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Abstract

Popular distributional approaches to se-
mantics allow for only a single embedding
of any particular word. A single embed-
ding per word conflates the distinct mean-
ings of the word and their appropriate con-
texts, irrespective of whether those usages
are related or completely disjoint. We
compare models that use the graph struc-
ture of the knowledge base WordNet as
a post-processing step to improve vector-
space models with multiple sense embed-
dings for each word, and explore the ap-
plication to word sense disambiguation.
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1 INTRODUCTION

Vector semantics is a computational model of writ-
ten language that encodes the usage of words in a
vector space, which facilitates performing mathe-
matical manipulations on words as vectors (Mar-
tin and Jurafsky, 2016; Turney and Pantel, 2010).
These vectors encode the contexts of words across
a corpus, and are learned based on word distri-
butions throughout the text. Vectors can then be
compared by various distance metrics, usually the
cosine function, to determine the similarity of the
underlying words. They also seem to possess
some modest degree of compositionality, in the
sense that the addition and subtraction of vectors
can sometimes result in equations that appear to
reflect semantically meaningful relationships be-
tween words (Mikolov et al., 2013a; Mikolov et
al., 2013b). Because it allows for the use of these
well studied techniques from linear algebra to be
brought to bear on the difficult domain of seman-
tics, vector space models (VSMs) have been the
focus of much recent research in NLP.

While vector representations of word meaning
are capable of capturing important semantic fea-
tures of words and performing tasks like meaning
comparison and analogizing, one of their short-
comings is their implicit assumption that a sin-
gle written word type has exactly one meaning
(or distribution) in a language. But many words
clearly have different senses corresponding to dis-
tinct appropriate contexts. Building distributional
vector space models that account for this polyse-
mous behavior would allow for better performance
on tasks involving context-sensitive words, most
obviously word sense disambiguation. Previous
research that attempted to resolve this issue is dis-
cussed at length in the next section. Most common
methods either use clustering or introduce knowl-
edge from an ontology. The goal of the present
research is to develop or improve upon methods
that take advantage of the semantic groups and re-
lations codified in WordNet, and specifically to fo-
cus on the downstream WSD task, which is often
neglected in favor of less useful similarity judg-
ment evaluations.

The algorithm we examine in depth can in prin-
ciple be implemented with any ontology, but in
the present paper we focus exclusively on Word-
Net. WordNet (WN) is a knowledge base for En-
glish language semantics (Miller, 1995). It con-
sists of small collections of synonymous words
called synsets, interconnected with labeled links
corresponding to different forms of semantic or
lexical relations. We will be particularly interested
in the synset relation of hypernymy/hyponymy.
Hyponyms can be thought of as semantic sub-
sets: If A is a hyponym of B, then x is A im-
plies x is B, but the converse is not true. WordNet
is also equipped with a dictionary definition for
each synset, along with example sentences featur-
ing varying synonymous words. Often implemen-
tations that use WordNet’s graph structure fail to
make use of these other features, which we will2



show can improve performance on several tasks.

2 Related Work

Our work is based primarily on that of Jauhar et
al’s RETROFIT algorithm (Jauhar et al., 2015),
which is discussed at greater length in Section 3.
Below we discuss previous models for building
sense embeddings.

2.1 Clustering-Based Methods

(Reisinger and Mooney, 2010) learn a fixed num-
ber of sense vectors per word by clustering context
vectors corresponding to individual occurrences of
a word in a large corpus, then calculating the clus-
ter centroids. These centroids are the sense vec-
tors. (Huang et al., 2012) build a similar model us-
ing k-means clustering, but also incorporate global
textual features into initial context vectors. They
compile the Stanford Contextual Word Similarity
dataset (SCWS), which consists of over two thou-
sand word pairs in their sentential context, along
with a similarity score based on human judgments
from zero to ten. (Neelakantan et al., 2015) in-
troduce an unsupervised modification of the skip-
gram model (Mikolov et al., 2013b) to calculate
multiple sense embeddings online, by maintaining
clusters of context vectors and forming new word
sense vectors when a context under consideration
is sufficiently far from any of the word’s known
clusters. The advantage of the method is that it is
capable of detecting different numbers of senses
for different words, unlike the previous implemen-
tations of Huang et al. and Reisinger and Mooney.

2.2 Ontology-Based Methods

(Chen et al., 2014) first learn general word em-
beddings from the skip-gram model, then initial-
ize sense embeddings based on the synsets and
glosses of WN. These embeddings are then used
to identify relevant occurrences of each sense in
a training corpus using simple-to-complex words-
sense disambiguation (S2C WSD). The skip-gram
model is then trained directly on the disam-
biguated corpus. (Rothe and Schütze, 2015)
build a neural-network post-processing system
called AutoExtend that takes word embeddings
and learns embeddings for synsets and lexemes.
Their model is an autoencoder neural net with
lexeme and synset embeddings as hidden layers,
based on the intuition that a word is the sum of its
lexemes and a synset is the sum of its lexemes.

Our intuitions are most similar to those of
(Jauhar et al., 2015) and we will be building on
one of their approaches. Their RETROFIT algo-
rithm learns embeddings for different word senses
from WN by iteratively combining general embed-
dings according to the graph structure of WN. The
approach is discussed in more detail below.

3 Improved Sense Embeddings from
Word Embeddings

3.1 RETROFIT Algorithm

Because our work follows so directly from (Jauhar
et al., 2015), we repeat the essential details of the
RETROFIT algorithm here. Let Ω = (SΩ, EΩ)
be a directed graph. We call Ω an ontology when
the set of vertices SΩ represent semantic objects
of some kind and the set of edges EΩ represent re-
lationships between those objects. In the case of
WN, SΩ is the set of synsets and EΩ are the se-
mantic links (notably hypernyms and hyponyms).
Given a set of sense-agnostic word embeddings
V̂ and an ontology Ω, RETROFIT infers a set of
sense embeddings Ŝ that is maximally “consis-
tent” with both V̂ and Ω. By “consistency” we
refer to the minimization of the objective function

D(Ŝ) =
∑

ij

α ‖ŵi − ~sij‖2

+
∑

ij

∑

i′j′∈Nij

βr
∥∥~sij − ~si′j′

∥∥2
(1)

where sij is the jth sense of the ith word,Nij is the
set of neighbors of sij defined in EΩ and α and β
are hyperparameters controlling the importance of
intial sense-agnositc embeddings and various on-
tological relationships, respectively. Essentially
RETROFIT aims to make a sense embedding as
similar to its sense-agnostic embedding as possi-
ble, while also reducing the distance between re-
lated senses as defined by Ω. It achieves this by
iteratively updating sense embeddings according
to

~sij =

αŵi +
∑

i′j′∈Nij

βr~si′j′

α+
∑

i′j′∈Nij

βr
(2)

until convergence. The RETROFIT implementa-
tion discussed in (Jauhar et al., 2015) defines only
synonym, hypernym and hyponym relations, with
respective weights of βr = 1.0, 0.5 and 0.53



The RETROFIT algorithm genertes embed-
dings for word senses only from words whose sur-
face form matches the entry in WordNet. Below
we discuss several of the limitations associated
with this RETROFIT implementation and possible
improvements.

3.1.1 Impoverished Synsets
Many word senses are relatively isolated in the
WordNet structure. They occur in synsets with
few or no synonyms or semantic relations. In
the case that the word has only one meaning, this
is not a problem, because the sense-agnostic em-
bedding is in that case unambiguous. But in the
case that the word has one or more other seman-
tically rich senses (ie, senses with synonyms and
hyper/hyponym relations), the impoverished sense
is unduly influenced by the general embedding
and its unique meaning is not distinguishable. In
the extreme case both senses are identical. Thou-
sands of such synsets exist, including the synsets
for words such as inclement and egalitarian.

3.1.2 Compound Words and Multi-word
Lemmas

The original RETROFIT implementation discards
multi-word lemmas (and entire synsets if they con-
sist only of multi-word lemmas.) But there exist
synsets for whom most or all of the related WN
synsets contain only multi-word lemmas. See, for
instance, the noun form of the word unseen, or the
more extreme case of the synset brass.n.01, which
has eleven distinct hypernym and hyponym rela-
tions, all but two of which are compound words
for types of brass. Adjusting the RETROFIT algo-
rithm to allow for embeddings of the multi-word
lemmas that appear in WN would greatly reduce
the number of impoverished synsets.

3.1.3 Underrepresented Senses
The general embedding produced by word2vec1

(Mikolov et al., 2013a; Mikolov et al., 2013b) con-
flates all usages of a word. If a particular sense of a
word is significantly less common than others, the
word2vec embedding will not be a good represen-
tation of the sense. RETROFIT indiscriminately
tries to minimize the distance from any particular
sense and its word2vec embedding. Consider the
usage of the word tap given by the synset tap.v.11,
meaning “to pierce in order to draw liquid from.”

1https://code.google.com/archive/p/
word2vec/

This usage occurs nowhere in the labelled Sem-
Cor corpus (Mihalcea, 1998), and is plausibly not
well represented by the word2vec sense-agnostic
embedding.

3.2 Modified RETROFIT Algorithm
For these reasons we make the following modifi-
cations to RETROFIT.

1) Regardless of the position of a word sense
in WordNet, it will be equipped with a descrip-
tive gloss that clarifies its usage. We incorporate
all content words from each synset’s gloss in the
RETROFIT algorithm’s objective function, where
“content words” refers to any word for which
we have a sense-agnostic embedding. Content
words that appear more than once in the gloss are
weighted according to the number of times they
occur (ie, if a word is repeated in the gloss, it has
a stronger influence on the sense embedding.)

2) We implement a naive model to handle a
compound word by simply representing its sense-
agnostic embedding as the average of the sense-
agnostic embeddings of its constituent words. Al-
though this is obviously inadequate for many com-
pound words, we find it is already an improve-
ment.

3) The sense-agnostic embedding of a word is
assumed to be the weighted average of its sense
embeddings, proportional to how common a par-
ticular word sense is. We calculate the sense-
frequencies from the SemCor corpus, which con-
sists of around 300,000 words tagged with their
WordNet 3.0 synsets (Mihalcea, 1998).

3.3 Weighted RETROFIT Algorithm
Weigthed RETROFIT proceeds very similarly to
RETROFIT algorithm by (Jauhar et al., 2015).
We begin by intializing an embedding for each
word sense as the sense-agnostic embedding (or,
in the case of multi-word lemmas, the average of
the sense-agnostic embeddings of the constituant
words). The embeddings are then iteratively up-
dated to make them more similar to their semantic
neighbors in the WordNet ontology, and to make
the weighted average of the sense embeddings of
a word closer to the sense-agnostic embedding.
The weighted average is learned from the SemCor
counts as discussed.

More precisely, let M = (V, V̂ , S, Ŝ, P,Ω) be
a model consisting of a vocabulary V and sense-
agnostic embeddings V̂ , a set of word senses S
and sense-embeddings Ŝ, a discrete probability4



density function P : V × S → R, and an ontol-
ogy Ω. We seek the set Ŝ that minimizes the new
objective function for the weighted RETROFIT al-
gorithm (Equation 3).

D(M) =
∑

i

α
∥∥∥ŵi −

∑
j pij~sij

∥∥∥
2

+
∑

ij

∑

i′j′∈Nij

βr
∥∥~sij − ~si′j′

∥∥2

+
∑

ij

∑

i′∈Gij

γ ‖ŵi′ − ~sij‖2

(3)

by iteratively updating embeddings according to
Equation (4). where ŵi ∈ V̂ , ~sij ∈ Ŝ, pij =
P (sij |wi), Nij is the set of neighbor indices of
the jth sense of the ith word defined in Ω, Gij =
{i : wi ∈ V̂ is in the gloss of sij} and α, βr
and γ are the parameters controlling the weights
of sense-agnostic word embeddings, relations and
gloss words respectively. Note that iteratively up-
dating the sense embeddings via Eqs. 2 or 4 is
equivalent to optimizing their respective objective
functions via coordinate descent.

4 Evaluation

We train three variations of the RETROFIT algo-
rithm on the 50-dimensional global context vec-
tors produced by (Huang et al., 2012): the unmod-
ified RETROFIT, RETROFIT with gloss words
and multi-word lemmas (which we refer to as
Modified RETROFIT), and Weighted RETROFIT
with weighted senses as discussed above. Train-
ing time is similar between the first two; weighted
RETROFIT takes about twice as long. All con-
verge to a solution within 0.01 within fifteen iter-
ations.

The models are evaluated on two different tasks:
Synonym Selection and Word Sense Disambigua-
tion. We first include and discuss results from
some similarity judgment tasks, but these serve
more as stepping stone than an as a rigorous mea-
sure of model quality. (Faruqui et al., 2016) give a
comprehensive assessment of the inadequacies of
evaluating the quality of embeddings on word sim-
ilarity tasks. In general, these tasks are fairly sub-
jective and a model’s performance on them does
not correlate with performance on downstream
NLP tasks.

4.1 Similarity Judgments

We evaluate the models on the RG-65 dataset,
(Rubenstein and Goodenough, 1965) which con-
sists of sixty-five pairs of words and an average
human judgment of similarity scaled from one to
four. Evaluation is a straightforward calculation of
the average cosine similarity of each pair of sense
embeddings, as used by (Jauhar et al., 2015) and
originally proposed by (Reisinger and Mooney,
2010). As an exploration, we also consider the
results of using the maximum cosine similarity,
which returns the highest cosine similarity among
any pair of senses from the respective words.

Our results are displayed in Table 1. Every
model performs best on the task using the maxi-
mum cosine similarity metric, with our improved
systems performing noticeably better. Interest-
ingly, the commonly used average similarity met-
ric causes our models to lose their advantage, par-
ticularly Weighted RETROFIT, whose chief credit
is its ability to produce more distinct sense em-
beddings. Averaging these vectors together throws
away the improvements gained by separating out
the distinct meanings.

4.2 Synonym Selection

We test the models on two synonym selection
datasets: ESL-50 (Turney, 2002) and TOEFL
(Landauer and Dumais, 1997). ESL-50 is a set
of fifty English sentences with a target word for
which a synonym must be selected from four can-
didate words. TOEFL consists of eighty context-
independent words and four potential candidates
for each. For both datasets, we use the same
maxSim selection criteria as (Jauhar et al., 2015).
We select the sense vector ~sij that corresponds to:

maxSim(wi, wi′) = max
j,j′

cos(~sij , ~si′j′)

Our results are presented in Table 2. The results
on this task are less straightforward. Although the
ESL-50 and TOEFL datasets are remarkably simi-
lar in form, the models do not perform consistently
across them. Our modified RETROFIT method
produces an enormous improvement on TOEFL,
while ESL-50 gives our models some difficulties.
Whether this is an effect of the relatively small
number of words in the task or whether there are
specific features about how the datasets were as-
sembled is unclear.5



s̄ij =

αpijŵi − αpij
∑

k 6=j

pik~sik +
∑

i′j′∈Nij

βr~si′j′ + γ
∑

i′∈Gij

ŵi′

αp2
ij +

∑

i′j′∈Nij

βr +
∑

i′∈Gij

γ
(4)

Similarity Judgments
RG-65

AVG MAX
RETROFIT 0.73 0.79
Modified RETROFIT 0.72 0.85
Weighted RETROFIT 0.69 0.84

Table 1: Performance on RG-65 word similarity dataset. Scores are Spearman’s rank correlation.

Synonym Selection
ESL-50 TOEFL

RETROFIT 64.0 68.75
Modified RETROFIT 62.0 81.25
Weighted RETROFIT 60.0 75.0

Table 2: Percent accuracy on ESL-50 and TOEFL
synonym selection using maxSim comparison

4.3 Word Sense Disambiguation
We use Semeval 2015 task 13 (Moro and Nav-
igli, 2015) as our English WSD test. The cor-
pus for the task consists of four documents taken
from the biomedical, mathematical and social is-
sues domains, annotated with part of speech infor-
mation. The task also includes named entity dis-
ambiguation, which we do not handle, except in
the incidental case where there is a WN synset for
a named entity. We explore two different meth-
ods for WSD. The first chooses a word sense by
identifying a word that co-occurs in the sentence
and has a sense that is closest to a sense of our
target word. The intuition of the model is that al-
though particular words may be totally unrelated
to the sense of the target word, there should ex-
ist somewhere in the sentence a word pertaining to
the subject described by the ambiguous word. For-
mally, this method is described as the contextMax
function:

contextMax(w, c) =

arg max
s∈Si

( max
c∈ ⋃

k 6=i
Sk

cos(~s,~c) · p(s|w))

(5)

where Si is the set of senses of the ith word of the
context sentence.

The second WSD method incorporates both lo-
cal and global context in equal parts. The intuition
is that nearby words in a particular sentence will
capture information about the particular usage of
a word, while words that appear over the course of
a passage will characterize the subject matter be-
ing discussed. Both of these component are essen-
tial to human understanding and should aid WSD
algorithms, as discussed in (Weissenborn et al.,
2015). Formally, we define the localGlobal WSD
function as

localGlobal(w, c) = arg max
s∈Wij

(cos(~s,~cij)·p(s|w))

(6)
where the context vector ~cij for the jth word of the
ith sentence is given by

~cij =
~lij

|~lij |
+

~gi
|~gi|

and the local context vector ~lij of the jth word of
the ith sentence and global context vector ~gi of the
ith sentence are given by

~lij =
∑

k 6=j

1

|j − k| ŵik

~gi =
i+2∑

n=i−2

∑

k

ŵnk

As a baseline we compare against the most-
frequent sense tagger (MFS) trained on the Sem-
cor corpus (Moro and Navigli, 2015), defined sim-
ply as

mfs(w) = arg max
s∈Sw

(p(s|w)) (7)6



Word Sense Disambiguation
Nouns Verbs Adjectives Adverbs All

MFS 45.8 49.9 67.5 70.6 53.5
RETROFIT 49.1 52.0 67.3 75.3 56.2

Modified
RETROFIT

50.6 50.0 69.2 76.5 57.0

Weighted
RETROFIT

50.0 52.8 65.4 76.5 56.8

Table 3: Semeval 2015 task 13 F1 scores of the models using the contextMax disambiguation function.

Nouns Verbs Adjectives Adverbs All
RETROFIT 52.5 57.2 77.3 77.8 61.1

Modified
RETROFIT

53.6 56.4 76.0 79.0 61.6

Weighted
RETROFIT

53.9 59.2 75.4 77.8 62.1

Table 4: Semeval 2015 task 13 F1 scores of the models using the contextMax disambiguation function,
restricted to correct POS

Tables 3 and 4 display results for our models using
contextMax disambiguation with and without re-
striction by POS information, along with the MFS
tagging baseline. In both cases, RETROFIT and
MFS are outperformed overall by our improve-
ments. Tables 5 and 6 show the WSD results using
localGlobal disambiguation, which for the most
part appears to be a strictly better metric. Re-
sults are ranked by F1 score, the harmonic mean
of precision and recall (uniformly weighted). Al-
though it underperforms on the compartively eas-
ier task of disambiguating adjectivs and adverbs,
Weighted RETROFIT is the best model of verbs
by every single metric.

By all measures, the various RETROFIT
implementations outperform the MFS baseline.
Weighted RETROFIT and Modified RETROFIT
both improve the initial model. The best per-
forming systems on the Semeval 2015 task 13 En-
glish corpus are LIMSI and SUDOKU (Moro and
Navigli, 2015), which achieve F1 scores of 65.8
and 61.6 respectively. This would position both
Weighted RETROFIT and RETROFIT with com-
pound words and gloss words as second only to
the top system, even with the use of relatively low
dimensional embeddings.

5 Discussion

Results on similarity judgment are mixed, al-
though it should be noted that despite the fact that

in principle average similarity appears to be a good
measure of word relatedness, in our trials the max-
imum similarity between two words is a better pre-
dictor of human judgments on RG-65 with all al-
gorithms. It’s possible that in the absence of dis-
ambiguating context human judges are not actu-
ally good at combining the relatedness of different
senses of words and instead specifically search for
related meanings when evaluating similarity. It’s
worth noting that the metric by which our modi-
fications provide the largest improvements is the
metric which RETROFIT itself also performs best
by. But, as discussed above and in [4], even human
judges often do not score particularly well similar-
ity tasks, and in fact there may be no real “gold
standard” on such a task.

The results of the synonym selection task are
also mixed. On the ESL-50 dataset our modifica-
tions slightly underperform, while on the TOEFL
dataset they provide an enormous improvement.
We have not investigated the particulars of the
datasets enough to see if there are anomolous fea-
tures (over or under-representation of certain parts
of speech, rare word senses, etc), or if these per-
formance gaps are due more to the small sample
size of the test data. Testing on a wider array of
larger synonym selection datasets could yield in-
sight into the models’ shortcomings.

Our models are a noticeable improvement on
WSD. Interestingly, the Weighted RETROFIT al-
gorithm achieves the best scores on verbs across7



Nouns Verbs Adjectives Adverbs All
RETROFIT 49.5 49.2 64.2 79.0 55.7

Modified
RETROFIT

54.8 50.0 67.9 77.8 59.5

Weighted
RETROFIT

53.0 52.4 62.3 74.1 57.9

Table 5: Semeval 2015 task 13 F1 scores of the models using the localGlobal disambiguation function

Nouns Verbs Adjectives Adverbs All
RETROFIT 52.2 55.6 73.5 80.2 60.2

Modified
RETROFIT

56.6 57.6 74.1 80.2 63.4

Weighted
RETROFIT

55.6 59.2 72.9 76.5 62.1

Table 6: Semeval 2015 task 13 F1 scores of the models using the localGlobal disambiguation function,
restricted to correct POS

all metrics. Again, whether this is a quirk of
the specific corpus is unclear. If not, it may in-
dicate that homophonous verbs in English tend
to be more distinct from each other than other
parts of speech, perhaps because of more common
metaphorical language use. We at least can say
confidently that utilizing more features from WN
is an across the board improvement.

Future Work

As mentioned above, the limited size and scope of
the test sets leaves room for doubt about the mod-
els’ performance on new datasets, especially when
two datasets for the same task yield strikingly dif-
ferent results, like synonym selection. A use-
ful exploration may be looking at domain-specific
datasets for this task, as the results might suggest
that the performance discrepancies are present be-
tween domains. It is possible, for example, that
WordNet underrepresents certain domains. (Con-
sider the case of the word nugget, which in Word-
Net has no synsets related to food, but in Amer-
ican English is most often used in the compound
chicken nugget.) It will also be important to try the
same task with significantly larger datasets.

We also use only a crude model of compound
word vectors. An investigation of better composi-
tional semantic models could greatly benefit the
algorithm, as a large percentage of WN synsets
contain compound words.

The RETROFIT algorithm may also be discard-
ing valuable information by constructing the sense

vectors only from the sense-agnostic embeddings
for words whose exact surface form matches en-
tries in WordNet. But word2vec and most other
VSM algorithms learn embeddings for many dif-
ferent conjugations of words, and in fact those
conjugations may themselves contain information
(such as part-of-speech) that can help further dif-
ferentiate senses.

Our models are all trained on the relatively low
dimensional global feature vectors produced by
(Huang et al., 2012), but significantly richer em-
beddings exist, such as the GoogleNews vectors,
which are 300 dimensional and were trained on a
100 billion word corpus using CBOW (Mikolov
et al., 2013a; Mikolov et al., 2013b). We expect
that the quality of the embeddings produced by the
RETROFIT algorithms will scale with the qual-
ity of the underlying embeddings, and can hope
for continual improvement as larger and better
datasets become available.
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