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Abstract

We describe the systems entered by the National Research Council in the 2016 shared task on
discriminating similar languages. Like previous years, we relied on character ngram features,
and a combination of discriminative and generative statistical classifiers. We mostly investigated
the influence of the amount of data on the performance, in the open task, and compared the two-
stage approach (predicting language/group, then variant) to a flat approach. Results suggest that
ngrams are still state-of-the-art for language and variant identification, that additional data has a
small but decisive impact, and that the two-stage approach performs slightly better, everything
else being kept equal, than the flat approach.

1 Introduction

We describe the systems submitted by the National Research Council Canada to the 2016 shared task on
discriminating similar languages.

Discriminating similar languages and language variants is useful for several purposes. As the typical
linguistic processing pipeline is tailored to a specific language and variant, it is important to have a
reliable prediction of the language a text is written in, in order to use the appropriate linguistic tools.
It may also be used for filtering data in order to build these specialized linguistic processing tools. In
education, and language learning in particular, it may also be useful to identify precisely the variant
familiar to a learner so that feedback can be tailored to the vocabulary or linguistic constructions they
are familiar with. Finally, in security, it is highly relevant to identify the regional variant of the language
used by a writer or poster.

Shared tasks on discriminating similar languages were organized in 2014 (Zampieri et al., 2014) and
2015 (Zampieri et al., 2015). This year’s task continues in the same track, removing some of the easy
languages (Czech and Slovak; Macedonian and Bulgarian), providing additional material for some of
the harder variants (Serbo-Croat-Bosnian; Indonesian and Malay; Portuguese; Spanish), and adding new
groups or variants (Mexican Spanish; French from Canada and France).

Like previous years, we relied on character ngram features, and a mixture of discriminative and gen-
erative statistical classifiers. Due to lack of time, we decided to eschew a full optimization of the feature
sets and model combination, despite the fact that it provided excellent results in previous years (Goutte
et al., 2014; Malmasi and Dras, 2015). Instead, we focused on two issues: the influence of the amount
of data on the performance (open versus closed data), and the difference between a two-stage approach
(predicting language/group, then variant) and a flat approach predicting the variant directly. To be clear,
the ”Advances” in the title of this paper do not relate to the performance and model we used this year,
which are mostly similar to successful models of prior years. The intent is to advance our understanding
of how these models works and what configurations are more effective.

An overview of the results of this shared task is presented in the shared task report (Malmasi et al.,
2016). It provides a wider context for interpreting the results reported here, which we only compare to
a few top systems. The shared task report also provides references to related work. The reader may also
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lang DSLCC v1.0 DSLCC v2.1 DSL 2016 crawl Total (open)
bs 20,000 20,000 20,000 - 60,000
hr 20,000 20,000 20,000 - 60,000
sr 20,000 20,000 20,000 - 60,000

es-AR 20,000 20,000 20,000 - 60,000
es-ES 20,000 20,000 20,000 - 60,000
es-MX - 20,000 20,000∗ - 40,000∗

fr-CA - - 20,000 40,000 60,000
fr-FR - - 20,000 - 20,000

id 20,000 20,000 20,000 - 60,000
my 20,000 20,000 20,000 - 60,000

pt-BR 20,000 20,000 20,000 - 60,000
pt-PT 20,000 20,000 20,000 - 60,000

Table 1: Statistics on the training data used for training our systems. (∗: 2016 data was actually identical
to DSLCC v2.1 data)

find a lot of references to related work (within and outside the shared tasks) in Section 2 of (Goutte et
al., 2016).

In the following section, we describe the data we worked with, the features we extracted from the data,
and the models we trained on these features. Section 3 summarizes our results on the shared task test set
and compared them to a few key systems from other participants. Finally, we discuss those results and
their significance in Section 4.

2 Data and Methods

We now describe the data we used for our two runs, the features we extracted from the data, and the
models we trained on those features.

2.1 Data

In order to evaluate the impact of using additional data on the performance of the discriminative perfor-
mance, we built “closed” systems on the 2016 training data only, and “open” systems using additional
data.

The closed systems use the data provided for the 2016 evaluation only. This consisted of 20k sentences
from the news domain for each of the twelve language variant, for a total of 240k sentences (column
DSL 2016 in Table 1). We joined the train and dev portions of the training data as we evaluate the
performance using ten fold cross-validation rather than using a single development set.

The open systems used data from previous DSL shared tasks (DSLCC v1.0 and DSLCC v2.1, (Tan et
al., 2014)), plus additional text crawled from the web site of the Québec journal La Presse. For each of
the variants used in previous years, this results in 60k sentences per variant (20k per corpus). Mexican
Spanish was not included in previous years, but the DSLCC v2.1 corpus released last year contained
20k sentences for that variant, for use in the “unshared” task that (unfortunately) received little attention.
We did not realize before training our system that the 20k sentences provided for es-MX this year were
actually identical to the material provided last year for that variant, which means that our material for
the es-MX variant is actually the same 20k sentences duplicated. For fr-CA, we added 40k sentences
from the web crawl of La Presse. We checked that the added material did not overlap with the material
provided by the DSL organizers (for training or testing). For French, our training material was therefore
unbalanced, with only 20k sentences for fr-FR versus 60k for fr-CA.

Due to lack of time, we did not take part in the Arabic dialect sub-task, despite its great interest.
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2.2 Features
Character ngram counts have been popular and effective features since at least (Cavnar and Trenkle,
1994), and produced top results at previous evaluations (Goutte et al., 2014; Malmasi and Dras, 2015;
Goutte and Leger, 2015). We therefore relied again on character ngrams. This year, however, we only
used 6grams. The reasons for this choice are multiple:

• Optimizing the size and combination of ngram features produces small performance improvements.
However this optimization also requires significant effort and time, which we did not have this year.

• In our experience from previous shared tasks, 6grams were almost always the best feature set. When
they were not, they were very close.

• Our main focus this year was not on maximizing performance of a single system, but on investigat-
ing the influence of training data size and the difference between a flat and two-stage model.

Using character 6grams therefore ensures that we build systems with reasonable (if not top) performance,
while removing the variability in the choice (or optimization) of the features. It allows us to evaluate the
impact of the data size and model architecture, everything else being kept equal. In addition, as we had
a limited number of hours to spend on the shared task, we avoided the effort associated with feature
engineering and optimization.

2.3 Models
Having decided on the feature set and training data, we tried two competing approaches.

2.3.1 run1

In the 2014 and 2015 evaluations (Goutte et al., 2014; Goutte and Leger, 2015) , we used a two stage
approach, where we

1. train a level-1 classifier to predict the language group, and

2. train a level-2 classifier to predict the variant within each group.

This approach is actually not too costly. On the one hand, the lower level classifiers are often binary
classifiers trained on smaller amounts of data. On the other hand, the top level classifier focuses on a
simpler task, with bigger differences between groups, so a simple multiclass probabilistic classifier can
be trained efficiently with almost perfect performance.

Our run1 implements this two-stage approach again. The top-level classifier is a probabilistic clas-
sifier (Gaussier et al., 2002) similar to Naı̈ve Bayes, trained in a single pass over the data, making it
suitable for large-scale training. Using ten fold cross-validation, we estimate that the error rate of that
first stage on the open task is below 0.051% (335 errors out of 660k examples), i.e. roughly one mistake
per 2000 examples.

The level-2 classifiers are Support Vector Machines (SVM) trained using SVMlight (Joachims, 1998).
For the three groups with only two variants (French, Portuguese and Indonesian/Malay), we trained a
single binary SVM classifier in each group, taking one variant as the positive class, and the other variant
as the negative class. For the two groups with three variants (Spanish and Serbo-Croat-Bosnian), we
trained three SVM classifiers in one-versus-all configuration: each variant is taken as the positive class,
in turn, with the other two as the negative class. The outputs of the three classifiers are calibrated to
make them comparable (Bennett, 2003). At prediction time, we pick the class with the highest calibrated
classifier output. Although training SVM models can be slow for large datasets, we restrict ourselves to
linear kernels, and we only use the examples within a group to estimate the model, which is a maximum
of 180k examples. Once the SVM classifiers and calibration layers have been estimated, prediction is
just a few dot-products away, and therefore extremely fast. In previous years, we also validated that
this combination of discriminative approach and calibration provides slightly better performance than
modeling the problem directly with a multiclass probabilistic classifier.
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Run A B1 B2 Overall (CV)
run1 89.03 94.80 90.00 89.29 92.50
run2 88.77 94.20 89.00 88.98 92.63
SUKI 88.37 82.20 79.60 87.79
Citius 87.10 66.40 69.20 85.62

Table 2: Predictive accuracy (in %) for the 2016 open track runs, for our two runs and two runner-ups, on
the three official test sets and overall. Rightmost column gives cross-validation estimate, for comparison.

2.3.2 run2

In the 2015 evaluation (Zampieri et al., 2015), the best performing system in the closed task (Malmasi
and Dras, 2015) used a “flat” approach, treating the entire problem as a single, multiclass classification,
with excellent results, only slightly below the best overall performance on the open task for test set A
and best overall for test set B.

We attempt to test this flat approach on our chosen feature set, as our run2. Note that the best
approach in (Malmasi and Dras, 2015) uses an ensemble of classifiers trained on different feature spaces
(words, word bigrams, character bigrams, 4grams and 6grams). As we focus on a single feature set, we
did not reproduce the ensemble part of that approach. The key difference between run1 and run2 is
really the two-stage vs. flat approach.

We use again Support Vector Machines trained using SVMlight in one-versus-all fashion. For each
of the 12 variants, a binary classifier is trained using one variant as the positive class and the rest as
negative examples. The output of each of the 12 classifiers is then calibrated into a proper probability
(Bennett, 2003). At prediction time, a sentence is sent through each calibrated classifier, producing a
proper probability. The prediction is the class with highest probability. Note that despite its conceptual
simplicity, this approach is more costly than the two-stage approach, as it requires training 12 binary
classifier on 660k examples each (for the open track; 240k for the closed track). In addition, class
imbalance is more severe for this model.

3 Results

We made four submissions for each of the three test sets (A, B1 and B2): two models on the open and
two models on the closed tracks. The performance of each model was also estimated on the full training
set (train+dev partitions of the official data) using a stratified ten fold cross-validation.

When the test data was received, we simply processed test set A as it was provided, as it seemed to
match the training data fairly well. For the twitter data (test sets B1 and B2), we did light preprocessing
by removing markers for accounts and hashtags (@ and #), as well as URLs. For example the tweet:

RT @xxmarioo: savage #KimExposedTaylorParty https://t.co/7FpfbmqziQ

is turned, before being sent to the classifiers, into:

RT xxmarioo: savage KimExposedTaylorParty

Official results on the three test sets were obtained from the organizers. From these results, we compute
an overall score which is the micro-averaged accuracy over classes and test sets. The two ’B’ test sets
contain only 500 exemples vs. 12,000 for test set ’A’, so the overall score is a weighted average of
the provided accuracies, with eights 12/13, 1/26 and 1/26 for A, B1 and B2, respectively. Note that,
in a single-label multiclass evaluation like this one, micro-averaged accuracy, precision, recall and (as
a consequence) F -scores are identical. They differ slightly from the weighted F1 used as the official
ranking metric, but differences are small, probably due to the fact that classes are balanced in the test
data.

Table 2 shows the results for the open track, while Table 3 shows the results for the closed track.
As a naı̈ve baseline, we propose to use a “group-perfect random” baseline, i.e. a classifier that would
correctly identify the language group (a very easy task) and would perform randomly on the variants
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Run A B1 B2 Overall (CV)
run1 88.59 91.40 87.80 88.67 89.26
run2 88.12 90.80 86.60 88.16 88.87
tubasfs 89.38 86.20 82.20 88.98
GWU 88.70 92.00 87.80 88.79

Table 3: Predictive accuracy (in %) for the 2016 closed track runs, on the three official test sets and
overall. Rightmost column gives cross-validation estimate, for comparison.

sr-hr-bs español français id-my portugês
sr-hr-bs 2994 3 1 1 1
español 1 2990 3 1 5
français 0 0 1996 0 4
id-my 1 0 2 1997 0
portugês 0 1 0 0 1999

Table 4: Language group confusion on test set A, run1: reference in rows, predicted in columns.

within a group. The accuracy of this baseline is #groups
#variants which is 41.67% for test set A and 40% for

test sets B1 and B2, resulting in an overall score of 41.54%.
According to the official ranking,1 our run1 results yield the top performance in the open track,

closely followed by our run2 results and the two runner-up systems (SUKI and Citius Ixa Imaxin).
Another participant submitted only for the twitter data (B1 and B2) and is not included in Table 2.

On the closed track, our results are slightly below the top two systems overall (tubasfs and GWU), with
slight variations across the three test sets. Our run1 yield top results on test set B2 and close on test set
B1 (the difference amounts to 3 tweets out of 500), but was outperfomed on the larger test set A. Note
that tubasfs, GWU and our run1 are within 0.3% of each other, which may not be highly significant,
either practically or statistically. A more precise assessment of the significance of the differences ill
require access to the individual predictions.

Table 4 shows the confusion table between language groups for run1 on test set A (other runs and
conditions are similar). Overall, there are 16 to 24 language group mistakes on test set A, depending on
the track, i.e. below 0.2% error rate. Although still very low, this is quite significantly above the cross-
validation estimate of 0.05%. The reasons for this will require further investigation. Most mistakes are,
as expected, between Spanish, Portuguese and/or French, but a few are surprising (e.g., two Indonesian
sentences predicted as French). On test sets B, the only mistake observed on either run or condition is a
Portuguese user predicted as Bosnian. Overall this suggests that the first stage group classifier has little
impact on performance, as it costs us at most 0.2% in error rate.

Looking at the language variant confusion in Table 5 shows that errors are not uniformly distributed.
There are more confusions between Serbian and Croatian in the news data, and about as many confusions
between Bosnian and Serbian in the twitter data. The confusion between Croatian and Bosnian is con-
sistently smaller than for the other two pairs. In Spanish, errors appear unbalanced, with many Mexican
sentences incorrectly assigned to the other two variants. This is likely due to a combination of the smaller
size of the Mexican data, and the fact that we duplicated the data by mistake, which underestimates the
unbalance between the classes.

4 Discussion

In light of these results and considering the questions we were targetting, we can reach the following
conclusions.

• Data size has a small but consistent impact on performance. Keeping the models equal, the differ-
ence in performance brought by training on the open data was 0.72% on average. As this involves

1Available from http://ttg.uni-saarland.de/vardial2016/dsl2016.html.
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set: A B1+B2
sr hr bs sr hr bs

sr 692 198 109 179 8 13
hr 112 880 6 13 195 2
bs 85 24 888 8 0 192

set: A
es- -ar -es -mx
-ar 945 32 19
-es 81 878 35
-mx 175 152 673

set: A
fr- -ca -fr
-ca 937 63
-fr 77 919

set: A
id my

id 990 7
my 14 986

set: A B1+B2
pt- -br -pt -br -pt
-br 956 44 189 11
-pt 59 940 21 179

Table 5: Language variant confusion for run1: reference in rows, predicted in columns.

training on three times more data, whether this is worth it in practice is debatable, but it clearly
brought our run1 above the best closed data result.

• The two-stage approach of predicting the group performs slightly but consistently better than the
“flat” approach of predicting the variant directly. Keeping the data equal, the difference in perfor-
mance between run1 and run2 was 0.41%, on average, in favour of the former. Again, this may
not be a significant difference in practice, but given the advantage of the two stage approach in terms
of training time, we think that this provides a convincing argument in favour of that approach. A
side conclusion is that this suggests that the gain observed last year in the winning system (Malmasi
and Dras, 2015) may be due to the ensemble combination, which could also be applied to the two
stage approach.

• Our systems performed rather well on the twitter data, which seemed to be a challenge for several
participants. Although that data was expected to be of lower quality than the journalistic material
(language variety, frequent code switching and inventive character sequences), we also had a lot
more material: segments in test set A had up to 88 words, whereas segments in test sets B1 and B2
had up to 6400. This was clearly helpful by providing better ngram statistics. It also helped that
English was not among the candidate languages/variants as a lot of tweet material is clearly English.
It would be interesting to check performance on single tweets.

• Previous work on twitter suggested that removing hashtags and account names altogether may yield
a small performance gain (Lui and Baldwin, 2014). In this work, we decided to remove the # and @
characters alone, with the motivation that the hashtag or account text itself may point to the correct
variant. A systematic evaluation of the different strategies is left to future work, although based
on results from Lui and Baldwin (2014), we conjecture that it is unlikely to make a significant
difference.

• The cross-validation estimates computed on the joint train+dev data yield optimistic estimates, es-
pecially on the open data. Although differences are expected, it is unusually large, and may suggest
a domain mismatch between the test data and the training material. Another factor is that classes
in the training data were imbalanced (fewer fr-FR and es-MX examples), whereas the test set is
balanced. As a consequence, the fr-MX class is underpredicted compared to other Spanish variants.
We did not observe the same effect on French, so this is still up for investigation.

• Our experience this year suggests that focusing on 6grams and removing the system combination
(or ensemble) step makes it possible to set up competitive systems in very short time. The top
performance this year was 89.3% accuracy, which is lower than last year, but still competitive (and
on different test sets).
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