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Abstract

Patient notes contain a wealth of information of potentially great interest to medical investigators. However, to
protect patients’ privacy, Protected Health Information (PHI) must be removed from the patient notes before they
can be legally released, a process known as patient note de-identification. The main objective for a de-identification
system is to have the highest possible recall. Recently, the first neural-network-based de-identification system
has been proposed, yielding state-of-the-art results. Unlike other systems, it does not rely on human-engineered
features, which allows it to be quickly deployed, but does not leverage knowledge from human experts or from
electronic health records (EHRs). In this work, we explore a method to incorporate human-engineered features
as well as features derived from EHRs to a neural-network-based de-identification system. Our results show that
the addition of features, especially the EHR-derived features, further improves the state-of-the-art in patient note
de-identification, including for some of the most sensitive PHI types such as patient names. Since in a real-life
setting patient notes typically come with EHRs, we recommend developers of de-identification systems to leverage
the information EHRs contain.

1 Introduction and related work

Medical practitioners increasingly store patient data in Electronic Health Records (EHRs) (Hsiao et al.,
2011), which represents a considerable opportunity for medical investigators to construct novel models
and experiments to improve patient care. Some governments even subsidize the adoption of EHRs, such
as the Centers for Medicare & Medicaid Services in the United States who have spent over $30 billion
in EHR incentive payments to hospitals and medical providers (McCann, 2015).

A legal prerequisite for a patient note to be shared with a medical investigator is that it must be de-
identified. The objective of the de-identification process is to remove all Protected Health Information
(PHI). Not appropriately removing PHI may result in financial penalties (DesRoches et al., 2013; Wright
et al., 2013). In the United States, the Health Insurance Portability and Accountability Act (HIPAA) (Of-
fice for Civil Rights, 2002) defines PHI types that must be removed, ranging from phone numbers to
patient names. Failure to accurately de-identify a patient note would jeopardize the patient’s privacy: the
performance of a de-identification system is therefore critical.

A naive approach to de-identification is to manually identify PHI. However, this is costly (Douglass
et al., 2005; Douglas et al., 2004) and unreliable (Neamatullah et al., 2008). Consequently, there has
been much work developing automated de-identification systems. These systems are either based on
rules or machine-learning models. Rule-based systems typically rely on patterns, expressed as regular
expressions and gazetteers, defined and tuned by humans (Berman, 2003; Beckwith et al., 2006; Fielstein
et al., 2004; Friedlin and McDonald, 2008; Gupta et al., 2004; Morrison et al., 2009; Neamatullah et al.,
2008; Ruch et al., 2000; Sweeney, 1996; Thomas et al., 2002).

Machine-learning-based systems train a classifier to label each token as PHI or not PHI. Some systems
are more fine-grained by detecting which PHI type a token belongs to. Different statistical methods have
been explored for patient note de-identification, including decision trees (Szarvas et al., 2006), log-linear
models, support vector machines (SVMs) (Guo et al., 2006; Uzuner et al., 2008; Hara, 2006), and
conditional random field (CRFs) (Aberdeen et al., 2010). A thorough review of existing systems can be
found in (Meystre et al., 2010; Stubbs et al., 2015).
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A more recent system has introduced the use of artificial neural networks (ANNs) for de-
identification (Dernoncourt et al., 2016), and obtained state-of-the-art results. The system does not use
any manually-curated features. Instead, it solely relies on character and token embeddings. While this
allows the system to be developed and deployed faster, it fails to give users the possibility to add fea-
tures engineered by human experts. Additionally, in practical settings of de-identification, patient notes
typically come from a hospital EHR database, which contains metadata such as which patient each note
pertains to, and other information such as the names of all doctors who work at the hospital where the
patient was treated. The features derived from EHR databases may be useful for boosting the perfor-
mance of de-identification systems. In this work, we present a method to incorporate features to this
ANN-based system, and show that it further improves the state-of-the-art.

2 Method

The first model based on ANNs for patient note de-identification was introduced in (Dernoncourt et
al., 2016): we extend upon their model. They utilized both token and character embeddings to learn
effective features from data by fine-tuning the parameters. The main components of the ANN model are
Long Short Term Memories (LSTMs) (Hochreiter and Schmidhuber, 1997), which are a type of recurrent
neural networks (RNNs).

The model is composed of three layers: a character-enhanced token embedding layer, a label predic-
tion layer, and a label sequence optimization layer. The character-enhanced token embedding layer maps
each token into a vector representation. The sequence of vector representations corresponding to a se-
quence of tokens are input to the label prediction layer, which outputs the sequence of vectors containing
the probability of each label for each corresponding token. Lastly, the sequence optimization layer out-
puts the most likely sequence of predicted labels based on the sequence of probability vectors from the
previous layer. All layers are learned jointly. For more details on the basic ANN model, see (Dernoncourt
et al., 2016).

We augment this ANN model by adding features that are human-engineered or derived from EHR
database, as presented in Table 1. The majority of human-engineered features are taken from (Filan-
nino and Nenadic, 2015), a few more features come from (Yang and Garibaldi, 2015), and additional
gazetteers are collected using online resources. All features are binary and computed for each token.
The binary feature vector comprising all features for a given token is fed into a feedforward neural net-
work, the output vector of which is concatenated to the corresponding token embeddings, at the output
of the character-enhanced token embedding layer, as Figure 1 illustrates.
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Figure 1: Feature-augmented token embeddings. Each token is mapped to a token embedding that is the
concatenation of three elements: the output of a feedforward neural network that takes the features as
input, a pre-trained token embedding, and the output of a bidirectional-LSTM (bi-LSTM) that takes the
character embeddings as input.
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Feature types Features
Note metadata
Hospital data

Patient’s first name, patient’s last name
Doctor’s first names, doctor’s last names

}
EHR features

Morphological Ends with s, is the first letter capitalized, contains a digit, is numeric, is alphabetic, is alphanu-
meric, is title case, is all lower case, is all upper case, is a stop word

Semantic/Wordnet Hypernyms, senses, lemma names
Temporal Seasons, months, weekdays, times of the day, years, years followed by apostrophe, festivity

dates, holidays, cardinal numbers, decades, fuzzy quantifier (e.g., “approximately”, “few”),
future trigger (e.g., “next”, “tomorrow”)

Gazetteers Honorifics for doctors, honorifics, medical specialists, medical specialties, first names, last
names, last name prefixes, street suffixes, US cities, US states (including abbreviations), coun-
tries, nationalities, organizations, professions

Regular expressions Email, age, date, phone, zip code, id number, medical record number

Table 1: Feature list. Note metadata and hospital data are derived from the EHR database. Morphologi-
cal, semantic/wordnet, and temporal features are commonly used features for NLP tasks. Gazetteers and
regular expressions are specifically engineered for the task.

3 Experiments

We evaluate our model on the de-identification dataset introduced in (Dernoncourt et al., 2016), which
is a subset of the MIMIC-III dataset (Goldberger et al., 2000; Saeed et al., 2011; Johnson et al., 2016),
using the same train/validation/test split (70%/10%/20%). We chose this dataset as each note comes
with metadata, such as the patient’s name, and it is the largest de-identification dataset available to us. It
contains 1,635 discharge summaries, 2,945,228 tokens, 69,525 unique tokens, and 78,633 PHI tokens.

The model is trained using stochastic gradient descent, updating all parameters, i.e., token embed-
dings, character embeddings, parameters of bidirectional LSTMs, and transition probabilities, at each
gradient step. For regularization, dropout is applied to the character-enhanced token embeddings before
the label prediction layer. We set the character embedding dimension to 25, the character-based token
embedding LSTM dimension to 25, the token embedding dimension to 100, the label prediction LSTM
dimension to 100, the dropout probability to 0.5, and we use GloVe embeddings (Pennington et al., 2014)
trained on Wikipedia and Gigaword 5 (Parker et al., 2011) articles as pre-trained token embeddings. The
hyperparameters were optimized based on the performance on the validation set.

4 Results

Table 2 presents the main results. The epochs for which the results are reported are optimized based on
either the highest F1-score or the highest recall on the validation set. As expected, choosing the epoch
based on the recall improves the recall on the test set, while lowering the precision. Overall, adding
features consistently improves the results.

Table 3 details the results for each PHI type. The system using only the EHR features yields the
highest recall for 6 out of 12 PHI types. Most importantly, the recall for patient and doctor names are
higher when using features than when using no feature: this is expected as the patient name of the note
and the doctor names are used as features. In fact, the two remaining false negatives for patient names
are annotation errors. For example, in the sentence “The patient responded well to Natrecor in the past,
but the improvement disappeared soon”, the drug name Natrecor was incorrectly marked as a patient
name by the human annotator. This result is highly remarkable as patient names are the most sensitive
information in a patient note (South et al., 2014).

Adding all features often lowers the recall compared to using EHR features only, although the F1-
score remains virtually unchanged. This is somewhat surprising, as we had expected that the features
would help, as using the same feature set with a CRF to perform de-identification yields state-of-the-
art results next to the ANN models (Dernoncourt et al., 2016). This could be explained as follows.
Human-engineered features tend to have higher precision than recall, as it is often hard to design regular
expressions or gazetteers that can detect all possible instances or variations of the desired entities. We
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Binary HIPAA (optimized by F1-score) Binary HIPAA (optimized by recall)
Precision Recall F1-score Precision Recall F1-score

No feature 99.103 99.197 99.150 98.557 99.376 98.965
EHR features 99.100 99.304 99.202 98.771 99.441 99.105
All features 99.213 99.306 99.259 98.880 99.420 99.149

Table 2: Binary HIPAA token-based results (%) for the ANN model, averaged over 5 runs. The metric
refers to the detection of PHI tokens versus non-PHI tokens, amongst PHI types that are defined by
HIPAA. “No feature” is the model utilizing only character and word embeddings, without any feature.
“EHR features” uses only 4 features derived from EHR database: patient first name, patient last name,
doctor first name, and doctor last name. “All features” makes use of all features, including the EHR
features as well as other engineered features listed in Table 1. “Optimized by F1-score” and “optimized
by recall” means that the epochs for which the results are reported are optimized based on the highest
F1-score or the highest recall on the validation set, respectively.

No feature EHR features All features
P R F1 P R F1 P R F1 Support

Zip 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 24
Date 98.90 99.77 99.33 98.95 99.79 99.36 98.99 99.69 99.34 20627
Phone 98.31 99.58 98.94 98.98 99.46 99.22 99.42 99.32 99.37 1438
Patient 96.89 98.34 97.61 98.62 99.14 98.88 99.21 99.27 99.24 302
ID 99.57 98.24 98.90 99.31 98.82 99.07 99.77 97.97 98.86 612
Doctor1 97.47 98.17 97.82 97.27 98.48 97.87 97.56 98.20 97.88 3676
Location 96.02 95.71 95.86 96.41 96.49 96.45 96.65 96.32 96.46 462
Age ≥ 90 75.12 94.29 83.60 77.04 95.72 85.35 78.93 93.57 84.80 28
Hospital1 94.78 95.39 95.08 94.77 95.52 95.14 95.53 95.50 95.51 1259
State1 99.36 94.33 96.76 99.68 94.03 96.73 99.39 91.94 95.49 67
Street 96.77 85.25 90.54 97.63 85.25 90.96 93.91 86.56 89.81 61
Country1 87.51 85.00 86.11 89.29 82.50 85.67 86.87 95.00 90.56 16
Binary 98.41 99.19 98.80 98.48 99.27 98.87 98.61 99.15 98.88 28572

Table 3: Binary token-based results (%). The reported results are optimized by recall, and averaged over
5 runs. The symbol 1 indicates that the PHI type is not required by HIPAA. The PHI type “location”
designates any location that is not a street name, zip code, state or country. P stands for precision, R for
recall, and F1 for F1-score.

conjecture that as the ANN model learn to rely more on such features, it might lose the ability to learn to
pick up tokens that deviate from engineered features, resulting in a lower recall. For example, we notice
that the phone PHI tokens that are not detected by the model using all features but are detected by the
other two models, are ill-formed phone numbers such as “617-554-|2395”, or phone extensions such as
“617-690-4031 ext 6599”. Since the phone regular expressions do not capture these two examples, they
are more likely to be false negatives in the model that uses the phone regular expression features.

5 Conclusion
In this paper we presented an extension of the ANN-based model for patient note de-identification that
can incorporate features. We showed that adding features results in an increase of the recall, in particular
features leveraging information from the associated EHRs, namely patient names and doctor names. Our
results suggest that constructing patient note de-identification systems should be performed using struc-
tured information from the EHRs, the latter being available in a typical, real-life setting. We restricted
our EHR-derived features to patient and doctor names, but it could be extended to the many other struc-
tured fields that EHR contain, such as patients’ addresses, phone numbers, email addresses, professions,
and ages.
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