Neural versus phrase-
based machine translation quality: A case study.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
257–267. Association for Computational Linguis-
tics.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Shujian Huang,
Matthias Huck, Philipp Koehn, Qun Liu, Varvara
Logacheva, Christof Monz, Matteo Negri, Matt
Post, Raphael Rubino, Lucia Specia, and Marco
Turchi. 2017. Findings of the 2017 Conference
on Machine Translation (WMT17). In Proceedings
of the Second Conference on Machine Translation,
pages 169–214. Association for Computational Lin-
guistics.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck, An-
tonio Jimeno Yepes, Philipp Koehn, Varvara Lo-
gacheva, Christof Monz, Matteo Negri, Aurélie
Névéol, Mariana Neves, Martin Popel, Matt Post,
Raphael Rubino, Carolina Scarton, Lucia Spe-
cia, Marco Turchi, Karin Verspoor, and Marcos
Zampieri. 2016. Findings of the 2016 Conference
on Machine Translation. In Proceedings of the First
Conference on Machine Translation, pages 131–
198. Association for Computational Linguistics.

Huadong Chen, Shujian Huang, David Chiang, and Ji-
ajun Chen. 2017a. Improved neural machine trans-
lation with a syntax-aware encoder and decoder. In
Proceedings of the 55th Annual Meeting of the ACL,
pages 1936–1945. Association for Computational
Linguistics.

Kehai Chen, Rui Wang, Masao Utiyama, Lemao Liu,
Akihiro Tamura, Eiichiro Sumita, and Tiejun Zhao.
2017b. Neural machine translation with source de-
pendency representation. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 2836–2842. Associa-
tion for Computational Linguistics.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder

for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1724–1734. Asso-
ciation for Computational Linguistics.

Jihun Choi, Kang Min Yoo, and Sang-goo Lee. 2018.
Learning to compose task-specific tree structures. In
Thirty-Second AAAI Conference on Artificial Intelli-
gence.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa
Tsuruoka. 2016. Tree-to-sequence attentional neu-
ral machine translation. In Proceedings of the 54th
Annual Meeting of the ACL, pages 823–833. Asso-
ciation for Computational Linguistics.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Advances in Neural Information
Processing Systems 29, pages 1019–1027.

Jonas Gehring, Michael Auli, David Grangier, and
Yann N Dauphin. 2017a. A convolutional encoder
model for neural machine translation. In Proceed-
ings of the 55th Annual Meeting of the ACL, pages
123–135. Association for Computational Linguis-
tics.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N Dauphin. 2017b. Convolu-
tional sequence to sequence learning. In Proceed-
ings of the 34th International Conference on Ma-
chine Learning, pages 1243–1252.

Kazuma Hashimoto and Yoshimasa Tsuruoka. 2017.
Neural machine translation with source-side latent
graph parsing. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing. Association for Computational Linguis-
tics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Cat-
egorical reparameterization with Gumbel-softmax.
In 5th International Conference on Learning Rep-
resentations.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In Proceedings of
the 2013 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1700–1709. Asso-
ciation for Computational Linguistics.

Yoon Kim, Carl Denton, Luong Hoang, and Alexan-
der M Rush. 2017. Structured attention networks.
In 5th International Conference on Learning Repre-
sentations.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Interna-
tional Conference on Learning Representations.

11

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M Rush. 2017. OpenNMT:
Open-source toolkit for neural machine translation.
In Proceedings of the 55th Annual Meeting of the
ACL. Association for Computational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: open source
toolkit for statistical machine translation. In Pro-
ceedings of the 45th Annual Meeting of the ACL,
pages 177–180. Association for Computational Lin-
guistics.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Pro-
ceedings of the First Workshop on Neural Machine
Translation, pages 28–39. Association for Compu-
tational Linguistics.

Filippos Kokkinos and Alexandros Potamianos. 2017.
Structural attention neural networks for improved
sentiment analysis. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics, pages 586–591. As-
sociation for Computational Linguistics.

Junhui Li, Deyi Xiong, Zhaopeng Tu, Muhua Zhu, Min
Zhang, and Guodong Zhou. 2017. Modeling source
syntax for neural machine translation. In Proceed-
ings of the 55th Annual Meeting of the ACL. Associ-
ation for Computational Linguistics.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn
syntax-sensitive dependencies. Transactions of the
Association for Computational Linguistics, 4:521–
535.

Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2016. Multi-task se-
quence to sequence learning. In 4th International
Conference on Learning Representations.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Proceedings of the
52nd Annual Meeting of the ACL, pages 55–60. As-
sociation for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the ACL, pages 1715–1725. Association
for Computational Linguistics.

Xing Shi, Inkit Padhi, and Kevin Knight. 2016. Does
string-based neural MT learn source syntax? In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1526–
1534. Association for Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in Neural Information Process-
ing Systems 27, pages 3104–3112.

Kai Sheng Tai, Richard Socher, and Christopher Man-
ning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In Proceedings of the 53rd Annual Meeting
of the ACL and the 7th International Joint Confer-
ence on Natural Language Processing, pages 1556–
1566. Association for Computational Linguistics.

Antonio Toral and Vı́ctor M Sánchez-Cartagena. 2017.
A multifaceted evaluation of neural versus phrase-
based machine translation for 9 language directions.
In Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, pages 1063–1073. Association for Com-
putational Linguistics.

Adina Williams, Andrew Drozdov, and Samuel R Bow-
man. 2017. Learning to parse from a semantic ob-
jective: It works. Is it syntax? arXiv preprint
arXiv:1709.01121.

Baosong Yang, Derek F Wong, Tong Xiao, Lidia S
Chao, and Jingbo Zhu. 2017. Towards bidirectional
hierarchical representations for attention-based neu-
ral machine translation. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1432–1441. Association
for Computational Linguistics.

Dani Yogatama, Phil Blunsom, Chris Dyer, Edward
Grefenstette, and Wang Ling. 2017. Learning to
compose words into sentences with reinforcement
learning. In 5th International Conference on Learn-
ing Representations.

12

Proceedings of the Workshop on the Relevance of Linguistic Structure in Neural Architectures for NLP, pages 13–18
Melbourne, Australia, July 19, 2018. c©2018 Association for Computational Linguistics

Latent Tree Learning with Differentiable Parsers:
Shift-Reduce Parsing and Chart Parsing

Jean Maillard, Stephen Clark
Computer Laboratory, University of Cambridge
jean@maillard.it, sc609@cam.ac.uk

Abstract

Latent tree learning models represent sen-
tences by composing their words accord-
ing to an induced parse tree, all based
on a downstream task. These models of-
ten outperform baselines which use (exter-
nally provided) syntax trees to drive the
composition order. This work contributes
(a) a new latent tree learning model based
on shift-reduce parsing, with competitive
downstream performance and non-trivial
induced trees, and (b) an analysis of the
trees learned by our shift-reduce model
and by a chart-based model.

1 Introduction

Popular recurrent neural networks in NLP, such
as the Gated Recurrent Unit (Cho et al., 2014)
and Long Short-Term Memory (Hochreiter and
Schmidhuber, 1997), compute sentence represen-
tations by reading their words in a sequence. In
contrast, the Tree-LSTM architecture (Tai et al.,
2015) processes words according to an input parse
tree, and manages to achieve improved perfor-
mance on a number of linguistic tasks.

Recently, Yogatama et al. (2016), Maillard et al.
(2017), and Choi et al. (2017) all proposed sen-
tence embedding models which work similarly to
a Tree-LSTM, but do not require any parse trees
as input. These models function without the as-
sistance of an external automatic parser, and with-
out ever being given any syntactic information as
supervision. Rather, they induce parse trees by
training on a downstream task such as natural lan-
guage inference. At the heart of these models is
a mechanism to assign trees to sentences – effec-
tively, a natural language parser. Williams et al.
(2017a) have recently investigated the tree struc-
tures induced by two of these models, trained for

a natural language inference task. Their analysis
showed that Yogatama et al. (2016) learns mostly
trivial left-branching trees, and has inconsistent
performance; while Choi et al. (2017) outperforms
all baselines (including those using trees from con-
ventional parsers), but learns trees that do not cor-
respond to those of conventional treebanks.

In this paper, we propose a new latent tree learn-
ing model. Similarly to Yogatama et al. (2016), we
base our approach on shift-reduce parsing. Unlike
their work, our model is trained via standard back-
propagation, which is made possible by exploit-
ing beam search to obtain an approximate gradient.
We show that this model performs well compared
to baselines, and induces trees that are not as triv-
ial as those learned by the Yogatama et al. model
in the experiments of Williams et al. (2017a).

This paper also presents an analysis of the trees
learned by our model, in the style of Williams et al.
(2017a). We further analyse the trees learned by
the model of Maillard et al. (2017), which had
not yet been done, and perform evaluations on
both the SNLI data (Bowman et al., 2015) and the
MultiNLI data (Williams et al., 2017b). The for-
mer corpus had not been used for the evaluation of
trees of Williams et al. (2017a), and we find that it
leads to more consistent induced trees.

2 Related work

The first neural model which learns to both parse a
sentence and embed it for a downstream task is by
Socher et al. (2011). The authors train the model’s
parsing component on an auxiliary task, based on
recursive autoencoders, while the rest of the model
is trained for sentiment analysis.

Bowman et al. (2016) propose the “Shift-
reduce Parser-Interpreter Neural Network”, a
model which obtains syntax trees using an in-
tegrated shift-reduce parser (trained on gold-

13

standard trees), and uses the resulting structure to
drive composition with Tree-LSTMs.

Yogatama et al. (2016) is the first model to
jointly train its parsing and sentence embedding
components. They base their model on shift-
reduce parsing. Their parser is not differentiable,
so they rely on reinforcement learning for training.

Maillard et al. (2017) propose an alternative
approach, inspired by CKY parsing. The algo-
rithm is made differentiable by using a soft-gating
approach, which approximates discrete candidate
selection by a probabilistic mixture of the con-
stituents available in a given cell of the chart. This
makes it possible to train with backpropagation.

Choi et al. (2017) use an approach similar to
easy-first parsing. The parsing decisions are dis-
crete, but the authors use the Straight-Through
Gumbel-Softmax estimator (Jang et al., 2017) to
obtain an approximate gradient and are thus able
to train with backpropagation.

Williams et al. (2017a) investigate the trees pro-
duced by Yogatama et al. (2016) and Choi et al.
(2017) when trained on two natural language in-
ference corpora, and analyse the results. They find
that the former model induces almost entirely left-
branching trees, while the latter performs well but
has inconsistent trees across re-runs with different
parameter initializations.

A number of other neural models have also been
proposed which create a tree encoding during pars-
ing, but unlike the above architectures rely on tra-
ditional parse trees. Le and Zuidema (2015) pro-
pose a sentence embedding model based on CKY,
taking as input a parse forest from an automatic
parser. Dyer et al. (2016) propose RNNG, a prob-
abilistic model of phrase-structure trees and sen-
tences, with an integrated parser that is trained on
gold standard trees.

3 Models

CKY The model of Maillard et al. (2017) is
based on chart parsing, and effectively works
like a CKY parser (Cocke, 1969; Kasami, 1965;
Younger, 1967) using a grammar with a single non-
terminal A with rules A → A A and A → α,
where α is any terminal. The parse chart is built
bottom-up incrementally, like in a standard CKY
parser. When ambiguity arises, due to the mul-
tiple ways to form a constituent, all options are
computed using a Tree-LSTM, and scored. The
constituent is then represented as a weighted sum

of all possible options, using the normalised scores
as weights. In order for this weighted sum to ap-
proximate a discrete selection, a temperature hy-
perparameter is used in the softmax. This process
is repeated for the whole chart, and the sentence
representation is given by the topmost cell.

We noticed in our experiments that the weighted
sum still occasionally assigned non-trivial weight
to more than one option. The model was thus able
to utilize multiple inferred trees, rather than a sin-
gle one, which would have potentially given it an
advantage over other latent tree models. Hence
for fairness, in our experiments we replace the
softmax-with-temperature of Maillard et al. (2017)
with a softmax followed by a straight-through es-
timator (Bengio et al., 2013). In the forward pass,
this approach is equivalent to an argmax function;
while in the backward pass it is equivalent to a soft-
max. Effectively, this means that a single tree is
selected during forward evaluation, but the train-
ing signal can still propagate to every path during
backpropagation. This change did not noticeably
affect performance on development data.

Beam Search Shift-Reduce We propose a
model based on beam search shift-reduce parsing
(BSSR). The parser works with a queue, which
holds the embeddings for the nodes representing
individual words which are still to be processed;
and a stack, which holds the embeddings of the
nodes which have already been computed. A stan-
dard binary Tree-LSTM function (Tai et al., 2015)
is used to compute the d-dimensional embeddings
of nodes:




i
fL

fR

u
o




= Ww + UhL + VhR + b,

c = cL ⊙ σ(fL) + cR ⊙ σ(fR)

+ tanh(u) ⊙ σ(i),

h = σ(o) ⊙ tanh(c),

where W,U are learned 5d × d matrices, and b
is a learned 5d vector. The d-dimensional vec-
tors σ(i), σ(fL), σ(fR) are known as input gate
and left- and right-forget gates, respectively. σ(ot)
and tanh(ut) are known as output gate and can-
didate update. The vector w is a word embed-
ding, while hL, hR and cL, cR are the childrens’
h- and c-states. At the beginning, the queue con-
tains embeddings for the nodes corresponding to

14

single words. These are obtained by computing
the Tree-LSTM with w set to the word embed-
ding, and hL/R, cL/R set to zero. When a SHIFT

action is performed, the topmost element of the
queue is popped, and pushed onto the stack. When
a REDUCE action is performed, the top two ele-
ments of the stack are popped. A new node is then
computed as their parent, by passing the children
through the Tree-LSTM, with w = 0. The new
node is then pushed onto the stack.

Parsing actions are scored with a simple multi-
layer perceptron, which looks at the top two stack
elements and the top queue element:

r = Ws1 · hs1 + Ws2 · hs2 + Wq · hq1,

p = softmax (a + A · tanh r),

where hs1, hs2, hq1 are the h-states of the top two
elements of the stack and the top element of the
queue, respectively. The three W matrices have
dimensions d × d and are learned; a is a learned
2-dimensional vector; and A is a learned 2 × d
vector. The final scores are given by log p, and the
best action is greedily selected at every time step.
The sentence representation is given by the h-state
of the top element of the stack after 2n − 1 steps.

In order to make this model trainable with gradi-
ent descent, we use beam search to select the b best
action sequences, where the score of a sequence of
actions is given by the sum of the scores of the in-
dividual actions. The final sentence representation
is then a weighted sum of the sentence representa-
tions from the elements of the beam. The weights
are given by the respective scores of the action
sequences, normalised by a softmax and passed
through a straight-through estimator. This is equiv-
alent to having an argmax on the forward pass,
which discretely selects the top-scoring beam el-
ement, and a softmax in the backward pass.

4 Experimental Setup

Data To match the settings of Maillard et al.
(2017), we run experiments with the SNLI cor-
pus (Bowman et al., 2015). We additionally run a
second set of experiments with the MultiNLI data
(Williams et al., 2017b), and to match Williams
et al. (2017a) we augment the MultiNLI train-
ing data with the SNLI training data. We call
this augmented training set MultiNLI+. For the
MultiNLI+ experiments, we use the matched ver-
sions of the development and test sets. We use

Model SNLI MultiNLI+

Prior work: Baselines

100D LSTM (Yogatama) 80.2 —
300D LSTM (Williams) 82.6 69.1
100D Tree-LSTM (Yogatama) 78.5 —
300D SPINN (Williams) 82.2 67.5

Prior work: Latent Tree Models

100D ST-Gumbel (Choi) 81.9 —
300D ST-Gumbel (Williams) 83.3 69.5
300D ST-Gumbel† (Williams) 83.7 67.5
100D CKY (Maillard) 81.6 —
100D RL-SPINN (Yogatama) 80.5 —
300D RL-SPINN† (Williams) 82.3 67.4

This work: Latent Tree Models

100D CKY (Ours) 82.2 69.1
100D BSSR (Ours) 83.0 69.0

Table 1: SNLI and MultiNLI (matched) test set ac-
curacy. †: results are for the model variant without
the leaf RNN transformation.

pre-trained 100D GloVe embeddings1 (Penning-
ton et al., 2014) for performance reasons, and
fine-tune them during training. Unlike Williams
et al. (2017a), we do not use a bidirectional leaf
transformation. Models are optimised with Adam
(Kingma and Ba, 2014), and we train five in-
stances of every model. For BSSR, we use a beam
size of 50, and let it linearly decrease to its final
size of 5 over the first two epochs.

Setup To assign the labels of entails, contra-
dicts, or neutral to the pairs of sentences, we
follow Yogatama et al. (2016) and concatenate
the two sentence embeddings, their element-wise
product, and their squared Euclidean distance into
a vector v. We then calculate q = ReLU (C · v +
c), where C is a 200 × 4d learned matrix and c a
200-dimensional learned bias; and finally predict
p(y = c | q) ∝ exp (B · q + b) where B is a
3 × 200 matrix and b is 3-dimensional.

5 Experiments

For each model and dataset, we train five instances
using different random initialisations, for a total of
2 × 2 × 5 = 20 instances.

NLI Accuracy We measure SNLI and MultiNLI
test set accuracy for CKY and BSSR. The aim is
to ensure that they perform reasonably, and are in
line with other latent tree learning models of a sim-
ilar size and complexity. Results for the best mod-

1
https://nlp.stanford.edu/projects/glove/

15

F1 w.r.t.
Left Branching Right Branching Stanford Parser

Dataset Model Self-F1 µ (σ) max µ (σ) max µ (σ) max

MultiNLI+ 300D SPINN (Williams) 71.5 19.3 (0.4) 19.8 36.9 (3.4) 42.6 70.2 (3.6) 74.5
MultiNLI+ 300D ST-Gumbel (Williams) 49.9 32.6 (2.0) 35.6 37.5 (2.4) 40.3 23.7 (0.9) 25.2
MultiNLI+ 300D ST-Gumbel† (Williams) 41.2 30.8 (1.2) 32.3 35.6 (3.3) 39.9 27.5 (1.0) 29.0
MultiNLI+ 300D RL-SPINN† (Williams) 98.5 99.1 (0.6) 99.8 10.7 (0.2) 11.1 18.1 (0.1) 18.2
MultiNLI+ 100D CKY (Ours) 45.9 32.9 (1.9) 35.1 31.5 (2.3) 35.1 23.7 (1.1) 25.0
MultiNLI+ 100D BSSR (Ours) 46.6 40.6 (6.5) 47.6 24.2 (6.0) 27.7 23.5 (1.8) 26.2
MultiNLI+ Random Trees (Williams) 32.6 27.9 (0.1) 27.9 28.0 (0.1) 28.1 27.0 (0.1) 27.1

SNLI 100D RL-SPINN (Yogatama) — — 41.4 — 19.9 — 41.7
SNLI 100D CKY (Ours) 59.2 43.9 (2.2) 46.9 33.7 (2.6) 36.7 30.3 (1.1) 32.1
SNLI 100D BSSR (Ours) 60.0 48.8 (5.2) 53.9 26.5 (6.9) 34.0 32.8 (3.5) 36.4
SNLI Random Trees (Ours) 35.9 32.3 (0.1) 32.4 32.5 (0.1) 32.6 32.3 (0.1) 32.5

Table 2: Unlabelled F1 scores of the trees induced by various models against: other runs of the same
model, fully left- and right-branching trees, and Stanford Parser trees provided with the datasets. The
baseline results on MultiNLI are from Williams et al. (2017a). †: results are for the model variant without
the leaf RNN transformation.

els, chosen based on development set performance,
are reported in Table 1.

While our models do not reach the state of the
art, they perform at least as well as other latent
tree models using 100D embeddings, and are com-
petitive with some 300D models. They also out-
perform the 100D Tree-LSTM of Yogatama et al.
(2016), which is given syntax trees, and match
or outperform 300D SPINN, which is explicitly
trained to parse.

Self-consistency Next, we examine the consis-
tency of the trees produced for the development
sets. Adapting the code of Williams et al. (2017a),
we measure the models’ self F1, defined as the un-
labelled F1 between trees by two instances of the
same model (given by different random initializa-
tions), averaged over all possible pairs. Results are
shown in Table 2. In order to test whether BSSR
and CKY learn similar grammars, we calculate the
inter-model F1, defined as the unlabelled F1 be-
tween instances of BSSR and CKY trained on the
same data, averaged over all possible pairs. We
find an average F1 of 42.6 for MultiNLI+ and 55.0
for SNLI, both above the random baseline.

Our Self F1 results are all above the baseline
of random trees. For MultiNLI+, they are in line
with ST-Gumbel. Remarkably, the models trained
on SNLI are noticeably more self-consistent. This
shows that the specifics of the training data play
an important role, even when the downstream
task is the same. A possible explanation is that
MultiNLI has longer sentences, as well as multiple
genres, including telephone conversations which

often do not constitute full sentences (Williams
et al., 2017b). This would require the models to
learn how to parse a wide variety of styles of data.
It is also interesting to note that the inter-model
F1 scores are not much lower than the self F1
scores. This shows that, given the same training
data, the grammars learned by the two different
models are not much more different than the gram-
mars learned by two instances of the same model.

F1 Scores Finally, we investigate whether these
models learn grammars that are recognisably left-
branching, right-branching, or similar to the trees
produced by the Stanford Parser which are in-
cluded in both datasets. We report the unlabelled
F1 between these and the trees from from our mod-
els in Table 2, averaged over the five model in-
stances. We show mean, standard deviation, and
maximum.

We find a slight preference from BSSR and the
SNLI-trained CYK towards left-branching struc-
tures. Our models do not learn anything that re-
sembles the trees from the Stanford Parser, and
have an F1 score with them which is at or be-
low the random baseline. Our results match those
of Williams et al. (2017a), which show that what-
ever these models learn, it does not resemble PTB
grammar.

6 Conclusions

First, we proposed a new latent tree learning
model based on a shift-reduce parser. Unlike a pre-
vious model based on the same parsing technique,
we showed that our approach does not learn triv-

16

ial trees, and performs competitively on the down-
stream task.

Second, we analysed the trees induced by our
shift-reduce model and a latent tree model based
on chart parsing. Our results confirmed those of
previous work on different models, showing that
the learned grammars do not resemble PTB-style
trees (Williams et al., 2017a). Remarkably, we saw
that the two different models tend to learn gram-
mars which are not much more different than those
learned by two instances of the same model.

Finally, our experiments highlight the impor-
tance of the choice of training data used for la-
tent tree learning models, even when the down-
stream task is the same. Our results suggest that
MultiNLI, which has on average longer sentences
coming from different genres, might be hinder-
ing the current models’ ability to learn consistent
grammars. For future work investigating this phe-
nomenon, it may be interesting to train models us-
ing only the written genres parts of MultiNLI, or
MultiNLI without the SNLI corpus.

Acknowledgments

We are grateful to Chris Dyer for the several pro-
ductive discussions. We would like to thank the
anonymous reviewers for their helpful comments.

References

Yoshua Bengio, Nicholas Léonard, and Aaron C.
Courville. 2013. Estimating or propagating gradi-
ents through stochastic neurons for conditional com-
putation. CoRR, abs/1308.3432.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP).

Samuel R Bowman, Jon Gauthier, Abhinav Rastogi,
Raghav Gupta, Christopher D Manning, and Christo-
pher Potts. 2016. A fast unified model for parsing
and sentence understanding. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1466–1477, Berlin, Germany. Association for Com-
putational Linguistics.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings of

the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Jihun Choi, Kang Min Yoo, and Sang-goo Lee. 2017.
Learning to compose task-specific tree structures.
arXiv, abs/1707.02786.

John Cocke. 1969. Programming Languages and Their
Compilers: Preliminary Notes. Courant Institute of
Mathematical Sciences, New York University.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network
grammars. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 199–209, San Diego, California.
Association for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categor-
ical reparameterization with gumbel-softmax.

T. Kasami. 1965. An efficient recognition and syntax
analysis algorithm for context-free languages. Tech-
nical Report AFCRL-65-758, Air Force Cambridge
Research Laboratory, Bedford, MA.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. arXiv,
abs/1412.6980.

Phong Le and Willem Zuidema. 2015. The forest con-
volutional network: Compositional distributional se-
mantics with a neural chart and without binarization.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1155–1164, Lisbon, Portugal. Association for Com-
putational Linguistics.

Jean Maillard, Stephen Clark, and Dani Yogatama.
2017. Jointly learning sentence embeddings
and syntax with unsupervised tree-lstms. arXiv,
abs/1705.09189.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543.

Richard Socher, Jeffrey Pennington, Eric H. Huang,
Andrew Y. Ng, and Christopher D. Manning. 2011.
Semi-supervised recursive autoencoders for predict-
ing sentiment distributions. In Proceedings of the
2011 Conference on Empirical Methods in Natural
Language Processing, pages 151–161, Edinburgh,
Scotland, UK. Association for Computational Lin-
guistics.

17

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1556–1566, Beijing, China. Association for
Computational Linguistics.

Adina Williams, Andrew Drozdov, and Samuel R.
Bowman. 2017a. Learning to parse from a seman-
tic objective: It works. is it syntax?

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2017b. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv,
abs/1704.05426.

Dani Yogatama, Phil Blunsom, Chris Dyer, Edward
Grefenstette, and Wang Ling. 2016. Learning to
compose words into sentences with reinforcement
learning. arXiv, abs/1611.09100.

Daniel H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 10:189–208.

18

Proceedings of the Workshop on the Relevance of Linguistic Structure in Neural Architectures for NLP, pages 19–27
Melbourne, Australia, July 19, 2018. c©2018 Association for Computational Linguistics

Syntax Helps ELMo Understand Semantics:
Is Syntax Still Relevant in a Deep Neural Architecture for SRL?

Emma Strubell Andrew McCallum
College of Information and Computer Sciences

University of Massachusetts Amherst
{strubell, mccallum}@cs.umass.edu

Abstract

Do unsupervised methods for learning
rich, contextualized token representations
obviate the need for explicit modeling
of linguistic structure in neural network
models for semantic role labeling (SRL)?
We address this question by incorporat-
ing the massively successful ELMo em-
beddings (Peters et al., 2018) into LISA
(Strubell and McCallum, 2018), a strong,
linguistically-informed neural network ar-
chitecture for SRL. In experiments on
the CoNLL-2005 shared task we find
that though ELMo out-performs typical
word embeddings, beginning to close the
gap in F1 between LISA with predicted
and gold syntactic parses, syntactically-
informed models still out-perform syntax-
free models when both use ELMo, espe-
cially on out-of-domain data. Our results
suggest that linguistic structures are in-
deed still relevant in this golden age of
deep learning for NLP.

1 Introduction

Many state-of-the-art NLP models are now “end-
to-end” deep neural network architectures which
eschew explicit linguistic structures as input in
favor of operating directly on raw text (Ma and
Hovy, 2016; Lee et al., 2017; Tan et al., 2018).
Recently, Peters et al. (2018) proposed a method
for unsupervised learning of rich, contextually-
encoded token representations which, when sup-
plied as input word representations in end-to-end
models, further increased these models’ perfor-
mance by up to 25% across many NLP tasks. The
immense success of these linguistically-agnostic
models brings into question whether linguistic
structures such as syntactic parse trees still pro-

vide any additional benefits in a deep neural net-
work architecture for e.g. semantic role labeling
(SRL).

In this work, we aim to begin to answer
this question by experimenting with incorporat-
ing the ELMo embeddings of Peters et al. (2018)
into LISA (Strubell and McCallum, 2018), a
“linguistically-informed” deep neural network ar-
chitecture for SRL which, when given weaker
GloVe embeddings as inputs (Pennington et al.,
2014), has been shown to leverage syntax to out-
perform a state-of-the-art, linguistically-agnostic
end-to-end SRL model.

In experiments on the CoNLL-2005 English
SRL shared task, we find that, while the ELMo
representations out-perform GloVe and begin to
close the performance gap between LISA with
predicted and gold syntactic parses, syntactically-
informed models still out-perform syntax-free
models, especially on out-of-domain data. Our re-
sults suggest that with the right modeling, incorpo-
rating linguistic structures can indeed further im-
prove strong neural network models for NLP.

2 Models

We are interested in assessing whether linguistic
information is still beneficial in addition to deep,
contextualized ELMo word embeddings in a neu-
ral network model for SRL. Towards this end, our
base model for experimentation is Linguistically-
Informed Self-Attention (LISA) (Strubell and Mc-
Callum, 2018), a deep neural network model
which uses multi-head self-attention in the style
of Vaswani et al. (2017) for multi-task learning
(Caruana, 1993) across SRL, predicate detection,
part-of-speech tagging and syntactic parsing. Syn-
tax is incorporated by training one self-attention
head to attend to each token’s syntactic head, al-
lowing it to act as an oracle providing syntactic in-

19

formation to further layers used to predict seman-
tic roles. We summarize the key points of LISA in
§2.1.

Strubell and McCallum (2018) showed that
LISA out-performs syntax-free models when both
use GloVe word embeddings as input, which, due
to their availability, size and large training cor-
pora, are typically used as input to end-to-end NLP
models. In this work, we replace those token rep-
resentations with ELMo representations to assess
whether ELMo embeddings are sufficiently rich
to obviate the need for explicit representations of
syntax, or the model still benefits from syntactic
information in addition to the rich ELMo encod-
ings. In §2.2 and §2.3 we summarize how GloVe
and ELMo embeddings, respectively, are incorpo-
rated into this model.

2.1 LISA SRL model
2.1.1 Neural network token encoder
The input to LISA is a sequence X of T token
representations xt. The exact form of these rep-
resentations when using GloVe embeddings is de-
scribed in §2.2, and for ELMo described in §2.3.
Following Vaswani et al. (2017), we add a sinu-
soidal positional encoding to these vectors since
the self-attention has no inherent mechanism for
modeling token position.

These token representations are supplied to a se-
ries of J multi-head self-attention layers similar to
those that make up the encoder model of Vaswani
et al. (2017). We denote the jth layer with the
function S(j)(·) and the output of that layer for to-
ken t as s(j)t :

s
(j)
t = S(j)(s

(j−1)
t) (1)

Each S(j)(·) consists of two components: (a)
multi-head self-attention and (b) a convolutional
layer. For brevity, we will detail (a) here as it is
how we incorporate syntax into the model, but we
leave the reader to refer to Strubell and McCallum
(2018) for more details on (b).

The multi-head self attention consists of H at-
tention heads, each of which learns a distinct at-
tention function to attend to all of the tokens in
the sequence. This self-attention is performed for
each token for each head, and the results of the H
self-attentions are concatenated to form the final
self-attended representation for each token.

Specifically, consider the matrix S(j−1) of T to-
ken representations at layer j − 1. For each atten-

tion head h, we project this matrix into distinct
key, value and query representations K

(j)
h , V

(j)
h

and Q
(j)
h of dimensions T×dk, T×dq, and T×dv,

respectively. We can then multiply Q
(j)
h by K

(j)
h

to obtain a T × T matrix of attention weights A(j)
h

between each pair of tokens in the sentence. Fol-
lowing Vaswani et al. (2017) we perform scaled
dot-product attention: We scale the weights by the
inverse square root of their embedding dimension
and normalize with the softmax function to pro-
duce a distinct distribution for each token over all
the tokens in the sentence:

A
(j)
h = softmax(d−0.5k Q

(j)
h K

(j)
h

T
) (2)

These attention weights are then multiplied by
V

(j)
h for each token to obtain the self-attended to-

ken representations M (j)
h :

M
(j)
h = A

(j)
h V

(j)
h (3)

Row t of M (j)
h , the self-attended representation for

token t at layer j, is thus the weighted sum with
respect to t (given by A

(j)
h) over the token repre-

sentations in V
(j)
h . The representations for each

attention head are concatenated, and this represen-
tation is fed through a convolutional layer to pro-
duce s

(j)
t . In all of our models, we use J = 4,

H = 8 and dk = dq = dv = 64.

2.1.2 Incorporating syntax
LISA incorporates syntax by training one atten-
tion head to attend to each token’s parent in a syn-
tactic dependency parse tree. At layer jp, H − 1
heads are left to learn on their own to attend to rel-
evant tokens in the sentence, while one head hp is
trained with an auxiliary objective which encour-
ages the head to put all attention weight on each to-
ken’s syntactic parent. Denoting the entry of A(jp)

hp

corresponding to the attention from token t to to-
ken q as atq, then we model the probability that q
is the head of t as: P (q = head(t) | X) = atq.
Trained in this way, A(jp)

hp
emits a directed graph,

where each token’s syntactic parent is that which
is assigned the highest attention weight. During
training, this head’s attention weights are set to
match the gold parse: A

(jp)
hp

is set to the adja-
cency matrix of the parse tree,1 allowing down-
stream layers to learn to use the parse informa-

1Roots are represented by self-loops.

20

tion throughout training. In our experiments we
set jp = 3.

In this way, LISA is trained to use A
(jp)
hp

as
an oracle providing parse information to down-
stream layers. This representation is flexible, al-
lowing LISA to use its own predicted parse, or
a parse produced by another dependency parser.
Since LISA is trained to leverage gold parse in-
formation, as higher-accuracy dependency parses
become available, they can be provided to LISA to
improve SRL without requiring re-training of the
SRL model.

2.1.3 Predicting POS and predicates

LISA is also trained to predict parts-of-speech and
predicates using hard parameter sharing (Caru-
ana, 1993). At layer jpos, the token representa-
tion s

(jpos)
t is provided as features for a multi-

class classifier into the joint label space of part-
of-speech and (binary) predicate labels: For each
part-of-speech tag which is the tag for a predi-
cate in the training data, we add a tag of the form
TAG:PREDICATE. Locally-normalized probabili-
ties are computed using the softmax function, and
we minimize the sum of this loss term with the
SRL and syntax losses. In our experiments we use
jpos = 2.

2.1.4 Predicting semantic roles

LISA’s final network representations S(J) are used
to predict semantic roles. Each token’s final rep-
resentation s

(J)
t is projected to distinct predicate

and role representations spredt and srolet . Each pre-
dicted predicate2 is scored against all other tokens’
role representations to produce per-label scores for
each predicate-token pair using a bilinear operator
U . Per-label scores across semantic roles with re-
spect to predicate f and token t are thus given by:

sft = spredf Usrolet (4)

With the locally-normalized probability of the cor-
rect role label yft given by: P (yft | X) ∝
softmax(sft). At test time, we use Viterbi decod-
ing to enforce BIO constraints with fixed transi-
tion probabilities between tags obtained from the
training data.

2During training, semantic role predictions are condi-
tioned on the gold predicates. At test time they are condi-
tioned on LISA’s predicted predicates (§2.1.3).

2.2 GLoVe embedding model

The GloVe word embedding model (Penning-
ton et al., 2014), like word2vec’s skip-gram and
CBOW (Mikolov et al., 2013) algorithms, is a
shallow, log-bilinear embedding model for learn-
ing unsupervised representations of words based
on the intuition that words which occur in sim-
ilar contexts should have similar representations.
GloVe Vectors are learned for each word in a fixed
vocabulary by regressing on entries in the word
co-occurrence matrix constructed from a large cor-
pus: The dot product between two words’ em-
beddings should equal the log probability of the
words’ co-occurrence in the data. We refer the
reader to Pennington et al. (2014) for a more de-
tailed description of the model.

We incorporate pre-trained GloVe embeddings
into our model following Strubell and McCal-
lum (2018): We fix the pre-trained embeddings
and add a learned word embedding representa-
tion to the pre-trained word vectors, following the
intuition that fixing the pre-trained embeddings
and learning a residual word representation keeps
words observed during training from drifting too
far away from the pre-trained representations of
unobserved words. We then feed these representa-
tions through K width-3 convolutional layers with
residual connections. See Strubell and McCallum
(2018) for more details on these layers. In our ex-
periments we use K = 2 and convolutional filters
of size 1024. We use the typical 100 dimensional
GloVe embeddings pre-trained on 6 billion tokens
of text from Wikipedia and Gigaword.3

2.3 ELMo embedding model

The ELMo model (Peters et al., 2018) produces
deep, contextually embedded token representa-
tions by training stacked convolutional, highway
and bi-directional LSTM (bi-LSTM) layers on a
large corpus of text with an unsupervised language
modeling (LM) objective. The expressiveness of
this model compared to GloVe-style embeddings
models differs in two key ways: (1) ELMo ob-
serves the entire sentence of context to model each
token rather than relying on a small, fixed window
and (2) ELMo does not rely on a fixed vocabu-
lary of token embeddings, instead building up to-
ken representations from characters.

The ELMo architecture enhances the bidirec-
3https://nlp.stanford.edu/projects/

glove/

21

tional LM architecture from Peters et al. (2017).
The model first composes character embeddings
into word type embeddings using a convolutional
layer followed by highway layers. Then these
token representations are passed to multiple bi-
LSTM layers, all of which are trained end-to-end
to jointly optimize forward and backward LM ob-
jectives. ELMo additionally learns a small number
of task-specific parameters to compose and scale
the outputs of each LM, producing a task-specific
embedding for each token in context. The intu-
ition behind these task-specific parameters is that
different tasks will benefit from different weight-
ings of shallower and deeper LM representations.
For example, parsing might favor earlier layers
which better capture syntactic patterns, whereas
question answering might favor later layers which
capture higher level semantics of the sentence. Pe-
ters et al. (2018) experiment with adding ELMo
embeddings on the input and output of some ar-
chitectures, with varying results across different
tasks. We incorporate ELMo embeddings into
the model by keeping the pre-trained parameters
fixed but learning a task-specific combination of
the layer outputs which we feed as inputs to our
model, as described in Peters et al. (2018). We fol-
low their implementation for the SRL architecture
of (He et al., 2017) and use the ELMo embeddings
only as input to the model. We refer to Peters et al.
(2018) for more details on this model.

We use the pre-trained TensorFlow ELMo
model4, which consists of one character-level con-
volutional layer with 2048 filters followed by two
highway layers followed by two bi-LSTM lay-
ers with 4096 hidden units. All three layers are
projected down to 512 dimensional representa-
tions over which our task-specific parameters are
learned. This model is trained on the 1B Word
Benchmark (Chelba et al., 2014), which consists
of filtered English newswire, news commentary
and European parliament proceedings from the
WMT ’11 shared task.

3 Related work

Our experiments are based on the LISA model of
Strubell and McCallum (2018), who showed that
their method for incorporating syntax into a deep
neural network architecture for SRL improves
SRL F1 with predicted predicates on CoNLL-
2005 and CoNLL-2012 data, including on out-

4https://github.com/allenai/bilm-tf

of-domain test data. Other recent works have
also found syntax to improve neural SRL mod-
els when evaluated on data from the CoNLL-
2009 shared task: Roth and Lapata (2016) use
LSTMs to embed syntactic dependency paths, and
Marcheggiani and Titov (2017) incorporate syntax
using graph convolutional neural networks over
predicted dependency parse trees. In contrast to
this work, Marcheggiani and Titov (2017) found
that their syntax-aware model did not out-perform
a syntax-agnostic model on out-of-domain data.

The idea that an SRL model should incorpo-
rate syntactic structure is not new, since many se-
mantic formalities are defined with respect to syn-
tax. Many of the first approaches to SRL (Prad-
han et al., 2005; Surdeanu et al., 2007; Johansson
and Nugues, 2008; Toutanova et al., 2008; Pun-
yakanok et al., 2008), spearheaded by the CoNLL-
2005 shared task (Carreras and Màrquez, 2005),
achieved success by relying on syntax-heavy lin-
guistic features as input for a linear model, com-
bined with structured inference which could also
take syntax into account. Täckström et al. (2015)
showed that most of these constraints could more
efficiently be enforced by exact inference in a dy-
namic program. While most techniques required
a predicted parse as input, Sutton and McCallum
(2005) modeled syntactic parsing and SRL with
a joint graphical model, and Lewis et al. (2015)
jointly modeled SRL and CCG semantic parsing.
Collobert et al. (2011) were among the first to use
a neural network model for SRL, using a CNN
over word embeddings combined with globally-
normalized inference. However, their model failed
to out-perform non-neural models, both with and
without multi-task learning with other NLP tag-
ging tasks such as part-of-speech tagging and
chunking. FitzGerald et al. (2015) were among
the first to successfully employ neural networks,
achieving the state-of-the-art by embedding lexi-
calized features and providing the embeddings as
factors in the model of Täckström et al. (2015).

Recently there has been a move away from
SRL models which explicitly incorporate syntac-
tic knowledge through features and structured in-
ference towards models which rely on deep neu-
ral networks to learn syntactic structure and long-
range dependencies from the data. Zhou and Xu
(2015) were the first to achieve state-of-the-art re-
sults using 8 layers of bidirectional LSTM com-
bined with inference in a linear-chain conditional

22

random field (Lafferty et al., 2001). Marcheggiani
et al. (2017) and He et al. (2017) also achieved
state-of-the-art results using deep LSTMs with no
syntactic features. While most previous work as-
sumes that gold predicates are given, like this
work and Strubell and McCallum (2018), He et al.
(2017) evaluate on predicted predicates, though
they train a separate model for predicate detec-
tion. Most recently, Tan et al. (2018) achieved
the state-of-the art on the CoNLL-2005 and 2012
shared tasks with gold predicates and no syntax
using 10 layers of self-attention, and on CoNLL-
2012 with gold predicates Peters et al. (2018) in-
crease the score of He et al. (2017) by more than
3 F1 points by incorporating ELMo embeddings
into their model, out-performing ensembles from
Tan et al. (2018) with a single model. We are in-
terested in analyzing this relationship further by
experimenting with adding ELMo embeddings to
models with and without syntax in order to deter-
mine whether ELMo can replace explicit syntax
in SRL models, or if they can have a synergistic
relationship.

4 Experimental results

In our experiments we assess the impact of re-
placing GLoVe embeddings (+GloVe) with ELMo
embeddings (+ELMo) in strong, end-to-end neu-
ral network models for SRL: one which incorpo-
rates syntax (LISA) and one which does not (SA).
The two models are identical except that the latter
does not have an attention head trained to predict
syntactic heads. Since the LISA model can both
predict its own parses as well as consume parses
from another model, as in Strubell and McCal-
lum (2018) we experiment with providing syntac-
tic parses from a high-quality dependency parser
(+D&M), as well as providing the gold parses
(+Gold) as an upper bound on the gains that can
be attained by providing more accurate parses.

We compare LISA models to two baseline mod-
els: The deep bi-LSTM model of He et al. (2017)
and the deep self-attention model of Tan et al.
(2018). Though both also report ensemble scores,
we compare to the single-model scores of both
works. We note that Tan et al. (2018) is not di-
rectly comparable because they use gold predi-
cates at test time. Despite this handicap, our best
models obtain higher scores than Tan et al. (2018).

WSJ Test Brown Test
GLoVe ELMo GLoVe ELMo

D&M 96.13 96.48 92.01 92.56
LISA 91.47 94.44 88.88 89.57

Table 1: Dependency parse accuracy (UAS) on
CoNLL-2005.

4.1 Data and pre-processing

We evaluate our models on the data from the
CoNLL-2005 semantic role labeling shared task
(Carreras and Màrquez, 2005). This corpus anno-
tates the WSJ portion of the Penn TreeBank corpus
(Marcus et al., 1993) with semantic roles in the
PropBank style (Palmer et al., 2005), plus a chal-
lenging out-of-domain test set derived from the
Brown corpus (Francis and Kučera, 1964). This
dataset contains only verbal predicates and 28 dis-
tinct role label types. We obtain 105 SRL labels
(including continuations) after encoding predicate
argument segment boundaries with BIO tags. We
use Stanford syntactic dependencies v3.5.

4.2 Syntactic parsing

Table 1 presents the accuracy (UAS) of our depen-
dency parsers. We experiment with adding ELMo
embeddings to a strong graph-based dependency
parser (Dozat and Manning, 2017), and present
LISA’s parsing accuracy with GloVe and ELMo
embeddings. ELMo increases parsing accuracy in
both models and both datasets, though by a much
wider margin (3 points) for LISA, which attains
much lower scores without ELMo. Incorporating
ELMo into LISA is very beneficial to parsing ac-
curacy, helping to close the gap between LISA and
D&M parsing performance. In subsequent exper-
iments, D&M refers to the best model in Table 1,
D&M+ELMo.

4.3 Semantic role labeling

In Table 2 we present our main results on SRL.
First, we see that adding ELMo embeddings in-
creases SRL F1 across the board. The greatest
gains from adding ELMo are to the SA models,
which do not incorporate syntax. ELMo embed-
dings improve the SA models so much that they
nearly close the gap between SA and LISA: with
GloVe embeddings LISA obtains 1.5-2.5 more F1
points than SA, whereas with ELMo embeddings
the difference is closer to 0.3 F1. This is despite
ELMo embeddings increasing LISA’s parse accu-

23

Model
Dev WSJ Test Brown Test

P R F P R F P R F
He et al. (2017) 80.3 80.4 80.3 80.2 82.3 81.2 67.6 69.6 68.5
Tan et al. (2018)† 82.6 83.6 83.1 84.5 85.2 84.8 73.5 74.6 74.1
SA+GloVe 78.54 76.90 77.71 81.43 80.69 81.06 70.10 66.01 67.99
LISA+GloVe 81.25 80.03 80.64 82.78 82.57 82.68 71.93 69.45 70.67

+D&M 82.68 82.12 82.40 84.12 83.92 84.02 73.96 70.97 72.43
+Gold 86.02 85.11 85.56 — — — — — —

SA+ELMo 83.67 82.37 83.02 84.29 83.95 84.12 73.76 71.02 72.36
LISA+ELMo 84.18 82.71 83.44 84.62 84.24 84.43 73.70 71.70 72.69

+D&M 84.56 83.29 83.92 85.40 84.93 85.17 75.27 73.40 74.33
+Gold 87.56 86.01 86.77 — — — — — —

Table 2: Precision, recall and F1 on CoNLL-2005 with predicted predicates. † denotes that models were
evaluated on gold predicates.

racy by 3 points on the WSJ test set (Table 1).
These results suggest that ELMo does model syn-
tax in some way, or at least the model is able
to leverage ELMo embeddings about as well as
LISA’s predicted parses to inform its SRL deci-
sions.

0-10 11-20 21-30 31-40 41-300Sentencelength(tokens)72.575.077.580.082.585.087.590.0F1 LISA+D&M+Gold

However, when we add higher-accuracy parses
(+D&M) to LISA, we do see greater improve-
ments over the syntax-agnostic model, even with
ELMo embeddings. We see that incorporating ex-
plicit syntax representations is still helpful even
with ELMo’s strong representations. On the WSJ
test set, supplying LISA with D&M parses gives
about 1 point of F1 over the SA baseline, and
on the out-of-domain test set, we see that the
parses supply almost 2 additional points of F1
over the syntax-agnostic model. We note that with
ELMo embeddings and D&M parses, LISA ob-
tains new state-of-the-art results for a single model
on this dataset when compared to a model (Tan
et al., 2018) which is given gold predicates at test
time, despite our models using predicted predi-
cates. Our model’s gains in F1 come from obtain-
ing higher precision than Tan et al. (2018) (fewer
false positives).

The explicit parse representations appear to be
particularly helpful on out-of-domain data, which
makes sense for two reasons: First, since the
Brown test set is out-of-domain for the ELMo em-
beddings, we would expect them to help less on
this corpus than on the in-domain WSJ text. Sec-
ond, the parse trees should provide a relatively
domain-agnostic signal to the model, so we would
expect them to help the most in out-of-domain

WSJ Test
P R F

He et al. (2017) 94.5 98.5 96.4

GloVe
SA 98.27 98.14 98.20
LISA 98.34 98.04 98.19

ELMo
SA 98.66 97.51 98.08
LISA 98.58 97.28 97.93

Brown Test
P R F

He et al. (2017) 89.3 95.7 92.4

GloVe
SA 94.68 92.91 93.79
LISA 95.43 93.41 94.41

ELMo
SA 95.70 91.42 93.51
LISA 96.46 91.54 93.94

Table 3: Predicate detection precision, recall and
F1 on CoNLL-2005.

evaluation.
We also evaluate on the development set with

gold parse trees at test time. Fairly large gains of
nearly 3 F1 points can still be obtained using gold
parses even with ELMo embeddings, suggesting
that syntax could help even more if we could
produce more accurate syntactic parses, or more
specifically, the types of mistakes still made by
highly accurate dependency parsers (e.g. preposi-
tional phrase attachments) negatively impact SRL
models which rely on syntax.

Table 3 lists precision, recall and F1 of our pred-
icate detection. We note that there is very little dif-
ference in predicate detection F1 between GloVe
and ELMo models, demonstrating that the differ-

24

0-10 11-20 21-30 31-40 41-300
Sentence length (tokens)

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0
F1

LISA
+D&M
+Gold

Figure 1: F1 score as a function of sentence length.
Solid/dotted lines indicate ELMo/GLoVe embed-
dings, respectively.

ence in scores can not be attributed to better pred-
icate detection. If anything, the predicate detec-
tion scores with ELMo are slightly lower than with
GloVe. We observe that in particular on the Brown
test set, ELMo predicate detection precision is no-
tably higher than GloVe while recall is lower.

4.4 Analysis

We follow Strubell and McCallum (2018) and He
et al. (2017) and perform an analysis on the devel-
opment dataset to ascertain which types of errors
ELMo helps resolve, and how this compares with
the types of errors that occur when LISA is pro-
vided with a gold parse. In Figure 1 we bucket
sentences by length and plot F1 score as a func-
tion of sentence length across different models re-
ported in Table 2. Solid lines indicate ELMo mod-
els, while dotted lines indicate models trained with
GloVe. For GloVe models, we see that models
without gold parses maintain about the same dif-
ference in F1 across all sentence lengths, while the
gold parse obtains significant advantages for sen-
tence lengths greater than 10. With ELMo em-
beddings, the relationship between models with
gold and predicted parses remains the same, but
interestingly the LISA and D&M parses obtain
the same scores through sentence lengths 21-30,
then diverge more as sentences get longer. This
trend suggests that while the ELMo embeddings
help LISA parse shorter sentences, up to length 30,
the D&M model trained specifically on parsing is
more accurate on longer sentences. This could be
indicative of ELMo’s ability to model long-range
dependencies.

In Figure 2 we follow the analysis from He et al.
(2017) which bins SRL errors into 7 different error

Orig. Fix
Labels

Move
Core
Arg.

Merge
Spans

Split
Spans

Fix
Span

Boundary

Drop
Arg.

Add
Arg.

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

F1

LISA
+D&M
+Gold

Figure 2: F1 score on CoNLL-2005 after perform-
ing incremental corrections from He et al. (2017).
Solid/dotted lines indicate ELMo/GLoVe embed-
dings, respectively.

types,5 then incrementally fixes each error type in
order to better understand which error types con-
tribute most to SRL errors. We follow Strubell and
McCallum (2018) and compare these errors across
models with access to different levels of parse in-
formation, and which are trained with GloVe and
ELMo word representations. As in Figure 1, solid
lines in Figure 2 represent models trained with
ELMo embeddings and the dashed lines indicate
models trained with GloVe.

The overall trend is that supplying the gold
parse helps most with segment boundary mistakes,
i.e. those resolved by merging or splitting pre-
dicted role spans, for both ELMo and GloVe mod-
els. The ELMo models clearly begin to close
the gap between models given predicted and gold
parses by making less of these boundary mistakes,
which is not simply due to better parse accuracy
since the GlovE+D&M model has access to the
same parses as ELMo+D&M.

5 Conclusion

To address the question of whether syntax is still
relevant in SRL models with tokens embedded by
deep, unsupervised, sentence-aware models such
as ELMo, we compared the performance of LISA,
a syntactically-informed SRL model, trained with
ELMo and GloVe token representations. We
found that although these representations improve
LISA’s parsing and SRL tagging performance sub-
stantially, models trained to leverage syntax still
obtain better F1 than models without syntax even

5Refer to He et al. (2017) for more detailed descriptions
of the error types

25

when provided with ELMo embeddings, espe-
cially on out-of-domain data. We conclude that
syntax is indeed still relevant in neural architec-
tures for SRL. In future work, we are interested
in exploring similar analysis for NLP tasks which
have less obvious ties to syntactic structure.

Acknowledgments

We thank Luheng He for providing her excel-
lent error analysis scripts, Timothy Dozat and the
authors of tensor2tensor for releasing their code,
Daniel Andor and David Weiss for helpful dis-
cussions, and the reviewers for their thoughtful
comments. This work is supported in part by the
Center for Data Science and the Center for Intel-
ligent Information Retrieval, in part by the Chan
Zuckerberg Initiative under the project “Scientific
Knowledge Base Construction,” and in part by an
IBM PhD Fellowship Award to ES. Any opinions,
findings and conclusions or recommendations ex-
pressed in this material are those of the authors and
do not necessarily reflect those of the sponsor.

References
Xavier Carreras and Lluı́s Màrquez. 2005. Introduc-

tion to the conll-2005 shared task: Semantic role la-
beling. In CoNLL.

Rich Caruana. 1993. Multitask learning: a knowledge-
based source of inductive bias. In ICML.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2014. One billion word benchmark for mea-
suring progress in statistical language modeling. In
INTERSPEECH. pages 2635–2639.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research
12(Aug):2493–2537.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In ICLR.

Nicholas FitzGerald, Oscar Täckström, Kuzman
Ganchev, and Dipanjan Das. 2015. Semantic role
labeling with neural network factors. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing. pages 960–970.

W. N. Francis and H. Kučera. 1964. Manual of infor-
mation to accompany a standard corpus of present-
day edited american english, for use with digital

computers. Technical report, Department of Lin-
guistics, Brown University, Providence, Rhode Is-
land.

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle-
moyer. 2017. Deep semantic role labeling: What
works and whats next. In Proceedings of the 55th
Annual Meeting of the Association for Computa-
tional Linguistics.

Richard Johansson and Pierre Nugues. 2008.
Dependency-based semantic role labeling of
propbank. In Proceedings of the 2008 Confer-
ence on Empirical Methods in Natural Language
Processing. pages 69–78.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning (ICML).
pages 282–289.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference resolu-
tion. In Proceedings of the 2017 Conference on Em-
pirical Methods in Natural Language Processing.
Association for Computational Linguistics, pages
188–197. http://aclweb.org/anthology/D17-1018.

Mike Lewis, Luheng He, and Luke Zettlemoyer. 2015.
Joint A* CCG Parsing and Semantic Role Labeling.
In EMNLP.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional lstm-cnns-crf.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics. page
10641074.

Diego Marcheggiani, Anton Frolov, and Ivan Titov.
2017. A simple and accurate syntax-agnostic neural
model for dependency-based semantic role labeling.
In CoNLL.

Diego Marcheggiani and Ivan Titov. 2017. Encoding
sentences with graph convolutional networks for se-
mantic role labeling. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of English: The Penn TreeBank. Compu-
tational Linguistics – Special issue on using large
corpora: II 19(2):313–330.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. In NIPS.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated corpus
of semantic roles. Computational Linguistics 31(1).

26

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In EMNLP.

Matthew Peters, Waleed Ammar, Chandra Bhagavat-
ula, and Russell Power. 2017. Semi-supervised se-
quence tagging with bidirectional language mod-
els. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Association
for Computational Linguistics, pages 1756–1765.
https://doi.org/10.18653/v1/P17-1161.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In NAACL.

Sameer Pradhan, Wayne Ward, Kadri Hacioglu, James
Martin, and Dan Jurafsky. 2005. Semantic role la-
beling using different syntactic views. In Proceed-
ings of the Association for Computational Linguis-
tics 43rd annual meeting (ACL).

Vasin Punyakanok, Dan Roth, and Wen-Tau Yih. 2008.
The importance of syntactic parsing and inference in
semantic role labeling. Computational Linguistics
34(2):257–287.

Michael Roth and Mirella Lapata. 2016. Neural se-
mantic role labeling with dependency path embed-
dings. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(ACL). pages 1192–1202.

Emma Strubell and Andrew McCallum. 2018.
Linguistically-informed self-attention for semantic
role labeling. https://arxiv.org/abs/1804.08199v1.

Mihai Surdeanu, Lluı́s Màrquez, Xavier Carreras, and
Pere R. Comas. 2007. Combination strategies for
semantic role labeling. Journal of Artificial Intelli-
gence Research 29:105–151.

Charles Sutton and Andrew McCallum. 2005. Joint
parsing and semantic role labeling. In CoNLL.

Oscar Täckström, Kuzman Ganchev, and Dipanjan
Das. 2015. Efficient inference and structured learn-
ing for semantic role labeling. TACL 3:29–41.

Zhixing Tan, Mingxuan Wang, Jun Xie, Yidong Chen,
and Xiaodong Shi. 2018. Deep semantic role label-
ing with self-attention. In AAAI.

Kristina Toutanova, Aria Haghighi, and Christopher D.
Manning. 2008. A global joint model for semantic
role labeling. Computational Linguistics 34(2):161–
191.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In 31st Conference on Neural Information
Processing Systems (NIPS).

Jie Zhou and Wei Xu. 2015. End-to-end learning of
semantic role labeling using recurrent neural net-
works. In Proc. of the Annual Meeting of the As-
sociation for Computational Linguistics (ACL).

27

Proceedings of the Workshop on the Relevance of Linguistic Structure in Neural Architectures for NLP, pages 28–37
Melbourne, Australia, July 19, 2018. c©2018 Association for Computational Linguistics

Subcharacter Information in Japanese Embeddings:
When Is It Worth It?

Marzena Karpinska1, Bofang Li2,3, Anna Rogers4 and Aleksandr Drozd3,5

1 Department of Language and Information Science, The University of Tokyo
2 School of Information, Renmin University of China

3 Department of Mathematical and Computing Science, Tokyo Institute of Technology
4 Department of Computer Science, University of Massachusetts Lowell

5 AIST- Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory
karpinska@phiz.c.u-tokyo.ac.jp, libofang@ruc.edu.cn

arogers@cs.uml.edu, alex@blackbird.pw

Abstract

Languages with logographic writing sys-
tems present a difficulty for traditional
character-level models. Leveraging the
subcharacter information was recently
shown to be beneficial for a number of in-
trinsic and extrinsic tasks in Chinese. We
examine whether the same strategies could
be applied for Japanese, and contribute a
new analogy dataset for this language.

1 Introduction

No matter how big a corpus is, there will always be
rare and out-of-vocabulary (OOV) words, and they
pose a problem for the widely used word embed-
ding models such as word2vec. A growing body
of work on subword and character-level represen-
tations addresses this limitation in composing the
representations for OOV words out of their parts
(Kim et al., 2015; Zhang et al., 2015).

However, logographic writing systems consist
of thousands of characters, varying in frequency
in different domains. Fortunately, many Chinese
characters (called kanji in Japanese) contain se-
mantically meaningful components. For exam-
ple,木 (a standalone kanji for the word tree) also
occurs as a component in 桜 (sakura) and 杉
(Japanese cypress).

We investigate the effect of explicit inclusion of
kanjis and kanji components in the word embed-
ding space on word similarity and word analogy
tasks, as well as sentiment polarity classification.
We show that the positive results reported for Chi-
nese carry over to Japanese only partially, that the

gains are not stable, and in many cases character
ngrams perform better than character-level mod-
els. We also contribute a new large dataset for
word analogies, the first one for this relatively low-
resourced language, and a tokenizer-friendly ver-
sion of its only similarity dataset.

2 Related Work

To date, most work on representing subcharacter
information relies on language-specific resources
that list character components1. A growing list
of papers address various combinations of word-
level, character-level and subcharacter-level em-
beddings in Chinese (Sun et al., 2014; Li et al.,
2015; Yu et al., 2017). They have been successful
on a range of tasks, including similarity and anal-
ogy (Yu et al., 2017; Yin et al., 2016), text classi-
fication (Li et al., 2015) sentiment polarity classi-
fication (Benajiba et al., 2017), segmentation, and
POS-tagging (Shao et al., 2017).

Japanese kanjis were borrowed from Chinese,
but it remains unclear whether these success sto-
ries could also carry over to Japanese. Chinese
is an analytic language, but Japanese is aggluti-
native, which complicates tokenization. Also, in
Japanese, words can be spelled either in kanji or
in phonetic alphabets (hiragana and katakana),
which further increases data sparsity. Numerous
homonyms make this sparse data also noisy.

To the best of our knowledge, subcharacter in-
formation in Japanese has been addressed only by
Nguyen et al. (2017) and Ke and Hagiwara (2017).

1Liu et al. (2017) showed the possibility of learning this
information for any language through visual feature recogni-
tion.

28

劣

少 力

丿 �小 丿

shallow
decomposition

deep
decomposition

(a) Kanji decomposition levels (b) Example sentence with shallow decomposition

Figure 1: Incorporating subcharacter information in Japanese

The former consider the language modeling task
and compare several kinds of kanji decomposition,
evaluating on model perplexity. Ke and Hagiwara
(2017) propose to use subcharacter information in-
stead of characters, showing that such a model per-
forms on par with word and character-level mod-
els on sentiment classification, with considerably
smaller vocabulary.

This study explores a model comparable to that
proposed by Yu et al. (2017) for Chinese. We
jointly learn a representation of words, kanjis, and
kanjis’ components, and we evaluate it on similar-
ity, analogy, and sentiment classification tasks. We
also contribute jBATS, the first analogy dataset for
Japanese.

3 Incorporating Subcharacter
Information

Kanji analysis depends on its complexity. Kan-
jis consisting of only 2-4 strokes may not be de-
composable, or only containing 1-2 simple com-
ponents (bushu). The more complex kanjis can
usually be decomposed in analyzable bushu. This
is referred to as shallow and deep decomposition
(Figure 1a).

Nguyen et al. (2017) compared several decom-
position databases in language modeling and con-
cluded that shallow decomposition yields lower
perplexity. This is rather to be expected, since
many “atomic” bushu are not clearly meaningful.
For example, Figure 1a shows the kanji劣 (“to be
inferior”) as decomposable into 少 (“little, few”)
and 力 (“strength”). At the deep decomposition,
only bushu 小 (“small”) can be clearly related to
the meaning of the original kanji劣.

Hence, we use shallow decomposition. The

bushu are obtained from IDS2, a database that per-
formed well for Nguyen et al. (2017). IDS is gen-
erated with character topic maps, which enables
wider coverage3 than crowd-sourced alternatives
such as GlyphWiki.

In pre-processing each kanji was prepended the
list of bushu (Figure 1b). Two corpora were used:
the Japanese Wikipedia dump of April 01, 2018
and a collection of 1,859,640 Mainichi newspa-
per articles (Nichigai Associate, 1994-2009). We
chose newspapers because this domain has a rela-
tively higher rate of words spelled in kanji rather
than hiragana.

As explained above, tokenization is not a triv-
ial task in Japanese. The classic dictionary-based
tokenizers such as MeCab or Juman, or their
more recent ports such as Kuromoji do not han-
dle OOV very well, and the newer ML-based tok-
enizers such as TinySegmenter or Micter are also
not fully reliable. We tokenized the corpora with
MeCab using a weekly updated neologism dictio-
nary4, which yielded roughly 357 million tokens
for Mainichi and 579 for Wiki5. The tokeniza-
tion was highly inconsistent: for example,満腹感
(“feeling full”) is split into満腹 (“full stomach”)
and感 (“feeling”), but恐怖感 (“feeling fear”) is
a single word, rather than 恐怖 + 感 (“fear” and
“feeling”). We additionally pre-processed the cor-
pora to correct the tokenization for all the affixes

2http://github.com/cjkvi/cjkvi-ids
3A limitation of IDS is that it does not unify the represen-

tations of several frequent bushu, which could decrease the
overall quality of the resulting space (e.g. 心 “heart” is being
pictured as心,忄 and㣺 depending on its position in kanji).

4http://github.com/neologd/
mecab-ipadic-neologd

5The Wikipedia tokenized corpus is available at http:
//vecto.space/data/corpora/ja

29

Figure 2: Model architecture of SG, SG+kanji, and SG+kanji+bushu. Example sentence: いつも 忙し
い 仲間 と やっと 会え た (“I have finally met with my busy colleague.”), window size 2.

in jBATS (section 5).

4 Model architecture

4.1 Baselines

Original SG. Skip-Gram (SG) (Mikolov et al.,
2013) is a popular word-level model. Given a tar-
get word in the corpus, SG model uses the vector
of this target word to predict its contextual words.

FastText. FastText (Bojanowski et al., 2017) is
a state-of-the-art subword-level model that learns
morphology from character n-grams. In this
model, each word is considered as the sum of all
the character n-grams.

4.2 Characters and subcharacters

Characters (kanji). To take individual kanji into
account we modified SG by summing the target
word vector w with vectors of its constituent char-
acters c1, and c2. This can be regarded as a spe-
cial case of FastText, where the minimal n-gram
size and maximum n-gram size are both set to 1.
Our model is similar to the one suggested by Yu
et al. (2017), who learn Chinese word embeddings
based on characters and sub-characters. We refer
to this model as SG+kanji.

Subcharacters (bushu). Similarly to charac-
ters, we sum the vector of the target word, its con-
stituent characters, and their constituent bushu to

incorporate the bushu information. For example,
Figure 3 shows that the vector of the word 仲間,
the vectors of characters 仲 and 間, and the vec-
tors of bushu亻,中,門,日 are summed to predict
the contextual words. We refer to this model as
SG+kanji+bushu.

Expanding vocabulary. FastText, SG+kanji
and SG+kanji+bushu models can be used to com-
pute the representation for any word as a sum of
the vectors of its constituents. We collect the vo-
cabulary of all the datasets used in this paper, cal-
culate the vectors for any words missing in the em-
bedding vocabulary, and add them. Such models
will be referred to as MODEL+OOV.

4.3 Implementation
All models were implemented in Chainer frame-
work (Tokui et al., 2015) with the following pa-
rameters: vector size 300, batch size 1000, neg-
ative sampling size 5, window size 2. For per-
formance reasons all models were trained for 1
epoch. Words, kanjis and bushu appearing less
than 50 times in the corpus were ignored. The op-
timization function was Adam (Kingma and Ba,
2014). The n-gram size of FastText6 is set to 1, for

6The original FastText code7 has some inherent differ-
ences from our Chainer implementation, as it was designed
for CPU only. On each CPU thread, it directly updates the
weight parameters after evaluation of each sample. To take
the advantage of GPU, we use mini-batch (size 1000) to par-

30

Relation Example Relation Example
In

fle
ct

io
ns

I01 Verb: u-form >a-form 使う:使わ

L
ex

ic
og

ra
ph

y

L01 hypernyms (animals) カメ: 爬虫/脊椎動物/
I02 Verb: u-form >o-form 受ける:受けよ L02 hypernyms (misc.) 椅子:支え/器具/道具/人工物...
I03 Verb: u-form >e-form 起きる:起きれ L03 hyponyms (misc.) 肉:牛肉/牛/ビーフ/鳥肉/...
I04 Verb: u-form >te-form 会う :会っ L04 meronyms (substance) バッグ: 革/生地/布/プラスチック
I05 Verb: a-form >o-form 書か :書こ L05 meronyms (member) 鳥: 群れ/家畜
I06 Verb: o-form >e-form 歌お:歌え L06 meronyms (part) アカデミア: 大学/大学院/学院...
I07 Verb: e-form >te-form 勝て: 勝っ L07 synonyms (intensity) つまらない,退屈/くだらない/...
I08 i-Adj.: i-form >ku-form 良い:良く L08 synonyms (exact) 赤ちゃん:赤ん坊/ベビー
I09 i-Adj: i-form >ta-form 良い:良かっ L09 antonyms (gradable) 大きい:小さい/ちび/ちっちゃい...
I10 i-Adj.: ku-form >ta-form 良く:良かっ L10 antonyms (binary) 出口: 入り口/入口

D
er

iv
at

io
n

D01 na-adj + ”化” 活性: 活性化

E
nc

yc
lo

pe
di

a

E01 capital: country ロンドン: イギリス/英国
D02 i-adj + ”さ” 良い:良さ E02 country: language フランス : フランス語
D03 noun + ”者” 消費: 消費者 E03 jp. prefecture: city 沖縄県: 那覇/那覇市
D04 ”不” + noun 人気: 不人気 E04 name: nationality アリストテレス: ギリシャ人
D05 noun + ”会” 運動:運動会 E05 name: occupation アリストテレス: 哲学者
D06 noun/na-adj. + ”感” 存在: 存在感 E06 onomatopoeia : feeling ドキドキ: 緊張/恐怖
D07 noun/na-adj. + ”性” 可能: 可能性 E07 company: product 日産: 車/自動車
D08 noun/na-adj. + ”力” 影響: 影響力 E08 object: usage ギター : 弾く
D09 ”大”+ noun/na-adj. 好き:大好き E09 polite terms おっしゃる:申し上げる
D10: (in)transitive verb 起きる:起こす E10 object: color カラス: 黒/黒い

Table 1: jBATS: structure and examples

reliable comparison with our character model. We
experimented with 1/2 of Mainichi corpus while
developing the models, and then trained them on
full Mainichi and Wikipedia. All sets of embed-
dings are available for download8.

For SG+kanji+bushu model there were 2510
bushu in total, 1.47% of which were ignored in the
model since they were not in the standard UTF-8
word (“w) encoding. This affected 1.37% of to-
kens in Wikipedia.

5 Evaluation: jBATS

We present jBATS9, a new analogy dataset for
Japanese that is comparable to BATS (Gladkova
et al., 2016), currently the largest analogy dataset
for English. Like BATS, jBATS covers 40 linguis-
tic relations which are listed in Table 1. There are
4 types of relations: inflectional and derivational
morphology, and encyclopedic and lexicographic
semantics. Each type has 10 categories, with 50
word pairs per category (except for E03 which has
47 pairs, since there are only 47 prefectures). This
enables generation of 97,712 analogy questions.

The inflectional morphology set is based on the
traditional Japanese grammar (Teramura, 1982)
which lists 7 different forms of godan, shimoichi-
dan and kamiichidan verbs, as well as 5 forms of
i-adjectives. Including the past tense form, there

allelize training.
8http://vecto.space/data/embeddings/ja
9http://vecto.space/projects/jBATS

are 8 and 6 forms for verbs and adjectives respec-
tively. All categories were adjusted to the MeCab
tokenization. After excluding redundant or rare
forms there were 5 distinctive forms for verbs and
3 for adjectives, which were paired to form 7 verb
and 3 adjective categories.

The derivational morphology set includes 9
highly productive affixes which are usually rep-
resented by a single kanji character, and a set of
pairs of transitive and intransitive verbs which are
formed with several infix patterns.

The encyclopedic and lexicographic semantics
sections were designed similarly to BATS (Glad-
kova et al., 2016), but adjusted for Japanese.
For example, UK counties were replaced with
Japanese prefectures. The E09 animal-young cat-
egory of BATS would be rendered with a prefix
in Japanese, and was replaced with plain: hon-
orific word pairs, a concept highly relevant for the
Japanese culture.

All tokens were chosen based on their frequen-
cies in BCCWJ10 (Maekawa, 2008), the Balanced
Corpus of Contemporary Written Japanese, and
the Mainichi newspaper corpus described in Sec-
tion 3. We aimed to choose relatively frequent
and not genre-specific words. For broader cate-
gories (adjectives and verbs) we balanced between
BCCWJ and Mainichi corpora, choosing items
of mean frequencies between 3,000 and 100,000

10http://pj.ninjal.ac.jp/corpus_center/
bccwj/en/freq-list.html

31

whenever possible.

6 Results

6.1 Word similarity

The recent Japanese word similarity dataset
(Sakaizawa and Komachi, 2017) contains 4,851
word pairs that were annotated by crowd work-
ers with agreement 0.56-0.69. Like MEN (Bruni
et al., 2014) and SimLex (Hill et al., 2015), this
dataset is split by parts of speech: verbs, nouns,
adjectives and adverbs. We refer to this dataset as
jSIM.

The division by parts of speech is relevant for
this study: many Japanese adverbs are written
mostly in hiragana and would not benefit from
bushu information. However, some pairs in jSIM
were misclassified. Furthermore, since this dataset
was based on paraphrases, many pairs contained
phrases rather than words, and/or words in forms
that would not be preserved in a corpus tokenized
the Mecab style (which is the most frequently used
in Japanese NLP). Therefore, for embeddings with
standard pre-processing jSIM would have a very
high OOV rate. The authors of jSIM do not ac-
tually present any experiments with word embed-
dings.

We have prepared 3 versions of jSIM that are
summarized in Table 2. The full version con-
tains most word pairs of the original dataset (ex-
cept those which categories were ambiguous or
mixed), with corrected POS attribution in 2-5%
of pairs in each category11: for example, the pair
苛立たしい - 忌ま忌ましい was moved from
verbs to adjectives. The tokenized version con-
tains only the items that could be identified by
a Mecab-style tokenizer, and had no more than
one content-word stem: e.g. this would exclude
phrases like　早く来る. However, many of the
remaining items could become ambiguous when
tokenized: 終わった would become 終わっ た
– and終わっ could map to終わった,終わって,
終わっちゃう, etc., and therefore be more diffi-
cult to detect in the similarity task. Thus we also
prepared the unambiguous subset which contains
only the words that could still be identified unam-
biguously even when tokenized (for example, 迷

11Division between adjectives and adverbs is problematic
for the Japanese adverbial forms of adjectives, such as安い
→　安く. There were 228 such pairs in total. Since we focus
on the kanji, we grouped them with the adjectives, as in the
original dataset.

う remains 迷う). All these versions of jSIM are
available for download12.

Table 3 shows the results on all 3 datasets on all
models, trained on the full Mainichi corpus, a half
Mainichi corpus, and Wikipedia. The strongest ef-
fect for inclusion of bushu is observed in the OOV
condition: in all datasets the Spearman’s correla-
tions are higher for SG+kanji+bushu than for other
SG models, which suggests that this information is
indeed meaningful and helpful. This even holds
for the full version, where up to 90% vocabu-
lary is missing and has to be composed. For in-
vocabulary condition this effect is noticeably ab-
sent in Wikipedia (perhaps due to the higher ratio
of names, where the kanji meanings are often ir-
relevant).

Version Adj. Adv. Nouns Verbs Total

Original 960 902 1103 1464 4429
Full 879 893 1104 1507 4383
Tokenized 642 774 947 427 2790
Unambiguous 448 465 912 172 1997

Table 2: The size of the original and modified
Japanese similarity datasets (in word pairs)

However, in most cases the improvement due to
inclusion of bushu, even when it is observed, is not
sufficient to catch up with the FastText algorithm,
and in most cases FastText has substantial advan-
tage. This is significant, as it might warrant the
review of the previous results for Chinese on this
task: of all the studies on subcharacter information
in Chinese that we reviewed, only one explicitly
compared their model to FastText (Benajiba et al.,
2017), and their task was different (sentiment anal-
ysis).

In terms of parts of speech, the only clear ef-
fect is for the adjectives, which we attribute to the
fact that many Japanese adjectives contain a sin-
gle kanji character, directly related to the meaning
of the word (e.g.惜しい). The adjectives category
contains 55.45% such words, compared to 14.78%
for nouns and 23.71% for adverbs in the full jSIM
(the ratio is similar for Tokenized and Unambigu-
ous sets). On the other hand, all jSIM versions
have over 70% of nouns with more than one kanji;
some of them may not be directly related to the
meaning of the word, and increase the noise. Ac-

12http://vecto.space/projects/jSIM

32

Model
Full Tokenized Unambiguous

adj adv noun verb adj adv noun verb adj adv noun verb

M
ai

ni
ch

i1
/2

FastText .366 .190 .331 .355 .392 .285 .333 .381 .377 .232 .328 .337
SG .321 .346 .274 .311 .352 .364 .280 .341 .340 .362 .274 .304

SG+kanji .339 .290 .280 .294 .371 .330 .285 .345 .369 .305 .279 .302
SG+kanji+bushu .355 .300 .276 .391 .380 .356 .279 .375 .384 .326 .274 .393

OOV rate per category .659 .616 .328 .934 .506 .295 .232 .372 .462 .318 .235 .436

FastText+OOV .435 .153 .213 .241 .416 .185 .259 .359 .434 .124 .252 .373
SG+kanji+OOV .344 .195 .152 .210 .279 .235 .192 .307 .309 .211 .179 .327

SG+kanji+bushu+OOV .329 .220 .146 .230 .272 .261 .188 .318 .311 .242 .177 .372

M
ai

ni
ch

i

FastText .399 .277 .336 .345 .436 .296 .337 .355 .397 .310 .328 .345
SG .345 .336 .280 .246 .362 .333 .282 .295 .367 .359 .274 .246

SG+kanji .366 .321 .269 .334 .391 .354 .272 .363 .399 .348 .262 .334
SG+kanji+bushu .405 .318 .288 .315 .427 .311 .291 .353 .444 .341 .282 .315

OOV rate per category .582 .586 .272 .922 .389 .260 .164 .262 .384 .288 .166 .320

FastText+OOV .448 .184 .245 .242 .438 .222 .286 .410 .453 .202 .275 .405
SG+kanji+OOV .323 .195 .175 .210 .293 .262 .210 .353 .341 .250 .197 .363

SG+kanji+bushu+OOV .348 .171 .178 .201 .318 .231 .223 .330 .373 .249 .210 .315

W
ik

ip
ed

ia

FastText .405 .296 .333 .341 .440 .298 .334 .348 .402 .330 .325 .341
SG .309 .298 .299 .320 .312 .315 .299 .382 .307 .345 .296 .320

SG+kanji .334 .298 .270 .326 .331 .327 .275 .380 .324 .334 .271 .326
SG+kanji+bushu .321 .285 .282 .270 .312 .295 .287 .364 .326 .315 .279 .270

OOV rate per category .578 .591 .225 .909 .393 .269 .112 .192 .384 .301 .112 .203

FastText+OOV .451 .186 .242 .243 .442 .225 .281 .400 .455 .219 .270 .402
SG+kanji+OOV .296 .179 .146 .185 .240 .240 .191 .325 .270 .239 .184 .278

SG+kanji+bushu+OOV .313 .183 .159 .171 .249 .238 .208 .315 .292 .254 .197 .243

Table 3: Spearman’s correlation with human similarity judgements. Boldface indicates the highest result
on a given corpus (separately for in-vocabulary and OOV conditions). Shaded numbers indicate the
highest result among the three Skip-Gram models.

cordingly, we observe the weakest effect for inclu-
sion of bushu. However, the ratio of 1-kanji words
for verbs is roughly the same as for the adjectives,
but the pattern is less clear.

Adverbs are the only category in which SG
clearly outperforms FastText. This could be due
to a high proportion of hiragana (about 50% in all
datasets), which as single-character ngrams could
not yield very meaningful representations. Also,
the particlesと andに, important for adverbs, are
lost in tokenization.

6.2 jBATS

In this paper, we consider two methods for the
word analogy task. 3CosAdd (Mikolov et al.,
2013) is the original method based on linear off-
set between 2 vector pairs. Given an analogy a:a′

:: b:b′ (a is to a′ as b is to b′), the answer is cal-
culated as b′ = argmax d∈V (cos(b′, b− a+ a′)),
where cos(u, v) = u·v

||u||·||v||

LRCos (Drozd et al., 2016) is a more recent
and currently the best-performing method. It is
based on a set of word pairs that have the same
relation. For example, given a set of pairs such as
husband:wife, uncle:aunt, all right-hand words are
considered to be exemplars of a class (“women”),
and logistic regression classifier is trained for that
class. The answer (e.g. queen) is determined as
the word vector that is the most similar to the
source word (e.g. king), but is likely to be a
woman:

b′ = argmax b′∈V (P (b′∈class) ∗ cos(b′, b))
Figure 3 shows that the overall pattern of accu-

racy for jBATS is comparable to what Gladkova
et al. (2016) report for English: derivational and
inflectional morphology are much easier than ei-
ther kind of semantics. In line with the results
by Drozd et al. (2016), LRCos significantly out-
performs 3CosAdd, achieving much better accu-
racy on some encyclopedic categories with which

33

D0
1

D0
2

D0
3

D0
4

D0
5

D0
6

D0
7

D0
8

D0
9

D1
0

E0
1

E0
2

E0
3

E0
4

E0
5

E0
6

E0
7

E0
8

E0
9

E1
0

I0
1

I0
2

I0
3

I0
4

I0
5

I0
6

I0
7

I0
8

I0
9

I1
0

L0
1

L0
2

L0
3

L0
4

L0
5

L0
6

L0
7

L0
8

L0
9

L1
0

Category

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

3CosAdd
model

SG
SG+kanji
SG+kanji+bushu

D0
1

D0
2

D0
3

D0
4

D0
5

D0
6

D0
7

D0
8

D0
9

D1
0

E0
1

E0
2

E0
3

E0
4

E0
5

E0
6

E0
7

E0
8

E0
9

E1
0

I0
1

I0
2

I0
3

I0
4

I0
5

I0
6

I0
7

I0
8

I0
9

I1
0

L0
1

L0
2

L0
3

L0
4

L0
5

L0
6

L0
7

L0
8

L0
9

L1
0

Category

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LRCos
model

SG
SG+kanji
SG+kanji+bushu

Figure 3: Accuracy on jBATS with 3CosAdd and LRCos methods (see Table 1 for the codes on x-axis).

3CosAdd does not cope at all. Lexicographic se-
mantics is a problem, as in English, because syn-

Model inf. der. enc. lex.

M
ai

ni
ch

i1
/2

FastText .902 .770 .237 .075
SG .785 .452 .318 .110

SG+kanji .892 .771 .314 .102
SG+kanji+bushu .912 .797 .253 .083

OOV rate per category .070 .076 .408 .256
FastText+OOV .846 .758 .146 .090
SG+kanji+OOV .856 .747 .181 .102

SG+kanji+bushu+OOV .883 .768 .163 .088

M
ai

ni
ch

i FastText .883 .648 .232 .093
SG .853 .496 .370 .133

SG+kanji .912 .676 .330 .123
SG+kanji+bushu .926 .710 .318 .118

OOV rate per category .022 .056 .346 .204
FastText+OOV .861 .746 .173 .114
SG+kanji+OOV .912 .676 .330 .123

SG+kanji+bushu+OOV .893 .705 .215 .094

W
ik

ip
ed

ia

FastText .881 .663 .242 .088
SG .743 .457 .484 .170

SG+kanji .834 .638 .422 .112
SG+kanji+bushu .851 .694 .425 .100

OOV rate per category .036 .060 .322 .142
FastText+OOV .846 .750 .158 .127
SG+kanji+OOV .794 .639 .297 .098

SG+kanji+bushu+OOV .833 .671 .293 .102

Table 4: Word analogy task accuracy (LRCos).
Boldface indicates the highest result for a corpus,
and the shaded numbers indicate the highest result
among three Skip-Gram models.

onyms or antonyms of different words do not con-
stitute a coherent semantic class by themselves.

Table 4 shows the average results per relation
type for the better-performing LRCos (the pattern
of results was similar for 3CosAdd). The morphol-
ogy categories behave similarly to adjectives in the
similarity task: the SG+kanji beats the original SG
by a large margin on inflectional and derivational
morphology categories, and bushu improve accu-
racy even further. In this task, these models also
win over FastText. However, these are the cat-
egories in which the words either contain a sin-
gle kanji, or (in derivational morphology) a single
kanji affix needs to be identified. Semantic cate-
gories contain a variety of nouns, mostly consist-
ing of several kanjis with various morphological
patterns. Moreover, many proper nouns as well
as animal species are written in katakana, with no
kanjis at all. This could be the reason why infor-
mation from kanjis and bushu are not helpful or
even detrimental in the semantic questions.

There is a clear corpus effect in that the encyclo-
pedic semantic questions are (predictably) more
successful with Wikipedia than with Mainichi, but
at the expense of morphology. This could be in-
terpreted as confirmation of the dependence of
the current analogy methods on similarity (Rogers
et al., 2017): all words cannot be close to all other
words, so a higher ratio of some relation type has

34

Error type Example Predicted Percentage
correct stem, wrong form 買う :買え :: 借りる : [借りれ] 借り 28.0%
same semantic category アメリカ : 英語 :: イラン : [ペルシア語] トルコ語 25.0%
antonym, correct form 深い :深さ :: 低い : [低さ] 高さ 10.0%
antonym, wrong form 面白い :面白さ :: 高い : [高さ] 低い 3.0%
related to target pair アンドラ :　カタルーニャ語 :: アメリカ : [英語] 米国 8.5%
wrong stem, correct form 持つ : 持て :: 借りる : [借りれ] 買え 5.5%
duplicated token もらう :あげる :: 内（うち） : [外] うち 5.0%
synonym, correct form 悪い :悪さ :: すごい : [すごさ] 器用さ 1.0%
synonym, wrong form ほしい :ほしさ :: 固い : [固さ] 堅い 1.5%
orthography related 減る :増える :: オン : [オフ] フォー 1.0%
related to the source pair 前 :次 :: 内 : [外] 下記 0.5%
alternative spelling イスラエル : ヘブライ語 :: イラン : [ペルシア語] ペルシャ語 0.5%
unrelated 痛い :痛さ :: 大きい : [大きさ] 仮種皮 10.5%

Table 5: jBATS: error analysis.

to come with a decrease in some other.

6.3 Sentiment analysis

The binary sentiment classification accuracy was
tested with the Rakuten reviews dataset by Zhang
and LeCun (2017). Although Benajiba et al.
(2017) report that incorporating subcharacter in-
formation provided a boost in accuracy on this task
in Chinese, we did not confirm this to be the case
for Japanese. Table 6 13 shows that the accuracy
for all models ranged between 0.92-0.93 (consis-
tent with the results of Zhang and LeCun (2017)),
so no model had a clear advantage.

Model Main.1/2 Mainichi Wiki

FastText .919 .921 .920
SG .921 .920 .921

SG+kanji .921 .924 .919
SG+kanji+bushu .918 .920 .921

OOV rate per category .220 .220 .212

FastText+OOV .926 .927 .922
SG+kanji+OOV .929 .930 .922

SG+kanji+bushu+OOV .925 .927 .922

Table 6: Sentiment analysis accuracy

The lack of positive effect for inclusion of kanji
and bushu is to be expected, as we found that
most of the dataset is written informally, in hi-
ragana, even for words that are normally written
with kanjis. Once again, this shows that the re-
sults of incorporating (sub)character information
in Japanese are not the same as in Chinese, and
depend on the task and domain of the texts.

Interestingly, the accuracy is just as high for all
OOV models, even though about 20% of the vo-

13The Chainer framework (Tokui et al., 2015) is used to
implement the CNN classifier with default settings.

cabulary had to be constructed.

7 Discussion

7.1 Error analysis

We conducted manual analysis of 200 mispredic-
tions of 3CosAdd method in I03, D02, E02 and
L10 categories (50 examples in each). The per-
centage of different types of errors is shown in Ta-
ble 5. Overall, most mistakes are interpretable,
and only 10.5% of mispredicted vectors are not
clearly related to the source words.

The most frequent example of mis-classification
was predicting the wrong form but with the cor-
rect stem, especially in morphological categories.
This is consistent with what Drozd et al. (2016)
report for English and was especially frequent in
the I03 and D02 categories (76% and 36% of er-
rors per category respectively). It is not surprising
since these categories consist of verbs (I03) and
adjectives (D02). Furthermore, in 25% of cases
the assigned item was from the same semantic cat-
egory (for example, colours) and in 13% of case an
antonym was predicted. Other, though relatively
less frequent mistakes include semantic relations
like predicting synonyms of the given word, words
(or single kanji) related to either target or source
pair, or simply returning the same token. Words
which were not related in any way to any source
word were very rare.

7.2 Vector neighborhoods

Table 7 shows that the shared semantic space of
words, kanjis and bushu is indeed shared. For ex-
ample, the bushu疒 (yamaidare “the roof from ill-
ness”) is often used in kanjis which are related to a
disease. Therefore kanji like症 (“disease”) would,

35

疒 yamaidare (the roof from illness) 豸 najina-hen (devine beast, insect without legs)
患(sickness)症(disease)妊 (pregnancy)
臓 (internal organs, bowels)腫 (tumor)

爭(to fight, to compete)蝶(butterfly)
皃(shape)貌(shape, silhouette)豹(leopard)

インフルエザ (influenza)
関節リウマチ (articular rheumatism)

リューマチ (rheumatism)リウマチ(rheumatism)
メタボリックシンドローム (metabolic syndrome)

獅子 (lion, king of beasts)
同流 (same origin, same school)
本性(true nature, human nature)

弥勒(Maitreya Buddha)無頼 (villain, scoundrel)

Table 7: Example bushu: closest single kanji (upper row) and multiple kanji/katakana (lower row) for
SG+kanji+bushu model.

of course, be similar to疒 in the vector space. In-
terestingly, we also find that its close neighbors
include kanjis that do not have this bushu, but are
related to disease, such as 腫 and 患. Further-
more, even words written only in katakana, likeイ
ンフルエザ, are correctly positioned in the same
space. Similar observations can be made for bushu
豸(mujina-hen) which represents a divine beast,
insects without legs, animals with long spine, or
a legendary Chinese beast Xiezhi.

7.3 Stability of the similarity results

Our similarity experiments showed that in many
cases the gain of any one model over the other
is not very significant and would not be repro-
duced in a different run and/or a different corpus.
This could be due to skewed frequency distribu-
tion or the general instability of embeddings for
rare words, recently demonstrated for word2vec
(Wendlandt et al., 2018).

One puzzling observation is that sometimes the
smaller corpus yielded better embeddings. Intu-
itively, the larger the corpus, the more informa-
tive distributional representations can be obtained.
However, Table 3 shows that for adverbs and verbs
the full and tokenized versions of jSIM a half of
Mainichi was actually significantly better than the
full Mainichi. It is not clear whether it is due to a
lucky random initialization or some other factors.

8 Conclusion

This study presented the first evaluation of
subcharacter-level distributional representations
of Japanese on similarity, analogy and sentiment
classification tasks. We show that the success
of this approach in Chinese is transferable to
Japanese only partly, but it does improve the per-
formance of Skip-Gram model in kanji-rich do-
mains and for tasks relying on mostly single-kanji
vocabulary or morphological patterns. The effect
may be stronger with a better sent of model hyper-

parameters, which we have not explored here, or in
some other task. However, in our experiments we
found that even enhanced Skip-Gram was consis-
tently inferior to single-character ngram FastText,
which has not been used as a baseline in most work
on Chinese subcharacter-level embeddings.

We also contribute jBATS, the first analogy
dataset for this relatively low-resourced language,
and a revision of its only similarity dataset that can
now be used with standard tokenized corpora. All
models, datasets and embeddings are available in
the Vecto14 library.

Acknowledgments

This work was partially supported by JSPS KAK-
ENHI Grant No. JP17K12739, JST CREST Grant
No. JPMJCR1687 and National Natural Science
Foundation of China Grant No.61472428.

References
Yassine Benajiba, Or Biran, Zhiliang Weng, Yong

Zhang, and Jin Sun. 2017. The Sentimental Value
of Chinese Sub-Character Components. In Proceed-
ings of the 9th SIGHAN Workshop on Chinese Lan-
guage Processing, pages 21–29, Taipei, Taiwan, De-
cember 1, 2017. Association for Computational Lin-
guistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. J. Artif. Intell.
Res.(JAIR), 49(2014):1–47.

Aleksandr Drozd, Anna Gladkova, and Satoshi Mat-
suoka. 2016. Word embeddings, analogies, and
machine learning: Beyond king - man + woman
= queen. In Proceedings of COLING 2016, the
26th International Conference on Computational
Linguistics: Technical Papers, pages 3519–3530,
Osaka, Japan, December 11-17.
14http://vecto.space

36

Anna Gladkova, Aleksandr Drozd, and Satoshi Mat-
suoka. 2016. Analogy-based detection of morpho-
logical and semantic relations with word embed-
dings: What works and what doesn’t. In Proceed-
ings of the NAACL-HLT SRW, pages 47–54, San
Diego, California, June 12-17, 2016. ACL.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics, 41(4):665–695.

Yuanzhi Ke and Masafumi Hagiwara. 2017. Radical-
level Ideograph Encoder for RNN-based Sen-
timent Analysis of Chinese and Japanese.
arXiv:1708.03312 [cs].

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2015. Character-aware neural language
models. arXiv preprint arXiv:1508.06615.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Yanran Li, Wenjie Li, Fei Sun, and Sujian Li.
2015. Component-enhanced Chinese character em-
beddings. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 829–834, Lisbon, Portugal, 17-
21 September 2015. Association for Computational
Linguistics.

Frederick Liu, Han Lu, Chieh Lo, and Graham Neu-
big. 2017. Learning Character-level Compositional-
ity with Visual Features. pages 2059–2068. Associ-
ation for Computational Linguistics.

Kikuo Maekawa. 2008. Compilation of the Balanced
Corpus of Contemporary Written Japanese in the
KOTONOHA Initiative. In Universal Communica-
tion, 2008. ISUC’08. Second International Sympo-
sium On, pages 169–172. IEEE.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed repre-
sentations of words and phrases and their composi-
tionality. In NIPS, pages 3111–3119.

Viet Nguyen, Julian Brooke, and Timothy Baldwin.
2017. Sub-character Neural Language Modelling in
Japanese. In Proceedings of the First Workshop on
Subword and Character Level Models in NLP, pages
148–153.

Nichigai Associate. 1994-2009. CD-Mainichi Shim-
bun de-ta shu (1994-2009).

Anna Rogers, Aleksandr Drozd, and Bofang Li. 2017.
The (Too Many) Problems of Analogical Reasoning
with Word Vectors. In Proceedings of the 6th Joint
Conference on Lexical and Computational Seman-
tics (* SEM 2017), pages 135–148.

Yuya Sakaizawa and Mamoru Komachi. 2017. Con-
struction of a Japanese Word Similarity Dataset. In
Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan. European Language Re-
sources Association (ELRA).

Yan Shao, Christian Hardmeier, Jorg Tiedemann, and
Joakim Nivre. 2017. Character-based Joint Segmen-
tation and POS Tagging for Chinese using Bidirec-
tional RNN-CRF. page 11.

Yaming Sun, Lei Lin, Nan Yang, Zhenzhou Ji, and
Xiaolong Wang. 2014. Radical-Enhanced Chinese
Character Embedding. In Neural Information Pro-
cessing, Lecture Notes in Computer Science, pages
279–286. Springer, Cham.

Hideo Teramura. 1982. Nihongo no shintakusu to imi
(Japanese syntax and meaning). Kuroshio Shuppan.

Seiya Tokui, Kenta Oono, Shohei Hido, and Justin
Clayton. 2015. Chainer: a next-generation open
source framework for deep learning. In Proceedings
of workshop on machine learning systems (Learn-
ingSys) in the twenty-ninth annual conference on
neural information processing systems (NIPS), vol-
ume 5.

Laura Wendlandt, Jonathan K. Kummerfeld, and Rada
Mihalcea. 2018. Factors Influencing the Surprising
Instability of Word Embeddings. arXiv:1804.09692
[cs].

Rongchao Yin, Quan Wang, Peng Li, Rui Li, and Bin
Wang. 2016. Multi-Granularity Chinese Word Em-
bedding. pages 981–986. Association for Computa-
tional Linguistics.

Jinxing Yu, Xun Jian, Hao Xin, and Yangqiu Song.
2017. Joint Embeddings of Chinese Words, Char-
acters, and Fine-grained Subcharacter Components.
pages 286–291. Association for Computational Lin-
guistics.

Xiang Zhang and Yann LeCun. 2017. Which Encod-
ing is the Best for Text Classification in Chinese,
English, Japanese and Korean? arXiv preprint
arXiv:1708.02657.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In NIPS, pages 649–657.

37

Proceedings of the Workshop on the Relevance of Linguistic Structure in Neural Architectures for NLP, pages 38–46
Melbourne, Australia, July 19, 2018. c©2018 Association for Computational Linguistics

A neural parser as a direct classifier for head-final languages

Hiroshi Kanayama Masayasu Muraoka Ryosuke Kohita
IBM Research
Tokyo, Japan

{hkana, mmuraoka}@jp.ibm.com, Ryosuke.Kohita1@ibm.com

Abstract

This paper demonstrates a neural parser
implementation suitable for consistently
head-final languages such as Japanese.
Unlike the transition- and graph-based al-
gorithms in most state-of-the-art parsers,
our parser directly selects the head word
of a dependent from a limited number
of candidates. This method drastically
simplifies the model so that we can eas-
ily interpret the output of the neural
model. Moreover, by exploiting grammat-
ical knowledge to restrict possible modifi-
cation types, we can control the output of
the parser to reduce specific errors with-
out adding annotated corpora. The neu-
ral parser performed well both on conven-
tional Japanese corpora and the Japanese
version of Universal Dependency corpus,
and the advantages of distributed represen-
tations were observed in the comparison
with the non-neural conventional model.

1 Introduction

Dependency parsing helps a lot to give intu-
itive relationships between words such as noun-
verb and adjective-noun combinations. Those
outputs are consumed in text mining systems
(Nasukawa and Nagano, 2001) and rule-based ap-
proaches such as in fine-grained sentiment extrac-
tors (Kanayama et al., 2004), though some of re-
cent end-to-end systems do not require intermedi-
ate parsing structures.

Many recent dependency parsers have been im-
plemented with neural net (NN) methods with
(typically bidirectional) LSTM and distributed
word vectors (Dozat et al., 2017; Shi et al., 2017),
as we can see in the 2017 shared task on de-
pendency parsing from raw text for 49 lan-

guages (Zeman et al., 2017) based on the multi-
lingual corpora of Universal Dependencies (UD)
(Nivre et al., 2015).

Most of such dependency parsers exploit a
transition-based algorithm (Nivre et al., 2007), a
graph-based algorithm (McDonald et al., 2005)
or a combination of both (Nivre and McDonald,
2008). Those algorithms addressed several prob-
lems in multilingual dependency analysis such as
bidirectional dependency relationships and non-
projective sentences. However, it is hard to in-
tuitively interpret the actions to be trained on the
transition-based parser. Though it can handle the
history of past parsing actions, the output may vi-
olate syntactic constraints due to the limitation of
visible histories. The graph-based approach cap-
tures global information in a sentence, but the dif-
ficulty in reflecting the interaction of attachment
decisions causes contradictory labels in a tree.

The parsing results from the participants in the
2017 shared task show low scores on Japanese (67
to 82% in the UAS scores, excluding the team that
provided the data) in particular, which shows that
the language-universal approaches do not work ef-
fectively for Japanese.1

The syntactic structures in the Japanese version
of Universal Dependencies (Tanaka et al., 2016;
Asahara et al., 2018) have dependencies in both
directions, as well as in other languages, since
it is based on the word level annotations and
the content-head dependency schema. However,
when the syntactic structures are expressed with
the dependencies between phrasal units (so-called
bunsetsus in Japanese; ‘PU’ hereafter in this pa-
per), the head element always comes in the right
position, since Japanese is a consistently head-
final language. This allows us to apply a method
for such languages to simplify the model. We con-

1Note that another factor in the low score was the incon-
sistent tokenization (84 to 93% F1 value).

38

男の子
otokonoko

‘boy’
NOUN

nsubj

?
は
ha

-TOPIC
ADP

case
?

赤い
akai
‘red’
ADJ

acl
?
ボール

boru
‘ball’

NOUN

obj

?
を
wo

-ACC
ADP

case
?

買っ
kat-

‘buy’
VERB

advcl

?
て
te

-ADV
SCONJ

mark
?

学校
gakko

‘school’
NOUN

obl

?
で
de

-LOC
ADP

case
?

遊ん
ason
‘play’
VERB

root

?
で
de

-ADV
SCONJ

mark
?

いる
iru

-PROG
AUX

aux

?
。
.

‘.’
PUNCT

punct

?

Figure 1: Japanese word-level dependencies in the UD-style content-head schema for an example sen-
tence “男の子は赤いボールを買って学校で遊んでいる。” (‘A boy bought a red ball and is playing at
the school’) .

男の子
‘boy’

NOUN

?
は

-TOPIC
ADP

赤い
‘red’
ADJ

?
ボール

‘ball’
NOUN

?
を

-ACC
ADP

買っ
‘buy’

VERB

?
て

-ADV
SCONJ

学校
‘school’
NOUN

?
で

-LOC
ADP

遊ん
‘play’
VERB

root

?
で

-ADV
SCONJ

いる
-PROG
AUX

。
‘.’

PUNCT

Figure 2: Japanese dependencies in PUs (phrasal units). There is a strict head-final constraint.

structed a neural parsing model to directly select
the head word among the limited candidates. The
model works as a classifier that outputs intuitive
and consistent results while exploiting grammati-
cal knowledge.

Section 2 reviews the head-final property
of Japanese and the Triplet/Quadruplet Model
(Kanayama et al., 2000) to exploit syntactic
knowledge in a machine-learning parser. Section 3
designs our neural model relying on the grammati-
cal knowledge, and its experimental results are re-
ported in Section 4. Other head-final languages
are discussed in Section 5 and some related ap-
proaches are discussed in Section 6. Section 7
concludes this paper.

2 Background

First, Section 2.1 shows the head-final property of
the Japanese language. and Sections 2.2 and 2.3
explain the main ideas in the Triplet/Quadruplet
Model: the methods of simplification of depen-
dency parsing task using the linguistic knowledge.

2.1 Head-final structure in Japanese

Figure 1 shows an example of a word-level de-
pendency structure of a Japanese sentence in the
representation of Universal Dependencies. Tradi-
tionally Japanese dependency parsers have been
evaluated on the unit of bunsetsu, a phrasal unit
(PU), as performed in Kyoto University Text Cor-
pus (Kawahara et al., 2002). A PU consists of a

content word2 and optional functional words and
prefixes and suffixes. Figure 2 depicts the depen-
dency structure represented in PUs, where the all
dependencies are in a single direction. The head
PU is always in the right and the rightmost PU is
always the root, as long as exceptional inversion
cases are not cared. In this paper we exploit this
property to apply a simplified parsing algorithm:
the parsing can be regarded as the selection of the
head PU from the limited number of candidates
PUs located to the right of the dependent in ques-
tion. For example, the second PU “赤い” (‘red’)
in Figure 2 must modify one of the four PUs from
the third “ボールを” (‘ball’-ACC) to the sixth PU
“遊ん で いる” (‘play’-PROG). The correct head
is “ボールを” (‘ball’-ACC).

2.2 Restriction of modification candidates
The head-final feature can further simplify the de-
pendency parsing by adding syntactic constraints.
The Triplet/Quadruplet Model (Kanayama et al.,
2000) has been proposed to achieve the statisti-
cal dependency parsing making most of the lin-
guistic knowledge and heuristics. In their work, a
small number (about 50) of hand-crafted grammar
rules determine whether a PU can modify each PU
to its right in a sentence as shown in Table 1. In
the rules, the modified PUs are determined on the
conditions of the rightmost morpheme in the mod-
ifier PU. In addition to PoS-level relationships,

2In case of compound nouns and verbs, multiple content
words may be included in a single PU.

39

Rightmost morpheme of the modifier PU Conditions for the modified PUs
postpositional “を” wo (accusative) verb, adjective
postpositional “から” kara (‘from’) verb, adjective
postpositional “から” kara (‘from’) nominal followed by postpositonal “まで” made (‘to’)

proper noun + postpositional “から “ proper noun followed by postpositional “の” (-GEN)
postpositional “の” no (genitive, nominative) noun, verb, adjective

postpositional “と” to (conjunctive) noun, verb, adjective
postpositional “と” to (conjunctive) adverb “一緒に” isshoni (‘together’)

adverb verb, adjective, adverb, nominal with copula

Table 1: The excerpt of Japanese grammar rules. The left side is the condition of the modifier PU
specified with the rightmost morpheme (except for punctuation) with optional preceding morphemes,
and the right side is the list of the condition for the modifiable PUs specified with the head word and
optional functional words.

of Ratio 1st 2nd Last Sum
candidates

1 32.7 100.0 − − 100.0
2 28.1 74.3 26.7 − 100.0
3 17.5 70.6 12.6 16.8 100.0
4 9.9 70.4 11.1 13.8 95.3
≥5 11.8 70.2 11.1 10.5 91.9

Total 100 − − − 98.6

Table 2: Percentages of the position of the correct
modified PU among the candidate PUs selected
by the initial grammar rules. The column ‘Sum’
shows the coverage of the 1st, 2nd and last (the far-
thest) PUs in the distance from the modifier PUs.
The EDR Japanese corpus was used in this analy-
sis.

detailed condition with specific functional words
and exceptional content words are covered in the
rules. Even with these simplified rules, 98.5% of
the modifications between PUs are covered.

The role of the grammar rules is to maximize
the coverage, and the rules are simply describing
high-level syntactic dependencies so that the rules
can be created easily without worrying about pre-
cision or contradictory rules. The statistical infor-
mation is later used to select the rules necessary
for a given sentence to produce an accurate pars-
ing result.

Furthermore, an analysis of the EDR corpus
shows that 98.6% of the correct dependencies are
either the nearest PU, the second nearest PU, or
the farthest PU from the modifier (more details in
Table 2) among the modifiable PUs enumerated
by the grammar rules. Therefore, the model can
be simplified by restricting the candidates to these

two or three candidates and by ignoring the other
PUs with a small sacrifice (1.4%) of parsing ac-
curacy. Retaining the farthest modifiable PU from
the modifier, the long distance dependencies are
captured.

2.3 Calculation of modification probabilities
Let u be a modifier PU in question, cun the u’s n-
th modification candidate PU, Φu and Ψcun the re-
spective attributes of u and cun. Then the probabil-
ity of u modifying its n-th candidate is calculated
by the triplet equation (1) when u has two candi-
dates or the quadruplet equation (2) when u has
three candidates.3 These two equations are known
as the Triplet and Quadruplet Model.

P (u← cun) = P (n | Φu, Ψcu1 , Ψcu2) (1)

P (u← cun) = P (n | Φu, Ψcu1 , Ψcu2 , Ψcu3) (2)

Assuming the independence of those modifica-
tions, the probability of the dependency tree for
an entire sentence P (T) is calculated as the prod-
uct of the probabilities of all of the dependencies
in the sentence using beam search from the right-
most PU to the left, to maximize P (T) under the
constraints of the projected structure.

P (T) ≃
∏

u

P (u← cun) (3)

Equations (1) and (2) have two major advan-
tages. First, all the attributes of the modifier and
its candidates can be handled simultaneously – the
model expresses the context through the combi-
nation of those attributes. Second, the probabil-
ity of each modification is calculated based on the

3It is trivial to show that P (u ← cu1) = 1, when u has
only one candidate.

40

社長　　を　、
Shacho　wo　,
‘president’-ACC

Modifier

買収し　　た
baishu-shi　ta

‘acquired’-ADN

Candidate 1

紹介　　、
shokai　,

‘introduced’-ADV

Candidate 2

開始し　た　。
kaishi-shi　ta
‘launch’-PAST

Candidate 3

6 6 6

●●●●

‘president’
●●●

noun
●●●●

wo
●●●

part+comma
●●

(0,1,1)
●●●●

‘acquire’
●●●

verb

●●●●

ta

●●●

aux
●●

(0,1,3)
●●●●

‘introduce’

●●●

verb+‘,‘
●●●●

‘introduce’

●●●

verb+‘,‘
●●

(0,2,7)
●●●●

‘launch’

●●●

verb

●●●●

‘.’

●●●

period

hidden layer ●●●●●●●●●●●●●●●●●●●●●●6
●●●6

softmax
●

Figure 3: The neural net for the quadruplet model to select the head of the PU “社長を” (‘president’-
ACC) from three modification candidates in an example sentence “…以前の社長を、0買収した1企業
に紹介、2…事業を開始した。3” (‘... introduced2 the previous president0 to the acquired1 company, and
launched3 a ... business’). The attributes of the modifier PU and three modification candidates, and the
features between the modifier and each candidate are input as distributed vectors.

relative positions of the candidates, instead of the
distance from the modifier PU in the surface sen-
tence, making the model more robust.

3 NN parsing model

In the past implementation of the parser by
the Triplet/Quadruplet model (Kanayama et al.,
2000), the equations (1) and (2) were calcu-
lated with logistic regression (maximum entropy
method) in which many binary features represent
the attributes of each PU. We designed the NN
model using distributed representation of words
and parts-of-speech as Chen and Manning (2014)
did.

Figure 3 shows the neural net model that di-
rectly selects the head PU and an example sen-
tence. Here, the head of “社長を” (‘president-
ACC’) is predicted among three modification can-
didates selected by the method described in Sec-
tion 2.2. The second candidate PU “紹介、”
(‘introduced-ADV’) is the correct head.

To make the prediction, the attributes for each
PU are extracted, and we focus on two words in a
PU: the head word – the rightmost content word in
the PU – and the form word – the rightmost func-
tional word in the PU except for a punctuation.
First, the surface form and the PoS of the head
word and the form word are converted into vector
representations. That is, two vectors are used for
6 PUs in the triplet model and 8 PUs are used in
the quadruplet model. Furthermore, the following
attributes between two PUs are added.

• the number of a postpositional “は ha”4 be-
tween two PUs (0, 1, 2, 3, 4, or 5+)

• the number of commas between two PUs (0,
1, 2, 3, 4, or 5+)

• the distance between two PUs (1, 2, 3, ..., 9,
or 10+)

These features expressed as vectors are concate-
nated to form a single layer, and the final output is
given as the softmax of two or three values (1, 2,
or 3).

The above calculation computes the probabili-
ties of the modification to candidate PUs, but it
does so independently for each modifier PU; there-
fore, there may be crossing of modification in a
whole sentence. Since the Japanese dependency
structures are fully projective, the optimal tree for
the sentence is constructed using a beam search to
maximize the Equation (3) in Section 2.3, exclud-
ing modification pairs that violate the projective
constraint in each step of the beam search. More
specifically, combinations of dependencies which
violate projective constraints (e.g. 5← 7 and 6←
8) are excluded from the beam, then the projective
tree structure is guaranteed.

4 Experiments

4.1 Experimental settings
We used EDR Japanese Corpus (EDR, 1996) for
the initial training and evaluation. After remov-

4Typical used as a topic marker, which suggests a long-
distance dependency.

41

Training method Training size Accuracy
nearest baseline none 62.03% (13581/21894)

logistic regression 190k 88.92% (19468/21894)
NN 40k 88.15% (19300/21894)
NN 80k 88.49% (19373/21894)
NN 120k 89.17% (19522/21894)
NN 160k 89.31% (19554/21894)

Table 3: The accuracy of PU dependencies tested on EDR corpus. The ‘nearest baseline’ denotes the
ratio of the case where the head is the right next PU.

ing inconsistent PUs due to tokenization mis-
match between the corpus and the runtime pro-
cess, the evaluation was conducted on 2,941 test
sentences. 160,080 sentences were used for train-
ing and 8,829 sentences were kept for validation.

The models were implemented with Tensor-
Flow (Abadi et al., 2015). The loss function
was calculated by cross entropy. The L2 nor-
malization factor multiplied by 10−8 was added,
and output was optimized with AdamOptimizer
(Kingma and Ba, 2014).

Words are expressed by two vectors. One was
100 dimensional embeddings of the surface form
– the other was 50 dimensional embeddings of 148
types of values of the combination of 74 types of
fine-grained PoS and a binary feature to find the
existence of a comma in the PU. The three features
between PUs were converted into 10 dimensional
vectors. All of these vectors were randomly ini-
tialized and updated during the training. The input
layer formed 990 in the triplet model and 1,320 di-
mensions in the quadruplet model. The dimension
of the hidden layer was set to 200 and conducted a
beam search with the size 5.

4.2 Experimental results

Table 3 shows the accuracies of dependency pars-
ing by the conventional model trained with logis-
tic regression and our proposed neural net model.
Both models used the very similar grammar rules
and the features are used. While the logistic
regression method required manual selection of
combination of features to get optimal accuracy,
the neural net model outperformed the others
when the training corpus was more than 120k sen-
tences, by 0.4 points when the training corpus was
160k sentences. The maximum number of the
training data in neural net model (160k) is less
than that used in the logistic regression method
(190k) because the development set needed to be

Content words Commas Accuracy
Yes Yes 89.31%
No Yes 88.95%
Yes No 87.40%
No No 87.24%

Table 4: Ablation studies to remove content word
vocabularies and commas.

kept for the neural model, and some sentences
were dropped as described in Section 4.1.

Only words in the modifier PU and the candi-
date PUs were used in these methods, and other
surrounding context and other dependencies were
not considered. By capturing appropriate contexts
of candidate PUs selected by the grammar rules
and heuristics, our method successfully predicted
the dependencies with relatively small pieces of
information compared to the initial transition-
based neural parser (Chen and Manning, 2014)
that used a maximum of 18 words in the buffer,
stack and modifiers.

There was a huge difference in the training
speed. The logistic regression method took 4 to
20 hours on a CPU, but the neural net model con-
verged in 5 to 15 seconds on a GPU.

We conducted an ablation study to see the con-
tribution of attributes. We focused on the vo-
cabulary of content words that can be better cap-
tured using distributed representation rather than
the conventional method, and commas that played
an important role in suggesting long-distance at-
tachments. According to the results in Table 4,
the contribution of the content words (the vocab-
ulary size was 11,362) was not very big; even if
the content words were ignored, the loss of accu-
racy was only 0.36 points. On the other hand, the
model ignoring commas (where all of the features
regarding commas was removed) downgraded the

42

word-based (UD)

彼
‘he’

?
が

-NOM

?
3

‘3’

?
km

‘km’

?
走っ
‘run’

た
-PAST

?
。
.

?

彼
‘he’

が
-NOM

3
‘3’

km
‘km’

走っ
‘run’

た
-PAST

。
.

66
PU-based

Figure 4: Conversion between PU-based and
word-based dependencies.

accuracy by nearly 2 points, which suggests that
commas are important in parsing.

The example dependency in Figure 3 (‘presi-
dent’← ‘introduced’) was correctly solved by our
neural model. Though many PUs followed the
modifier PU in question, the model selected the
head word from only three candidates restricted by
the grammar rules, and the known dependency re-
lationship between two PUs is guaranteed to be as-
sociated with the parsing result. The conventional
model without neural net wrongly selected the first
candidate (‘acquired’) as the head. The ablation of
the content words also made the prediction wrong,
that clarified that it was because the conventional
model did not capture the content words and the
attributes in the distance were stronger. On the
other hand, the neural model with the content word
embeddings appropriately captured the relation-
ship between the functional word in the modifier
PU (accusative case) and the content word of the
correct candidate PU (‘introduced’).

4.3 Comparison on Japanese UD

To compare the performance of our parser with
the results in the 2017 Shared Task (Zeman et al.,
2017), we apply the trained model to UD
Japanese-GSD 5 test data. As shown in Figure 4,
the word-based dependency in UD Japanese and
PU-based dependencies are interchangeable with
a strict rule to detect PU boundaries and the head
word in a PU. In UD Japanese-GSD data, the at-
tachment direction between head words in PUs is
always the same after converting to the PU-based
structure. Also the non-head words in a PU always
depends on the head word of the PU.

The first section of Table 5 shows comparisons
with the shared task results. Here we evaluate

5It was formerly known as UD Japanese until 2017.

them by UAS (unlabeled attachment score) rather
than by LAS (labeled attachment score) because
most of the Japanese labels can be deterministi-
cally assigned with the combination of the head
and the dependent, and assignment with the rules
can reproduce the labels in UD Japanese-GSD
corpus, thus it is not fair to compare LAS with
other machine learning methods. The scores are
associated with tokenization accuracies because
they highly affect Japanese parsing accuracies in
the shared task to handle raw text inputs. Our
model performed better than any other results in
the shared task, though the comparison is not com-
pletely fair since we rely on the segmentation and
functional word attachment based on the consis-
tent rules with the UD data creation.

In the 2017 Shared Task, the raw text was used
as the input, thus the performance of sentence
splitting and tokenization highly affected the pars-
ing result.6 To make more direct comparisons in
parsing, our results were mapped with the base-
line tokenzation by UDPipe (Straka et al., 2016)
which many task participants have used. That is,
the parsing score was intentionally downgraded,
but it outperformed any other results which used
UDPipe tokenization as it was, as shown in the
second section of Table 5.

Also we compared our parser when the gold
tokens are given, with UDPipe UDv2.0 model
(Straka and Straková, 2017), and RBG Parser
(Lei et al., 2014) which was trained with UD
Japanese-GSD training set. Our model had 9%
and 20% less errors than UDPipe and RBG Parser,
respectively.

5 Application to other languages

Our approach relies on the head-final feature of
the languages. In addition to Japanese, Korean
and Tamil are categorized as rigid head-final lan-
guages (Polinsky, 2012). Table 6 shows the ra-
tio of head-final dependencies by languages in the
Universal Dependencies version 2.0 development
data. Though the word-level dependencies in UD
do not reflect the head finalness as only 45% of
Japanese dependencies have the head in the right
side, but when it comes to content words (the list
of functional PoSs are shown in the caption of Ta-
ble 6) without functional labels and exceptional la-
bels such as conjunction (see the caption again),

6The mismatched tokens are always regarded as parsing
errors in the calculation of UAS/LAS.

43

Models Tokens UAS
Our model 98.61 94.03

Own tokenizers TRL (Kanayama et al., 2017) 98.59 91.14
HIT-SCIR (Che et al., 2017) 92.95 81.94
Our model - UDPipe aligned 89.41 75.88

UDPipe default tokenization C2L2 (Shi et al., 2017) 89.68 75.46
Stanford (Dozat et al., 2017) 89.68 75.42
Our model - with gold tokenization 100.0 95.97

Gold tokenization UDPipe UDv2.0 model (Straka and Straková, 2017) 100.0 95.48
RBG Parser (Lei et al., 2014) 100.0 94.94

Table 5: F1 scores of tokenization and UAS on the UD Japanese-GSD test set. The top section shows the
systems which used their own tokenizers. The second section is a comparison with the systems relying
on the default settings of UDPipe, and the bottom section is the situation to ru parsers using the gold PoS
as input.

language all content selected
ar 0.31 0.09 0.09
cs 0.56 0.45 0.49
en 0.61 0.49 0.54
fi 0.57 0.54 0.60
ja 0.45 0.96 1.00
he 0.48 0.21 0.21
hi 0.58 0.91 0.95
hu 0.69 0.72 0.76
id 0.36 0.24 0.30
kk 0.59 0.77 0.82
ko 0.63 0.70 0.98
ro 0.47 0.26 0.30
ru 0.49 0.39 0.43
ta 0.71 0.92 0.97
tr 0.64 0.78 0.87
ur 0.59 0.89 0.94
vi 0.41 0.34 0.36
zh 0.72 0.79 0.83

Table 6: The ratio of head-final dependencies by
languages. “All” denotes the ratio of all nodes ex-
cept for the root. “Content” is the head-final ra-
tio for content words, i.e. functional PoSs (ADP,
AUX, CCONJ, DET, SCONJ, SYM, PART, and
PUNCT) are excluded. “selected” means the
more selective ones, excluding the labels conj,
fixed, flat, aux and mark.

Japanese has the complete head-final structures,
and Korean and Tamil have high ratios supporting
the linguistic theory.

However, the UD Korean corpus has so many
coordination structures under the UD’s general
constraint that the left coordinate should be the
head, because many subordinating structures are
represented as coordination while corresponding
Japanese ones are not, that it is difficult to con-
vert the corpus to the strictly head-final structure.
That is the reason why we could not evaluate
our method on Korean, but the Triplet/Quadruplet
Model has been applied to Korean with sim-
ilar grammatical rules and it has been shown
that the transfer learning from Japanese worked
(Kanayama et al., 2014), thus our neural classifier
approach to Korean parsing is expected to work
well.

Also UD Tamil data has exceptional cases in
proper nouns and other phenomena, and the rela-
tively small corpus made the further investigation
difficult. We are leaving it to future work.

6 Related work

The parsing approach to select heads of depen-
dents has been proposed by Zhang et al. (2017).
They applied bidirectional RNN to select the prob-
ability that each word chooses another word or the
ROOT node as its head. They reported compa-
rable results for four languages. Their method re-
quired a maximum spanning tree algorithm to gen-
erate valid trees. On the other hand, our approach
straightforwardly outputs the projective tree by ex-
ploiting the head-final feature in Japanese.

Martı́nez-Alonso et al. (2017) shares the similar

44

motivation with ours. They tackled multilingual
parsing by using a small set of attachment rules
determined with Universal POS, and achieved 55
UAS value with predicted PoS as input. Our
method applied a neural model on top of the gram-
matical restriction to achieve higher accuracy for a
specific language.

Garcı́a et al. (2017) tackled the multilingual
shared task with the rule-based approach. The
rules are simplified with the almost delexicalized
PoS-level constraints and created with a small ef-
fort by an expert. Though the performance was
limited compared to other supervised approaches,
it is meaningful for the comparison of linguistic
features, and the combination with machine learn-
ing methods can be useful as we are aiming at.

7 Conclusion

In this paper we implemented a neural net pars-
ing model as the direct classifier to predict the
attachment of phrasal units in a intuitive manner
by exploiting grammatical knowledge and heuris-
tics, and confirmed that the neural net model
outperformed the conventional machine learning
method, and our method worked better than the
shared task results. Unlike the most of neural
parsing methods in which interpretation of the
model output and control of the model without
data supervision are difficult, our method is simple
enough to understand the behavior of the model,
and the grammatical knowledge can be reflected in
the restriction of modification candidates. More-
over, the neural net with distributed vector repre-
sentations enabled us to handle more vocabularies
than the logistic regression with distinct word fea-
tures in which only the limited number of content
words and their combination with other features
could be distinguished in the parsing model.

Our experiments showed that a limited number
of words are seen as able to predict attachments.
For further improvement, we can integrate the
LSTM model, which handles more contextual in-
formation with simplification (Cross and Huang,
2016). We did not handle coordination relation-
ships explicitly in this work, but we will intend to
address coordination with more lexical knowledge
and a broader context.

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-

rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Vasude-
van, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xi-
aoqiang Zheng. 2015. TensorFlow: Large-scale ma-
chine learning on heterogeneous systems. Software
available from tensorflow.org.

Masayuki Asahara, Hiroshi Kanayama, Takaaki
Tanaka, Yusuke Miyao, Sumire Uematsu, Shinsuke
Mori, Yuji Matsumoto, Mai Omura, and Yugo Mu-
rawaki. 2018. Universal Dependencies version 2 for
Japanese. In Proceedings of LREC 2018.

Wanxiang Che, Jiang Guo, Yuxuan Wang, Bo Zheng,
Huaipeng Zhao, Yang Liu, Dechuan Teng, and Ting
Liu. 2017. The hit-scir system for end-to-end pars-
ing of universal dependencies. Proceedings of the
CoNLL 2017 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies pages 52–
62.

Danqi Chen and Christopher Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of the 2014 conference on
empirical methods in natural language processing
(EMNLP). pages 740–750.

James Cross and Liang Huang. 2016. Incremental
parsing with minimal features using bi-directional
lstm. In The 54th Annual Meeting of the Associa-
tion for Computational Linguistics. page 32.

Timothy Dozat, Peng Qi, and Christopher D Manning.
2017. Stanford’s graph-based neural dependency
parser at the conll 2017 shared task. Proceedings
of the CoNLL 2017 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies pages
20–30.

EDR. 1996. EDR (Japan Electronic Dictionary Re-
search Institute, Ltd.) electronic dictionary version
1.5 technical guide.

Marcos Garcı́a and Pablo Gamallo. 2017. A rule-
based system for cross-lingual parsing of romance
languages with universal dependencies. In CoNLL
Shared Task.

Hiroshi Kanayama, Masayasu Muraoka, and Kat-
sumasa Yoshikawa. 2017. A semi-universal
pipelined approach to the conll 2017 ud shared task.
Proceedings of the CoNLL 2017 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal Depen-
dencies pages 265–273.

Hiroshi Kanayama, Tetsuya Nasukawa, and Hideo
Watanabe. 2004. Deeper sentiment analysis using
machine translation technology. In COLING 2004.
pages 494–500.

45

Hiroshi Kanayama, Youngja Park, Yuta Tsuboi, and
Dongmook Yi. 2014. Learning from a neigh-
bor: Adapting a japanese parser for korean through
feature transfer learning. In Proceedings of the
EMNLP’2014 Workshop on Language Technology
for Closely Related Languages and Language Vari-
ants. pages 2–12.

Hiroshi Kanayama, Kentaro Torisawa, Yutaka Mitsu-
ishi, and Jun’ichi Tsujii. 2000. A hybrid Japanese
parser with hand-crafted grammar and statistics. In
Proceedings of the 18th International Conference on
Computational Linguistics. pages 411–417.

Daisuke Kawahara, Sadao Kurohashi, and Kôiti
Hasida. 2002. Construction of a japanese relevance-
tagged corpus. In LREC.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Tao Lei, Yuan Zhang, Regina Barzilay, and Tommi
Jaakkola. 2014. Low-rank tensors for scoring de-
pendency structures. Association for Computational
Linguistics.

Héctor Martı́nez Alonso, Željko Agić, Barbara Plank,
and Anders Søgaard. 2017. Parsing universal depen-
dencies without training. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics. Valencia, Spain,
pages 230–240.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceedings
of the conference on Human Language Technology
and Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics,
pages 523–530.

Tetsuya Nasukawa and Tohru Nagano. 2001. Text anal-
ysis and knowledge mining system. IBM systems
journal 40(4):967–984.

Joakim Nivre, Cristina Bosco, Jinho Choi, Marie-
Catherine de Marneffe, Timothy Dozat, Richard
Farkas, Jennifer Foster, Filip Ginter, Yoav Gold-
berg, Jan Haji, Jenna Kanerva, Veronika Laippala,
Alessandro Lenci, Teresa Lynn, Christopher Man-
ning, Ryan McDonald, Anna Missila, Simonetta
Montemagni, Slav Petrov, Sampo Pyysalo, Natalia
Silveira, Maria Simi, Aaron Smith, Reut Tsarfaty,
Veronika Vincze, and Daniel Zeman. 2015. Univer-
sal dependencies 1.0.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas
Chanev, Gülşen Eryigit, Sandra Kübler, Svetoslav
Marinov, and Erwin Marsi. 2007. Maltparser: A
language-independent system for data-driven de-
pendency parsing. Natural Language Engineering
13(2):95–135.

Joakim Nivre and Ryan McDonald. 2008. Integrat-
ing graph-based and transition-based dependency
parsers. Proceedings of ACL-08 pages 950–958.

Maria Polinsky. 2012. Headness, again. UCLA Work-
ing Papers in Linguistics, Theories of Everything
17:348–359.

Tianze Shi, Felix G Wu, Xilun Chen, and Yao Cheng.
2017. Combining global models for parsing univer-
sal dependencies. Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies pages 31–39.

Milan Straka, Jan Hajic, and Jana Straková. 2016.
Udpipe: Trainable pipeline for processing conll-u
files performing tokenization, morphological analy-
sis, pos tagging and parsing. In LREC.

Milan Straka and Jana Straková. 2017. Tokenizing,
pos tagging, lemmatizing and parsing ud 2.0 with
udpipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies. Association for Computational
Linguistics, pages 88–99.

Takaaki Tanaka, Yusuke Miyao, Masayuki Asahara,
Sumire Uematsu, Hiroshi Kanayama, Shinsuke
Mori, and Yuji Matsumoto. 2016. Universal depen-
dencies for japanese. In Proceedings of LREC 2016.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gökırmak,
Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr.,
Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka
Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,
Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,
Kira Droganova, Hěctor Martı́nez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

Xingxing Zhang, Jianpeng Cheng, and Mirella Lapata.
2017. Dependency parsing as head selection. In
Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics. pages 665–676.

46

Proceedings of the Workshop on the Relevance of Linguistic Structure in Neural Architectures for NLP, pages 47–53
Melbourne, Australia, July 19, 2018. c©2018 Association for Computational Linguistics

Syntactic Dependency Representations in Neural Relation Classification

Farhad Nooralahzadeh and Lilja Øvrelid
University of Oslo

Department of Informatics
{farhadno,liljao}@ifi.uio.no

Abstract

We investigate the use of different syntac-
tic dependency representations in a neu-
ral relation classification task and compare
the CoNLL, Stanford Basic and Universal
Dependencies schemes. We further com-
pare with a syntax-agnostic approach and
perform an error analysis in order to gain
a better understanding of the results.

1 Introduction

The neural advances in the field of NLP challenge
long held assumptions regarding system architec-
tures. The classical NLP systems, where compo-
nents of increasing complexity are combined in a
pipeline architecture are being challenged by end-
to-end architectures that are trained on distributed
word representations to directly produce different
types of analyses traditionally assigned to down-
stream tasks. Syntactic parsing has been viewed
as a crucial component for many tasks aimed at
extracting various aspects of meaning from text,
but recent work challenges many of these assump-
tions. For the task of semantic role labeling for
instance, systems that make little or no use of
syntactic information, have achieved state-of-the-
art results (Marcheggiani et al., 2017). For tasks
where syntactic information is still viewed as use-
ful, a variety of new methods for the incorpora-
tion of syntactic information are employed, such
as recursive models over parse trees (Socher et al.,
2013; Ebrahimi and Dou, 2015) , tree-structured
attention mechanisms (Kokkinos and Potamianos,
2017), multi-task learning (Wu et al., 2017), or the
use of various types of syntactically aware input
representations, such as embeddings over syntac-
tic dependency paths (Xu et al., 2015b).

Dependency representations have by now be-
come widely used representations for syntactic
analysis, often motivated by their usefulness in

All knowledge sources are treated as feature functions

NMOD

NMOD SBJ VC ADV

PMOD

NMOD

ROOT

(a) CoNLL Dependencies

All knowledge sources are treated as feature functions

det

nmod

nsubjpass

auxpass prep

pobj

nmod

root

(b) SB: Stanford Basic Dependencies

All knowledge sources are treated as feature functions

det

nmod

nsubjpass

auxpass

nmod

case

nmod

root

(c) UD: Universal Dependencies

Figure 1: Dependency representations for the ex-
ample sentence.

downstream application. There is currently a wide
range of different types of dependency represen-
tations in use, which vary mainly in terms of
choices concerning syntactic head status. Some
previous studies have examined the effects of de-
pendency representations in various downstream
applications (Miyao et al., 2008; Elming et al.,
2013). Most recently, the Shared Task on Extrinsic
Parser Evaluation (Oepen et al., 2017) was aimed
at providing better estimates of the relative util-
ity of different types of dependency representa-
tions and syntactic parsers for downstream appli-
cations. The downstream systems in this previous
work have, however, been limited to traditional
(non-neural) systems and there is still a need for
a better understanding of the contribution of syn-
tactic information in neural downstream systems.

In this paper, we examine the use of syntactic
representations in a neural approach to the task
of relation classification. We quantify the effect
of syntax by comparing to a syntax-agnostic ap-
proach and further compare different syntactic de-
pendency representations that are used to generate
embeddings over dependency paths.

47

2 Dependency representations

Figure 1 illustrates the three different depen-
dency representations we compare: the so-
called CoNLL-style dependencies (Johansson and
Nugues, 2007) which were used for the 2007,
2008, and 2009 shared tasks of the Conference on
Natural Language Learning (CoNLL), the Stan-
ford ‘basic’ dependencies (SB) (Marneffe et al.,
2006) and the Universal Dependencies (v1.3)
(UD; McDonald et al., 2013; Marneffe et al.,
2014; Nivre et al., 2016). We see that the analy-
ses differ both in terms of their choices of heads
vs. dependents and the inventory of dependency
types. Where CoNLL analyses tend to view func-
tional words as heads (e.g., the auxiliary verb are),
the Stanford scheme capitalizes more on content
words as heads (e.g., the main verb treated). UD
takes the tendency to select contentful heads one
step further, analyzing the prepositional comple-
ment functions as a head, with the preposition as
itself as a dependent case marker. This is in con-
trast to the CoNLL and Stanford scheme, where
the preposition is head.

For syntactic parsing we employ the parser de-
scribed in Bohnet and Nivre (2012), a transition-
based parser which performs joint PoS-tagging
and parsing. We train the parser on the standard
training sections 02-21 of the Wall Street Jour-
nal (WSJ) portion of the Penn Treebank (Mar-
cus et al., 1993). The constituency-based treebank
is converted to dependencies using two different
conversion tools: (i) the pennconverter software1

(Johansson and Nugues, 2007), which produces
the CoNLL dependencies2, and (ii) the Stanford
parser using either the option to produce basic de-
pendencies 3 or its default option which is Uni-
versal Dependencies v1.34. The parser achieves a
labeled accuracy score of 91.23 when trained on
the CoNLL08 representation, 91.31 for the Stan-
ford basic model and 90.81 for the UD representa-
tion, when evaluated against the standard evalua-
tion set (section 23) of the WSJ. We acknowledge
that these results are not state-of-the-art parse re-
sults for English, however, the parser is straight-

1http://nlp.cs.lth.se/software/
treebank-converter/

2The pennconverter tool is run using the
rightBranching=false flag.

3The Stanford parser is run using the -basic flag to pro-
duce the basic version of Stanford dependencies.

4Note, however, that the Stanford converter does not pro-
duce UD PoS-tags, but outputs native PTB tags.

forward to use and re-train with the different de-
pendency representations. We also compare to an-
other widely used parser, namely the pre-trained
parsing model for English included in the Stanford
CoreNLP toolkit (Manning et al., 2014), which
outputs Universal Dependencies only. However,
it was clearly outperformed by our version of the
Bohnet and Nivre (2012) parser in the initial de-
velopment experiments.

3 Relation extraction system

We evaluate the relative utility of different types of
dependency representations on the task of seman-
tic relation extraction and classification in scien-
tific papers, SemEval Task 7 (Gábor et al., 2018).
We make use of the system of Nooralahzadeh et al.
(2018): a CNN classifier with dependency paths
as input, which ranked 3rd (out of 28) partici-
pants in the overall evaluation of the shared task.
Here, the shortest dependency path (sdp) connect-
ing two target entities for each relation instance
is provided by the parser and is embedded in the
first layer of a CNN. We extend on their system by
(i) implementing a syntax-agnostic approach, (ii)
implementing hyper-parameter tuning for each de-
pendency representation, and (iii) adding Univer-
sal Dependencies as input representation. We thus
train classifiers with sdps extracted from the differ-
ent dependency representations discussed above
and measure the effect of this information by the
performance of the classifier.

3.1 Dataset and Evaluation Metrics

We use the SemEval-2018, Task 7 dataset (Gábor
et al., 2018) from its Subtask 1.1. The training data
contains abstracts of 350 papers from the ACL An-
thology Corpus, annotated for concepts and se-
mantic relations. Given an abstract of a scien-
tific paper with pre-annotated domain concepts,
the task is to perform relation classification. The
classification sub-task 1.1 contains 1228 entity
pairs that are annotated based on five asymmet-
ric relations (USAGE, RESULT, MODEL-FEATURE,

PART WHOLE, TOPIC) and one symmetric relation
(COMPARE). The relation instance along with its
directionality are provided in both the training and
the test data sets. The official evaluation metric
is the macro-averaged F1-scores for the six se-
mantic relations, therefore we will compare the
impact of different dependency representations on
the macro-averaged F1-scores.

48

Figure 2: Model architecture with two channels for an example shortest dependency path (CNN model
from Kim (2014)).

The training set for Subtask 1.1 is quite small,
which is a challenge for end-to-end neural meth-
ods. To overcome this, we combined the provided
datasets for Subtask 1.1 and Subtask 1.2 (relation
classification on noisy data), which provides addi-
tional 350 abstracts and 1248 labeled entity pairs
to train our model. This yields a positive impact
(+16.00% F1) on the classification task in our ini-
tial experiments.

3.2 Pre-processing

Sentence and token boundaries are detected us-
ing the Stanford CoreNLP tool (Manning et al.,
2014). Since most of the entities are multi-word
units, we replace the entities with their codes
in order to obtain a precise dependency path.
Our example sentence All knowledge sources are
treated as feature functions, an example of the
USAGE relation between the two entities knowl-
edge sources and feature functions, is thus trans-
formed to All P05 1057 3 are treated
as P05 1057 4.

Given an encoded sentence, we find the sdp
connecting two target entities for each relation
instance using a syntactic parser. Based on
the dependency graph output by the parser, we
extract the shortest dependency path connecting
two entities. The path records the direction of
arc traversal using left and right arrows (i.e. ←
and →) as well as the dependency relation of
the traversed arcs and the predicates involved,
following Xu et al. (2015a). The entity codes in
the final sdp are replaced with the corresponding
word tokens at the end of the pre-processing step.

For the sentence above, we thus extract the path:
knowledge sources ← SBJ ← are →
VC → treated → ADV → as → PMOD
→ feature functions

3.3 CNN model

The system is based on a CNN architecture sim-
ilar to the one used for sentence classification in
Kim (2014). Figure 2 provides an overview of
the proposed model. It consists of 4 main layers
as follows: 1) Look-up Table and Embedding
layer: In the first step, the model takes a shortest
dependency path (i.e., the words, dependency edge
directions and dependency labels) between entity
pairs as input and maps it into a feature vector us-
ing a look-up table operation. Each element of the
dependency path (i.e. word, dependency label and
arrow) is transformed into a embedding layer by
looking up the embedding matrix M ∈ Rd×V ,
where d is the dimension of CNN embedding layer
and V is the size of vocabulary. Each column in
the embedding matrix can be initialized randomly
or with pre-trained embeddings. The dependency
labels and edge directions are always initialized
randomly. 2) Convolutional Layer: The next
layer performs convolutions with ReLU activation
over the embeddings using multiple filter sizes and
extracts feature maps. 3) Max pooling Layer: By
applying the max operator, the most effective local
features are generated from each feature map. 4)
Fully connected Layer: Finally, the higher level
syntactic features are fed to a fully connected soft-
max layer which outputs the probability distribu-
tion over each relation.

49

Hyper parameters F1.(avg. in 5-fold)

Representation Filter
size

Num. Feature
maps

Activation
func.

L2 Reg. Learning
rate

Dropout
Prob.

with default
values

with optimal
values

CoNLL08 4-5 1000 Softplus 1.15e+01 1.13e-03 1 73.34 74.49
SB 4-5 806 Sigmoid 8.13e-02 1.79e-03 0.87 72.83 75.05
UD v1.3 5 716 Softplus 1.66e+00 9.63E-04 1 68.93 69.57

Table 2: Hyper parameter optimization results for each model with different representation. The max
pooling strategy consistently performs better in all model variations.

best F1 (in 5-fold)

Relation without sdp with sdp Diff.

USAGE 60.34 80.24 + 19.90
MODEL-FEATURE 48.89 70.00 + 21.11
PART WHOLE 29.51 70.27 +40.76
TOPIC 45.80 91.26 +45.46
RESULT 54.35 81.58 +27.23
COMPARE 20.00 61.82 + 41.82
macro-averaged 50.10 76.10 +26.00

Table 1: Effect of using the shortest dependency
path on each relation type.

4 Experiments

We run all the experiments with a multi-channel
setting5 in which the first channel is initialized
with pre-trained embeddings 6 in static mode (i.e.
it is not updated during training) and the second
one is initialized randomly and is fine-tuned dur-
ing training (non-static mode). The macro F1-
score is measured by 5-fold cross validation and to
deal with the effects of class imbalance, we weight
the cost by the ratio of class instances, thus each
observation receives a weight, depending on the
class it belongs to.

4.1 Effect of syntactic information

To evaluate the effects of syntactic information
in general for the relation classification task, we
compare the performance of the model with and
without the dependency paths. In the syntax-
agnostic setup, a sentence that contains the partici-
pant entities is used as input for the CNN. We keep
the value of hyper-parameters equal to the ones
that are reported in the original work (Kim, 2014).
To provide the sdp for the syntax-aware version
we compare to, we use our parser with Stanford

5Initial experiments show that the multi-channel model
works better than the single channel model

6We train 300-d domain-specific embeddings on the ACL
Anthology corpus using the available word2vec implementa-
tion gensim for training.

dependencies. We find that the effect of syntac-
tic structure varies between the different relation
types. However, the sdp information has a clear
positive impact on all the relation types (Table 1).
It can be attributed to the fact that the context-
based representations suffer from irrelevant sub-
sequences or clauses when target entities occur far
from each other or there are other target entities
in the same sentence. The sdp between two enti-
ties in the dependency graph captures a condensed
representation of the information required to assert
a relationship between two entities (Bunescu and
Mooney, 2005).

4.2 Comparison of different dependency
representations

To investigate the model performance with various
parser representations, we create a sdp for each
training example using the different parse models
and exploit them as input to the relation classi-
fication model. With the use of default parame-
ters there is a chance that these favour one of the
representations. In order to perform a fair com-
parison, we make use of Bayesian optimization
(Brochu et al., 2010) in order to locate optimal
hyper parameters for each of the dependency rep-
resentations. We construct a Bayesian optimiza-
tion procedure using a Gaussian process with 100
iterations and Expected Improvement (EI) for its
acquisition functions. We set the objective func-
tion to maximize the macro F1 score over 5-fold
cross validation on the training set. Here we inves-
tigate the impact of various system design choices
with the following parameters: 7: I) Filter re-
gion size: ∈ {3, 4, 5, 6, 7, 8, 9, 3-4, 4-5, 5-6,
6-7, 7-8, 8-9, 3-4-5, 4-5-6, 5-6-7, 6-7-8, 7-8-9}
II) Number of feature maps for each filter region
size: ∈ {10 : 1000} III) Activation function: ∈
{Sigmoid,ReLU, Tanh, Softplus, Iden}. IV)
Pooling strategy: ∈ {max, avg}. V) L2 regular-

7Default values are {3-4-5, 128, ReLU, max, 3, 1e-3, 0.5}

50

Sentence This indicates that there is no need to add punctuation in transcribing spoken corpora simply in order to help parsers. class: PART WHOLE

CoNLL08 punctuation← obj← add→ adv→ in→ pmod→ transcribing→ obj→ spoken corpora

SB punctuation← dobj← add→ prep→ in→ pcomp→ transcribing→ dobj→ spoken corpora

UD v1.3 punctuation← dobj← add→ advcl→ transcribing→ dobj→ spoken corpora

Sentence In the process we also provide a formal definition of parsing motivated by an informal notion due to Lang . class: MODEL-FEATURE

CoNLL08 formal definition→ nmod→ of→ pmod→ parsing

SB formal definition→ prep→ of→ pobj→ parsing

UD v1.3 formal definition→ nmod→ parsing

Sentence This paper describes a practical ”black-box” methodology for automatic evaluation of question-answering NL systems in spoken dialogue. class: USAGE

CoNLL ” ”black-box” methodology→ nmod→ for→ pmod→ evaluation→ nmod→ of→ pmod→ question-answering NL systems

SB ”black-box” methodology→ prep→ for→ pobj→ evaluation→ prep→ of→ pobj→ question-answering NL systems

UD v1.3 ”black-box” methodology→ nmod→ evaluation→ nmod→ question-answering NL systems

Table 4: The examples for which the CoNLL/SB-based models correctly predict the relation type in
5-fold trials, whereas the UD based model has an incorrect prediction.

ization: ∈ {1e − 4 : 1e + 2}. VI) Learning rate:
∈ {1e − 6 : 1e − 2}. VII) Dropout probability 8:
∈ {0.1 : 1}. Table 2 presents the optimal values
for each configuration using different dependency
representations. We see that the optimized param-
eter settings vary for the different representations,
showing the importance of tuning for these types
of comparisons. The results furthermore show that
the sdps based on the Stanford Basic (SB) repre-
sentation provide the best performance, followed
by the CoNLL08 representation. We observe that
the results for the UD representation are quite a bit
lower than the two others.

5 Error analysis

Table 3 presents the effect of each parser represen-
tation in the classification task, broken down by re-
lation type. We find that the UD-based model falls
behind the others on the most relation types (i.e,
COMPARE, MODEL-FEATURE, PART WHOLE, TOP-

ICS). To explore these differences in more detail,
we manually inspect the instances for which the
CoNLL/SB-based models correctly predict the re-
lation type in 5-fold trials, whereas the UD-based
model has an incorrect prediction. Table 4 shows
some of these examples, marking the entities and
the gold class of each instance and also showing
the sdp from each representation. We observe that
the UD paths are generally shorter. A striking sim-
ilarity between most of the instances is the fact that
one of the entities resides in a prepositional phrase.
Whereas the SB and CoNLL paths explicitly rep-
resent the preposition in the path, the UD represen-
tation does not. Clearly, the difference between for

8The probability that each element is kept, in which 1 im-
plies that none of the nodes are dropped out

best F1 (in 5-fold)

Relation Frq. CoNLL SB UD

USAGE 947 76.84 82.39 77.56
MODEL-FEATURE 498 68.27 68.54 66.36
PART WHOLE 425 75.32 71.28 67.11
TOPIC 258 89.32 90.57 87.62
RESULT 193 82.35 81.69 82.86
COMPARE 136 66.67 66.67 54.24
macro-averaged 76.94 77.57 72.83

Table 3: Effect of using the different parser repre-
sentation on each relation type.

instance the USAGE and PART WHOLE relation may
be indicated by the presence of a specific prepo-
sition (X for Y vs. X of Y). This is also interest-
ing since this particular syntactic choice has been
shown in previous work to have a negative effect
on intrinsic parsing results for English (Schwartz
et al., 2012).

6 Conclusion

This paper has examined the use of dependency
representations for neural relation classification
and has compared three widely used representa-
tions. We find that representation matters and that
certain choices have clear consequences in down-
stream processing. Future work will extend the
study to neural dependency parsers and other rela-
tion classification data sets.

51

References
Bernd Bohnet and Joakim Nivre. 2012. A transition-

based system for joint part-of-speech tagging and
labeled non-projective dependency parsing. In Pro-
ceedings of EMNLP, pages 1455–1465, Jeju Island,
Korea. ACL.

Eric Brochu, Vlad M. Cora, and Nando de Freitas.
2010. A tutorial on bayesian optimization of expen-
sive cost functions, with application to active user
modeling and hierarchical reinforcement learning.
CoRR, abs/1012.2599.

Razvan C. Bunescu and Raymond J. Mooney. 2005.
A shortest path dependency kernel for relation ex-
traction. In Proceedings of the Conference on Hu-
man Language Technology and Empirical Methods
in Natural Language Processing, HLT ’05, pages
724–731, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Javid Ebrahimi and Dejing Dou. 2015. Chain based
rnn for relation classification. In HLT-NAACL.

Jakob Elming, Anders Johannsen, Sigrid Klerke,
Emanuele Lapponi, Héctor Martı́nez Alonso, and
Anders Søgaard. 2013. Down-stream effects of tree-
to-dependency conversions. In Human Language
Technologies: Conference of the North American
Chapter of the Association of Computational Lin-
guistics, 2013, pages 617–626.

Kata Gábor, Davide Buscaldi, Anne-Kathrin Schu-
mann, Behrang QasemiZadeh, Haı̈fa Zargayouna,
and Thierry Charnois. 2018. Semeval-2018 Task
7: Semantic relation extraction and classification in
scientific papers. In Proceedings of International
Workshop on Semantic Evaluation (SemEval-2018),
New Orleans, LA, USA.

Richard Johansson and Pierre Nugues. 2007. Ex-
tended constituent-to-dependency conversion for en-
glish. In NODALIDA 2007 Proceedings, pages 105–
112. University of Tartu.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1746–1751. Association
for Computational Linguistics.

Filippos Kokkinos and Alexandros Potamianos. 2017.
Structural attention neural networks for improved
sentiment analysis. In Meeting of the European
Chapter of the Association for Computational Lin-
guistics, pages 586–591, Valencia, Spain.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Diego Marcheggiani, Anton Frolov, and Ivan Titov.
2017. A simple and accurate syntax-agnostic neural
model for dependency-based semantic role labeling.
In Proceedings of the 21st Conference on Computa-
tional Natural Language Learning, pages 411–420.
Association for Computational Linguistics.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpora of English. The Penn Treebank. Journal of
Computational Linguistics, 19:313–330.

M. Marneffe, B. Maccartney, and C. Manning. 2006.
Generating typed dependency parses from phrase
structure parses. In Proceedings of the Fifth Interna-
tional Conference on Language Resources and Eval-
uation (LREC-2006).

Marie-Catherine de Marneffe, Timothy Dozat, Na-
talia Silveira, Katri Haverinen, Filip Ginter, Joakim
Nivre, and Christopher D. Manning. 2014. Uni-
versal stanford dependencies: A cross-linguistic ty-
pology. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC-2014).

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuzman
Ganchev, Keith Hall, Slav Petrov, Hao Zhang, and
Oscar Täckström. 2013. Universal dependency an-
notation for multilingual parsing. In Proceedings
of Association for Computational Linguistics (ACL),
pages 92–97.

Yusuke Miyao, Rune Sætre, Kenji Sagae, Takuya Mat-
suzaki, and Jun’ichi Tsujii. 2008. Task-oriented
evaluation of syntactic parsers and their represen-
tations. In Meeting of the Association for Compu-
tational Linguistics, pages 46–54, Columbus, OH,
USA.

Joakim Nivre, Marie-Catherine de Marneffe, Filip
Ginter, Yoav Goldberg, Jan Hajic, Christopher D.
Manning, Ryan T. McDonald, Slav Petrov, Sampo
Pyysalo, Natalia Silveira, Reut Tsarfaty, and Daniel
Zeman. 2016. Universal dependencies v1: A multi-
lingual treebank collection. In Proceedings of the
Tenth International Conference on Language Re-
sources and Evaluation LREC.

Farhad Nooralahzadeh, Lilja Øvrelid, and Jan Tore
Lønning. 2018. Sirius-ltg-uio at semeval-2018 task
7: Convolutional neural networks with shortest de-
pendency paths for semantic relation extraction and
classification in scientific papers. In Proceedings of
the 12th International Workshop on Semantic Eval-
uation (SemEval-2018, New Orleans, LA, USA.

Stephan Oepen, Lilja Øvrelid, Jari Björne, Richard Jo-
hansson, Emanuele Lapponi, Filip Ginter, and Erik
Velldal. 2017. The 2017 Shared Task on Extrinsic
Parser Evaluation. Towards a reusable community
infrastructure. In Proceedings of the 2017 Shared
Task on Extrinsic Parser Evaluation at the Fourth In-
ternational Conference on Dependency Linguistics

52

and the 15th International Conference on Parsing
Technologies, pages 1–12, Pisa, Italy.

Roy Schwartz, Omri Abend, and Ari Rappoport. 2012.
Learnability-based syntactic annotation design. In
Proceedings of COLING 2012, pages 2405–2422.
The COLING 2012 Organizing Committee.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Chris Manning, Andrew Ng, and Chris
Potts. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In Con-
ference on Empirical Methods in Natural Language
Processing, pages 1631–1642, Seattle, WA, USA.

Shuangzhi Wu, Dongdong Zhang, Nan Yang, Mu Li,
and Ming Zhou. 2017. Sequence-to-dependency
neural machine translation. In Meeting of the As-
sociation for Computational Linguistics, pages 698–
707, Vancouver, Canada.

Kun Xu, Yansong Feng, Songfang Huang, and
Dongyan Zhao. 2015a. Semantic relation classifica-
tion via convolutional neural networks with simple
negative sampling. CoRR, abs/1506.07650.

Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng,
and Zhi Jin. 2015b. Classifying relations via long
short term memory networks along shortest depen-
dency paths. In Conference on Empirical Methods
in Natural Language Processing, pages 1785–1794,
Lisbon, Portugal.

53

Author Index

Øvrelid, Lilja, 47

Clark, Stephen, 13
Currey, Anna, 6

Drozd, Aleksandr, 28

Edmiston, Daniel, 1

Heafield, Kenneth, 6

Kanayama, Hiroshi, 38
Karpinska, Marzena, 28
Kohita, Ryosuke, 38

Li, Bofang, 28

Maillard, Jean, 13
McCallum, Andrew, 19
Muraoka, Masayasu, 38

Nooralahzadeh, Farhad, 47

Rogers, Anna, 28

Stratos, Karl, 1
Strubell, Emma, 19

55

	Program
	Compositional Morpheme Embeddings with Affixes as Functions and Stems as Arguments
	Unsupervised Source Hierarchies for Low-Resource Neural Machine Translation
	Latent Tree Learning with Differentiable Parsers: Shift-Reduce Parsing and Chart Parsing
	Syntax Helps ELMo Understand Semantics: Is Syntax Still Relevant in a Deep Neural Architecture for SRL?
	Subcharacter Information in Japanese Embeddings: When Is It Worth It?
	A neural parser as a direct classifier for head-final languages
	Syntactic Dependency Representations in Neural Relation Classification

