@inproceedings{eckart-de-castilho-2016-automatic,
title = "Automatic Analysis of Flaws in Pre-Trained {NLP} Models",
author = "Eckart de Castilho, Richard",
editor = "Murakami, Yohei and
Lin, Donghui and
Ide, Nancy and
Pustejovsky, James",
booktitle = "Proceedings of the Third International Workshop on Worldwide Language Service Infrastructure and Second Workshop on Open Infrastructures and Analysis Frameworks for Human Language Technologies ({WLSI}/{OIAF}4{HLT}2016)",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://preview.aclanthology.org/Ingest-2025-COMPUTEL/W16-5203/",
pages = "19--27",
abstract = "Most tools for natural language processing today are based on machine learning and come with pre-trained models. In addition, third-parties provide pre-trained models for popular NLP tools. The predictive power and accuracy of these tools depends on the quality of these models. Downstream researchers often base their results on pre-trained models instead of training their own. Consequently, pre-trained models are an essential resource to our community. However, to be best of our knowledge, no systematic study of pre-trained models has been conducted so far. This paper reports on the analysis of 274 pre-models for six NLP tools and four potential causes of problems: encoding, tokenization, normalization and change over time. The analysis is implemented in the open source tool Model Investigator. Our work 1) allows model consumers to better assess whether a model is suitable for their task, 2) enables tool and model creators to sanity-check their models before distributing them, and 3) enables improvements in tool interoperability by performing automatic adjustments of normalization or other pre-processing based on the models used."
}
Markdown (Informal)
[Automatic Analysis of Flaws in Pre-Trained NLP Models](https://preview.aclanthology.org/Ingest-2025-COMPUTEL/W16-5203/) (Eckart de Castilho, OIAF4HLT 2016)
ACL
- Richard Eckart de Castilho. 2016. Automatic Analysis of Flaws in Pre-Trained NLP Models. In Proceedings of the Third International Workshop on Worldwide Language Service Infrastructure and Second Workshop on Open Infrastructures and Analysis Frameworks for Human Language Technologies (WLSI/OIAF4HLT2016), pages 19–27, Osaka, Japan. The COLING 2016 Organizing Committee.