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Preface

Welcome to the first edition of the “Computational Linguistics for Linguistic Complexity” workshop
(CL4LC)! CL4LC aims at investigating “processing” aspects of linguistic complexity with the objective
of promoting a common reflection on approaches for the detection, evaluation and modelling of linguistic
complexity.

What has motivated such a focus on linguistic complexity? Although the topic of linguistic complexity
has attracted researchers for quite some time, this concept is still poorly defined and often used with
different meanings. Linguistic complexity indeed is inherently a multidimensional concept that must
be approached from various perspectives, ranging from natural language processing (NLP), second
language acquisition (SLA), psycholinguistics and cognitive science, as well as contrastive linguistics. In
2015, a one-day workshop dedicated to the question of Measuring Linguistic Complexity was organized
at the catholic University of Louvain (UCL) with the aim of identifying convergent approaches in diverse
fields addressing linguistic complexity from their specific viewpoint. Not only did the workshop turn out
to be a great success, but it strikingly pointed out that more in–depth thought is required in order to
investigate how research on linguistic complexity and its processing aspects could actually benefit from
the sharing of definitions, methodologies and techniques developed from different perspectives.

CL4LC stems from these reflections and would like to go a step further towards a more multifaceted
view of linguistic complexity. In particular, the workshop would like to investigate processing aspects of
linguistic complexity both from a machine point of view and from the perspective of the human subject
in order to pinpoint possible differences and commonalities.

We are glad to see that our expectations have been met since the workshop has generated great enthusiasm
both within the Program Committee, whose members from various disciplines have wholeheartedly
agreed to serve, and within authors, as we received 33 paper submissions in all, out of which eight
were selected as oral presentations and seventeen as posters.

The multidisciplinary approach assumed by the workshop is reflected in the submissions that we
received. We can classify them following one major "theoretical" distinction between absolute
complexity (i.e. the formal properties of linguistic systems) and relative complexity (i.e. covering
issues such as cognitive cost, difficulty, level of demand for a user/learner). Several papers that we
received focused on language complexity per se, which is typically addressed comparing the structural
complexity of different languages. Bentz et al. (a) thus compare typical measures of language complexity
across 519 languages. In Bentz et al. (b), they also discuss language evolution, with a special focus on
morphological complexity, in the light of learning pressures. Another approach is to assess document
complexity and Chen and Meurers propose a web-based tool to this aim. Papers focusing deeper on
a specific aspect of linguistic complexity were also proposed, such as Zaghouani et al., who report a
method to detect lexical ambiguity, which is one of the major sources of language complexity, and on
its impact on human annotation. Bjerva and Börstell investigate the impact of morphological complexity
and animacy features on the order of verb and object in Swedish Sign Language. Takahira et al. adopt
a broader approach and compare the entropy rates of six different languages by means of a state-of-
the-art compression method. Finally, Shi et al. investigate the impact of polysemy on automatic word
representation in order to improve the performance of word embeddings.

We also got very interesting papers on the relative complexity of language, i.e. the difficulty perceived by
humans when processing linguistic input. Some of them are concerned with modeling human sentence
processing through experimental and computational metrics to capture linguistic clues of sentence
processing difficulty. Other papers address relative complexity from a more applicative point of view.
The first is the case of van Schijndel and Schuler, who revisit the question of using eye-tracking data to
predict the level of surprisal of sentences, showing that taking into consideration a word skipped during
reading improves n-gram surprisal, but not surprisal measures based on PCFG. The work of Bloem
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also uses the construct of surprisal to investigate the relation between processing cost and the choice
between near-synonymous verbal constructions in Dutch. The contribution of Shain et al. investigates
the existence of a latency effect during sentence processing due to memory access. On their side, Li
et al. regress various measures of textual complexity on fMRI timecourses while listening to a story
to discuss the role of various regions of interest (ROI) in the humain brain. Chersoni et al. propose a
very relevant contribution suggesting a Distributional Model for computing semantic complexity that is
based on the MUC (Memory, Unification and Control) model for sentence comprehension. Heilmann
and Neumann explore a completely different horizon and make use of keylogs to better model language
complexity and the cognitive load it produces during the translation process. Finally, Becerra-Bonache
and Jimenez-Lopez adopt a developmental approach of linguistic complexity that uses grammatical
inference algorithms to simulate the acquisition of language by a native speaker.

The second more applicative point of view to relative complexity is addressed by Falkenjack and Jönsson,
who are concerned with the scarcity of available texts for training readability models in languages
other than English and suggest using a Bayesian Probit model coupled with a ranking classification
strategy. Ströbel et al. suggest another approach to text readability based on a sliding-window that
is used to create the distribution of linguistic complexity for a text. Wagner Filho et al. compare the
efficiency of various machine learning algorithms and engineered features to automatically build a large
corpus for readability assessment. Vajjala et al. provide an interesting example of a integrated view
of text readability that correlates text characteristics with reader’s language ability reflected in reading
comprehension experiments. The paper by Deep Singh et al. also addresses readability prediction
from a psycholinguistic point of view, using eye-tracking measures instead of grade level to train their
model. Gonzalez-Dios et al. carry out an interesting in-depth analysis combining readability and text
simplification, retaining the most predictive syntactic structures from a readability model and analysing
how human writers simplify the syntactic structures concerned. Similarly, with the goal of connecting
text simplification practises with real needs of readers, Gala et al. experiment with dyslexic children to
verify the effects of lexical simplification on reading comprehension. Albertsson et al. on their part detect
paraphrased segments between two corpora (one comprised of simple texts, while the other includes more
advanced materials) for text simplification purposes. Finally, Pilan et al. use coursebook-based lists of
vocabulary to improve the proficiency prediction of learner essays in Swedish.

A further perspective is assumed by those papers more focused on linguistic complexity from the
automatic processing point of view, investigating differences and similarities with human sentence
processing. This is the case of Delmonte’s paper, which is concerned with syntactic complexity for a
syntactic parser focusing in particular on those syntactic structures which are known to be difficult for
human parsing. Mirzaei et al. use errors made by an automatic speech recognition system as indicators
of second language learners’s listening difficulties.

To conclude this nice programme, we wish to thank everyone who submitted a paper, all of the authors for
their contributions, the members of the Program Committee for their thoughtful reviews, and everyone
who attended this workshop for sharing time and thoughts on this increasingly important research topic.

Sincerely,

Dominique Brunato
Felice Dell’Orletta
Giulia Venturi
Thomas François
Philippe Blache
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Abstract

In this paper, we propose to use a subfield of machine learning –grammatical inference– to mea-
sure linguistic complexity from a developmental point of view. We focus on relative complexity
by considering a child learner in the process of first language acquisition. The relevance of
grammatical inference models for measuring linguistic complexity from a developmental point
of view is based on the fact that algorithms proposed in this area can be considered computational
models for studying first language acquisition. Even though it will be possible to use different
techniques from the field of machine learning as computational models for dealing with linguis-
tic complexity –since in any model we have algorithms that can learn from data–, we claim that
grammatical inference models offer some advantages over other tools.

1 Introduction

Complexity has become an important concept in several scientific disciplines (biology, physics, chem-
istry, philosophy, psychology and sociology) (Mitchell, 2009). There has been a lot of research on
complexity and complex systems in the natural sciences, economics, social sciences and, now, also in-
creasingly in linguistics. From McWhorther’s (2001) pioneering work, there have been many seminars,
conferences, articles, monographs (Dahl, 2004; Kusters, 2003) and collective volumes (Miestamo et al.,
2008; Sampson et al., 2009; Newmeyer and Preston, 2014) that have dealt with linguistic complexity and
have challenged the so-called equi-complexity dogma. In fact, we can say that, nowadays, complexity
figures prominently in linguistics.

However, despite the interest it has generated, there is no agreement in the literature on the definition
of complexity. In a recent article, Pallotti (2015) underlines the polysemy of the term complexity in the
linguistic literature and summarizes the different notions of complexity in this field by referring to three
main meanings:

• Structural complexity, a formal property of texts and linguistic systems having to do with the number
of their elements and their relational patterns.

• Cognitive complexity, having to do with the processing costs associated with linguistic structures.

• Developmental complexity, the order in which linguistic structures emerge and are mastered in
second (and, possibly, first) language acquisition.

The above three meanings cover the two conceptions that, according to Crystal (1997), the concept
has in linguistics, where ‘complexity refers to both the internal structuring of linguistic units and psycho-
logical difficulty in using or learning them’. This distinction is directly reflected in the two main types
of complexity found in the literature (Miestamo, 2006; Miestamo, 2009a; Miestamo, 2009b):

• The absolute complexity approach that defines complexity as an objective property of the system
and it is measured in terms of the number of parts of the system, the interrelations between the parts

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/
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or the length of the description of the phenomenon. It is a usual complexity notion in cross-linguistic
typology studies (McWhorter, 2001; Dahl, 2004).

• The relative complexity approach that takes into account the users of language and identifies com-
plexity with difficulty/cost of processing, learning or acquisition. This type of approach is very
common in the fields of sociolinguistics and psycholinguistics (Kusters, 2003).

Differences in the definition led to abundance of complexity measures. Edmonds (1999), for example,
identifies forty-eight different metrics used in natural and social sciences. In linguistics, there is no
conventionally agreed metric for measuring the complexity of natural languages. The measures proposed
are varied and could be grouped into two blocs:

• Measures of absolute complexity. The number of categories or rules, length of the description,
ambiguity, redundancy, etc. (Miestamo, 2009a).

• Measures of relative complexity. When the relative approach of complexity is adopted the problem
that has to be faced is the answer to the question: Difficult/costly to whom? This means that it is
necessary to determine what kind of task –learning, acquisition, processing– must be considered
and, of course, what type of user must be taken into account –speaker, listener, child, adult–. The
problem, here, is to choose a task and a type of user representative for the definition of complex-
ity and to properly motivate this choice. The complexity of L2 learning (Kusters, 2003) or the
complexity of processing (Hawkins, 2009) are examples of measures proposed in this field.

Some researchers have attempted to apply the concept of complexity used in other disciplines in or-
der to find useful tools to calculate linguistic complexity. Information theory, for example, offers two
formalisms that might be appropriate for measuring linguistic complexity:

• Shannon information entropy that captures the average number of bits of information necessary to
specify the state of a random variable or system described by a probability model (Bane, 2008).

• Kolmogorov complexity that measures the informativeness of a string as the length of the algorithm
required to describe that string (Juola, 2009). This measure can be applied to measuring language
complexity in such a way that the longer the description of a linguistic structure, the more complex
it is (Dahl, 2004; Juola, 2009; Miestamo, 2009a).

Other than information theory, computational models (Blache, 2011), or the theory of complex sys-
tems (Andrason, 2014) are examples of areas that provide measures to quantitatively evaluate linguistic
complexity.

In this paper, we propose to use a subfield of Machine Learning –Grammatical Inference– to measure
linguistic complexity from a developmental point of view. We focus on relative complexity by consid-
ering a child learner in the process of first language acquisition. Therefore, we need a computational
model for first language acquisition. This is why we have chosen grammatical inference models, since
they deal with idealized learning procedures for acquiring grammars on the basis of exposure to evidence
about languages (D’Ulizia et al., 2011).

The paper is organized as follows. Firstly, we present an overview of research on linguistic relative
complexity. Secondly, we briefly discuss the relevance of grammatical inference models for explaining
natural language acquisition. Thirdly, we present different grammatical inference algorithms that may
deal with linguistic complexity. Finally, we conclude with some remarks and possible directions for
future work.

2 Relative Complexity

Even though complexity is a central notion in linguistics, until recently, it has not been widely researched
in the area (Sinnemäki, 2011). During the twentieth century, linguistic complexity was supposed to be
invariant. Linguists, from very different theoretical schools, have agreed that all natural languages must
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be equally complex. However, the validity of this claim has rarely been subjected to systematic cross-
linguistic investigation.

In the last fifteen years, the interest on linguistic complexity has led researchers to challenge the equi-
complexity dogma by addressing the study of complexity from different points of views. In general,
recent work on language complexity takes an absolute perspective of the concept while the relative com-
plexity approach –even though considered as conceptually coherent– has hardly begun to be developed.

In general, researchers agree that it is more feasible to approach complexity from an objective or
theory-oriented viewpoint than from a subjective or user-related viewpoint. To approach complexity
from the relative point of view constraints the researcher to face many problems:

• What does complex mean?: More difficult, more costly, more problematic, more challenging?

• Different situations of language use (speaking, hearing, L1 acquisition, L2 learning) differ as to
what is difficult and what is easy.

• Some linguistic phenomena can be difficult for a certain group of language users while facilitating
the task of another group, so we have to answer the question ‘complex to whom?’

• A user-based approach would require focusing on one user-type over the others or defining an
idealized user-type. How do we decide which type of language use (and user) is primary?

According to Miestamo (2006), there will always be some conflict between definitions of complexity
based on different types of users, and no general user-type-neutral definition is possible. This is prob-
lematic for a relative approach to complexity. Absolute definitions of complexity avoid these problems.

Among the relative complexity metrics that have been proposed, we can refer to the following ones: L2
acquisition complexity (Trudgill, 2001a); redundancy-induced complexity (Trudgill, 1999; McWhorter,
2001); irregularity-induced complexity (Trudgill, 2001b; McWhorter, 2012); incomplete dependency
hypothesis (Gibson, 1998); dependency locality theory (DLT) (Gibson, 2000); structural depth (Ferreira,
1991; Abney and Johnson, 1991; Schuler, 2009); time of acquisition and degree of acquisition, etc.

Studies that have adopted a relative complexity approach have showed some preferences for L2 learn-
ers (Kusters, 2003). This is, from the following three different questions that could be answered, re-
searchers have preferably chosen the first one:

1. Second-language learning. Do some language take longer for the adult learner to learn than others?

2. Language use. Are some languages more difficult to use than others?

3. Language acquisition: Do some languages take longer for the child to acquire than others?

However, as pointed out by Miestamo (2006), if we aim to reach a general definition of relative com-
plexity, the primary relevance of L2 learners is not obvious. In fact, they could be considered the least
important of the four possible groups that may be considered –speakers, hearers, L1 learners, L2 learners.

Taking into account that some of the ideas that backup the equi-complexity dogma are based on the
process of language acquisition –learning a first language is something every child does successfully in
every society, in every language, independently of the type of education and intelligence level; all chil-
dren acquire language in the same way, regardless of the language they learn; children progress through
the same stages in language acquisition regardless the language–, we think that studies on developmental
complexity may check differences among languages by considering child first language acquisition. Due
to the problems that methods for studying language acquisition (observational and experimental) may
set out to the study of linguistic complexity, we defend that computational modeling of the process of
language acquisition may be considered an important complementary tool that -by avoiding practical
problems of analyzing authentic learner productions data– will make possible to consider children (or
their simulation) as suitable candidates for evaluating the complexity of languages.
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3 Grammatical Inference Relevance for Natural Language Acquisition

Within the field of Machine Learning (Olivas et al., 2009) –that focus on the development of techniques
that allow computers to learn–, Grammatical Inference (GI) deals with the learning of grammars and
languages from data (de la Higuera, 2010). This subfield of machine learning was born in the 1960s
and since then has attracted the attention of researchers working on different fields (formal languages,
automata theory, computational linguistics, information theory, pattern recognition, and many others).

The relevance of GI models for measuring linguistic complexity from a developmental point of view
is based on the fact that the computational models developed in this area can be useful for studying first
language acquisition. In fact, the initial theoretical foundations of GI were given by E.M.Gold (1967),
who tried to formalize the process of natural language acquisition.

According to Pearl and Goldwater (2016), language acquisition is a problem of induction: the child
learner is faced with a set of specific linguistic examples and must infer some abstract linguistic knowl-
edge that allows the child to generalize beyond the observed data, i.e., to both understand and generate
new examples. Likewise, GI is a task where the goal is to learn or infer a grammar (or some device that
can generate, recognize or describe strings) for a language and from all sorts of information about this
language. GI consists, therefore, of finding the grammar or automaton for a language of which we are
given an indirect presentation through strings, sequences, trees, terms or graphs (de la Higuera, 2010).

GI can, therefore, provide computational models for natural language acquisition. The use of formal
or computational tools to give a description of the machinery necessary to acquire a language has been
recognized as an important strategy within the field of language acquisition (Frank, 2011). In general, it
is recognized that computational models can shed new light on language acquisition processes (Wintner,
2010). Even though, using computational tools for studying language is as old as the onset of Artificial
Intelligence, over the last twenty-five years the progress in machine learning techniques has resulted in
the emergence of a wider range of computational models that are much more powerful and robust than
their predecessors (Alishahi, 2011).

Using computational tools, and therefore GI algorithms, for studying natural language acquisition
offers many methodological advantages. Following Alishahi (2011) and Pearl (2010), we can highlight
the following ones:

• Explicit assumptions. When implementing a computational model, every assumption of the input
data and the learning mechanism has to be specified.

• Controlled input. Computational models offers the possibility to manipulate the language acquisi-
tion process and see the results of that manipulation. The researcher has full control over all the
input data.

• Observable behavior. The impact of every factor in the input or the learning process can be directly
studied in the output of the model. The performance of two different mechanisms on the same data
set can be compared against each other.

• Testable predictions. Novel situations or combinations of data can be simulated and their effect on
the model can be investigated.

Besides the enumerated advantages, one of the main benefits of computational models of language
acquisition for determining relative linguistic complexity is the type of questions these formalisms could
answer. According to Pearl (2010), language acquisition research is concerned with three different ques-
tions: what children know, when they know it, and how they learn it. While theoretical research deals
with the knowledge that children acquire and experimental work provides information regarding the age
at which the child acquires particular linguistic knowledge, computational modeling can explain how the
child learns a language. Computational models, therefore, can be used to explain the process of natural
language acquisition, because models are meant to be simulations of the child’s acquisition mechanism.

Being tools for explaining the process of natural language acquisition, computational models in gen-
eral, and GI algorithms in particular, are potential good tools to deal with developmental linguistic com-
plexity.
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4 Grammatical Inference Algorithms and Linguistic Complexity

Even though it would be possible to use different techniques from the field of machine learning to study
linguistic complexity, we consider that GI models offer some advantages over other tools.

The first advantage is their motivation. As we have said, Gold (1967) introduced his model of identi-
fication in the limit with the ultimate goal of explaining the learning process of natural language:

The study of language identification described here derives its motivation from artificial
intelligence. The results and the methods used also have implications in computational lin-
guistics, in particular the construction of discovery procedures, and in psycholinguistics, in
particular the study of child learning (...). I wish to construct a precise model for the intuitive
notion “able to speak a language” in order to be able to investigate theoretically how it can be
achieved artificially (Gold, 1967).

Secondly, GI models have advantages over grammar induction tools, since whereas in grammar induc-
tion what really matters is the data and the relationship between the data and the induced grammar, in GI
the actual learning process is what is central and is being examined and measured, not just the result of
the process (de la Higuera, 2010).

Thirdly, an important advantage of GI tools is that they allow us to reproduce the learning context of
first language acquisition. In fact, in any GI problem we have a teacher that provides data to a learner, and
a learner (or learning algorithm) that from that data must identify the underlying language. This process
has some similarities with the process of language acquisition where instead of a teacher and a learner,
we have an adult and a child. In general, all the models in GI simulate learners who are developing
monolingual L1 learning from monolingual data. However, modeling can be extended to other scenarios
when the appropriate input data are available.

Importantly, GI models are grounded theoretically and empirically, as required in any computational
model for language acquisition (Pearl, 2010). Theoretical grounding includes a description of the knowl-
edge learners have and how it is represented. In GI models, the learner –this is, the machine– has no
previously knowledge about the language. It has just the capacity –algorithm– to learn, but no linguistic
structure previously storaged in order to facilitate the process. The machine represents, therefore, the
child that has to acquire a language by just being exposed to this language. Empirical grounding in-
cludes using realistic data as input, measuring the model’s learning behavior against children’s learning
behavior, and incorporating psychologically plausible algorithms into the model. In GI, the learner is
exposed to language. The learner -like the child- can received positive and negative data as well as cor-
rections. The model counts the needed number of interactions for the machine to achieve a good level
of performance in a specific domain of the language. This could be seen as equivalent to calculate the
child’s cost/difficulty to acquire a language. There are different ways to present results, depending on
what the model is testing. Useful measures are recall, precision and F-score.

By taking into account the above advantages, we claim that GI can provide a good tool for measuring
linguistic complexity. We claim that models in this research area are potentially suitable for measuring
the developmental complexity of languages, this is, the complexity understood in terms of cost and/or
difficulty in language acquisition.

In what follows, we briefly outline the functioning of two novel models in the field of GI, in order to
show their potential usefulness in the study of linguistic complexity.

4.1 Angluin and Becerra-Bonache’s Model
Angluin and Becerra-Bonache (2010; 2011) introduced a novel model in GI inspired by studies on chil-
dren’s language acquisition. While the main part of studies in GI reduce the learning problem to the
acquisition of the syntax, and omit any semantic information during the learning process, Angluin and
Becerra-Bonache (2010; 2011) proposed a GI model that takes into account semantics during the lan-
guage learning process.

In this model, the teacher and the learner interact in a sequence of situations by producing sentences
that denote an object in each situation. These interactions are developed in the following way: First, a
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situation is randomly generated and it is presented to the teacher and the learner; then, the learner tries
to produce a sentence that designs one of the objects in this situation; after that, the teacher produces
a random sentence that designs one of the objects in this situation and, finally, the learner analyzes the
teacher’s sentence and updates its current grammar for the language as appropriate.

Given any situation, the learner’s goal is to produce correct sentences that denote one object in this
situation. Semantics is formalized by using first order logic. In the model, a situation is composed
of some objects and some of their properties and relations and it is represented as a finite set of ground
atoms over some constants and predicates symbols. A meaning is a finite sequence of variable atoms, this
is an expression formed by applying a predicate symbol to the correct number of variables as arguments.
It is assumed that each utterance in the target language is assigned a unique meaning. An utterance is
a finite sequence of words over a finite alphabet W of words. An utterance is denoting in a situation, if
it uniquely picks out the objects it refers to in a situation. The linguistic competence of the teacher is
represented by a finite state transducer. This transducer is used by the teacher for comprehension and
production of utterances. Initially, the teacher has the meaning transducer for the target language, but the
learner has no language-specific knowledge (i.e., the learner has not access to this transducer and it does
not have any information about the target language). Regarding the learning task, the goal of the learner
is to learn a grammar for the language that will enable to produce all and only the denoting utterances for
any given situation. Although the learner’s representation is referred as a grammar, it does not take the
form of a classical grammar from formal languages. The learner’s grammar has three main components:
1) Weighted co-occurrence graph; 2) general forms; 3) decision trees. Detailed information about the
model can be found in Angluin and Becerra-Bonache (2010).

To evaluate the model it was used a simplification of the Feldman’s Miniature Language Acquisition
task (Stolcke et al., 1994) that consists on learning a sublanguage from sentences-picture pairs that
involve geometric figures. The model was tested with limited sublanguages of ten different natural
languages: English, German, Greek, Hebrew, Hungarian, Mandarin, Russia, Spanish, Swedish, Turkish.

In the experiments, each situation had two objects and one binary relation between them (above/below,
to the left to/to the right to). Every object had three attributes: form, color and size. The attribute of shape
had six possible values (circle, square, triangle, star, ellipse, hexagon), that of color had six possible
values (red, orange, yellow, green, blue, purple), and that of size three possible values (big, medium,
small). Thus, there were 108 different objects and 23,328 different situations. The total number of
possible meanings was 113,064.

Two different measures were used to evaluate the performance of the learner: correctness and com-
pleteness. The correctness is the sum of the probabilities of the learner’s sentences that are in the set of
sentences that denote correctly one object. The completeness is the fraction of sentences that denote cor-
rectly one object and appear in the set of learner sentences. A learner achieved a level p of performance
if correctness and completeness were at least p (this is a more stringent measure of performance than the
F-score). In the experiments, teacher and learner interacted until the learner achieves a level p = 0.99.
Table 1 shows the number of interactions that were necessary to achieve this level of performance in all
the languages taken into account. Each entry is the median of 10 trials. The learner was evaluated after
receiving 100 sentences from the teacher.

The results distinguished two different groups: 1) Greek and Russian that need at least 3.400 interac-
tions with the teacher; and 2) the rest of languages that need at most 1.000 interactions.

In essence, the model developed by Angluin and Becerra-Bonache (2010; 2011) calculates the number
of interactions that are necessary to achieve a good level of performance in a given language by using a
unique algorithm to learn any of the languages analyzed. The model shows that not all the languages need
the same number of linguistic interactions to reach the same level of performance. Even though we can
think that these differences may be due to computational reasons (i.e., the size of the target machines), it
has been shown in Angluin and Becerra-Bonache (2016) that these differences are because of linguistic
reasons. For example, Mandarin has an alphabet (i.e., number of words) of half of the size of that for
Greek, while its transducer has similar size to the Greek one, but Mandarin required fewer interactions to
reach a high level of performance. Hence, this example shows that the differences in the results obtained
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Table 1: Number of interactions that the learner needs to reach different levels of performance. Extracted
from Angluin and Becerra-Bonache (2010) .

are due to linguistic rather than computational reasons, providing some evidence of the different level of
linguistic complexity of the analyzed natural languages.

Therefore, this GI model may be a potential adequate tool to measure the linguistic complexity in
relative terms. In fact, the unique algorithm used in the model could be equivalent to the innate capacity
that allows humans to acquire a language. Moreover, the learner –this is, the machine– has no previ-
ously knowledge about the language. The machine represents, therefore, the child that has to acquire
a language by just being exposed to this language. To count the needed number of interactions for the
machine to achieve a good level of performance in a specific domain of the language may be equivalent
to calculate the child’s cost/difficulty to acquire a language. Finally, to show that with the same algorithm
not every language requires the same number of interactions may be interpreted (in terms of complex-
ity) as an evidence to defend that the difficulty/cost to acquire different languages is not the same and,
therefore, languages differ in relative complexity.

4.2 Models based on Inductive Logic Programming Techniques

Another interesting model in GI that may be adequate to calculate linguistic complexity is the one intro-
duced in Becerra-Bonache et. al (2015) and improved in Becerra-Bonache et al. (2016).

Inspired by Angluin and Becerra-Bonache (2010; 2011), Becerra-Bonache et al. (2015) developed a
new system based on Inductive Logic Programming techniques. This system learns from pairs consisting
of a sentence and the context in which this sentence has been produced. A sentence is represented as a
sequence of words (n-grams) and for the context they use a first-order logic based representation. In
contrast to other approaches, a context is a description of what the learner can see in the world, and not
a set of candidate meanings for that utterance; the system constructs all candidate meanings itself. The
model assumes that sentences are relevant, i.e., they never refer to something outside the context. The
meaning of an n-gram is defined as whatever is in common among all contexts where the n-gram can
be used. The algorithm incrementally learns the meaning of specific n-grams by using Inductive Logic
Programming techniques. Becerra-Bonache et al. (2015) experimentally demonstrate that the proposed
model can explain the gradual learning of simple concepts and language structure. The system was
also tested with a toy dataset based on the Feldman’s task (it contains simple noun phrases that referred
only to the color, shape, size and relative position of simple objects). Experiments with three different
languages (English, Dutch and Spanish) showed that the system learns a language model that can easily
be used to understand, generate and translate utterances.

An improvement of the model introduced in Becerra-Bonache et al. (2015) is presented in Becerra-
Bonache et al. (2016). In this paper, a system that deals with more realistic contexts (provided in the
form of images) and work in noisy environments is introduced. The system learns from pairs (S,I) where
S is a sentence telling something about a part of an image I. After a basic preprocessing step, each image
I is transformed into a scene Sc, by using a first-order logic based representation. Therefore, the input
of the learner is a dataset made up of pairs (S,Sc) where S is a sentence related to a particular scene
Sc. The input pairs have similar properties to those of the inputs received by children (Fazly et al.,
2010): a) alignment ambiguity: it is not explicitly indicated in the input which words refer to which
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meaning; b) referential uncertainty: the description of a context may contain elements that are not in
the corresponding sentence; c) noise: a sentence may refer to things that are not present in the context.
The main improvements with respect to the work presented in Becerra-Bonache et al. (2015) are the
following: 1) the system can better learn the meaning of words; 2) it can learn from noisy environments;
3) it can generate relevant sentences for a given scene, rather than just any sentence. Moreover, a series of
experiments based on a more realistic dataset, called Abstract Scenes Dataset (Zitnick and Parikh, 2013),
were conducted; this dataset contains clip-art pictures of children playing outdoors and sentences that
describe these images. The goal of those experiments were to study the ability of the model to generate
relevant sentences for a given scene and to learn the meaning of words.

We claim that those models may be used in the research on linguistic complexity. They are models
that focused on the learning process. Moreover, they do not require any prior language-specific knowl-
edge and learn incrementally. Therefore, they present features to, somehow, ensure that the model is
actually about acquisition, rather than simply about what behavior a computational algorithm is capable
of producing. They use realistic data and psychologically plausible algorithms that include features like
gradual learning, robustness to noise in the data, and learning incrementally.

5 Conclusions

In this paper, we have proposed to use GI algorithms to measure the relative complexity of natural
languages by considering the process of children first language acquisition. GI algorithms allow us
to calculate the cost –in terms of the number of interactions– to reach a good level of performance in
a given language. Therefore, GI offers the possibility to measure the difficulty of acquiring different
natural languages.

The adequacy of GI models for calculating linguistic complexity is based on the fact that algorithms
proposed in this area are computational models of language acquisition that use real data in the learning
process. As any computational simulation, GI allows the researcher to perform some manipulations that
could be not possible to carry out with children. Therefore, GI may provide data to calculate linguis-
tic complexity that would be difficult to be obtained by observing the process of language acquisition
through experimental research. Unlike psycholinguistic experiments with real children, GI models can
avoid the problem of the influence of external (and non linguistic) factors that can conditioning the pro-
cess of language acquisition. GI algorithms allow to reproduce the same context and features for the
learning of any language. By analyzing the language acquisition process in different children in order
to get data on linguistic complexity differences, we could not assure that every child have the same
capacity, motivation, inputs, etc. If, on the contrary, we analyze the same speaker/child acquiring dif-
ferent languages, we could not assure that the acquisition of one language is not conditioned by the
acquisition of the other language (even in bilingual acquisition processes). All these problems can be
avoided by machine learning, since the computational simulation allows to reproduce exactly the same
state/environment/requirements for the acquisition of any language.

As pointed out by Pearl (2010), the main disadvantage of modeling is that we can never be absolutely
sure our model is really showing how acquisition works in children’s minds. In fact, the reader could
object that GI do not reproduce the process of natural language acquisition. We claim that, in order
to defend the usefulness of GI models in the study of linguistic complexity, it not necessary to defend
an identity between the processes of inferring a grammar and acquiring a natural language. We just
say that an analogy can be established between those two processes. Moreover, in the case that not
even the analogy is tenable, we still claiming that machine learning techniques can offer to linguistic
complexity studies efficient computational resources that can measure complexity differences among
languages adequately through objective and controlled means.

In the literature on linguistic complexity, it is common to read that there is no reason to believe that all
languages are equally complex. However, no definite method has been proposed up to now to measure
the relative complexity of languages. If measures and techniques from different disciplines have been
used to calculate absolute complexity, why not to resort to machine learning to find useful tools for
calculating developmental complexity.
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We are working on the development of objective and meaningful methods, based on GI, to calculate
linguistic complexity. GI models can be seen as an alternative to the methods that have been used so far.
They present the following advantages: their interdisciplinarity, they combine ideas from linguistics with
computational models; their motivation, they are based on how humans acquire language; their results,
they provide quantifiable experimental results; and their ability to perform cross-linguistic analysis.
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Abstract

In this paper, we introduce for the first time a Distributional Model for computing semantic com-
plexity, inspired by the general principles of the Memory, Unification and Control framework
(Hagoort, 2013; Hagoort, 2016). We argue that sentence comprehension is an incremental pro-
cess driven by the goal of constructing a coherent representation of the event represented by the
sentence. The composition cost of a sentence depends on the semantic coherence of the event
being constructed and on the activation degree of the linguistic constructions. We also report the
results of a first evaluation of the model on the Bicknell dataset (Bicknell et al., 2010).

1 Introduction

The differences in semantic processing between typical and atypical sentences have recently attracted a
lot of attention in experimental linguistics. Consider the following examples:

(1) a. The musician plays the flute in the theater.
b. The gardener plays the castanets in the cave.
c. * The nominative plays the global map in the pot.

Since the early work of Chomsky (1957) and the introduction of the notion of acceptability, linguistic
theory has mostly focused on the contrast between (1c) and the former two. The last sentence violates
the combinatorial constraints of the lexical items, and that is the reason why, although (1c) is syntac-
tically well-formed, we are not able to build any coherent representation for the situation it expresses.
Investigations on event-related potentials (ERP)1 brought extensive evidence that sentences like (1a) and
(1b), despite being both semantically acceptable, have a different cognitive status: sentences such as
(1b), including possible but unexpected combinations of lexemes, evoke stronger N400 components2 in
the ERP waveform than sentences with non-novel combinations, like (1a)(Baggio and Hagoort, 2011).

Although there are different interpretations of the N400 effect,3 there is general agreement among
researchers that it is a brain signature of semantic complexity, that can be reinforced at the syntactic level
(the syntactic boost effect; see (Hagoort, 2003)): novel and unexpected combinations are more complex
and require larger cognitive efforts for processing. An open question is what are the factors determining
the semantic complexity of sentence comprehension. Baggio et al. (2012) claim that the real issue about
compositionality and open-ended productivity is the balance between storage and computation. Produc-
tivity entails that not everything can be stored. However, the N400 effect suggests that there is a large
amount of stored knowledge in semantic memory about event contingencies and concept combinations.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/

1An event-related potential is an electrophysiological response of the brain to a stimulus.
2The N400 is a negative-going deflection that peaks around 400 milliseconds after presentation of the stimulus.
3See, for example, Kutas and Federmaier (2000) and Van Berkum et al. (2005) for the ‘feature pre-activation hypothesis’;

and Baggio et al. (2012) for an interpretation of the N400 amplitude as a consequence of the cost of semantic unification. In a
connectionist framework, McClelland (1994) and, more recently, Rabovsky and McRae (2014) have advanced the hypothesis
that N400 amplitudes correlate with implicit prediction error in the semantic memory.
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This knowledge is triggered by words during processing and affects the expectations on the upcoming
input. Consequently, combinations that are new with respect to the already-stored knowledge require
more cognitive efforts to be unified in the semantic memory. Such effect has been shown at the discourse
level by the Dependency Locality Theory (Gibson, 2000), proving that the introduction of new discourse
referents is a complexity parameter.

Hagoort (2013; 2016) has proposed Memory, Unification and Control (MUC) as a general model for
sentence comprehension that aims at accounting for such balance between storage and computation. The
Memory component of the model refers to the linguistic knowledge that is stored in long-term memory.
This includes unification-ready structures corresponding to constructions (Goldberg, 2006) represented
by sets of constraints pertaining to the various levels of linguistic representation (phonology, syntax,
and semantics) for that construction. Each constraint specifies how a given construction can combine
with other constructions at a particular level of linguistic representation, as well as the result of such
unification.4 The Unification component refers to the assembly of pieces stored in memory into larger
structures, with contributions from context. Unification is a constraint-based process, which attempts to
solve the constraints defining the constructions. Unification operations take place in parallel at all the
representation levels. Therefore, syntax is not the only combinatorial component (cf. also Jackendoff
(2002)): constructions are combined into larger structures also at the semantic and phonological levels.

In this paper, we present a computational model of semantic complexity in sentence processing, which
is strongly inspired by MUC. Our model integrates various insights from current research in distributional
semantics and recent psycholinguistic findings, which highlight the key role of knowledge about event
structure and participants stored in semantic memory and activated during language processing (McRae
et al., 1998; McRae et al., 2005; McRae and Matsuki, 2009; Bicknell et al., 2010; Matsuki et al., 2011).
Moreover, recent experiments in EEG showed that the activation of the so-called literal’ word meanings is
only carried out when necessary (Rommers et al., 2013). Following such findings, some recent theoretical
proposals argued that words do not really have meaning, they are rather cues to meaning: sentence
comprehenders use them to make inferences about the event or the situation that the speaker wants to
convey (Elman, 2009; Elman, 2011; Kuperberg and Jaeger, 2015; Kuperberg, 2016). In particular, our
model relies on the following assumptions:

• long-term semantic memory stores Generalized Event Knowledge (GEK). GEK includes peo-
ple’s knowledge of typical participants and settings for events (McRae and Matsuki, 2009);

• at least a (substantial) part ofGEK derives from our linguistic experience and can be modeled with
distributional information extracted from large parsed corpora. In this paper, we only focus on this
distributional subset of GEK, which we refer to as GEKD;

• during sentence processing, lexical items (and constructions in general) activate portions ofGEKD,
which are then unified to form a coherent representation of the event expressed by the sentence.

The aim of this research is to propose a novel distributional semantic framework to model online sen-
tence comprehension. Our two-fold goal is i.) to build an incremental distributional representation of
a sentence, and ii.) to associate a compositional cost to such a representation to model the complexity
of semantic processing. In particular, we argue that semantic complexity depends on two factors: a.)
the availability and salience of “ready-to-use” event information already stored in GEKD and cued by
lexical items, and b.) the cost of unifying activated GEKD into a coherent semantic representation, with
the latter depending on the mutual semantic congruence of the events participants. We thus predict that
sentences containing highly familiar lexical combinations like (1a) (musician is in fact a familiar subject
of play) are easier to process than sentences expressing novel ones like (1b). Moreover, the complexity
of novel combinations depends on how easily they fit with stored event knowledge.

4From a neurolinguistic perspective, Pulvermuller et al. (2013) recently proposed a model encoding such set of constraints
at the brain level. The activation of a construction is carried out by means of discrete combinatorial neuronal assemblies
(DCNAs), which encode the combinatorial links between the different objects of the construction itself.
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In the following sections, we will present a global distributional semantic complexity score combining
event activation and unification costs. As a first evaluation of our framework, we will use the semantic
complexity score in a difficulty estimation task on the Bicknell dataset (Bicknell et al., 2010).

2 Related work

Some of the previous works applying Distributional Semantic Models (henceforth DSMs) to sentence
processing focused on the problem of computing a semantic surprisal index for the words of the sentence,
on the basis of what Hale (2001) has proposed for syntax, and defined as the negative logarithm of the
probability of a word given its previous linguistic context. The higher the surprisal of a word, the lower
its predictability, and high surprisal values have been shown to correlate with an increase in processing
difficulty (Frank et al., 2013; Smith and Levy, 2013). Mitchell et al. (2010) proposed a model to compute
surprisal, based on the product of a trigram language model and of a semantic component, based in turn
on the weighted dot product of the semantic vector of a target word and of a history vector, representing
its prior context. The authors interpolated their model with the output of an incremental parser and they
evaluated it on the task of predicting word reading times in a test set extracted from the Dundee Corpus
(Kennedy et al., 2003). Their results showed that the semantic component improves the predictions,
compared to models based only on syntactic information.

Building on the work of Mitchell et al. (2010) and Mitchell (2011), Sayeed et al. (2015) tested a
similar model on a multimodal language corpus (the AMI Meeting corpus; see Carletta (2007)), being
able to predict spoken word pronunciation duration.

A totally different perspective was adopted by Lenci (2011): starting from the method for thematic fit
estimations that was introduced in Baroni and Lenci (2010), the author presented a compositional distri-
butional model for reproducing the expectation update on the filler of the patient slot of a verb, depending
on how the agent slot had been saturated (for example, if the agent of the verb to check is journalist, likely
patients will be things that journalists typically check, such as source, spelling etc.). Lenci tried to model
explicitly the process through which we modify our predictions on upcoming linguistic input on the ba-
sis of our event knowledge: the saturation of an argument slot imposes new semantic constraints on the
other positions yet to be filled, with the consequence that entities typically co-occurring with the agent
become more plausible for the situation described by the sentence.

Coming to related works in experimental psychology, Pynte et al. (2008; 2009) measured vector
proximity between the content words of an eye-tracking corpus by means of Latent Semantic Analy-
sis (Landauer et al., 1998) to show how inspection times of a target word are affected by its semantic
relatedness with the adjacent words in the same sentence.

In a more recent contribution, Johns and Jones (2015) presented a DSM that assumes the storage and
retrieval of linguistic experiences as the fundamental operations of sentence processing, following a long
tradition of exemplar theories of memory starting with Hintzman (1986; 1988). Each sentence in their
model is encoded as a vector obtained by summing its word random vectors with permutations to account
for the word position in the sentence (see Sahlgren et al. (2008)). Vectors that are similar to the one of
the currently processed sentence (the so-called memory traces) are activated and then are summed into an
expectation vector. Finally, the expectation vector is used to make predictions about forthcoming words
and to construct sentence meaning.

3 An incremental model of sentence comprehension

We model the comprehension of a sentence as an incremental process driven by the goal of constructing
a coherent representation of the event the speaker intends to communicate with the sentence. We assume
there is a data structure called situation model (SM ) (Zwaan and Radvansky, 1998) that is incrementally
updated in working memory during language comprehension. Given a sentence s being processed,5 SM
contains a representation of the event es described by s, which is compositionally built from GEKD

retrieved from long-term memory, and activated by the words in s. Similarly to MUC, our model is
5Although in this paper we focus on sentence processing, our model can equally apply at the sub-sentential level, such as

phrases or chunks, as well as at the discourse level.
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formed by a memory component containing lexical information, and a unification component dealing
with the compositional construction of the sentence semantic representation.

4 The memory component: the representation of lexical knowledge

We assume the lexicon to be a repository of constructions (the latter including words along with more
complex structures) stored in long-term memory. Each construction Cxn is defined by a form and a
content. The latter consists of a set of pairs 〈e1, σ1〉, . . . , 〈en, σn〉, such that ei is an event stored in
GEKD and σi is an activation score, expressing the salience of the event with respect to a construction
and the strength with which the event is activated (cued) by the construction. At the moment, we assume
that the activation score of the event e activated by Cxn is the conditional probability of the event given
the construction, P (e|Cxn).

We represent events in GEK with feature structures specifying their participants and roles, much like
frames in Frame Semantics. More specifically, we represent the events in GEKD, the distributional
subset of GEK,6 as feature structures containing information directly extracted from parsed sentences
in corpora: attributes are syntactic dependencies (e.g. NSUBJ, NMOD-IN, etc.),7 and values are distri-
butional vectors of dependent lexemes.8 The latter can be conceived as “out-of-context” distributional
vector encoding of lexical items. Any type of distributional representation can be used to this purpose
(e.g., explicit vectors, low-dimensionality dense embeddings, etc.). The following is a representation of
an event e ∈ GEK, extracted from the sentence The student reads the book.:

(2) [EV ENT NSUBJ:
−−−−−→
student HEAD:

−−→
read DOBJ:

−−→
book]

Unlike previous syntax-based DSMs, we extract from corpora syntactic joint contexts, besides single
dependencies (Chersoni et al., 2016). A syntactic joint context includes the whole set of dependencies
of a given lexical head, which we assume as a surface representation of an event. Each event in GEK
may be cued by several lexical items, as part of their semantic content, albeit with different strength
depending on their statistical distribution. For instance, the event in (2) is cued by the noun student, the
verb read, and the noun book.

We assume GEK to be hierarchically structured, according to various levels of event schematicity. In
fact, all events in GEK can be underspecified. Without any need to add in GEK any specific structure,
underspecification makes it possible to virtually generate schematic events, obtained by abstracting over
one or more of its valued-attributes:

(3) a. [EV ENT NSUBJ:
−−−−−→
student HEAD:

−−→
read]

b. [EV ENT NSUBJ:
−−−−−→
student DOBJ:

−−→
book]

The feature structure in (3a) is a representation of a schematic event of a student reading, without any
specification of the object, while (3b) represents an undespecified event involving a student acting on a
book, which could be instantiated by specific events of reading, writing, buying, etc.

5 The unification component: constructing event representations

We assume that sentence comprehension always occurs within an existing SM and results into an update
of this SM . The current SM acts as a constraint on the interpretation of the upcoming constructions,
and it gets updated after the interpretation of every new construction. Sentence comprehension consists
in recovering (reconstructing) the event e that the sentence is most likely to describe. The event e is the
event that best satisfies all the constraints set by the constructions in the sentence and in the active SM .
Let w1, w2, . . . , wn be an input linguistic sequence (e.g., a sentence or a discourse) we have to interpret.

6In this paper we assume that GEK = GEKD . Therefore, we henceforth omit the subscript for simplicity.
7We represent syntactic dependencies according to the Universal Dependencies annotation scheme

(http://universaldependencies.org/).
8At this stage, we stay at the syntactic level, without entering into the mapping problem between syntactic and semantic

arguments as described in (Dowty, 1991). All arguments in the event description correspond to syntactic roles, having in mind
they could be used as a very rough approximation of semantic roles.
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Let SMi be the semantic representation built for the linguistic input until w1, . . . , wi, and let ei be the
event representation in SMi. When we process wi+1:

i.) the GEK associated with wi+1 in the lexicon, GEKwi+1 , is recovered;

ii.) GEKwi+1 is integrated with SMi to produce SMi+1, containing the new event ei+1.

We model semantic composition as an event construction and update function F , whose aim is to
build a coherent SM by integrating the GEK cued by the linguistic elements that are being composed:

F (SMi, GEKwn+1) = SMi+1 (1)

The composition function is responsible for two distinct processes:

1. F unifies two event feature structures into a new event. Given an event ei ∈ SMi and ej ∈
GEKwn+1 , F produces a new event ek ∈ SMi+1:

F (ei, ej) = ek = ei t ej (2)

The unification function produces an output event if the attribute-values features of the input events
are compatible, otherwise it fails. The following is an example of successful unification:

(4) [EV ENT NSUBJ:
−−−−−→
student DOBJ:

−−−−→
thesis] t [EV ENT NSUBJ:

−−−−−→
student HEAD:

−−→
read] = [EV ENT

NSUBJ:
−−−−−→
student HEAD:

−−→
read DOBJ:

−−−−→
thesis]

In this example, the event of a student acting on a thesis and the event of a student reading are
unified into a new event of a student reading a thesis.

2. F weights the unified event ek with a pair of scores 〈θ, σ〉:
• θ is a score measuring the degree of semantic coherence of the unified event ek. We assume

that the semantic coherence (or internal unity) of an event depends on the mutual typicality
of its components. Consider for instance the following sentences:

(5) a. The student reads a book.
b. The surfer reads a papyrus.

The event represented in (5a) has a high degree of internal coherence because all its compo-
nents are mutually very typical: student is a typical subject for the verb read and book has a
strong typicality both as an object of read and as an object related to student. Conversely, the
components in the event expressed by (5b) have a low level of mutual typicality, thereby result-
ing into an event with much lower internal coherence. We model this idea of mutual typicality
by extending the notion of thematic fit, which is normally used to measure the congruence
of a predicate with an argument. In our case, instead, thematic fit is a general measure of the
semantic typicality or congruence among the components of an event. In turn, we measure the
thematic fit with vector cosine in the following way:

Given si:a and sj :b, such as si and sj are two event attributes (e.g., NSUBJ, HEAD,
etc.), the thematic fit of si:a with respect to sj :b, θ(si:a, sj :b), is the cosine between
the vector of a and the prototype vector built out of the k most salient values c1, . . . , ck,
such that si:cz , for 1 ≤ z ≤ k, co-occurs with sj :b in the same event structures.

For instance, the thematic fit of student as a subject of read is given by the cosine between the
vector of student and the prototype vector built out of the k most salient subjects of read. Sim-
ilarly, we also measure the typicality of book as an object related to student (i.e., the object of
events involving student as subject) as the cosine between the vector of book and the prototype
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vector built out of the k most salient objects related to student. Then we define the score θ of
an event e as follows:

θe =
∏
a,b∈e

θ(si:a, sj :b) (3)

Therefore, the semantic coherence of an event is given by the product of the mutual thematic
fit between its components. The higher is the mutual typicality between the elements of an
event, the higher is its internal semantic coherence.
• σ weights the salience of the unified event ek by combining the weights of ei and ej into a new

weight assigned to ek. In this paper, we combine the σ weights with the logistic function:

F (σi, σj) = σk =
1

1 + e−(σi+σj)
(4)

The score σ of the unified event thus measures the strength with which it is activated (cued) by
the composed linguistic expressions. This entails that events that are cued by more linguistic
constructions in a sentence should incrementally increase their salience.

To sum up, we conceive composition as event unification. Unified events are weighted along two
dimensions: internal semantic coherence (θ), and degree of activation by linguistic expressions (σ).
These two dimensions also determine the composition cost of the unification process. We argue that the
semantic complexity of a sentence s is inversely related to the sum of θ and σ:

SemComps =
1

θs + σs
(5)

The less internally coherent is the event represented by the sentence and the less strong is its activation
by the lexical items, the more the unification is cognitively expensive and the sentence semantically
complex. This is consistent with the MUC model of sentence comprehension: the harder is to build an
integrated semantic representation through unification, the harder the processing effort, as reflected by a
larger N400 amplitude.

6 Evaluation

As a first test for our framework, we measure the semantic complexity of the sentences in the Bicknell
dataset (Bicknell et al., 2010). The Bicknell dataset was prepared to verify the hypothesis that the typi-
cality of a verb direct object depends on the subject argument. For this purpose, the authors selected 50
verbs, each paired with two agent nouns that altered the scenario evoked by the subject-verb combina-
tion. Plausible patients for each agent-verb pair were obtained by means of production norms, in order
to generate triples where the patient was congruent with the agent and with the verb. For each congruent
triple, they also generated an incongruent triple, by combining each verb-congruent patient pair with the
other agent noun, in order to have items describing atypical situations.

The final dataset included 100 pairs subject-verb-object triples, that were used to build the sentences
for a self-paced reading and for an ERP experiment.9 To give an example, experimental subjects were
presented with sentence pairs such as:

(6) a. The journalist checked the spelling of his latest report. (congruent condition)
b. The mechanic checked the spelling of his latest report. (incongruent condition)

The sentences of each pair contain the same verb and the same object, differing for the subject. Given
the subject, the object is a preferred argument of the verb in the congruent condition, whereas it is an im-
plausible filler in the incongruent condition. Bicknell et al. (2010) reported that the congruent condition
produced shorter reading times and smaller N400 signatures. Their conclusion was that verb argument
expectations are dynamically updated during sentence processing, by integrating some kind of general

9Actually, Bicknell et al. (2010) used only a subset of 64 pairs, after removing the items that were potentially problematic
for their experiments. In the present study, we use the original dataset.
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knowledge about events and their typical participants. Lenci (2011) evaluated his model on the ability
to assign a higher thematic fit score to the congruent triples than to the incongruent ones. We interpret
Bicknell’s experimental data as suggesting that congruent sentences are less semantically complex than
incongruent sentences. Consistently, we predict that our model will assign a higher semantic complexity
score to incongruent sentences than to congruent ones.

6.1 Modeling the GEK
Following the procedure described in Chersoni et al. (2016), we extracted from parsed corpora the syn-
tactic joint contexts for all the words of the Bicknell triples. For our extraction, we used a concatenation
of four different corpora: the British National Corpus (BNC; Leech (1992)); the Reuters Corpus vol.1
(RCV1; Lewis et al. (2004)); the ukWaC and the Wackypedia Corpus (Baroni et al., 2009).

For each sentence, we generated a joint context by extracting the verb and its direct dependencies.
Our dependency relations of interest are subject (NSUBJ), direct object (DOBJ), indirect object (IOBJ)
and a generic prepositional complement relation (PREPCOMP), on which we mapped the complements
introduced by a preposition. We discarded all the modifiers and we just keep the nominal heads. Here
is an example of extracted syntactic joint context: athlete-n-nsubj win-v-head medal-n-dobj at-
p+olympics-n-prepcomp. For each joint context, we also generated all its dependency subsets to obtain
the underspecified schematic events. In total, we have extracted 4,204,940 syntactic joint contexts (in-
cluding schematic events).

The collection of syntactic joint contexts were used to define the feature structures of the events in
GEK, and cued by the target words of the Bicknell dataset. As described in section 4, each verb and
noun occurring in these event structures was represented with a distributional vector in a syntax-based
DSM using as contexts the dependencies extracted from the above corpora (e.g., enemy-n:obj).10

6.2 Computing the semantic complexity scores for the test sentences
The sentences in the original Bicknell dataset were first turned into S(subject)-V(erb)-O(bject) triples
(e.g. NSUBJ:journalist HEAD:check DOBJ:spelling). For each test sentence s we computed σs and θs in
the following way:

σs We take the activation strength of the joint context formed by the test triple given S (i.e., σS), V (i.e.,
σV ) and O (i.e., σO). For instance, σS is the activation strength of the joint context NSUBJ:journalist
HEAD:check DOBJ:spelling, given journalist. Then σs is obtained by applying equation (4) to the
sum of σS , σV and σO.

θs This score represents the semantic coherence of the event represented by s and is obtained by
measuring the mutual typicality of its components. Following equation (3), we compute θs as the
product of the thematic fit of S given V, θS,V , O given V, θO,V , and the thematic fit of O given S,
θO,S . In particular, θS,V is the cosine between the vector of S and the centroid vector built out of the
k most salient subjects of V (e.g., the cosine between the vector of journalist and the centroid vector
of the most salient subjects of check), θO,V is the cosine between the vector of O and the centroid
vector built out of the k most salient direct objects of V (e.g., the cosine between the vector of
spelling and the centroid vector of the most salient objects of check), and θO,S is the cosine between
the vector of O and the centroid vector built out of the k most salient direct objects occurring in
events whose subject is S (e.g., the cosine between the vector of spelling and the prototype vector of
the most salient objects of events whose subject is journalist). Following Baroni and Lenci (2010),
we measured argument salience with LMI (Evert, 2005) and we fixed k = 20.

The final semantic complexity score SemComps is the inverse of the sum of the σ and θ scores (see
equation (5)). Notice that if the event corresponding to the sentence is not stored in GEK, its activation
score is 0, and therefore the σs component will be null. In this case, the only relevant factor for semantic
complexity is the event coherence measured by θs. This is consistent with the model we presented in

10We also use inverse dependencies (see Baroni and Lenci (2010)) in order to represent the relation of a target noun with its
verb head: for example, given the sentence The dog runs., the context of the target dog-n for this sentence will be run-v:sbj-1.
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section 1 and based on the assumption that sentence processing is the result of a balance between retrieval
of stored information and the building of new events through unification. If s describes a familiar event
already stored in long-term memory as modelled withGEK, the complexity of s depends on how strong
such event is cued by the lexical items in s and by the mutual typicality of its components. On the other
hand, if the sentence describes a new event, its complexity only depends on the internal coherence of the
event produced through unification.

7 Results and conclusions

For 16 pairs of triples of the Bicknell dataset we were not able to compute thematic fit scores, so we had
to discard them.11 Therefore, we are left with 84 pairs of triples (168 triples in total): in each triple, the
patient is either typical (congruent) or atypical (incongruent) with respect to the agent.

First of all, the SemComp scores assigned to sentences in the congruent condition are significantly
lower than the scores assigned to sentences in the incongruent conditions, according to the Wilcoxon
test (W = 4791, p-value < 0.001). Our semantic complexity score is therefore able to model the higher
processing difficulty of the incongruent sentences, as shown in the EEG experiments by Bicknell et al.
(2010). We also evaluated the model accuracy, as the percentage of congruent sentences to which the
model assigns a semantic complexity lower than score assigned to the incongruent sentence in the same
pair. The model performance is compared with the random accuracy baseline, as in Lenci (2011).

Model Hits Accuracy Significance
σs + θs 62 73.8% p < .05
θs 59 70.2% p < .05

Baseline 42 50%

Table 1: Number of hits and accuracy with or without σ scores. p-values computed with the χ2 test.

Since the σ component is an element of novelty with respect to thematic fit-only models, we decided to
test the algorithm also without it, that is to say to assign the complexity score only on the basis of the event
semantic coherence. Although the difference is not huge, it is noteworthy that the σ component improves
the accuracy score, supporting our hypothesis that semantic complexity depends both on retrieval and on
unification costs.

Our model achieves exactly the same accuracy as the Expectation Composition and Update Model
(ECU) in Lenci (2011) when evaluated on the same 84 triples (73.8%). However, it should be pointed
out that ECU was tailored on the structure the Distributional Memory tensor (Baroni and Lenci, 2010)
and on the Bicknell dataset. Indeed, the ranking function for the typical fillers of a slot depends on the
availability in the tensor of syntactic relations (in this case, the OBJ and the VERB relation) that can be
used as simultaneous constraints on a candidate. In other words, given a patient p, an agent AG and verb
v, p has to have a high association score both in the triple {p, OBJ, v} and in the triple {AG, VERB, p}.
These relations work well for representing constraints on the agent and on the patient slot, but it is not
clear how ECU could estimate expectations on other slots, say the instrument and/or the location one.
Moreover, it does not take into account the Memory component.

Our results are obtained with a much more general model of semantic complexity that can be applied
to any type of syntactic structure (the set of syntactic relations that we consider in the extraction of
the joint contexts is a parameter) and is based on a less ad hoc and more sophisticated distributional
representation of GEK. Concerning the σ component, we should also mention that a joint context for
the full event was retrieved for only 22 of the 168 triples. As expected, an implementation of the memory
component based only on textual corpora suffer from data sparsity, and the future developments of this
model will have to take this factor into account. The introduction of a robust generalization component,
which could generate new joint contexts by making inferences on new potential event participants, could
help to mitigate such problem.

11We discarded from the syntax-based DSM words with a frequency below 100 in the training corpus. Consequently, for
some triples one or more words did not have any vector representation in the DSM, so that we could not compute the thematic
fit scores that are required by our model.
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The semantic complexity model we have proposed in this paper is strongly inspired by the general
cognitive principles of the MUC architecture. In particular, we rely on two components to assign seman-
tic complexity scores: i) a memory component, consisting of a distributional subset of GEK, such that
the more an event is strongly activated by linguistic cues, the easier will be its retrieval from the semantic
memory; ii) a unification component, consisting of a composition and update function which unifies the
GEK activated by linguistic cues into new structures. The more the unified components are mutually
typical, the more semantically coherent will be the event. Our assumption is that linguistic constructions
that are strongly activated by the previous context and with high values of semantic coherence are easier
to process. In the future, we plan to extend our experimentations to a wider range of psycholinguistic
datasets, in order to see how the model can deal with a larger number of complexity sources and linguistic
structures.

Hopefully, future extensions of this model will also present a more global notion of complexity and
will integrate information coming from different linguistic domains. It would be interesting, for example,
to combine the predictions of our model of semantic complexity with constraint-based frameworks for
the estimation of syntactic difficulty, such as Blache’s Property Grammars (Blache, 2011; Blache, 2013),
and to see how they correlate with experimental data.

There are many other aspects in language processing that, at the moment, our model leaves aside. Fu-
ture extensions, in our view, should also account for the role played by attention,12 since several linguistic
devices (prosodic cues, non-canonical syntactic structures etc.) can be used to signal informationally rel-
evant parts of the message to the listeners/readers, helping them in the allocation of processing resources
and thus influencing complexity (Hagoort, 2016). At the best of our knowledge, such issues have still to
be convincingly addressed by current models.
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Philippe Blache. 2013. Chunks et activation: un modèle de facilitation du traitement linguistique. Proceedings of
TALN-2013.

Jean Carletta. 2007. Unleashing the killer corpus: experiences in creating the multi-everything AMI Meeting
Corpus. Language Resources and Evaluation, volume 41(2): 181-190.

12We thank one of our anonymous reviewers for pointing this out. On a related topic, we would like to refer the readers to
Zarcone et al. (2016) for a systematic overview on the use of the notions of salience and attention in surprisal-based models of
language processing.

20



Emmanuele Chersoni, Enrico Santus, Alessandro Lenci, Philippe Blache, and Chu-Ren Huang. 2016. Represent-
ing verbs with rich contexts: an evaluation on verb similarity. Proceedings of EMNLP.

Noam Chomsky. 1957. Syntactic Structures. Mouton & Co.

David Dowty. 1991. Thematic proto-roles and argument selection. Language, 67(3):547-619.

Jeffrey L Elman. 2009. On the meaning of words and dinosaur bones: Lexical knowledge without a lexicon.
Cognitive Science, volume 33(4): 547-582.

Jeffrey L Elman. 2011. Lexical knowledge without a lexicon? The Mental Lexicon, volume 6(1): 1-34.

Jeffrey L Elman. 2014. Systematicity in the lexicon: on having your cake and eating it too. The Architecture of
Cognition: Rethinking Fodor and Pylyshyn’s Systematicity Challenge, edited by Paco Calvo and John Symons,
The MIT Press, Cambridge, MA.

Stefan Evert. 2005. The statistics of word cooccurrences: word pairs and collocations.

Stefan L Frank, Leun J Otten, Giulia Galli, and Gabriella Vigliocco. 2013. Word surprisal predicts N400 amplitude
during reading. Proceedings of ACL: 878-883.

Ted Gibson. 2000. The Dependency Locality Theory: a Distance-Dased Theory of Linguistic Complexity. Image,
Language, Brain, edited by Alec Marantz, Yasushi Miyashita and Wayne O’Neil, MIT Press.

Adele E Goldberg. 2006. Constructions at Work: The Nature of Generalization in Language, Oxford, Oxford
University Press.

Peter Hagoort. 2003. Interplay between syntax and semantics during sentence comprehension: ERP effects of
combining syntactic and semantic violations. Journal of Cognitive Neuroscience, volume 15(6).

Peter Hagoort. 2013. MUC (memory, unification, control) and beyond Frontiers in Psychology, volume 4: 1-13.

Peter Hagoort. 2016. MUC (Memory, Unification, Control): A Model on the Neurobiology of Language Beyond
Single Word Processing In G. Hickok and S. Small (eds.), Neurobiology of Language, Amsterdam, Elsevier:
339-347.

John Hale. 2001. A probabilistic Earley parser as a psycholinguistic model. Proceedings of NAACL-HLT: 1-8.

Douglas L Hintzman. 1986. ’Schema abstraction’ in a multiple-trace memory model. Psychological Review,
volume 93(4): 411-428.

Douglas L Hintzman. 1988. Judgements of frequency and recognition memory in a multiple-trace memory model.
Psychological Review, volume 95(4): 528-551.

Ray Jackendoff. 2002. Foundations of Language: Brain, Meaning, Grammar, Evolution. Cambridge, Cambridge
University Press.

Alan Kennedy, Robin Hill, and Joel Pynte. 2003. The Dundee Corpus. Proceedings of the 12th European
Conference on Eye Movement.

Gina R Kuperberg and Florian T Jaeger. 2015. What do we mean by prediction in language comprehension?
Language, Cognition and Neuroscience, volume 31(1): 32-59.

Gina R Kuperberg. 2016. Separate streams or probabilistic inference? What the N400 can tell us about the
comprehension of events. Language, Cognition and Neuroscience, volume 31(5): 602-616.

Marta Kutas and Kara D Federmaier. 2000. Electrophysiology reveals semantic memory use in language compre-
hension. Trends in Cognitive Sciences, volume 4(12): 463-470.

Brendan T Johns and Michael Jones. 2015. Generating structure from experience: a retrieval-based model of
language processing. Canadian Journal of Experimental Psychology, volume 69(2).

Thomas K Landauer, Peter W Foltz, and Darrell Laham. 1998. An introduction to latent semantic analysis.
Discourse processes, volume 25(2-3): 259-284.

Geoffrey Leech. 1992. 100 million words of English: the British National Corpus (BNC). Language research,
volume 28(1): 1-13.

21



Alessandro Lenci. 2011. Composing and updating verb argument expectations: a distributional semantic model.
Proceedings of the 2nd Workshop on Cognitive Modeling and Computational Linguistics: 58-66.

David D Lewis, Yiming Yang, Tony G Rose, and Fan Li. 2004. Rcv 1: A new benchmark collection for text
categorization research. The journal of Machine Learning research, volume 5: 361-397.

Kazunaga Matsuki, Tracy Chow, Mary Hare, Jeffrey L Elman, Christoph Scheepers, and Ken McRae. 2011.
Event-based plausibility immediately influences on-line language comprehension. Journal of Experimental
Psychology: Learning, Memory, and Cognition, volume 37(4): 913-934.

James L McClelland. 1994. The interaction of nature and nurture in development: A parallel distributed processing
perspective. International perspectives on psychological science, volume 1: 57-88.

Ken McRae, Michael J Spivey-Knowlton and Michael K Tanenhaus. 1998. Modeling the influence of thematic fit
(and other constraints) in on-line sentence comprehension. Journal of Memory and Language, volume 38(3):
283-312.

Ken McRae, Mary Hare, Jeffrey L Elman, and Todd Ferretti. 2005. A basis for generating expectancies for verbs
from nouns. Memory and Cognition, volume 33(7): 1174-1184.

Ken McRae and Kazunaga Matsuki. 2009. People use their knowledge of common events to understand language,
and do so as quickly as possible. Language and linguistics compass, volume 3(6): 1417-1429.

Laura A Michaelis. 2013. Sign-Based Construction Grammar. The Oxford Handbook of Construction Grammar,
edited by Thomas Hoffmann and Graeme Trousdale, Oxford University Press, Oxford: 133-152.

Jeff Mitchell, Mirella Lapata, Vera Demberg and Frank Keller. 2010. Syntactic and semantic factors in processing
difficulty: An integrated measure. Proceedings of ACL: 196-206.

Jeff Mitchell. 2011. Composition in distributional models of semantics. PhD Thesis, The University of Edinburgh.

Friedemann Pulvermuller, Bert Cappelle and Yury Shtyrov. 2013. Brain basis of meaning, words, constructions,
and grammar. The Oxford Handbook of Construction Grammar, edited by Thomas Hoffmann and Graeme
Trousdale, Oxford University Press.

Joel Pynte, Boris New, and Alan Kennedy. 2008. On-line contextual influences during reading normal text: A
multiple-regression analysis. Vision research, volume 48(21): 2172-2183.

Joel Pynte, Boris New, and Alan Kennedy. 2009. On-line contextual influences during reading normal text: The
role of nouns, verbs and adjectives. Vision research, volume 49(5): 544-552.

Milena Rabovsky and Ken McRae. 2014. Simulating the N400 ERP component as semantic network error:
insights from a feature-based connectionist attractor model of word meaning. Cognition, volume 132(1): 68-
89.

Joost Rommers, Ton Dijkstra and Marcel Bastiaansen. 2013 Context-dependent Semantic Processing in the
Human Brain: Evidence from Idiom Comprehension. Journal of Cognitive Neuroscience, 25(5):762-776.

Ivan A Sag. 2012. Sign-Based Construction Grammar: An Informal Synopsis. Sign-Based Construction Gram-
mar, edited by Hans C Boas and Ivan A Sag, CSLI Publications, Stanford, CA: 61-197.

Magnus Sahlgren, Anders Holst, and Pentti Kanerva. 2008. Permutations as a mean to encode order in word
space. Proceedings of the 30th Conference of the Cognitive Science Society: 1300-1305.

Asad Sayeed, Stefan Fischer and Vera Demberg. 2015. Vector-space calculation of semantic surprisal for predict-
ing word pronunciation duration. Proceedings of ACL: 763-773.

Nathaniel J Smith and Roger Levy. 2013. The effect of word predictability on reading time is logarithmic.
Cognition, volume 128(3): 302-319.

Jos JA Van Berkum, Colin M Brown, Pienie Zwitserlood, Valesca Kooijman, and Peter Hagoort. 2005. Anticipat-
ing upcoming words in discourse: evidence from ERPs and reading times. Journal of Experimental Psychology:
Learning, Memory, and Cognition, volume 31(3): 443-467.

Alessandra Zarcone, Marten Van Schijndel, Jorrig Vogels and Vera Demberg. 2016. Salience and attention in
surprisal-based accounts of language processing. Frontiers in Psychology, volume 7.

Rolf A Zwaan and Gabriel A Radvansky. 1998. Situation models in language comprehension. Psychological
Bulletin, volume 123(2): 162-185.

22



Proceedings of the Workshop on Computational Linguistics for Linguistic Complexity,
pages 23–31, Osaka, Japan, December 11-17 2016.

CoCoGen - Complexity Contour Generator: Automatic Assessment of 

Linguistic Complexity Using a Sliding-Window Technique 

 

 

Marcus Ströbel 

Department of English Linguistics 

RWTH Aachen University 

stroebel@anglistik.rwth-

aachen.de 

Elma Kerz 

Department of English Linguistics 

RWTH Aachen University 

kerz@anglistik.rwth-

aachen.de 

  

Daniel Wiechmann 

Institute for Language Logic and Computation 

University of Amsterdam 
d.wiechmann@uva.nl 

Stella  Neumann 

Department of English Linguistics 

RWTH Aachen University 
neumann@anglistik.rwth-

aachen.de 

 

  

 

Abstract 

We present a novel approach to the automatic assessment of text complexity based on a sliding-

window technique that tracks the distribution of complexity within a text. Such distribution is 

captured by what we term complexity contours derived from a series of measurements for a 

given linguistic complexity measure. This approach is implemented in an automatic 

computational tool, CoCoGen – Complexity Contour Generator, which in its current version 

supports 32 indices of linguistic complexity. The goal of the paper is twofold: (1) to introduce 

the design of our computational tool based on a sliding-window technique and (2) to showcase 

this approach in the area of second language (L2) learning, i.e. more specifically, in the area of 

L2 writing. 

1 Introduction 

Linguistic complexity has attracted a lot of attention in many research areas, including text readability, 

first and second language learning, discourse processing and translation studies. Advances in natural 

language processing have paved the way for the development of computational tools designed to 

automatically assess the linguistic complexity of spoken and written language samples. There are a 

variety of computational tools available which measure a large number of indices of linguistic 

complexity. Such tools afford speed, flexibility and reliability and permit the direct comparison of 

numerous indices of linguistic complexity. Coh-Metrix is a well-known computational tool that 

measures cohesion and linguistic complexity at various levels of language, discourse and conceptual 

analysis (McNamara, Graesser, McCarthy & Cai, 2014). Considerable gains have been made from the 

use of Coh-Metrix. In particular, an important contribution has been made to the identification of reliable 

and valid measures or proxies of linguistic complexity and their relation to text readability (Crossley, 

Greenfield, & McNamara, 2008), writing quality (Crossley & McNamara, 2012) and speaking 

proficiency (Crossley, Clevinger, & Kim, 2014). Coh-Metrix measures are also shown to serve as proxy 

for more complex features of language processing and comprehension (cf. McNamara et al. 2014). More 

recently, a number of tools have been developed that feature a large number of classic and recently 

proposed indices of syntactic complexity (Syntactic Complexity Analyzer, Lu, 2010; TAASSC, Kyle, 

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: 
http://creativecommons.org/licenses/by/4.0/ 
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2016) and lexical sophistication (Lexical Complexity Analyzer, Lu 2012; TAALES, Kyle & Crossley, 

2015). These tools provide comprehensive assessments of text complexity at a global level. They 

provide as output for each measure a single score that represents the complexity of a text, i.e. a summary 

statistics. We present a novel approach to the assessment of linguistic complexity that enables tracking 

the progression of complexity within a text. In contrast to a global assessment of text complexity based 

on summary statistics, the approach presented here provides a series of measurements for a given 

complexity dimension and in this way allows for a local assessment of within-text complexity. The goal 

of the paper is twofold: (1) to introduce the design of our computational tool which implements such an 

approach by using a sliding-window technique and (2) to showcase this approach in the area of second 

language (L2) learning. 

2 Automatic Assessment of Linguistic Complexity Using a Sliding-Window Technique  

The present paper introduces a computational tool – Complexity Contour Generator (CoCoGen) – 

designed to automatically track the changes in linguistic complexity within a target text. CoCoGen uses 

a sliding-window technique to generate a series of measurements for a given complexity dimension 

allowing for a local assessment of complexity within a text. A sliding window can be conceived of as a 

window with a certain size that is moved across a text. The window size (ws) is defined by the number 

of sentences it contains. The window is moved across a text sentence-by-sentence, computing one value 

per window for a given complexity measure. For a text comprising n sentences, there are w = n−ws+1 

windows. Given the constraint that there has to be at least one window, a text has to comprise at least as 

many sentences at the ws is wide (n  ws). Figure 1 illustrates how sliding windows of two exemplary 

ws (2 and 3) are mapped to sentences within a text.  

 

 
Figure 1: Mapping of windows for ws = 2 and ws = 3 to sentences 

The series of measurements obtained by the sliding-window technique represents the distribution of 

linguistic complexity within a text for a given measure and is referred here to as a complexity contour. 

The shape of a complexity contour is affected by the ws, a user-definable parameter. Setting the ws 

parameter to n will yield a single value representing the average global complexity of the text. To track 

the progression of complexity within a text there has to be a sufficient number of windows. As a rule of 

thumb, there should be at least ten times as many sentences as the window is wide to have at least ten 

completely distinct (i.e. non-overlapping) windows. Figure 2 illustrates the smoothed curve produced 

by CoCoGen’s sliding window approach for a sequence of 50 random numbers between 0 and 10 

presents complexity contours for ws of 5 and 10 compared to raw data. 
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Figure 2: Sliding windows for window sizes 5 and 10 compared to raw data 

In what follows, we address how a value for a window is obtained and how the comparison of texts of 

different sizes is afforded by a text-time scaling technique. There are different methods of obtaining a 

value for a window: One method is similar to using simple moving averages with a length equal to the 

ws over a set of measurements for all sentences in a text. This way the value is computed once per 

sentence and can be cached and reused in other windows that include that particular sentence. In 

addition, the values obtained for individual sentences can be cached for recalculating the window values 

for different ws. Another method is to apply the measure function directly to the contents of a window 

rather than a single sentence. As the number of windows can never exceed the number of sentences, 

compared to the first method, fewer calls to a measure function are needed, however, the number of the 

calls is greater. Furthermore, with this method it is not possible to reuse the values for different ws. 

Another disadvantage is that the ws may directly influence the resulting values for simple counting 

measures like word counts. The method implemented in CoCoGen is a compromise between the two 

methods discussed above: the measure function is called for each sentence, but it returns a fraction rather 

than a fixed value. The denominators and numerators of those fractions are then added to form the 

denominator and numerator of the resulting value. For complexity measures based on ratios, the result 

is the same as when the measure function is directly applied to the contents of a window. For counting 

measures, a fixed denominator of 1 is used, resulting in the arithmetic mean of the results for the 

sentences in the window. The idea behind this method is to obtain values for windows that do not depend 

on the ws chosen, allowing comparison of results for different window sizes.  

 

(1) 𝑤𝑖𝑛𝑑𝑜𝑤𝑛 =  
𝑛𝑢𝑚𝑛 + 𝑛𝑢𝑚𝑛+1 + … +𝑛𝑢𝑚𝑛+𝑤𝑠
𝑑𝑒𝑛𝑛 + 𝑑𝑒𝑛𝑛+1 + … + 𝑑𝑒𝑛𝑛+𝑤𝑠

 

 

A scaling technique is implemented in the tool to allow comparing complexity contours across texts. As 

texts tend to vary in length given in number of sentences, the number of available windows will differ 

across texts. The scaling algorithm fits the number of windows wT for a text T into a user-defined number 

of windows wscaled. It is recommended to adjust the number of scaled windows to be at most as high as 

the largest number of windows in a text. In case the number of scaled windows is exceeded, the scaling 

algorithm will still work by linearly interpolating the missing information. However, the interpolated 

information will not contain actual data and thus won’t be of much use. For that reason, the program 

issues a warning message if the number of scaled windows is higher than the window count for one of 

the input text files. 

In its current version, CoCoGen supports 32 measures of linguistic complexity mainly derived from 

language learning research (Table 1 provides an overview, cf. Ströbel 2014 for details). Importantly, 

CoCoGen was designed with extensibility in mind, so that additional complexity measures can easily 

be added. It uses an abstract MEASURE class for the implementation of complexity measures. 

Prior to the computation of complexity measures, CoCoGen pushes raw English text input through 

an annotation pipeline. While several open-source natural language analysis toolkits are available, 

CoCoGen uses several annotators from one of the most used toolkits, Stanford CoreNLP (Manning et 

al. 2014): tokenizer, sentence splitter, POS tagger, lemmatizer, named entity recognizer and syntactic 
parser. 
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Table 1: Overview of complexity measures currently implemented in CoCoGen 

3 Application Domain: Second Language Learning 

Linguistic complexity has received considerable attention in the assessment of second language (L2) 

performance and proficiency (cf., e.g., Ortega, 2003, 2012; Larsen-Freeman, 2006; Housen et al., 2012). 

It is assumed that with an increasing level of proficiency L2 writing becomes more complex and 

sophisticated, i.e. consisting of more advanced structures and vocabulary (Wolfe-Quinterno, Inagaki & 

Kim, 1998). For this reason, measures of linguistic complexity have been seen as basic descriptors of 

L2 performance and as indicators of L2 proficiency. While there is still much controversy as to how 

linguistic complexity should be defined, operationalized and measured (cf., Larsen-Freeman, 2009; 

Housen et al., 2012; Connor-Linton & Polio, 2014), there is a general consensus that it is a 

multidimensional construct affected by a number of dimensions at various levels of linguistic description 

(e.g. Bulté & Housen, 2014). 

As mentioned in the introduction, L2 learning research has benefited tremendously from the 

development of computational tools designed to automatically assess linguistic complexity of texts 

based on a wide range of indices. More specifically, the development of such tools has made an 

important contribution to the identification of reliable and valid measures of linguistic complexity and 

their relation to L2 written and spoken performance and proficiency. A number of studies have 

demonstrated that automatically computed indices of linguistic complexity can successfully predict 

human judgments of L2 text quality (e.g. McNamara, Crossley & McCarthy, 2009) and L2 speaking 

proficiency (e.g. Kyle & Crossley, 2015) and can be used to discriminate between L1 and L2 texts (e.g. 

Crossley & McNamara 2009). More recently, a number of computational tools have been developed 

featuring a wide range of classic indices, fine-grained indices as well as indices informed by recent 

Measure Label Formula 

Kolmogorov Deflate KOLMOGOROV Ehret & Szmrecsanyi 2011 

Lexical Density LEX.DEN Nlex/N 

Number of different words / sample  LEX.DIV.NDW Nw diff 

Number of diff. words / sample (cor.) LEX.DIV.CNDW Nw diff/Nw 

Type-Token Ratio LEX.DIV.TTR T/N 

Corrected Type-Token Ratio LEX.DIV.CTTR T/√2𝑁 

Root Type-Token Ratio LEX.DIV.RTTR T/√𝑁 
Sequences Academic Formula List LEX.SOPH.AFL SeqN AWL 

Lexical Sophistication (ANC) LEX.SOPH.ANC Nslex_ANC/Nlex 

Lexical Sophistication (BNC) LEX.SOPH.BNC Nslex_BNC/Nlex 

Words on New Academic Word List LEX.NAWL WN AWL 

Words not on General Service List LEX.NGSL WN GSL 

Morphological Kolmogorov Deflate MORPH.KOLMOGOROV Ehret & Szmrecsanyi 2011 

Mean Length of Words (characters) SYN.MLWC Nchar/Nw 

Mean Length of Words (syllables) SYN.MLWS Nsyl/Nw 

Noun Phrase Postmodification (words) SYN.NPPOSTMODW NNP Pre 

Noun Phrase Premodification (words) SYN.NPPREMODW NNP Post 

Clauses per Sentence SYN.CS NC/NS 

Clauses per T-Unit SYN.CT NC/NT 

Complex Nominals per Clause SYN.CNC NCN/C 

Complex Nominals per T-Unit SYN.CNS NCN/NT 

Complex T-Units per T-Unit SYN.CTT NCT/NT 

Coordinate Phrases per Clause SYN.CPC NCP/NC 

Coordinate Phrases per T-Unit SYN.CPT NCP/NT 

Dependent Clauses per Clause SYN.DCC NDC/NC 

Dependent Clauses per T-Unit SYN.DCT NDC/NT 

Syntactic Kolmogorov Deflate SYN.KOLMOGOROV Ehret & Szmrecsanyi 2011 

Mean Length Clause SYN.MLC NW/NC 

Mean Length Sentence SYN.MLS NW/NS 

Mean Length T-Unit SYN.MLT NW/NT 

T-Units per Sentence SYN.TS NT/NS 

Verb Phrases per T-Unit SYN.VPT NVP/NT 
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insights from language learning and processing research. One such tool is TAALES (Kyle & Crossley, 

2015) that supports 104 classic and new indices of lexical sophistication, covering indices of frequency, 

range, academic language and psycholinguistic word information. Another tool is TAASSC (Kyle 2016) 

that covers 372 classical and fine-grained indices of syntactic complexity. CRAT (Crossley, Kyle, 

Davenport & McNamara, 2016) is another recently developed tool that includes over 700 indices related 

to lexical sophistication, cohesion and source text/summary text overlap. The coverage of such a large 

number of indices allows for an extensive and comprehensive assessment of text complexity and enables 

the identification of the most predictive and reliable indices of L2 performance and proficiency.  

The sliding-window approach implemented in CoCoGen adds a new perspective on the assessment 

of text complexity. We showcase how this approach can be put to use in the area of L2 learning. The 

focus here is on the advanced stages of L2 English learning which in recent years have received growing 

attention, primarily grounded in what has come to be known as learner corpus research (cf. Granger, 

Gilquin & Meunier, 2015). This line of research has provided valuable insights into how and to what 

extent advanced L2 learners’ performance deviate from target-like behavior. The vast majority of 

previous studies conducted in this line of research have made L1-L2 comparisons using L2 data from 

corpora such as the ICLE (cf. Granger, Dagneaux, Meunier & Paquot, 2009) and L1 data from 

comparable corpora such as the LOCNESS (cf. https://www.uclouvain.be/en-cecl-locness.html). These 

corpora include writing of a general argumentative, creative or literary nature and consist of relatively 

short texts (e.g. average text length: ICLE = 617 words). These texts do not represent academic writing 

in a narrow sense (cf. Callies & Zaytseva, 2013), a register characterized by its compressed style (cf., 

Biber & Gray, 2010) as well as its own phraseology/formulaic language (e.g., Ellis et al., 2008). The 

mastery of this register constitutes a learning target in both L1 and L2 learning (cf., Biber et al., 2011, 

2013; Hyland & Tse, 2007). Correspondingly, advanced L2 learners’ performance is best evaluated 

against an expert writer baseline (cf., Bolton, Nelson & Hung, 2002; Römer, 2009; Kerz & Wiechmann, 

2015 for discussions).  

The L2 learner data used in our paper come from a corpus of 110 academic research papers on a 

linguistic topic written by 2nd and 3rd year students enrolled in the bachelor programmes of the English 

Department at the RWTH Aachen University (N ~ 486,000 words, average text length = 4,500 words). 

All students are L1 speakers of German and meet the criteria for advanced learner status of English 

based on their institutional status (undergraduates with 7-9 years of formal instruction of English before 

entering university) (cf. Callies, 2009:116f.). The expert corpus consists of 110 research articles on 

linguistic topics published in peer-reviewed journals (N ~867,000 words, average text length = 7,880 

words).  

We are interested in whether and to what extent the progression of complexity within L2 texts 

deviates from the expert-writer target. We address this question for each of the 32 complexity measures 

currently implemented in CoCoGen (cf. Table 1). We used a supervised machine learning classifier to 

distinguish L2 texts from expert texts based on the measurements computed by the tool. The guiding 

idea is that in cases where the classifier cannot distinguish between learner and expert texts, L2 

performance is target-like. Conversely, in cases where the classifier can distinguish between learner and 

expert texts, L2 performance deviates from target-like behavior. We also want to know whether there is 

any advantage of using complexity contours in the classification task, rather than using summary 

statistics. If this is the case, we would expect classification accuracy to be higher for a classifier fed with 

complexity contour information compared to one fed with summary statistics information. 
The complexity of 220 texts in our corpora was automatically assessed using CoCoGen. Figure 2 

below provides a visual representation of complexity contours of a single text – a randomly selected text 

from our expert corpus – for two selected complexity measures: SYN.CNS and LEX.SOPH.BNC. The 

two plots show the progression of complexity over 100 scaled windows, indicating that for both 

measures complexity is not uniformly distributed. 
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Figure 2: Visual representation of complexity contours for two selected measures in a single expert text 

Figure 3 below illustrates the distribution of complexity for a single measure – SYN.MLS – in the two 

corpora. The thick solid lines describe the distributions of mean complexity using text-time scaling for 

both learners (blue) and experts (red). The shaded areas represent the corresponding interquartile ranges 
for both groups. 

 

 

Figure 3: Distribution of complexity for a single measure in the learner and the expert corpus 

For our classification task, we used a simple and transparent supervised machine learning technique: 

For each complexity measure, we identified the empirical threshold complexity value, i.e. the value that 

discriminates most strongly between L2 learner and expert texts in our data. This value served as the 

decision boundary for discriminating between the two groups. For the summary statistics-based 

approach, the description of text complexity of our corpus yielded 220 point estimates of text complexity 

– one score for each of the 110 learner and 110 expert texts. Each midpoint between any two values of 

the rank-ordered vector of complexity scores was used to divide the data into two groups. The optimal 

empirical threshold complexity value was found by maximizing the rand index (RI, Rand, 1971) and 

was validated using 10-fold cross-validation. For the sliding window approach, the empirical threshold 

values were determined for each window separately and the classification was determined by majority 

vote.1  

Figure 5 visualizes the type of information available to the contour-based and summary statistics-

based classification. The plot presents all measurements obtained for the LEX.DIV.CTTR complexity 

measure. Red dots represent expert texts, whereas blue dots represent L2 learner texts. The black vertical 

line separates the data used for the contour-based classification (left) from the data used for the summary 

statistics-based classification (right). The horizontal lines mark the empirical threshold complexity, 

                                                 
1 Classification can also be informed by the accumulated deviation of the observed values from the threshold. 

We opted against this option here in the interest of transparency. However, the inclusion of this information – as 

well as information concerning weights of vector positions (feature weighting) – can only improve the 

performance of the contour-based approach advocated here. 

28



which were used by the classifier to predict the class of a text (L2 learner/expert). In case of the summary 

statistics-based approach, this is a single value. In the contour-based approach, a threshold value was 

determined for each of the ten scaled windows. It is important to note that the thresholds found for each 

of the windows follow a nonlinear curve, which cannot be adequately captured by a single value. 

 

 
 Figure 4: Measurements of complexity and empirical threshold values for LEX.DIV.CTTR for ten non-overlapping 

windows 

Table 2 presents the Accuracy (RI), Recall, Precision, and F-measure (harmonic mean) for all measures 

for the summary-statistics-based and contour-based classification. 
 

Table 2: Results of summary statistics-based (SSB) and contour-based (CB) classification 

 Accuracy Recall Precision F 

Measure SSB CB SSB CB SSB CB SSB CB 

KOLMOGOROV 0.6 0.62 0.59 0.62 0.59 0.65 0.59 0.63 

LEX.DEN 0.64 0.66 0.63 0.65 0.64 0.67 0.64 0.66 

LEX.DIV.CNDW 0.54 0.58 0.54 0.58 0.55 0.62 0.55 0.6 

LEX.DIV.CTTR 0.58 0.62 0.58 0.61 0.62 0.7 0.6 0.65 

LEX.DIV.NDW 0.6 0.64 0.59 0.63 0.6 0.66 0.59 0.64 

LEX.DIV.RTTR 0.58 0.62 0.57 0.61 0.59 0.68 0.58 0.64 

LEX.DIV.TTR 0.54 0.58 0.54 0.58 0.55 0.62 0.54 0.6 

LEX.SOPH.AFL 0.51 0.57 0.51 0.56 0.58 0.68 0.54 0.61 

LEX.SOPH.ANC 0.57 0.62 0.56 0.61 0.58 0.65 0.57 0.63 

LEX.SOPH.BNC 0.6 0.65 0.6 0.64 0.6 0.67 0.6 0.65 

LEX.NAWL 0.54 0.59 0.54 0.58 0.54 0.69 0.54 0.63 

LEX.NGSL 0.6 0.62 0.59 0.61 0.62 0.64 0.61 0.63 

MORPH.KOLMOGOROV 0.57 0.62 0.57 0.62 0.57 0.65 0.57 0.63 

SYN.MLWC 0.54 0.6 0.53 0.59 0.67 0.66 0.59 0.62 

SYN.MLWS 0.55 0.6 0.54 0.59 0.64 0.67 0.58 0.63 

SYN.NPPOSTMODW 0.56 0.6 0.56 0.59 0.59 0.65 0.57 0.62 

SYN.NPPREMODW 0.57 0.6 0.56 0.6 0.62 0.65 0.59 0.62 

SYN.CS 0.5 0.58 0.5 0.57 0.53 0.61 0.52 0.59 

SYN.CT 0.5 0.57 0.5 0.57 0.56 0.65 0.53 0.6 

SYN.CNC 0.62 0.63 0.62 0.63 0.62 0.65 0.62 0.64 

SYN.CNS 0.6 0.63 0.59 0.62 0.62 0.67 0.6 0.64 

SYN.CTT 0.51 0.57 0.51 0.57 0.63 0.67 0.56 0.61 

SYN.CPC 0.52 0.57 0.52 0.57 0.56 0.67 0.54 0.61 

SYN.CPT 0.52 0.57 0.52 0.57 0.54 0.61 0.53 0.59 

SYN.DCC 0.51 0.57 0.5 0.57 0.58 0.63 0.54 0.6 

SYN.DCT 0.5 0.57 0.5 0.57 0.53 0.63 0.52 0.6 

SYN.KOLMOGOROV 0.59 0.63 0.58 0.62 0.59 0.65 0.59 0.64 

SYN.MLC 0.63 0.63 0.63 0.63 0.64 0.64 0.63 0.64 

SYN.MLS 0.59 0.63 0.59 0.63 0.59 0.65 0.59 0.64 

SYN.MLT 0.58 0.62 0.57 0.61 0.64 0.67 0.61 0.64 
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We found that the contour-based classifier outperformed the summary statistics-based classifier for all 

measures of complexity. The contour-based classifier also identified a larger number of complexity 

measures that discriminate between L2 learner and expert texts: In the global, summary statistics-based 

classification more than a third of the measures received a predictive accuracy (RI score) < 0.55, which 

is not significantly different from chance (p binomial test > 0.05). In response to our first research question, 

these findings indicate that for all measures investigated in this study L2 learners’ performance deviates 

from that of the expert-target (classification accuracy ≥ 0.57, p binomial test = 0.025). The top three measures 

are all measures of lexical sophistication. In response to our second research question, we found that 

using complexity contours information in the classification task provides a more accurate picture of 

differences between learner and expert texts. While these results look promising, further work is needed 

to include a larger set of complexity measures proposed in the relevant literature and to investigate how 
the contour-based approach can contribute to the identification of the most reliable and valid complexity 

measures that serve as proxies of L2 performance and proficiency.  

Most importantly, however, the contour-based approach opens up new interesting research questions. 

One possible research question concerns the identification of “gold standards” for the within-text 

distribution of complexity for different text type (register/genre) and to what extent compliance to such 

standards is related to perceived text quality. A related question is whether human ratings of text quality 

are affected by the “global” complexity of a text captured in terms of summary statistics, or by the 

“local” complexity of specific passages, captured in terms of complexity contours: For example, do 

human raters judge a text quality primarily based on an early partition (anchoring effects), do they judge 

it based on properties of a late partition (recency effects)? Another question is whether there is evidence 

for “local compensatory effects”, i.e. whether a high level of complexity at one level of linguistic 

analysis (e.g. syntax) is compensated for by a low level of complexity at another level (e.g. lexicon). 

4 Conclusion 

We introduced CoCoGen (Complexity Contour Generator), a tool designed to automatically track the 

progression of linguistic complexity within a text. CoCoGen uses a sliding-window technique to 

generate a series of measurements (complexity contours) for a given complexity dimension, providing 

a novel approach to the automatic assessment of text complexity. For the purposes of the present study, 

we decided to showcase this approach in the area of L2 learning. In future work we intend to apply this 

approach to other research areas, in particular, readability research and discourse processing. 
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Abstract

This study demonstrates a weakness in how n-gram and PCFG surprisal are used to
predict reading times in eye-tracking data. In particular, the information conveyed by
words skipped during saccades is not usually included in the surprisal measures. This
study shows that correcting the surprisal calculation improves n-gram surprisal and that
upcoming n-grams affect reading times, replicating previous findings of how lexical fre-
quencies affect reading times. In contrast, the predictivity of PCFG surprisal does not
benefit from the surprisal correction despite the fact that lexical sequences skipped by
saccades are processed by readers, as demonstrated by the corrected n-gram measure.
These results raise questions about the formulation of information-theoretic measures
of syntactic processing such as PCFG surprisal and entropy reduction when applied to
reading times.

1 Introduction

Rare words and constructions produce longer reading times than their more frequent coun-
terparts. Such effects can be captured by n-grams and by probabilistic context-free grammar
(PCFG) surprisal. Surprisal theory predicts reading times will be directly proportional to the
amount of information which must be processed, as calculated by a generative model, but the
surprisal measures commonly used in eye-tracking studies omit probability estimates for words
skipped in saccades. Therefore, the generative model assumed by those studies does not ac-
count for the information contributed by the skipped words even though those words must be
processed by readers.1 This deficiency can be addressed by summing surprisal measures over
the saccade region (see Figure 1), and the resulting cumulative n-grams have been shown to
be more predictive of reading times than the usual non-cumulative n-grams (van Schijndel and
Schuler, 2015). However PCFG surprisal, which has a similar deficiency when non-cumulatively
modeling reading times, has not previously been found to be predictive when accumulated over
saccade regions.

This paper uses a reading time corpus to investigate two accumulation techniques (pre- and
post-saccade) and finds that both forms of accumulation improve the fit of n-gram surprisal
to reading times. However, even though accumulated n-grams demonstrate that the lexical
sequence of the saccade region is processed, PCFG surprisal does not seem to be improved by
either accumulation technique. The results of this work call into question the usual formulation
of PCFG surprisal as a reading time predictor and suggest future directions for investigation of
the influence of upcoming material on reading times.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/

1The present work merely accounts for the processing load introduced by the words initially skipped by a
progressive saccade. This correction is consistent with any process by which those words could be processed:
predictive processing, parafoveal processing, or subsequent regression. Since all of those methods would con-
tribute load during the associated duration (e.g,. first pass time), reading time predictivity should improve if the
complexity metrics account for the additional load.
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Bigram: The
1

red apple that the
2

girl ate . . .

Cumulative Bigram: The
1

red apple that the
2

girl ate

X : bigram targets X: bigram conditions

Figure 1: Eye movements jump between non-adjacent fixation regions (1, 2), while traditional
n-gram measures are conditioned on the preceding adjacent context, which is never generated by
the typical surprisal models used in eye-tracking studies. Cumulative n-grams sum the n-gram
measures over the entire skipped region in order to better capture the information that readers
need to process.

2 Data

This work makes use of the University College London (UCL) eye-tracking corpus (Frank et
al., 2013). Previous reading time studies have often used the Dundee corpus (Kennedy et al.,
2003), which only has data from 10 subjects. In contrast, the UCL corpus has reading time data
from 43 subjects who read sentences drawn from a series of self-published online novels. The
sentences in the corpus were presented as isolated sentences and in a random order.

The present work uses half of the corpus (every other sentence) for exploratory analyses,
while the rest of the corpus is set aside for significance testing. The corpus was parsed using
the van Schijndel et al. (2013) left-corner parser, which outputs a wide variety of incremental
complexity metrics computed during parsing (such as PCFG surprisal). 5-gram back-off n-
gram probabilities were computed for each word using the KenLM toolkit (Heafield et al., 2013)
trained on Gigaword 4.0 (Graff and Cieri, 2003). Models were fit to Box-Cox transformed first-
pass reading times for all experiments in this paper (λ ≈ 0.02; Box and Cox, 1964).2 Fixation
data was excluded from analysis if the fixation occurred on the first or last word of a sentence
or line or if it followed an unusually long saccade, defined here and in previous work (Demberg
and Keller, 2008) as a saccade over more than 4 words (2.5% of the UCL corpus).

3 Experiments

3.1 Cumulative n-gram surprisal

N -gram surprisal is conditioned on the preceding context (see Equation 1). As stated in the
introduction, however, direct use of this factor in a reading time model ignores the fact that
some or all of the preceding context may not be generated if the associated lexical targets were
not previously fixated by readers (see Figure 1). The lack of a generated condition results in
a probability model that does not reflect the influence of words skipped during saccades. This
deficiency can be corrected by accumulating n-gram surprisal over the entire saccade region (see
Equation 2).

n-gram(w, i) = −log P(wi | wi−n . . . wi−1) (1)

cumu-n-gram(w, ft−1, ft) =
ft∑

i=ft−1+1

−log P(wi | wi−n . . . wi−1) (2)

where w is a vector of input tokens, ft−1 is the index of the previous fixation, ft is the index of
the current fixation.

The linear mixed model3 that was used in this experiment included item, subject, and sentence
2The Box-Cox transform helps make the distribution of reading times more normal.
3A linear mixed model is a linear regression technique that separately estimates the variance for generalizable

(fixed) population-level factors (e.g., human sensitivity to word length) and for non-generalizable (random) factors
(e.g., each subject’s individual sensitivity to word length).
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ID-crossed-with-subject random intercepts4 as well as by-subject random slopes and fixed effects
for the following predictors: sentence position (sentpos), word length (wlen), region length
(rlen),5 whether the previous word was fixated (prevfix), 5-grams and cumulative 5-grams.
Likelihood ratio tests were used to compare the mixed model with and without fixed effects for
the 5-gram measures (see Table 1). In line with previous findings on the Dundee corpus (van
Schijndel and Schuler, 2015), cumulative 5-grams provide a significant improvement over basic
n-grams (p < 0.001), but unlike previous work, basic n-grams do not improve over cumulative
n-grams on this corpus (p > 0.05). The benefit of cumulative n-grams suggests that the lexical
processing of words skipped during a saccade has a time cost similar to directly fixated words.

3.2 Cumulative PCFG surprisal

Probabilistic context-free grammar (PCFG) surprisal is similar to n-gram surprisal in that it is
also conditioned on preceding context, but PCFG surprisal is conditioned on hierarchic structure
rather than on linear lexical sequences (see Equation 3). PCFG surprisal, therefore, suffers from
the same deficiency as non-cumulative n-gram surprisal when modeling reading times: the
condition context is never generated by the model.

PCFG(w, i) = −log P(Ti = wi | T1 . . . Ti−1 = w1 . . . wi−1) (3)

cumu-PCFG(w, ft−1, ft) =
ft∑

i=ft−1+1

−log P(Ti = wi | T1 . . . Ti−1 = w1 . . . wi−1) (4)

where w is a vector of input tokens, ft−1 is the index of the previous fixation, ft is the index of
the current fixation, T is a random variable over syntactic trees and Ti is a terminal symbol in
a tree.

This experiment tested both PCFG surprisal predictors as fixed effects over the baseline
from the previous section (now including cumulative n-gram surprisal as a fixed and by-subject
random effect). Accumulated PCFG surprisal (see Equation 4) did not improve reading time
fit (p > 0.05), unlike n-gram surprisal, which replicates a previous result using the Dundee
corpus (van Schijndel and Schuler, 2015). In fact, not even basic PCFG surprisal was predictive
(p> 0.05) over this baseline model in the UCL corpus, whereas it was predictive over this baseline
in the Dundee corpus. Posthoc testing on the exploratory data partition revealed that PCFG
surprisal becomes predictive on the UCL corpus when the n-gram predictors are removed from
the baseline (p < 0.001), which could indicate that PCFG surprisal may simply help predict
reading times when the n-gram model is too weak. Alternatively, since UCL sentences were
chosen for their brevity during corpus construction, there just may not be enough syntactic
complexity in the corpus to provide an advantage to PCFG surprisal over the n-gram measures,
which would explain why PCFG surprisal is still predictive for Dundee reading times where
there is greater syntactic complexity.

However, since cumulative n-gram surprisal is a better predictor of reading times than basic
n-gram surprisal, it is conceivable that some other cumulative PCFG surprisal feature could
still show up as predictive of UCL reading times even when basic PCFG surprisal fails to be
predictive on this corpus. The next experiment formulates a new calculation of cumulative
surprisal to explore this possibility.

3.3 Cumulative successor surprisal

In addition to past context, reading times can be influenced by the upcoming words that follow
a fixation. Such effects have been observed for orthographic and lexical influences and are
called successor effects (Kliegl et al., 2006). This section explores whether such successor effects

4A random intercept was added for sentence ID-crossed-with-subject in order to account for the problem of
repeatedly drawing trials from the same sentential context.

5Region length measures the number of words in the associated first pass region.
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Model
N -gram vs Cumu-N -gram
β Log-Likelihood AIC

Baseline −12702 25476
Base+Basic 0.035 −12689∗ 25451
Base+Cumulative 0.055 −12683∗ 25440
Base+Both −12683∗ 25442

Baseline random slopes: sentpos, wlen, rlen, prevfix, 5-gram, cumu-5-gram
Baseline fixed effects: sentpos, wlen, rlen, prevfix

Table 1: Goodness of fit of n-gram models to reading times in the UCL corpus. Significance
testing was performed between each model and the models in the section above it. Significance
for the Base+Both model applies to improvement over its Base+Basic model. ∗ p < .001

Model
Future-N -grams vs Future-PCFG
β Log-Likelihood AIC

Baseline −12276 24642
Base+Future-N -grams 0.034 −12259∗ 24610
Base+Future-PCFG 0.025 −12266∗ 24624
Base+Both −12259∗ 24612

Baseline random slopes: sentpos, wlen, rlen, prevfix, cumu-5-gram, future-5-grams, future-
PCFG
Baseline fixed effects: sentpos, wlen, rlen, prevfix, cumu-5-gram

Table 2: Goodness of fit of future n-grams and future surprisal to reading times. Significance
testing was performed between each model and the models in the section above it. Signifi-
cance for the Base+Both model applies to improvement over the Base+Future-PCFG model.
∗ p < 0.001

will generalize to something as latent as the syntactic structure underlying upcoming lexical
material. That is, instead of accumulating the surprisal condition over the region prior to and
including each fixated target, this section attempts to accumulate upcoming syntactic structure
over the region following each fixated target. Using the example in Figure 1, part of the time
spent at fixation 1 might be caused by the complexity of the upcoming material: ‘apple’, ‘that’,
etc. Therefore, this work compares the predictivity of future cumulative n-gram surprisal (see
Equation 5) and future cumulative PCFG surprisal (see Equation 6) over the n-gram baseline
from Section 3.2 on the UCL corpus (see Table 2).

future-n-gram(w, ft, ft+1) =
ft+1∑

i=ft+1

−log P(wi | wi−n . . . wi−1) (5)

future-PCFG(w, ft, ft+1) =
ft+1∑

i=ft+1

−log P(Ti = wi | T1 . . . Ti−1 = w1 . . . wi−1) (6)

where again w is a vector of input tokens, ft is the index of the current fixation, ft+1 is the index
of the next fixation, T is a random variable over syntactic trees and Ti is a terminal symbol in
a tree.

Future cumulative PCFG surprisal ceases to be predictive when future-n-grams are in the
model, though future-n-grams are predictive over future PCFG surprisal (p < 0.001). Therefore,
while future PCFG surprisal appears to be a significant predictor of reading times on its own
(p < 0.001), it seems largely eclipsed by the upcoming lexical information. Further, the present
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study replicated this result on the Dundee corpus (Kennedy et al., 2003) where, although non-
cumulative PCFG surprisal is predictive over the n-gram baseline on that corpus, future-PCFG
surprisal is still not predictive (p > 0.05). Together, these findings suggest that PCFG surprisal
does not accumulate, despite evidence that skipped lexical items are processed with some time
cost.

3.4 Limitations of successor n-grams

Angele et al. (2015) demonstrated that the predictivity of successor effects cannot be exclusively
driven by parafoveal preview; instead, the influence of successor effects may arise from sequence
prediction, which could happen, for example, if the parser operates over super-lexical chunks
(Hale, 2014). This section investigates the extent of n-gram successor predictivity on the UCL
corpus. On the exploration partition, four cumulative 5-gram successor predictors are tested
which utilize look-ahead for 1-word, 2-words, 3-words, or 4-words.6 Each future n-gram variant
is evaluated based on how it improves over the baseline in Section 3.2. Although there are 3-
and 4-word saccades in the data, 2-word future n-grams provide the best fit to the data even on
the held-out data partition (p < 0.001). In contrast, Angele et al. (2015) previously found that
successor effects were mainly driven by the word following the target fixation, which suggests
that the successor effect observed by Angele et al. may only account for a subset of the successor
influences on reading times. It’s possible that parafoveal preview, which was not possible in
the masked condition of the Angele et al. (2015) study, accounts for the additional look-ahead
observed in this work (e.g., parafoveal look-ahead could help with the word following the target,
and the predictive effect observed by Angele et al. could help with the next word), but additional
investigation of this hypothesis is left for future work.

4 Discussion

This work has confirmed previous findings that cumulative n-grams provide a better model of
reading times than the typical non-cumulative reading times (van Schijndel and Schuler, 2015).
In addition, this work has confirmed previous findings that upcoming lexical items can affect
reading times in an n-gram successor effect (Kliegl et al., 2007; Angele et al., 2015), presumably
ruling out incompatible expectations before directly fixating on that material or so that such
material can be skipped via saccade. The fact that cumulative n-gram models strongly predict
reading times suggests PCFG surprisal should be similarly affected, but this work has failed to
find such an effect either before or at each given target word. The improved reading time fit for
accumulated n-gram surprisal suggests that the material skipped during a saccade is processed
with a reading time cost. Therefore, although PCFG surprisal has previously been found to
predict reading times over an n-gram baseline (Boston et al., 2008; Demberg and Keller, 2008),
the lack of accumulation raises questions about PCFG surprisal as a predictor of the reading
time influence of syntactic processing.

Finally, the existence of n-gram successor effects raises questions about other information-
theoretic measures such as entropy reduction (Hale, 2006). Entropy reduction measures the
change in uncertainty at each new word. In practice, the entropy of an observation is often
approximated by estimating uncertainty about the next word in a sequence given the preced-
ing observations, but this measurement does not make much sense if the following two words
are already being integrated along with the target observation (i.e. there is very little to no
uncertainty about the next word in the sequence). Thus, the frontier of processing must be
determined for a well-motivated measure of entropy reduction.

In conclusion, the results of this study provide greater insight into how lexical sequence infor-
mation is processed during reading, providing stronger baseline measures against which to test

6Each future n-gram variant is a forward 5-gram measure that accumulates over the given number of successor
words. Each only includes material up to the following fixation, so 4-word future n-grams compute future
cumulative n-gram probabilities up to four words ahead, but if the upcoming saccade is only two words long,
then 4-word future n-grams will only compute future n-gram probability for the upcoming two words.
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higher level theories of sentence processing in the future.
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Abstract

Computational approaches to readability assessment are generally built and evaluated using gold
standard corpora labeled by publishers or teachers rather than being grounded in observations
about human performance. Considering that both the reading process and the outcome can be
observed, there is an empirical wealth that could be used to ground computational analysis of text
readability. This will also support explicit readability models connecting text complexity and the
reader’s language proficiency to the reading process and outcomes.

This paper takes a step in this direction by reporting on an experiment to study how the rela-
tion between text complexity and reader’s language proficiency affects the reading process and
performance outcomes of readers after reading We modeled the reading process using three eye
tracking variables: fixation count, average fixation count, and second pass reading duration. Our
models for these variables explained 78.9%, 74% and 67.4% variance, respectively. Performance
outcome was modeled through recall and comprehension questions, and these models explained
58.9% and 27.6% of the variance, respectively. While the online models give us a better under-
standing of the cognitive correlates of reading with text complexity and language proficiency,
modeling of the offline measures can be particularly relevant for incorporating user aspects into
readability models.

1 Introduction

Automatic Readability Assessment (ARA) has been an active area of research in computational linguis-
tics over the past two decades, resulting in a wide range of supervised machine learning models that used
both theory driven and data driven features (Petersen, 2007; Feng, 2010; Vajjala and Meurers, 2014b;
Jiang et al., 2015, for example). Though the purpose of ARA is to predict text complexity, the even-
tual goal is ensure that the predictions reflect the comprehension difficulties in the reader. However, so
far, ARA models primarily used training corpora that were based on judgements of teachers and other
language experts, and not based on the actual reading performance of students, as was also recently criti-
cized by education researchers (Valencia et al., 2014; Williamson et al., 2014; Cunningham and Mesmer,
2014). While this can be considered a shortcoming, obtaining large amounts of data on the actual reading
performance of target population is difficult and time consuming. One way to tackle this is to develop a
hybrid ARA model, which separately models text complexity and user’s language comprehension ability
and link them through another model. In this paper, we describe one approach to integrate reader and
text characteristics into a single model for automatic readability assessment.

Eye-tracking was employed as a method to understand various NLP problems such as annotation
task difficulty (Tomanek et al., 2010; Joshi et al., 2013; Joshi et al., 2014; Barrett and Søgaard, 2015),
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translation difficulty (Mishra et al., 2013), and studying reader eye movements using standard corpora
(Martı́nez-Gómez et al., 2012; Matthies and Søgaard, 2013). Cognitive psychologists have for a long
time studied eye-movement patterns of readers to understand the cognitive processes in reading and
comprehension, and what causes reading difficulty (Just and Carpenter, 1980; Rayner, 1998; Clifton Jr
et al., 2007). Studying the eye movements of readers during reading considering both text and reader
factors will give us a better understanding about the online link (during reading) between text complexity
and reader proficiency. Asking readers to answer questions about the text will give us an understanding
about the offline link (after reading) between text complexity and reader proficiency. Finally, having a
means to combine readability models with a model of readers’ language proficiency will provide us a
solution to create efficient content recommendation system for readers, considering reader characteristics
into account.

On this background, we report on an experiment that studies the relation between text complexity
and reader proficiency during and after reading. To our knowledge, this is the first reported study to
combine online and and offline measures in one experiment, and develop models for more than one form
of questions. In sum, the contributions of this paper are:

1. We explored modeling the cognitive correlates of text complexity and reader proficiency by studying
the eye movements of readers using three eye-tracking measures: fixation count, average fixation
count, and second pass reading durations.

2. We modeled how readers will respond to two types of questions (recall and comprehension) after
reading the texts of varying reading difficulty, based on their language proficiency. We believe that
this model paves way for the development of better text recommendation systems for readers based
on their proficiency and the readability of the text itself.

The paper is organized as follows: Section 2 surveys existing literature on the topic and puts our
research in context. Section 3 explains the experimental procedure, Section 4 explains the data analy-
sis methods and variables studied, Section 5 describes the results and Section 6 summarizes the main
conclusions of this paper.

2 Related Work

The effect of text complexity on a reader’s comprehension was studied in cognitive psychology literature
in the 70s and 80s, for various reader groups such as high school students (Evans, 1972), elderly readers
(Walmsley et al., 1981) and primary school students (Green and Olsen, 1988; Smith, 1988). The primary
conclusion from this research so far has been that carefully written simplified versions of texts resulted
in better comprehension. Britton and Gülgöz (1991) showed that rewriting a text based on Kintsch’s
reading comprehension model (Kintsch and van Dijk, 1978) resulted in better free recall of the text.

Apart from this above mentioned research on complex texts and their revised versions, studying eye
movement patterns was shown to be useful in understanding the cognitive processes involved in reading
and comprehension (e.g., Just and Carpenter, 1980; Rayner, 1998; Clifton et al., 2007). Eye tracking,
though time and cost consuming, provides a more natural way to study the reading processes and allows
us to study the processes like re-reading of the text by readers. Eye movements in reading research
are typically studied in terms of fixations, saccades and regressions. Fixations refer to the relatively
stationary positions of the eye at specific areas of text and saccades refer to the rapid eye movements
between fixations. Regressions refer to the cases where the reader revisits and fixates on parts that were
already read. Reader’s comprehension difficulties were shown to manifest in longer fixations, shorter
saccades and more regressions in previous research (cf. Rayner (1998) for a review).

Text readability and its effects on reading comprehension have not been explored much from the
perspective of reader proficiency and reading performance, to our knowledge. Two studies that are
closely related to the current research are Rayner et al. (2006) and Crossley et al. (2014). Rayner et
al. (2006) explicitly studied how text’s difficulty level affects eye movement measures in reading and
concluded that the text difficulty rating correlated strongly with average fixation duration, number of
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fixations and total time. Readers’ performance with comprehension questions did not have a significant
correlation with text difficulty in their experiment. More recently, Crossley et al. (2014) used a moving
window self-paced reading task to study the effect of text simplification on text comprehension and
reading time of second language learners of English. The moving window shows a sentence step by
step, without showing the full text, and with no means to do re-reading. Comprehension was assessed by
means of yes/no questions and the subjects also participated in an English proficiency test. Their results
showed that while text complexity affected the reading time, this effect was no longer significant upon
including the subject’s English reading proficiency as a covariate. In terms of comprehension, while
text complexity was significant, the effect of text complexity on comprehension was less for highly
proficient readers compared to low proficiency readers. Our study differs from Rayner et al. (2006)
in terms of materials and analysis methods. While they used a collection on unrelated text passages
for their study, we use same texts written in two versions for the experiments. Our study differs from
Crossley et al. (2014) in terms of the experimental methods. While they did a self-paced reading time
study with a moving window approach, we used eye-tracking, which allows us to observe more reading
variables. Finally, our study differs from both the studies in terms of additional eye-tracking and reader
performance variables studied.

3 Experiment

Participants: 48 non-native English speakers studying in a German university participated in this
study. Their English proficiency was evaluated using a standardized online c-test (Taylor, 1953) used at
the University for placement testing, and the average score of the participants was 72.6 (range: [21, 112])
where a score of 100+ is considered highly proficient. The participants came from different L1 back-
grounds. We collected this information but it was not used in the analyses reported here.

Texts: Four texts, each written in two versions (advanced and beginner), taken from on-
estopenglish.com, were used in this study. Texts from the same source were used in related research
(Crossley et al., 2014). Since the participants read the text from an eye-tracker, we restricted the length
of texts used to 300-350 words in both versions. They read a practice text and answered questions before
starting the actual experiment. Eight recall questions and six comprehension questions per text were
created, which had the same answer in both versions of a text. While the recall questions primarily dealt
with the factual information in the text and had short answers spanning a few words, comprehension
questions were yes/no questions that needed drawing inferences. All the authors worked together to cre-
ate the questions, and the final list of questions was created after a discussion to reach consensus about
the questions and answers to the questions.1 The responses of participants were manually evaluated by a
graduate student, by comparing them with the gold standard answers.

Table 1 shows some statistics about the texts used, along with additional information about the com-
plexity of the texts based on automated approaches.

Text Version Num. Sentences NumWords Flesch-Kincaid VM Surprisal
1 Difficult 12 296 14.75 5.2 207.5
1 Easy 15 298 10.09 3.9 147.2
2 Difficult 11 286 11.00 4.2 193.2
2 Easy 14 234 6.30 3.1 112.3
3 Difficult 11 248 11.10 4.1 165.4
3 Easy 13 230 7.74 3.0 124.6
4 Difficult 12 312 13.70 5.4 181.9
4 Easy 14 306 11.08 4.8 144.4

Table 1: Number of words in the texts used for the experiment

1The texts in both versions, c-test and the questions asked can be accessed in the Appendix of Vajjala (2015).
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Flesch-Kincaid Grade Level (Kincaid et al., 1975) is a standard readability formula. VM refers to the
readability score assigned by the model of Vajjala and Meurers (2014a), which is a regression model
based on several lexical and syntactic features, and outputs a score between 1–6, with higher values in-
dicating more difficult texts. Surprisal is a psycholinguistic measure of expected cognitive load during
sentence processing, based on information theory. We took the average total surprisal for all sentences
from Roark parser (Roark et al., 2009) as a measure of surprisal for each text. Though we modeled
different notions of complexity, we only report about the models with the binary complexity from on-
estopenglish.com in this paper.

Procedure: We employed Latin square design for the experiment, making sure each participant read
all four texts, alternating between easy and difficult versions. No participant read the same text in two
versions. They answered questions on paper after each text and the eye-tracker was re-calibrated for their
next reading. Participants were randomly assigned to one of the four experimental conditions, which
differed in the order of texts read. We conducted the experiment using iViewXTM Hi-speed eye-tracker
from Senso Motoric Instruments (SMI) and collected the reading data through SMI BeGaze2 software
with Reading package.

4 Analysis Methods

4.1 Modeling

We modeled our experimental data using Generalized Additive Mixed Models (GAMMs, Wood (2006))
and in a cross validation setup. GAMMs are a combination of Generalized Additive Models (GAM)
and mixed effects models. Whereas GAM allows us to model complex non-linear interactions between
variables by modeling the response variable as a function a smoothed version of predictor variables,
GAMM adds an additional layer of modeling convenience to GAM by allowing us to delineate between
variables with fixed effects and random effects as in a mixed effects model. In these models, fixed effects
refer to the independent variables considered in the experiment design and random effect variables are
used to model the variation due to sampling choices. In our experiment, texts and participants can be
considered random variables, since we cannot sample all possible texts or humans in a single experiment.
Following previous research which used GAMMs for linguistic studies (Wieling et al., 2014; Nixon et
al., 2015), we constructed our GAMM models as implemented in the mgcv3 (Wood, 2011) package in
R.

4.2 Experimental Variables

Dependent Variables: We report on three eye-tracking variables and two reader performance measures
as our dependent variables:4

Three eye-tracking measures – average fixation count (average number of times a reader fixates on
a word) and average fixation duration (average duration of such fixations in milliseconds), and average
second pass reading time (in milliseconds) – were analyzed to study study how the relation between text
complexity and reader proficiency affects online processing of these texts. Previous research in cognitive
psychology has shown that a reader’s comprehension difficulties are reflected in eye-movements through
increased (Rayner, 1998) and longer (Just and Carpenter, 1980; Rayner, 1998) fixations. Both these
measures are also known to correlate with text difficulty in the experiment described by Rayner et al.
(2006).

Two reader performance outcome measures – number of correct answers for recall and comprehension
questions – were used as dependent variables related to offline measures. Each text had eight recall and
six comprehension questions, which are the maximum scores the participants can get per text respec-
tively.

2http://www.smivision.com/en/gaze-and-eye-tracking-systems/products/
begaze-analysis-software.html

3https://cran.r-project.org/web/packages/mgcv/
4We studied other eye-tracking variables as well. More details can be found in Vajjala (2015, ch. 4).
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Independent (fixed effect) Variables: We considered the binary text complexity (categorical: elemen-
tary and advanced as easy and difficult respectively) and the reader’s English proficiency (numeric) as
two primary independent variables. Additionally, hypothesizing that there could be some effect of read-
ing texts one after another, we also considered the order in which the participant read a given text (which
depends on the experimental condition) as another independent variable.

Random Effects Variables: The two likely random effect factors that can cause a systematic variation
in model construction in this experiment are participants and texts. Thus, we considered both of them as
random effect variables.

5 Results

For each dependent variable, multiple GAMM models were constructed with different random effect
structures, interaction components, and smoothing functions. Model performance was compared in terms
of variance explained (R2) and statistical significance of the differences were compared using the itsadug5

(van Rij et al., 2016) package in R. We report the results with only the best performing model for each
variable below.

Online measures – Fixation count: The best performing model for fixation count explained 78.9%
of the variance and included a three way interaction between text difficulty, reader proficiency and text
order, modeled with a tensor product smooth function and with log-transformed fixation counts. While
the interaction between proficiency and text complexity was not by itself a significant factor in this
model, the three way interaction between proficiency, complexity and text order was significant. The
model summary, showing the parametric coefficients and the significant smooth terms can be seen in
Table 2.

Parametric Coefficients
Variable Estimate Std. Err. t p-value
Intercept 2.478 0.0481 51.51 < 0.001
Difficulty-Easy -0.178 0.023 -7.61 *< 0.001

Significant Smooth Terms
Variable RE? DF F p-value
te(Proficiency, Order): Difficult No 8.095 4.273 *< 0.001
te(Proficiency, Order): Easy No 4.544 7.549 *< 0.001
participant Yes 41.86 11.020 *< 0.001
text Yes 2.154 3.015 *0.007

Variance Explained (R2 adj): 78.9%

Table 2: Best Performing Model for Fixation Count (* indicates statistically significant)

The negative co-efficient for difficulty in Table 2 shows that the fixation count decreases as one goes
from difficult to easy texts. It also shows that the random variations due to the individual differences
among participants and texts are both significant factors. This reiterates the usefulness of considering
random effects and going beyond linear models, in understanding the relation between eye-tracking
variables, reader proficiency, and text complexity. A visualization of the three way interaction between
proficiency, text complexity and text order is presented in Figure 1.

We can observe from the figure that low proficiency readers make higher number of fixations (darker
color indicates lower values) when they read difficult texts compared to easy texts. However, the number
of fixations also increase depending when they read a text. The fixation counts are clearly lower for the
texts they read in the early parts of the experiment. However, this effect (and that of text complexity)
is less pronounced in more proficient readers. Thus, we can conclude that fixation count is affected by
changes in both reader proficiency and text complexity.

5https://cran.r-project.org/web/packages/itsadug/
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Figure 1: Interaction between Text difficulty, Reader Proficiency and Text Order for fixation count

Online measures – Average Fixation Duration (AFD): The best model for AFD explained 74% of
the variance and uses the default thin plate regression spline smoothing without performing any transfor-
mations on the AFD. Table 3.

Parametric Coefficients
Variable Estimate Std. Err. t p-value
Intercept 146.863 10.1432 14.479 < 0.001
Diff-Easy 0.323 4.0968 0.079 0.937
TextOrder 9.0981 2.1122 4.307 *<0.001

Significant Smooth Terms
Variable RE? DF F p-value

Proficiency No 2.031 3.121 *0.044
Participant Yes 39.64 7.43 < *0.001

Text Yes 2.63 5.80 < *0.001
Variance Explained (R2 adj): 74%

Table 3: Summary of the GAMM model for Average Fixation Duration

Only proficiency (p < 0.05) and text order (p < 0.001) had a significant effect for AFD, with higher
proficiencies resulting in lower fixation durations. The relationship between proficiency and AFD was
non-linear and both the random effects were significant (p < 0.001). None of the interactions were
significant. These results lead us to a conclusion that AFD is not affected by text complexity, but is
affected by a reader’s proficiency, in our experimental data.

Online measures – Second pass reading duration: The best performing model for second pass dura-
tion explained 67.4% of the variance and included a three way interaction between text difficulty, reader
proficiency and text order, modeled with a tensor product smooth function and with log-transformed
fixation counts. Table 4 summarizes the coefficients of the GAMM model. As can be observed from the
model summary in Table 4, text difficulty, text order, the three way interaction between proficiency, text
order and difficulty, and both the random effects – all were significant predictors for this model.
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Parametric Coefficients
Variable Estimate Std. Error t value p-value
Intercept 6.11 0.09 70.43 < 0.001
Difficulty-Easy -0.296 0.046 -6.395 *< 0.001
TextOrder 0.521 0.026 19.878 * < 0.001

Significant Smooth Terms
Variable is Random Effect? Est. deg. of freedom F p-value
te(Proficiency,TextOrder):Difficult No 7.785 22.296 *< 0.001
te(Proficiency,TextOrder):Easy No 5.32 29.646 *< 0.001
Participant Yes 38.43 5.456 *< 0.001

Variance Explained (R2 adj): 67.4%

Table 4: Best Performing Model for Second Pass Duration

Offline measures – Recall: The best performing model involved a three way interaction, as in fixation
count and second pass reading duration, and with tensor smooths. Table 5 shows the model summary
in terms of its coefficients and smooth terms. As we can see in the parametric coefficients, positive
co-efficient for difficulty variable indicates that the performance of participants with recall questions
increased as one moved from difficult to easy texts, which means they scored higher for easy texts.
There is also a significant interaction between proficiency, text order and text difficulty, and both the
random effects were significant. This leads us to a conclusion that the participants’ responses to recall
questions depends on both text difficulty and reader proficiency, along with other factors.

Parametric Coefficients
Variable Estimate Std. Error t value p-value
Intercept 3.006 0.321 9.347 < 0.001
Difficulty-Easy 0.679 0.192 3.527 *< 0.001
TextOrder 0.467 0.089 5.202 *< 0.001

Significant Smooth Terms
Variable is Random Effect? Est. deg. of freedom F p-value
s(Proficiency) No 0.9887 51.29 *< 0.001
te(Proficiency,TextOrder):Difficulty-Difficult No 5.78 3.194 *0.006
Participant Yes 29.272 1.806 *< 0.001
Text Yes 2.009 3.817 *0.0014

Variance Explained (R2 adj): 58.9%

Table 5: Best Performing Model for Recall

Offline measures – Comprehension: The best model for comprehension scores explained only 27.6%
of variance compared to other variables, with only proficiency being a significant predictor, apart from
the random variation due to texts used. Table 6 shows the model summary for comprehension scores. It
is interesting to note that text complexity did not affect reader’s comprehension of a text. Thus, though
we hypothesized that comprehension scores are affected by text complexity, it seems to depend only on
the language proficiency of the participant and not on the reading level of the text, as was also shown
by Crossley et al. (2014). However, the low performance of this model compared to others described
above needs further study, in order to understand what affects readers’ performance on such yes/no
comprehension questions.

The experiments discussed above demonstrate that the eye-tracking measures we studied seem to be
affected by text complexity, proficiency and their interaction. We also observed that one of the outcome
variables, recall, seem to be influenced by both text complexity and readers’ language proficiency while
only the latter affected the comprehension scores.
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Parametric Coefficients
Variable Estimate Std.

Err.
t p-value

Intercept 3.951 0.279 14.12 < 0.001
Diff:Easy 0.039 0.154 0.255 0.799
TextOrder 0.108 0.077 1.401 0.163

Significant Smooth Terms
Variable RE? DF F p-value
Proficiency No 1.313 10.051 < 0.001
Text Yes 2.39 4.351 0.001

Variance Explained (R2 adj): 27.6%

Table 6: Summary of the GAMM model for Comprehension Scores

Relation between online and offline measures: Given this background, we briefly explored whether
the effect of text complexity and proficiency on online processing can be used to explain the differ-
ences in the learning outcomes of the participants. We used mediation analysis as a means to address
this question. Mediation analysis is the process of studying the relationship between the dependent and
independent variables by means of a third ”mediator” variable. In mediation models, it is generally
hypothesized that the independent variable influences the mediator, which in turn influences the depen-
dent variable. It is usually used to understand the underlying mechanism behind a known relationship.
We performed this analysis using the mediation package in R (Tingley et al., 2014)6 considering the
eye-tracking measures as mediator variables and the recall and comprehension scores as the dependent
variables, and text complexity and language proficiency as the independent variables respectively. To
perform the mediation analyses, we need to ensure that the relationship between the mediator and the
dependent variable is statistically significant in the first place. Among the three eye-tracking measures
we explored, only average fixation duration showed a significant correlation with recall and comprehen-
sion. So, we performed the mediation analysis only with this as the mediator variable. There was no
significant mediation effect of average fixation duration on either recall or comprehension performance
of the participants. Thus, we can conclude that eye-tracking is not mediating the participant differences
in the recall and comprehension scores.

6 Conclusion

In this paper, we described an approach to model the relation between text complexity and the reader’s
language proficiency. Our approach has two parts: modeling the cognitive correlates of text complexity
using eye tracking, and a modeling for performance outcomes of the reader by asking them to answer
questions about the texts they read. These experiments were motivated by the ultimate goal of recom-
mending appropriate texts to readers considering both text complexity and reader proficiency as influ-
encing factors. In terms of the cognitive correlates, while fixation count and second pass duration were
affected by both text complexity and reader proficiency, average fixation duration was affected by reader
proficiency alone. For performance measures, while the recall model explained 58.9% variance and had
both text complexity and reader proficiency as significant predictors, the comprehension model model
was affected by proficiency alone, and explained only 27.6% of the variance.

The results from the our analyses support the conclusion that the eye-movement patterns of the read-
ers are sensitive to the complexity of the text they are reading, as was seen by increased fixation counts
and second pass reading time with increased text complexity. Average fixation duration was affected
by language proficiency but not text complexity. In terms of the outcome measures, on one hand, the
performance of recall and comprehension models leaves scope for a lot of improvement to be used in real
life application scenarios. But, it also reiterates the importance of considering differences between ques-
tion types during modeling. Further, our comprehension questions here primarily consisted of Yes/No

6http://cran.r-project.org/web/packages/mediation/
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questions that relied on short pieces of information. Modeling responses to other questions that require
detailed responses, and that address different levels of comprehension (Day and Park, 2005) may help us
build better models in future.

The approach described in this experiment used human encoded text complexity labels and an auto-
mated proficiency test. Replacing human created labels with an automated readability assessment model
prediction will make the offline measures models applicable to new texts, making it useful for text rec-
ommendation based on reader language proficiency and text complexity. Thus, the approach can provide
a means to personalize text recommendations considering both reading level and reader characteristics
into account, without requiring any search logs per user. This approach can also avoid the problem of
creating huge amounts of user based reading data to train readability assessment models by keeping the
text complexity model separate from the user proficiency model, but combining them together into a
ensemble model.

The current paper demonstrates a simple way of combining a model of text complexity and a simple
model of reader proficiency to predict the recall and comprehension of a given reader and a given text.
However, text complexity is much richer than a single number, as the wide range of linguistic features
considered in Vajjala (2015) illustrate, and future modeling of the link between text complexity and
reader proficiency arguably should consider incorporating different aspects of language form and content
(vocabulary, syntax, discourse coherence, etc.) into the model. Similarly, future modeling of users
should integrate more aspects of language proficiency (e.g., complexity, accuracy, fluency), and cognitive
individual differences (e.g., working memory capacity) to build a richer proficiency profile for the user.
Consequently, a comprehensive combined model of text complexity and reader proficiency will need to
consider all these aspects and their potential interaction.
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Abstract

Studies on the role of memory as a predictor of reading time latencies (1) differ in their pre-
dictions about when memory effects should occur in processing and (2) have had mixed results,
with strong positive effects emerging from isolated constructed stimuli and weak or even nega-
tive effects emerging from naturally-occurring stimuli. Our study addresses these concerns by
comparing several implementations of prominent sentence processing theories on an exploratory
corpus and evaluating the most successful of these on a confirmatory corpus, using a new self-
paced reading corpus of seemingly natural narratives constructed to contain an unusually high
proportion of memory-intensive constructions. We show highly significant and complementary
broad-coverage latency effects both for predictors based on the Dependency Locality Theory and
for predictors based on a left-corner parsing model of sentence processing. Our results indicate
that memory access during sentence processing does take time, but suggest that stimuli requiring
many memory access events may be necessary in order to observe the effect.

1 Introduction

Any incremental model of sentence processing where an abstract meaning representation is built up
word-by-word must involve storage and retrieval of information about previously encountered material
from some memory store. The retrieval operations have been hypothesized to be associated with in-
creased processing time (Gibson, 2000; Lewis and Vasishth, 2005; Wu et al., 2010), and this prediction
has been borne out in experiments using constructed stimuli (Gibson, 2000; Grodner and Gibson, 2005;
Boston et al., 2011; von der Malsburg et al., 2015). However, memory-based latency effects have been
null or even negative in broad-coverage reading time experiments using naturally-occurring text data
that included baseline controls for n-gram and probabilistic phrase-structure grammar (PCFG) surprisal
(Demberg and Keller, 2008; van Schijndel et al., 2013b).

The failure of experimental latency effects to generalize to naturally-occurring data raises doubts about
their existence. The effects observed in constructed stimuli could be due to (1) information theoretic
phenomena (e.g., surprisal) that such experiments rarely control for, (2) limited syntactic domain (e.g.,
relative clauses), or (3) ‘oddball’ effects – i.e. effects related to the semantic strangeness and decontex-
tualized nature of the input, rather than due to difficulty retrieving information from working memory.
On the other hand, the lack of positive latency effects in studies using naturally-occurring input could be
(1) because of the small number of subjects – ten – in the Dundee corpus (Kennedy et al., 2003) used
by e.g. Demberg and Keller (2008) and van Schijndel et al. (2013b) or (2) because naturally-occurring
newswire texts might contain too low a proportion of memory-intensive constructions to reveal a gener-
alized memory effect.

In addition to the problem of conflicting results between constructed vs. naturally-occurring stimuli,
research on the role of memory in sentence processing must also contend with the open question of where
and what kinds of memory effects are predicted during sentence processing. One of the first and most

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/

49



well-known memory-based theories of sentence processing is the Dependency Locality Theory (DLT)
(Gibson, 2000), which predicts processing difficulty proportional to the number of discourse referents
intervening between the current word and any dependencies it shares with words in its preceding context.
Lewis and Vasishth (2005), on the other hand, predict difficulty as a function of memory decay during
the retrieval operations of an incremental left-corner parser. Note that both of these accounts are locality-
based (difficulty is predicted to increase with distance), modeling the notion that decay over time may
make it more difficult (and hence time-consuming) to recall items from working memory. However, it is
conceivable that processing difficulty may have less to do with locality than simply with whether or not a
memory access or recall event has occurred, a hypothesis explored by van Schijndel and Schuler (2013)
with mixed results.

The present work seeks to answer these questions by evaluating many plausible implementations of
prominent theories of sentence processing as predictors of reading times on the new Natural Stories
corpus (Futrell, Gibson, Tily, Vishnevetsky, Piantadosi, & Fedorenko, in prep). The Natural Stories cor-
pus is constructed in order to embed an unusually-high proportion of rare words and memory-intensive
constructions in narratives designed to resemble naturally-occurring text. It therefore occupies an inter-
mediary position – which we will refer to as ‘constructed-natural’ – between isolated constructed stimuli
and naturally-occurring text that might help overcome the limitations of both. We evaluate against a
strong baseline model that includes controls for n-gram and PCFG surprisal. We find clear evidence for
(1) a locality effect when constructing dependencies to preceding words and (2) a locality-independent
‘reinstatement’ effect whenever derivation fragments must be recalled from working memory during the
operation of a left-corner parser. We show that both of these effects contribute independently to model
fit. Our findings therefore support the existence of memory-based processing difficulty and shed light on
the specific role of memory in sentence processing.

2 Related Work

Previous studies have explored the influence of memory on reading times using constructed stimuli. For
example, Grodner and Gibson (2005) showed memory-related effects in self-paced reading of individual
sentences constructed to contain difficult center-embeddings. Other studies have used the (constructed)
Potsdam eye-tracking corpus (Kliegl et al., 2004) to investigate the predictivity of ACT-R memory influ-
ences on reading times (e.g., Boston et al., 2011; von der Malsburg et al., 2015).1 As mentioned above,
effects found in studies using constructed stimuli presented in isolation might face confounds due to
‘oddball’ effects or lack of extra-sentential context.

Other work has explored memory and processing using naturally-occurring stimuli (generally,
newswire texts). Demberg and Keller (2008) examined the influence of the DLT on reading times using
the Dundee eye-tracking corpus (Kennedy et al., 2003). They found some evidence of DLT influences
on specific content words, but the effect was weak enough that it was not significant until the analysis
was constrained to just nouns and verbs. Even then, the effect is not significant under multiple compar-
ison correction. Other studies have also used the Dundee corpus to test the predicted memory effects of
left-corner models of sentence processing (van Schijndel and Schuler, 2013; van Schijndel et al., 2013b),
but these studies found a negative correlation between reading times and predicted left-corner memory
operations, which is the opposite of what most theories of sentence processing predict. We posit that the
weakness of the DLT and the unusual left-corner influence on the Dundee corpus may be caused by the
limited number of subjects or by the limited number of complex dependencies in the corpus.

The Natural Stories corpus used in this study is constructed in order to tax working memory resources
in the processing of otherwise natural-seeming narratives, so it plausibly mitigates concerns related to
oddball effects and lack of context on the one hand and syntactically ‘easy’ constructions on the other. In
this respect, the most similar corpus to ours of which we are aware is Bachrach et al. (2009), which like
Natural Stories was constructed to read naturally but included a higher degree of syntactic complexity
than is usual in naturally-occurring text. However, compared to Natural Stories, Bachrach et al. (2009)

1The present work does not directly test the predictions of ACT-R, but some of the predictors used in this study – especially
the distance-weighted left-corner predictors discussed below – make similar predictions to ACT-R.
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has substantially fewer subjects (23 vs. 181) and words (3540 vs. 10257). Wu et al. (2010) used the
Bachrach et al. (2009) corpus to investigate the correlation between changes in embedding depth and
reading times and found a positive effect on latency.2

3 Background

This work explores two related models of the relationship between memory and sentence processing: (1)
the Dependency Locality Theory, in which memory is predicted to be used to construct syntactic depen-
dencies to words in the preceding context with a cost proportional to the length of the dependency (or
dependencies) being constructed, and (2) left-corner theories of sentence processing, such as Lewis and
Vasishth (2005) and Schuler et al. (2010), in which certain parser operations require disjoint incomplete
signs (referring to discourse referents) to be recalled from working memory. We outline these broader
frameworks, along with a number of possible implementations of each, in the remainder of this section.

3.1 Dependency Locality Theory
The Dependency Locality Theory (DLT; Gibson, 2000) predicts a cost for integrating a word into an
incomplete parse proportional to the number of discourse referents that intervene in any syntactic depen-
dencies the word shares with words in its preceding context. For simplicity, Gibson (2000) implements
this calculation in terms of abstract ‘energy units’ (EU) and considers all and only nouns (excluding
pronouns) and finite verbs to count as discourse referents. Integration cost is the sum of the ‘discourse
cost’ of the word itself (1 for nouns and finite verbs, 0 otherwise) and the distance of any dependencies
to preceding words, measured in number of intervening discourse referents. The cost of long-distance
dependencies is assessed at the gap site, producing e.g. subject-/object-relative asymmetries (the relative
clause verb intervenes in its own dependency for object gaps but does not for subject gaps).

As pointed out by Gibson (2000), this implementation might benefit from modification in light of other
cognitive considerations. In this study, we implemented three such modifications related to verb weights
(DLT-V), coordination (DLT-C), and preceding modifier dependencies (DLT-M):

• DLT-V: Verbs are more expensive. Non-finite verbs receive a cost of 1 (instead of 0) and finite verbs
receive a cost of 2 (instead of 1).

• DLT-C: Coordination is less expensive. Dependencies out of coordinate structures skip preceding
conjuncts in the calculation of distance, and dependencies with intervening coordinate structures
assign that structure a weight equal to that of its heaviest conjunct.

• DLT-M: Exclude modifier dependencies. Dependencies to preceding modifiers are ignored.

DLT-V is motivated by the possibility that finite verbs might be more costly to integrate than nouns
(since they contain additional information about tense/aspect) and that non-finite verbs might have a
non-zero discourse cost. DLT-C is motivated by the fact that coordination can generate very long depen-
dencies that are not particularly difficult to process, suggesting that each sub-referent of a conjunction
may be integrated into a conjoined set which is finally integrated at the end of the conjunction. DLT-M
is designed to avoid excessive ‘double-counting’ of material intervening in long modifier dependencies.

These modifications can be applied in any combination, yielding eight distinct implementations of
the DLT. Henceforth, we indicate that a modification was applied by suffixing its letter to ‘DLT’ (e.g.,
DLT-CM is DLT with the coordination and modifier modifications only). For an illustration of these
implementations at work on an example sentence, see Figure 1.

Differences between the four variants illustrated in Figure 1 are especially apparent at the verbs caught
and fled (although note also that stealing – a non-finite verb – only has a cost under DLT-V). There are
two dependencies between caught and preceding words, dependency a to the head and of its conjoined

2While the Wu et al. (2010) embedding depth predictor is derived from automatic parses of their corpus, the present work
used hand-corrected syntactic annotations to calculate the left-corner operations required to incrementally construct syntactic
structures. Wu et al. (2010) also largely focused on the influence of frequency effects which the present work simply adopts as
control predictors.
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Yesterday, the person supervisors and co-workers caught stealing millions fled.
DLT: 0 0 1 1 0 1 5 0 1 10

DLT-V: 0 0 1 1 0 1 7 1 1 13
DLT-C: 0 0 1 1 0 1 4 0 1 8
DLT-M: 0 0 1 1 0 1 5 0 1 5

d

b

a

c

Figure 1: Integration cost calculations for implementations of DLT on an example sentence. For example,
at caught there is an object gap and therefore dependencies back to person (2 nouns and 1 verb intervene)
and supervisors (1 noun intervenes) = 4 total cost-accumulating interveners. As a finite verb, caught gets
a cost of 1+4 = 5. Note that this figure increases if verbs become more expensive (DLT-V) and decreases
if coordinates become less expensive (DLT-C). Note also that the cost of fled is much lower in DLT-M,
since the dotted dependency to Yesterday is ignored.

subject, and dependency b to person, the modificand of the relative clause. Dependency a spans the
intervening word co-workers. Dependency b is an object relative dependency. Since the gap site follows
caught, caught is included as an intervener in the dependency, which therefore spans supervisors and
co-workers caught. The DLT integration cost of caught is the sum of the discourse cost of caught itself
and the costs of dependencies a and b.

These costs vary by implementation. For DLT, caught (a finite verb) has a discourse cost of 1, depen-
dency a has a cost of 1 for its single intervening noun co-workers, and dependency b has a cost of 3 for
supervisors, co-workers, and caught, for a total integration cost of 1 + 1 + 3 = 5. For DLT-V, caught
is worth 2 EU as a finite verb rather than 1. This increases both its discourse cost and its cost as an
intervener in dependency b, thus increasing the integration cost of caught by 2 (from 5 to 7). For DLT-C,
the cost of the conjoined noun phrase supervisors and co-workers is reduced from 2 to 1 (the weight
of its heaviest conjunct) as an intervener in dependency b. This reduces the integration cost of caught
by 1 (from 5 to 4). DLT-M does not affect the cost of caught, which has no dependencies to preceding
modifiers.

Similar considerations govern the variation in integration cost of fled, which has dependencies c (to
person) and d (to Yesterday). For DLT, the integration cost of fled is 4 (for dependency c) + 5 (for
dependency d) + 1 (discourse cost of fled) = 10. This increases to 13 for DLT-V because the finite verb
caught, which intervenes in both dependencies c and d, is upweighted from 1 to 2, along with fled itself.
Because the cost of supervisors and co-workers, which also intervenes in both c and d, decreases from
2 to 1 for DLT-C, the DLT-C integration cost of fled is reduced by 2 (from 10 to 8). DLT-M ignores the
preceding modifier dependency d, resulting in an integration cost of 4 (dependency a) + 1 (discourse cost
of fled) = 5.

3.2 Left-corner parsing

Many sentence processing models (Johnson-Laird, 1983; Abney and Johnson, 1991; Gibson, 1991;
Resnik, 1992; Stabler, 1994; Lewis and Vasishth, 2005) are defined in terms of left-corner parsing
operations (Aho and Ullman, 1972; van Schijndel et al., 2013a), which assemble local dependencies
between signs using a minimal store of incomplete derivation fragments. Left-corner parsers account
for sequences of words x1 . . . xT as stacked-up derivation fragments a/b, each consisting of a top sign a
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lacking a bottom sign b yet to come. When a left-corner parser consumes a word, it makes decisions to
fork off and/or join up these derivation fragments. When the current word xt satisfies the missing bottom
sign b of a derivation fragment a/b, the parser replaces a/b in the memory store with a, indicating a
completed prediction. Because this does not increase the number of derivation fragments in the memory
store, we call this a no-fork (–F) operation:

a/b xt

a
b→ xt. (–F)

When the current word xt does not satisfy the missing sign of a derivation fragment, then xt is added
to the memory store as part of a new derivation fragment c. As this increases the number of stored
derivation fragments, we call this a yes-fork operation (+F):3

a/b xt

a/b c
b

+→ c ... ; c→ xt. (+F)

The other class of parser operations is join operations. In these operations, the parser decides whether to
connect two previously disjoint derivation fragments. When the sign c satisfies the missing sign of the
fragment a/b while predicting b′, we rewrite the memory store with a single fragment a/b′. This reduces
the number of derivation fragments in the memory store, so we call it a yes-join (+J) operation:

a/b c
a/b′ b→ c b′. (+J)

Conversely, when memory contains a fragment a/b and a sign c, but c does not satisfy a/b, we make the
appropriate left-corner predictions from c while keeping it as a separate memory item (no-join, –J):

a/b c
a/b a′/b′ b

+→ a′ ... ; a′ → c b′. (–J)

These two binary decisions have four possible outcomes in total: the parser can fork only (which in-
creases the number of derivation fragments by one), join only (which decreases the number of derivation
fragments by one), both fork and join (which keeps the number of derivation fragments the same), or nei-
ther fork nor join (which also preserves the number of derivation fragments). The experiments described
in this paper also use a variant of a left-corner parser (van Schijndel et al., 2013b) which introduces
additional derivation fragments to carry referents involved in non-local dependencies such as filler-gap
constructions (see Figure 2).

As in the case of the DLT, there are a number of ways in which the memory predictions of this left-
corner parsing model could be implemented. In this study, we consider three families of predictors:

• EMBD: End of embedded region. Flag integration operations where disjoint derivation fragments
are merged in working memory. EMBD includes –F+J operations that reduce the stack as well as
the closure of long-distance dependency carriers for gapping and heavy-shift.

• NoF: ‘No fork’ (–F) operation. Flag parser operations that recall and transition the top sign of a
derivation fragment once the bottom sign has been completed, including –F+J operations (integra-
tions) as well as –F–J operations, in which the current derivation fragment is given a new top sign
but is not integrated with another fragment. NoF models the notion that memory is required to
access and update the top sign of the attentionally-focused fragment, and is not sensitive to carrier
fragments.

• REINST: Reinstatement operation. Flag if either a long-distance dependency has terminated or if
a –F operation has taken place (i.e. the union of EMBD and REINST flags).

3Here b
+→ c ... indicates one or more grammar rule applications yielding a category c followed by zero or more other

categories.
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a) t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9
S/S S/S S/S S/S S/S S/S S/S S/S S/VP

NP/N NP/RC NP/RC NP/RC NP/VPgap NP/Sgap NP/NP

NP/NPconj NP/NP

Yesterday, the person supervisors and coworkers caught stealing millions fled.

b) t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9
S/S S/S S/S S/S S/S S/S S/S S/S S/VP

NP/N NP/RCp NP/RCp NP/RCp NP/RCp NP/RCp NP/NP

RC/RC RC/RC RC/RC RC/VPgapRC/Sgap

NP/NPconj NP/NP

Yesterday, the person supervisors and coworkers caught stealing millions fled.

c) Yesterday, the person supervisors and coworkers caught stealing millions fled.
Depth: 0 1 2 3 4 4 3 3 2 1

EMBD: 0 0 0 0 0 1 0 1 1 1
NoF: 0 0 1 0 0 1 0 0 1 1

REINST: 0 0 1 0 0 1 0 1 1 1

Figure 2: (a) Partial analyses of the sentence Yesterday, the person supervisors and coworkers caught
stealing millions fled, in a left-corner parser, showing stacked-up derivation fragments (vertical axis) over
time (horizontal axis). (b) Partial analyses of the same sentence using additional derivation fragments
to carry referents involved in non-local dependencies (in this case, for a referent p of the person). (c)
Calculation of predictors EMBD (‘end of embedding’, sensitive to carrier fragments), NoF (‘no fork’,
ignores carrier fragments) and REINST (‘reinstatement’, union of EMBD and NoF) over the example
sentence. Tokens are flagged when stack depth reduces (e.g., millions). NoF and REINST (but not
EMBD) also flag when the awaited sign is encountered without joining, as is the case for person just
before forking off the relative clause. Note that NoF does not flag stealing, the end of a carrier fragment,
while EMBD and REINST do.

For each of these three families, we consider both boolean and distance-weighted variants. In the
case of EMBD, the distance-weighted predictor EMBD-LEN is the length of the embedded region be-
ing integrated. In the case of NoF, the distance-weighted predictor NoF-LEN is the distance since the
last no-fork operation at that depth level, modeling decay since the last time that the top sign of the
attentionally-focused derivation fragment was recalled from working memory. The distance-weighted
version of REINST (REINST-LEN) is the max of these two measures. REINST-LEN is essentially an
implementation of the ACT-R retrieval cost of Lewis and Vasishth (2005), Boston et al. (2011), and
von der Malsburg et al. (2015). To maintain comparability with the DLT, we implement three types of
distance in each family: number of words, number of DLT discourse referents, and number of DLT-V
(verb-reweighted) discourse referents. We therefore consider twelve distinct implementations of left-
corner memory cost.

4 Experimental setup

4.1 The Natural Stories corpus

The Natural Stories corpus (Futrell, Gibson, Tily, Vishnevetsky, Piantadosi, & Fedorenko, in prep) is
a set of 10 texts written to sound fluent while containing many low-frequency and marked syntactic
constructions, especially subject- and object-extracted relative clauses, clefts, topicalized structures, ex-
traposed relative clauses, sentential subjects, sentential complements, local structural ambiguity, and
idioms. Self-paced reading time data was collected over these texts from 181 native English speakers.
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One reason that previous corpus studies might have failed to find locality and integration effects is that
the texts might not have included the low-frequency constructions where such effects emerge. Natural-
istic texts, such as the newspaper columns forming the Dundee corpus, are produced and edited to be
understood, so they will not frequently contain the kinds of low-frequency, hard-to-process events that
bring out differences between processing models. The Natural Stories corpus is designed to exercise
such models using constructions which are known to be difficult, providing an opportunity for memory
effects to emerge where they have been obscured otherwise. The Natural Stories corpus contains 848,207
reading events. To control for edge effects, we filtered out all tokens occurring at sentence start and end,
leaving 768,023 events. These were then divided into an exploratory corpus of 255,554 events and a
confirmatory corpus of 512,469 events.4

4.2 Memory predictor implementations

The 8 DLT predictors and 12 left-corner predictors discussed in §3 were implemented over gold-standard
trees in the Generalized Categorial Grammar (GCG) framework of Nguyen et al. (2012). Source trees for
the entire corpus were hand-corrected by a single expert annotator from an automatic reannotation from
gold-standard Penn Treebank style representations, which are distributed with the Natural Stories corpus.
The GCG framework was chosen because it contains an implicit representation of syntactic dependencies
and because it can be used to calculate incremental representations of the memory store of a left-corner
parser. This allowed us to compute all predictors under consideration from source trees.

To control for memory-independent information theoretic effects, for each word in the corpus we also
computed 5-gram forward probabilities from the Gigaword 4.0 corpus (Graff and Cieri, 2003) using the
KenLM toolkit (Heafield et al., 2013) and PCFG surprisal using the van Schijndel et al. (2013a) parser.

It is an open question as to when during processing the effects in question will occur. For example,
while readers may slow down when they encounter the final word of a center-embedding region, it is
also possible that they would not slow down until the following word, when the need for integration
is confirmed. In addition, self-paced reading (SPR) data are known to sometimes produce later effects
(Kaiser, 2014; Jegerski, 2014). We therefore calculate variants of each of these 20 predictors in four
spillover positions, yielding 80 possible main effects.

4.3 Statistical evaluation

Each of our 80 predictors was evaluated via likelihood ratio test of two linear mixed-effects (LME)
models fitted to the exploratory dataset: a baseline model with the main fixed effect omitted, and a test
model with the main fixed effect included. All models included sentence position, word length, 5-gram
forward surprisal, and total PCFG surprisal as fixed effects, along with by-subject random slopes for each
of these, a by-subject random slope for the main effect, and random intercepts for each subject and word.
To control for sentence-level confounds, we additionally included a by-subject random slope and random
intercept for sentence ID. To facilitate convergence and maintain comparability between predictors, all
predictors were centered and z-transformed prior to fitting.

The likelihood ratio test assumes normally-distributed data, so we used the Box and Cox (1964) trans-
form (λ ≈ −0.63) to assure that the data match these assumptions as closely as possible.5 Significant
improvement to model fit for a given main effect indicates that it predicts reading times independently of
all controls. The most significantly predictive effects on the exploratory corpus were selected for evalu-
ation on the confirmatory corpus (see § 4.1 for discussion of the exploratory/confirmatory partition).

5 Results

Exploratory results revealed highly significant effects for a number of predictors. The 13 most significant
of these were on the word following the target (spillover-1 (S1) position). This might suggest that lis-
teners wait for confirmation of their syntactic analysis before attempting to retrieve items from working

4Code to reproduce this experiment is distributed through the ModelBlocks and NaturalStories repositories on Github.com.
5The Box and Cox (1964) transformation is y′ =

yλ−1
λ

. We selected λ ≈ −0.63 via likelihood maximization.
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Exploratory corpus Confirmatory corpus
β β-ms t-value p-value β β-ms t-value p-value

B
es

t NoF-S1 1.23e-4 1.29 6.66 1.45e-10 1.46e-4 1.54 8.15 2.33e-14
DLT-CM-S1 1.11e-4 1.16 5.85 1.42e-8 9.63e-5 1.10 6.48 4.87e-10

C
an

on REINST-S1 1.17e-4 1.23 6.33 1.60e-9 1.35e-4 1.43 8.01 5.77e-14
DLT-S1 8.04e-5 0.846 4.51 1.03e-05 6.04e-05 0.634 4.50 1.11e-05

Table 1: Evaluation results. Upper: Best left-corner (NoF-S1) and DLT (DLT-CM) predictors. Lower:
Canonical DLT and left-corner (REINST) predictors. Left: Results on exploratory corpus. Right:
results on confirmatory corpus. Column β contains the LME effect estimate per SD of the independent
variable, which is valid over Box and Cox (1964)-transformed reading times. Column β-ms is a back-
transformation of β into milliseconds using the equation β-ms = (λȳ′ + λβ+ 1)1/λ − (λȳ′ + 1)1/λ, where ȳ′
is the mean of the transformed reading times (1.55 in our data). Because Box and Cox (1964) introduces
non-linearity, β-ms is only valid at the back-transformed mean, holding all other effects at their means.

memory. It could also be an artifact of the aforementioned tendency for effects to be delayed in self-
paced reading (SPR) experiments. The most significant DLT predictor was DLT-CM-S1 (the DLT with
coordination and modifier modifications in S1 position), and the most significant left-corner predictor
was NoF-S1 (the no-fork boolean predictor in S1 position). These predictors were therefore selected
for confirmatory evaluation, along with S1 ‘canonical’ predictors for each family (unmodified DLT and
boolean REINST). These four predictors (and no others) were then evaluated on the confirmatory corpus,
with results given in Table 1. The confirmatory results indicate that all four effects generalize robustly
to new data, with all achieving p-values well below the Bonferroni-corrected significance threshold of
p = 0.0125 for four comparisons. The left-corner predictors have a higher order of significance than the
DLT predictors and larger effect estimates. Because the main effects are z-transformed, β values are per
standard deviation. Over our entire data set, noF = 1 is 2.51 SD greater than noF = 0,6 so a recall event
is predicted to produce a delay approximately 2.5 times larger than β (3.88ms in β-ms). DLT-CM ranges
between 0 and 13.19 SD (DLT-CM = 12) in our data, with 92% of events ≤ 1.1 SD (DLT-CM = 1) and
99% ≤ 4.4 SD (DLT-CM = 4). The effective predictions for noF-S1 are therefore larger than those for
most instances of DLT-CM-S1 > 0, but at extreme values DLT-CM predicts larger effects.

6 Discussion

The principal contribution of this work is to give the first strong evidence of memory effects in broad-
coverage sentence processing. The constructed-natural Natural Stories corpus used here reduces the
likelihood of confounds due to lack of context or oddball sentences to which studies using constructed
stimuli are vulnerable, as well as the likelihood of confounds due to lack of memory-intensive syntax
or small numbers of subjects to which studies using naturalistic stimuli are vulnerable. Our rigorous
baseline model, which includes controls for n-gram and PCFG surprisal, helps ensure that the observed
effects are not due to other plausible sources of processing difficulty. Despite these controls, our evalua-
tion results are highly significant.

In order to evaluate whether our DLT and boolean left-corner predictors could both be driven by a
single effect, we ran a four-way LME comparison of models on the exploratory corpus (1) with both DLT-
CM-S1 and NoF-S1 ablated, (2) with one or the other of the effects ablated, and (3) with neither ablated.
Both effects significantly improved over the baseline on their own, and the joint model significantly
improved over both effects individually, indicating that neither effect is reducible to the other.7

Our distance-weighted left-corner predictors (especially REINST-LEN) are very similar to the ACT-R
retrieval predictors of e.g. Lewis and Vasishth (2005), Boston et al. (2011), and von der Malsburg et al.
(2015). Many of our distance-weighted left-corner predictors showed positive effects on the exploratory

6This is because memory recalls are predicted for a small proportion (≈20%) of all events.
7DLT-CM-S1 over baseline: p = 7.24e-12; NoF-S1 over baseline: p = 7.93e-10; both over NoF-S1: p = 6.33e-13; both over

DLT-CM-S1: p = 6.87e-11. Note that in order to achieve convergence in all models, we removed controls for sentence ID from
the model specification.
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corpus in spillover-1 position (e.g., NoF-LEN-S1, β = 5.98e-05, p = 9.43e-4). However, these effects
were substantially weaker than those of the effects selected for confirmatory evaluation. The strength
of the DLT predictors in comparison to the left-corner predictors on our exploratory data suggests that
our DLT effect is not simply capturing the effects of decay in left-corner parsing, further supporting the
independence of the DLT effect from effects related to left-corner parsing.

Given this, we now consider some important differences in the predictions of both frameworks. First,
the left-corner effects predict processing difficulty exclusively on the basis of syntactic tree configura-
tions, while the DLT effects predict difficulty on the basis of a combination of syntax and semantics,
namely (1) asymmetries in referential status between nouns/verbs and other words, and (2) word-to-
word dependencies. Also, the DLT computes memory costs as soon as both words in the dependency arc
are encountered, while the distance-weighted left-corner predictors compute memory costs at the right
edges of subtrees in the incremental parse. They therefore not only compute cost differently but predict
the cost to be incurred at different words.

The DLT also differs in important ways from our distance-weighted left-corner predictors (like
REINST-LEN). The distance-weighted left-corner predictors track recency of activation of derivation
fragments by measuring the distance to the most recent word in a fragment. This distance is a function
of the size of the attentionally-focused derivation fragment rather than that of the fragment being re-
called from memory. By computing total dependency length, the DLT can also index the complexity (in
nouns and verbs) of the stored derivation fragment, depending on the location of its head. More complex
derivations might be more difficult to retrieve, a possibility which none of the left-corner predictors are
designed to account for.

By contrast, the boolean left-corner predictors like NoF-S1 capture phrase-structural information that
is absent from the DLT, flagging moments in processing at which derivation fragments stored in memory
are predicted to be accessed (which do not necessarily correspond to endpoints of word-to-word depen-
dencies). The fact that NoF-S1 is much more successful on our data than its distance-weighted counter-
parts suggests that memory-related processing difficulty may be more a function of whether a memory
access event has occurred than of recency of activation. Finally, the fact that NoF-S1 is slightly more
successful than REINST-S1 – which is identical to NoF-S1 except that it also flags the ends of long-
distance dependency carriers – shows that sensitivity to long-distance dependencies does not improve
our left-corner predictor. It is therefore possible that the storage and retrieval of incomplete derivation
fragments differ mechanistically from the resolution of long distance dependencies.
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Abstract

Lexical complexity plays a central role in readability, particularly for dyslexic children and poor
readers because of their slow and laborious decoding and word recognition skills. Although some
features to aid readability may be common to many languages (e.g., the majority of ’easy’ words
are of low frequency), we believe that lexical complexity is mainly language-specific. In this
paper, we define lexical complexity for French and we present a pilot study on the effects of
text simplification in dyslexic children. The participants were asked to read out loud original and
manually simplified versions of a standardized French text corpus and to answer comprehension
questions after reading each text. The analysis of the results shows that the simplifications per-
formed were beneficial in terms of reading speed and they reduced the number of reading errors
(mainly lexical ones) without a loss in comprehension. Although the number of participants in
this study was rather small (N=10), the results are promising and contribute to the development
of applications in computational linguistics.

1 Introduction

It is a fact that lexical complexity must have an effect on the readability and understandability of
text for people with dyslexia (Hyönä J., Olson R. K., 1995). Yet, many of the existing tools have only
focused on the visual presentation of text, such as the use of specific dyslexia fonts or increased letter
spacing (Zorzi, M., Barbiero, C., Facoetti, A., Lonciari, I., Carrozzi, M., Montico, M. and Ziegler, J. C.,
2012). Here, we investigate the use of text simplification as a tool for improving text readability and
comprehension.

It should be noted that comprehension problems in dyslexic children are typically a consequence of
their problems in basic decoding and word recognition skills. In other words, children with dyslexia have
typically no comprehension problems in spoken language. However, when it comes to reading a text,
their decoding is so slow and strenuous that it takes up all their cognitive resources. They rarely get to
the end of a text in a given time, and therefore fail to understand what they read. Long, complex and
irregular words are particularly difficult for them. For example, it has been shown that reading times of
children with dyslexia grow linearily with each additional letter (Spinelli, D., De Luca, M., Di Filippo,
G., Mancini, M., Martelli, M. and Zoccolotti, P., 2005) (Ziegler, J. C., Perry, C., Ma-Wyatt, A., Ladner, D.
and Schulte-Korne, G., 2003). Because children with dyslexia fail to establish the automatic procedures
necessary for fluent reading, they tend to read less and less. Indeed, a dyslexic child reads in one year
what a normal reader reads in two days (Cunningham, A. E. and Stanovich, K. E., 1998) -a vicious circle
for a dyslexic child because becoming a fluent reader requires extensive training and exposure to written
text (Ziegler, J. C., Perry, C. and Zorzi, M., 2014)

In this paper, we report an experiment comparing the reading performance of dyslexic children and
poor readers on original and simplified corpora. To the best of our knowledge, this is the first time that
such an experiment is undertaken for French readers. Our aim was to reduce the linguistic complexity
of ten standardized texts that had been developped to measure reading speed. The idea was to identify
the words and the structures that were likely to hamper readability in children with reading deficits. Our
hypothesis was that simplified texts would not only improve reading speed but also text comprehension.
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A lexical analysis of the reading errors enabled us to identify what kind of lexical complexity was par-
ticularly harmful for dyslexic readers and define what kind of features should be taken into account in
order to facilitate readability.

2 Experimental Study

2.1 Procedure and participants
We tested the effects of text simplification by contrasting the reading performance of dyslexic children

on original and manually simplified texts and their comprehension by using multiple choice questions at
the end of each text. The children were recorded while reading aloud. They read ten texts, five original and
five simplified in a counter-balanced order. Each text was read in a session with their speech therapists.
The texts were presented on a A4 sheet printed in 14 pt Arial font. The experiment took place between
december 2014 and march 2015.

After each text, each child had to answer the three multiple-choice comprehension questions without
looking at the texts (the questions were the same for the original and the simplified versions of the text).
Three possible answers were provided in a randomized order : the correct one, a plausible one taking
into account the context, and a senseless one. Two trained speech therapists collected the reading times
and comprehension scores, annotated the reading errors, and proposed a global analysis of the different
errors (cf. 3.1) (Brunel, A. and Combes, M., 2015).

Ten children aged between 8 and 12 attending regular school took part in the present study (7 male, 3
female). The average age of the participants was 10 years and 4 months. The children had been formally
diagnosed with dyslexia through a national reference center for the diagnosis of learning disabilities.
Their reading age 1 corresponds to 7 years and 6 months, which meant that they had an average reading
delay of 2 years and 8 months.

2.2 Data set
The corpora used to test text simplification is a collection of ten equivalent standardized texts (IReST,

International Reading Speed Texts 2). The samples were designed for different languages keeping the
same difficulty and linguistic characteristics to assess reading performances in different situations (low
vision patients, normal subjects under different conditions, developmental dyslexia, etc.). The French
collection consists on nine descriptive texts and a short story (more narrative style).

The texts were analyzed using TreeTagger (Schmid, H., 1994), a morphological analyzer which per-
forms lemmatization and part-of-speech tagging. The distribution in terms of part-of-speech categories
is roughly the same in original and simplified texts, although simplified ones have more nouns and less
verbs and adjectives. Table 1 shows the average number of tokens per text and per sentence, the average
number of sentences per text, the distribution of main content words and the total number of lemmas :

IReST originals IReST simplified
Average number tokens/text 131.4 124.2
Average number tokens/sent 8,8 9,1
Average number sent/text 15,9 14,5
Average NOUNs 39.54% 39.70%
Average VERBs 31.07% 31.87%
Average ADJs 11.68% 9.48%
Total lemmas 779 728

TABLE 1 – IReST corpora features before and after manual simplifications.

2.3 Simplifications
Each corpus was manually simplified at three linguistic levels (lexical, syntactic, discursive). It is

worth mentioning that, in previous work, text simplifications are commonly considered as lexical and

1. We used standardized reading tests to assess the reading level of each child, i.e. lAlouette (Lefavrais, 1967) and PM47
(Raven, 1976) and a small battery of tests to assess general cognitive abilities.

2. http ://www.vision-research.eu
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syntactic (Carroll, J. and Minnen, G. and Pearce, D. and Devlin, S. and Tait, J., 1999), little attention
is generally paid to discourse simplification with a few exceptions. In this study, we decided to perform
three kinds of linguistic transformations because we made the hypothesis that all of them would have an
effect on the reading performance. However, at the time being, only the lexical simplifications have been
analyzed in detail (cf. section 3.2).

The manual simplifications were made according to a set of criteria. Because of the absence of previous
research on this topic, the criteria were defined by three annotators following the recommendations for
readers with dyslexia (Ecalle and Magnan, 2006) for French and (Rello, L., 2014) for Spanish.

Lexical simplifications. At the lexical level, priority was given to high-frequency words, short words
and regular words (high grapheme-phoneme consistency). Content words were replaced by a synonym 3.
The lexical difficulty of a word was determined on the basis of two available resources : Manulex (Lété
et al., 2004) 4, a grade-level lexical database from French elementary school readers, and FLELex
(François et al., 2014) 5, a graded lexicon for French as a foreign language reporting frequencies of
words across different levels.

If the word in the original text had a simpler synonym (an equivalent in a lower level) the word was
replaced. For instance, the word consommer (’to consume’) has a frequency rate of 3.55 in Manulex, it
was replaced by manger (’to eat’) that has 30.13. In most of the cases, a word with a higher frequency is
also a shorter word : elle l’enveloppe dans ses fils collants pour le garder et le consommer plus tard >
... pour le garder et le manger plus tard (’she wraps it in her sticky net to keep it and eat it later’).

Adjectives or adverbs were deleted if there was an agreement among the three annotators, i.e. if it
was considered that the information provided by the word was not relevant to the comprehension of the
sentence. To give an example, inoffensives (’harmless’) was removed in Il y a des mouches inoffensives
qui ne piquent pas (’there are harmless flies that do not sting’).

In French, lexical replacements often entail morphological or syntactic modifications of the sentence,
in these cases the words or the phrases were also modified to keep the grammaticality of the sentence (e.g.
determiner and noun agreement) and the same content (meaning). Example, respectively with number
and gender agreement : une partie des plantes meurt and quelques plantes meurent (’some plants die’),
or la sécheresse (’drought’) and au temps sec (’dry wheather’).

Syntactic simplifications. Structural simplifications imply a modification on the order of the consti-
tuents or a modification of the sentence structure (grouping, deletion, splitting (Brouwers, L. and Bern-
hard, D. and Ligozat, A.-L. and François, T., 2014)). In French, the canonical order of a sentence is SVO,
we thus changed the sentences where this order was not respected (for stylistic reasons) : ensuite poussent
des buissons was transformed into ensuite des buissons poussent (’then the bushes grow’). The other syn-
tactic reformulations undertaken on the IReST corpora are the following : passive voice to active voice,
and present participle to present tense (new sentence through ponctuation or coordinate conjunction).

Discursive simplifications. As for transformations dealing with the coherence and the cohesion of the
text, given that the texts were short, we only took into account the phenomena of anaphora resolution,
i.e. expliciting the antecedent of a pronoun (the entity which it refers to). Although a sentence where the
pronouns have been replaced by the antecedents may be stylistically poorer, we made the hypothesis that
it is easier to understand. For instance : leurs traces de passage (’their traces’) was replaced by les traces
des souris (’the mice traces’).

The table 2 gives an idea of the transformations performed in terms of quantity. As clearly showed,
the majority of simplifications were lexical :

3. The following reference resources were used : the database www.synonymes.com and the Trésor de la Langue
Française informatisé (TLFi) http://atilf.atilf.fr/tlf.htm.

4. http://www.manulex.com
5. http://cental.uclouvain.be/flelex/
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Lexical Simplifications 85.91%
Direct replacements 57.04%
Removals 13.38%
Replacements with morphological changes 4.93%
Replacements with syntactical changes 10.56%
Syntactic Simplifications 9.86%
Reformulations 7.75%
Constituent order 2.11%
Discursive Simplifications 4.23%
Total 100 %

TABLE 2 – Linguistic transformations on the IReST French corpora.

3 Results

Two different analyses were performed : one for quantitatively measuring the reading times, the num-
ber of errors and the comprehension scores. The second one took specifically into account the lexicon :
the nature of the words incorrectly read.

3.1 Behavioral data analysis

Reading Times. The significance of the results was assessed with a pairwise t-test (Student) 6. The
results are shown on table 3 :

Variables Original texts Simplified texts T value Significance
Reading times (sec) 159.94 134.70 -3.528 0.006**
Reading speed (words per minute) 64.85 71.10 4.105 0.003**

TABLE 3 – Significance of the results obtained.

From this table it can be seen that the overall reading times of simplified texts were significantly shorter
than the reading times of original texts. While this result can be attributed to the fact that simplified
texts were slightly shorter than original texts, it should be emphasized that reading speed (words per
minute), which is independent of the length of a text, was significantly greater in simplified texts
than in original texts.

Number of errors. The total number of errors included :

— (A) the total number of skipped words, repeated words (words read twice), interchanged words,
line breaks, repeated lines (line read twice)

— (B) the total number of words incorrectly read for lexical reasons (the word read is a pseudo-word
or a different word)

— (C) the total number of words incorrectly read for grammatical reasons (the word read has the same
grammatical category (part-of-speech) but varies on number, gender, tense, mode, person)

First of all, it should be noted that participants made fewer errors in simplified texts than in origi-
nal ones (5,5% vs 7,7%) 7. The table 4 shows the distribution of all the errors :

Type of error Original texts Simplified texts
(A) reading 40 10.05% 36 13.64%
(B) lexical 182 45.73% 112 42.42%
(C) grammatical 176 44.22% 116 43.94%

398 100,00% 264 100,00%

TABLE 4 – Distribution of the types of errors in original and simplfied texts.

It can be noted that lexical and grammatical errors occurred equally often 8.

Comprehension scores
6. ** significant results with p < 0.01
7. This difference was significant in a t-test (t = 2,3, p < 0.05)
8. A more detailed analysis of these errors is proposed on section 3.2.
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The results of the comprehension questionnaire are better for simplified than for original texts (margi-
nal gain 9) as shown on table 5 :

Variable Original texts Simplified texts T value Significance
Comprehension score 2.08 2.30 1.819 0.10+

TABLE 5 – Significance of the results obtained.

These results entail that dyslexic children read the simplified version of the corpus without a
significant loss of comprehension. If anything, they showed a marginal increase in comprehension
scores for simplified texts.

3.2 Lexical analysis

As we were interested in the lexicon of the corpus, an analysis of the content words (i.e. nouns, verbs,
adjectives, adverbs) incorrectly read was undertaken in order to better target the reading pitfalls. From our
study, we identified 404 occurrences that were incorrectly read, corresponding to 213 different lemmas
(to be precise, there were 235 tokens (22 were inflected variants), i.e. arbre and arbres, or restaient,
restent, rester). 404 wrong read words corresponds to 26.81 % of the content words of the corpora,
which means that more than one word out of four is incorrectly read.

It is worth mentioning that we did not count monosyllabic grammatical words as determiners, pro-
nouns or prepositions, although an important number or errors occurred also on those tokens, i.e. le read
la (’the’), ces read des (’these’), pour read par (’for’). We make the hypothesis that the readers concen-
trate their efforts on decoding content words, and not grammatical ones, because they are those that carry
the semantic information and are thus important for text comprehension. Besides, as grammatical words
are usually very short and frequent in French, they have a higher number of orthographic neighbours and
people with dyslexia tend to confuse short similar words.

We distinguished the words that were replaced by a pseudo-word (29.46%) and those replaced by other
existing words on French vocabulary (70.37%). These figures can be compared with those obtained by
Rello and collaborators (Rello, L. and Baeza-Yates, R. and Saggion, H. and Pedler, J., 2012). Non-word
errors are pronunciations that do not result in an existing word, real-word errors are pronunciations that
result in an incorrect but existing word. Non-word errors appear to be higher in English (83%) and in
Spanish (79%), but not in French where real-word errors were clearly a majority 10 :

Category English Spanish French
Real-word errors 17% 21% 70.54%
Non-word errors 83% 79% 29.46%

TABLE 6 – Error typology compared accross languages.

The overall error typology that we propose is shown on table 7 :

Type of lexical replacement Original word English translations
Pseudo-word 119 29.46% grenouille > *greniole frog, *
Grammatical variant 135 33.42 % oubliaient > oublient forgot, forget
Lexical replacement 84 20.79% attendent > attaquent wait, attack
Morphological variant 43 10.64% construction > construire build, to build
Orthographical neighbour 23 5.69% jaunes > jeunes yellow, young
Total 404 100%

TABLE 7 – Error typology.

Grammatical variants concern variations on gender and number for nouns, and for person, tense and
mode for verbs. Lexical remplacements are words read as if they were other words with orthographical
similarities (lieu > ı̂le, en fait > enfin, commun > connu, etc.). Morphological variants are words of

9. p < 0.1
10. This finding will deserve more attention in future work.
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the same morphological family (baisse > basse, malchanceux > malchance). As for orthographical
neighbours, we specifically distinguish word pairs where the difference is only of one letter (raisins >
raisons, bon > don).

Concerning word length for all the mentionned features, 36.88% of the words read were replaced by
words of strictly the same length (forment > formant, catégorie > *calégorie), 14.11% were replaced by
longer ones (utile > utilisé, suffisant > suffisamment), 49.01% were replaced by shorter ones (nourriture
> nature, finie > fine, empilées > empli). The average length of the 404 words incorrectly read is 7.65
characters (the shortest has three characters, bon, and the longest 16, particulièrement).

The average number of orthographical neighbours is 3.24, with eight tokens having more than ten
neighbours : bon, bois, basse, foule, fine, fils, garde, sont (’good, wood, low, crowd, thin, thread, keeps,
are’).

As far as the grammatical categories are concerned, the majority of the errors were on verbs. They
concerned grammatical variants of person, tense (past imparfait > present) and mode (present > present
participle). The distribution on part-of-speech tags errors is shown on table 8 :

Part-of-speech tags of tokens incorrectly read
VERB 196 48.51 %
NOUN 115 28.47%
ADJECTIVE 48 11.88%
ADVERB 25 6.19%
Other categories (determiners excluded) 20 4.95%

TABLE 8 – Part-of-speech distribution of the tokens in the corpora.

We analyzed the syllabe structure of the 404 tokens. The average number of syllables is 2.09, the
distribution is shown on table 9 :

Number of syllabs
1 syllab 72 30,64%
2 syllabs 96 40,85%
3 syllabs 47 20,00%
4 syllabs 15 6,38%
5 syllabs 5 2,13%

235 100,00%

TABLE 9 – Syllabs distribution of the tokens in the corpora.

In French, it is stated that the more frequent (and easier) structure is CV and V. In our results, 58,69%
of the words contain this common structure, while 41,31% present a more complex structure (CVC,
CVCC, CYC 11, etc.), as shown on table 10 :

Syllable structure
CV 230 47,03%
V 57 11,66%
CVC 107 21,88%
CVCC, CCVC, CYVC 47 9,61%
CYV, CCV, VCC, CVY 34 6,95%
VC, YV 10 2,04%
VCCC, CCYV, CCVCC 4 0,82%

489 100,00%

TABLE 10 – Syllable structure.

We finally analyzed the consistency of grapheme-to-phoneme correspondences which is particularly
irregular in French (silent letters, nasal vowels, etc.) 12. As mentioned above, the average length of the
words incorrectly read is 7.65 and their average in number of phonemes is 4.95. This means that the

11. C is a consonant, V is a vowel, Y is a semi-vowel, i.e. [j] in essayait [e-se-je], [w] in doivent [dwav]
12. This is not the case for other languages, e.g. the Spanish writing system has consistent grapheme-to-phoneme correspon-

dences.
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average difference between the number of letters and the number of real phonemes is 2.71. Only four
tokens were regular (same number of phonemes than letters : existe, mortel, partir, plus (’exists, mortal,
leave, plus’)). The highest difference is 6 in apparaissent, épargneaient (’appear, saved’) with 12 letters
and 6 phonemes each, and mangeaient (’ate’) with 10 letters and 4 phonemes. All the words incorrectly
read were thus irregular as far as grapheme-to-phoneme consistency is concerned.

4 Discussion : determining where complexity is

According to the literature, complexity for children with dyslexia should be found on long and less
frequent words. More precisely, from the analysis of the reading errors obtained on our first pilot-study,
the errors mainly occur on verbs and nouns with complex syllable structure, i.e. irregular grapheme-to-
phoneme correspondences, words with many orthographic neighbours or many morphological family
members which are more frequent. Visual similarity is a source of error, specially for the following
pairs 13 :

Letter alternation Example English translations
p/tt guêpe > guette wasp, watch
b/d bon > don, bien > dans good, gift / fine, in
d/q attendent > attaquent wait, attack
t/l ramifications > *ramificalons branching, *
q/g quand > grand when, big
g/j augmente > *anjmente increases, *
m/n commun > connu common, known
r/l grâce > glace grace, ice
l/i lieu > ı̂le, plus > puis place, island / plus, after
u/n déguiser > *dénise dress up, *
e/a vivent > vivant live, living
e/o veulent > *voulent want, *

TABLE 11 – Graphical alternations.

In all the replacements we can observe visual similarities. As shown in table 12 ,the word that is
actually read tends to be in most of the cases shorter and more frequent 14 than the original one :

Type of replacement Example English translations Frequencies
Similar lexical items meurt > mur dies, wall 9.89 - 179.63

toiles > étoiles canvas/web, stars 16.77 - 121.99
poison > poisson poison, fish 16.64 - 230.20

Orthographical neighbours minuit > minute midnight, minute 35.57 - 57.70
branches > blanches branches, white 98.03 - 44.76
raisins > raisons grape, reason 9.86 - 22.87

Morphological variants banquets > banque banquets, bank 0.21 - 19.54
construction > construire build, to build 31.61 - 68.73
piqûres > piques pitting, endpin 5.03 - 0.93

Grammatical variants animaux > animal animals, animal 415.56 - 333.50
mangeaient > mangent ate, eat 9.66 - 31.69
permettent > permet they allow, he/se/it allows 29.90 - 89.65

TABLE 12 – Lexical replacements typology with frequencies of the tokens.

To sum up, lexical complexity for dyslexic readers in French is to be found on verbs and nouns longer
than seven characters, presenting letters with similar equivalents, with complex syllables and irregu-
lar phoneme-to-grapheme consistency. Lexical replacements of words incorrectly read should consider
shorter and more frequent words and words with higher grapheme-to-phoneme consistency.

5 Conclusion

In this paper we have presented the results of a first pilot-study aiming at testing the effects of text
simplification on children with dyslexia. From our results, reading speed is increased without a loss of

13. Other possible similar pairs (not found in our corpora) : t/f, u/v, a/o
14. The frequencies have been extracted from the Manulex database (column including the five levels).
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comprehension. It is worth mentioning that reading errors were lower on simplified texts (in this expe-
riment, simplified texts contained a majority of lexical simplifications). The comprehensive analyses of
reading errors allow us to propose a detailed description of lexical complexity for dyslexic children. The
causes of lexical complexity were mainly related to word length (words longer than seven characters),
irregular spelling-to-sound correspondences and infrequent syllable structures.

The insights obtained as a result of this first pilot-study are currently being integrated into a model
aiming at providing better accessibility of texts for children with dyslexia. We are currently working in
a new study with children in French schools to refine the features that are to be taken into account in
our model. These results will be integrated into a tool that will automatically simplify texts by replacing
complex lexical items with simpler ones.
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Abstract 

In this paper we will be dealing with different levels of complexity in the processing of Italian, a 
Romance language inheriting many properties from Latin which make it an almost free word order 
language1. The paper is concerned with syntactic complexity as measurable on the basis of the 
cognitive parser that incrementally builds up a syntactic representation to be used by the semantic 
component. The theory behind will be LFG and parsing preferences will be used to justify one choice 
both from a principled and a processing point of view. LFG is a transformationless theory in which 
there is no deep structure separate from surface syntactic structure. This is partially in accordance with 
constructional theories in which noncanonical structures containing non-argument functions 
FOCUS/TOPIC are treated as multifunctional constituents. Complexity is computed on a processing 
basis following suggestions made by Blache and demonstrated by Kluender and Chesi.  

1 Introduction 

In this paper we will be addressing what the CFP of the workshop has defined as “whether, and to 
what extent, linguistic phenomena hampering human processing correlate with difficulties in the 
automatic processing of language”.  This will be done by presenting work done in the past on the topic 
of noncanonical and difficult to parser syntactic structures that may create ambiguity at phonological 
level, and how to solve it. In that case, the goal was creating an automatic system for text-to-speech, 
i.e. a TTS system. This will be completed by showing results of an experiment done with statistical 
data-driven dependency parsers - and a rule-based one - analysing a highly noncanonical text type – 
children stories or fables. I will show the evaluation done both on the Italian text and the 
corresponding English translation.  
   Current approaches to deep syntactic-semantic natural language modeling are strongly statistically 
based and have achieved near 90% accuracy in some cases. The problem with statistical modeling is 
that they are strictly bound to training material. Achieving generality requires mixing diverse domains 
in the training data. In such cases, accuracy varies a lot depending on the language. In particular, more 
canonical languages achieve 85% accuracy on average – this includes English in non-projective 
structures and 90% accuracy on projective ones2. Less canonical languages, like Italian for instance, 
are below that threshold and average 82/83% accuracy3.  
   The question is that syntactic processing is just one step towards natural language understanding, 
and the hope to cover sentence level semantics in the near future is not very close. In addition, if we 
consider Italian, the results are strongly flawed by the fact that dependency parsers are not equipped 
for lexically unexpressed categories as the Null Subject, which in Italian constitute some 60% of all 
Subject cases. Languages containing Null Subjects also include Chinese where the recognition rate for 
this language of such Subject positions by current state-of-art statistical parsers averages 50% 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
    1Parameters usually referred to when defining “free” word order languages like Latin include: lack of articles, Null 
Subjects, lack of expletives, freely omitting the complementizer, intensive case marking, etc. to quote the most important 
ones. Italian only has some of them and the resulting constructions for a simple declarative clause may include all possible 
permutations at constituent level, but not at word level as Latin for instance would do.	
  
    2 Experiments with different domains for test and training are reported in Surdenau et al. 2008 where in particular the 
conplete task with WSJ(Marcus et al. 1993) averages 86% F measure, when Brown(Francis & Kucera 1967) is used it drops 
to 76%. Average performance for 5 different domains when training and test domain diverge show a significant drop 
whenever we move from WSJ 89% to biomedical domain GENIA 66.6%, to dialogue domain of SwitchBoard 69% and to 
Brown 80%. 
    3This value has been reported in a mail thread by Giuseppe Attardi experimenting with Universal Dependencies treebanks 
and the newly released SyntaNet, “the world’s most accurate parser”, as it is publicized on the web.	
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accuracy. Semantic processing is thus highly flawed by the grammatically incomplete structures 
produced by data-driven dependency parsers.  
   An important factor that determines levels of complexity in linguistic data are presence of non-
canonical structures which in some languages and some domains are almost negligible, as for instance 
English in the corpus constituted by WSJ news – see below. But when we move to the BROWN 
corpus the presence of such structures is important and determines a decrease in accuracy and a drop 
in performance that can range from 6 to 8 points (See McClosky et al. 2010, Hara et al. 2010, Gildea 
2001). Italian on the contrary is very rich on such non-canonical structures including discontinuities of 
all sorts, but as before some genre or domain has more than others.  
   The paper is organized into two main sections, the following one, section 2 devoted to performance 
related cases of complexity where we take the stance to use LFG theory and Parsing Strategies to 
explain ambiguity in the data. We will then present results of a study carried out on non-canonical 
Italian sentences as they have been treated by most well-known parsers of Italian. In this section we 
will then show results from an experiment with current best statistical data-driven dependency parsers 
of Italian when presented with a highly non-canonical text. 

2 Different types of complexities: Performance and Parsing Strategies 

As the call for paper clarifies, the notion of complexity is highly polysemous and may be related to a 
number of different issues. In the past, we have been approaching language complexity by way of 
structural ambiguity and parsing preferences, in a number of papers dealing with some of the issues 
mentioned above that we will present shortly below. In particular, in the paper published in Delmonte, 
1984 we discuss issues related to so-called “Syntactic Closure” where performance and theoretical 
issues are strongly interrelated. Similar problems have been discussed in the paper published in 
Delmonte, 1985 which poses questions linking phonology and parsing, again performance related 
issued.  
   In our approach we have always indicated LFG (Lexical-Functional Grammar)(Bresnan, 1982) as 
the theoretical and practical backbone of our research activity, which has inspired also heavily the way 
in which our computational work has been carried out. This is due to the choice of LFG to support a 
psycholinguistic approach in which performance played an important role and to call for a processor 
as a fundamental component of the overall theory(ibid. xxii-xxiv). LFG is a transformationless theory 
which is based on the lexicon and the existence of lexical rules to account for main NP movements. 
Long-distance dependencies are accounted for by properties of the f-structure. In a paper appearing in 
1989, Kaplan & Zaenen introduce the notion of  “uncertainty” in functional assignment. A displaced f-
structure, receiving one of the non-argumental pragmatically related functions, FOCUS or TOPIC, 
will be made dependent or will fuse with the missing function in a following or preceding f-structure 
that requires it. Requirements are dictated by grammatical principles of Completeness and 
Uniqueness. Lately, long-distance dependencies in LFG and processing related theories have been 
pragmatically based in a paper by Y.Falk(2009) and we will return to this position in the final section. 

2.1 Syntactic Closure and Parsing Strategies 

The problem of Syntactic Closure (hence SC) will be here discussed inside a Theory of Performance 
or a Linguistic Realization Theory(hence LRT) which in turn is represented in LFG. Consider the two 
examples (ibid. 103, same numbering): 
 
(1) Tino ha detto che Bruno è morto ieri. / Tino said that Bruno died yesterday. 
(2) Tino ha detto che Bruno è partito ieri. / Tino said that Bruno left yesterday. 
 
A competence theory will give both sentences an ambiguous structural description, on the basis of the 
fact that the adverbial "ieri/yesterday" can be attached both in the embedded and in the main clause, 
and will make available two structural representations. The theory of SC (hence TSC) which operates 
inside LRT has to explain why there is a preference for a particular analysis, i.e. attaching the adjunct 
lower, inside the embedded clause and not in the clause governed by the main verb DIRE/SAY. In 
LFG Adjuncts are not argument-like structures and cannot be subcategorized in the lexicon. There can 
only be semantic restrictions for compatibility and appropriateness.  
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Syntactic ambiguity can disappear in case TENSE in the embedded clause is no longer "compatible" 
with tense features contained in the Temporal Adjunct, as for instance in the following examples (ibid. 
p.104, same numbering): 
 
(3) Giovanni ha detto che non tornerà più ieri. / John said he will never come back yesterday 
(4) Ho trovato le scarpe che più desidero ieri. / I have found the shoes I like more yesterday 
 
However, there may be still another class of examples, this time lexically biased, where tense is 
compatible but attachment will preferentially go up to the main clause (ibid. p.105, there (8) and (9)): 
 
(5) Finalmente ho terminato il lavoro che mi rendeva schiavo ieri. / At the end I finished the work 
which made me slave yesterday. 
(6) C'è che ho lasciato la persona che amavo ieri. / It happened that I left the person I loved yesterday. 
(7) Sai, ho trovato il regalo che speravo ieri. / You know what, I found the present I hoped yesterday. 
 
In these examples, the strong form of the verb attracts attachment, the weak form doesn't. The three 
verbs are lexically represented as follows according to LFG: 
 
TERMINARE  <(SUBJ), (OBJ), (ADJ)> 
AMARE  <(SUBJ), (OBJ)> 
SPERARE  <(SUBJ), (XCOMP)> 
 
The attachment attraction is induced by the force of alternative lexical entries for the same verb, and 
this in turn is determined by frequency of usage and a stability in the underlying structure that justify 
these findings on SC also in sentences isolated from context (p.105). As said above, semantic 
appropriateness depends on the knowledge of the world the speaker will have available in order to 
decide which sequence of predicate, argument sand adjuncts to select in the context. 
   The theory of sentence understanding that we purport assumes that the order of application of the 
rules in a rule-based parser is determined by two principles obeying certain parameters. The two 
principles are Lexical Preference (LP) and Final Arguments (FAs); the former has as default 
parameter the strength of alternate categories in the choice of syntactic rules called Syntactic 
Preference(Delmonte, 2000). The latter principle, FAs, is bound to the hypotheses developed by the 
parsing process, and the parameter is called Invoked Attachment (IA). The "closure" property of 
syntactic phrases in turn is governed by lexical elements and their underlying lexical form, as 
indicated by Ford et al., (1981, 747). The default principle to prioritize alternate categories in the 
execution of phrase structure rules is the strength of those categories (ibid. 749). In the two sentences 
(our numbering, p.111, there 18, 19): 
 
(8) La 1 donna 2 ha 3 sistemato 4 il 5 vestito 6 su 7 quell' 8 attaccapanni 9 . 10 / The woman has 
hanged the dress on that peg. 
(9) La 1 donna 2 ha 3 chiesto 4 il 5 vestito 6 su 7 quell' 8 attaccapanni 9 . 10 
/ The woman has asked the dress on that peg. 
 
As the parser reaches position (4) it has to build the OBJect and then complete the VP. To do that, it 
will call for lexical information, which have the following strong forms: 
 
SISTEMARE <(SUBJ), (OBJ), (PCOMP)> 
CHIEDERE <(SUBJ), (OBJ)> 
 
After choosing to build an OBJect, at position 6, in one case, - with the verb SISTEMARE/HANG - 
the LP principle will hamper taking the PP to be analysed as ADJunct of the noun DRESS and so 
consumed locally inside the OBJect NP. The parser will require the PP to be interpreted as PCOMP 
and as such be left for the upper VP level. This will also be promoted by the other principle, FAs, 
which says that: the final argument in the lexical form of a given predicate is a syntactic phrase that 
must be coherent with it - NP/OBJ, PP/PCOMP - and cannot be followed by other constituents 
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coherent with the same form. On the contrary, the LP will allow the PP to be consumed locally in the 
OBJect NP. In one case the theory speaks of LATE CLOSURE, where the PP is prevented from being 
consumed inside the NP headed by DRESS. The PP in this case has been given low priority by the 
presence of alternate options, i.e. the presence of a PCOMP in the strong form of the main governing 
verb SISTEMARE/HANG. 

2.2 Functional vs Syntactic Reversibility in Question Parsing and Semantic Roles 

In Delmonte(1985) we were basically concerned with a recognition grammar to supply information to 
a text-to-speech system for the synthesis of Italian which is shown to have to rely heavily upon lexical 
information, in order to instantiate appropriate grammatical relations and assign Semantic 
Roles. Italian is an almost free word order language which nonetheless adopts fairly analysable 
strategies for major constituents which strongly affect the functioning of the phonological component. 
Two basic claims have been made: i. difficulties in associating grammatical functions to constituent 
structure can be overcome only if Lexical Theory is adopted as a general theoretical framework, and 
translated into adequate computational formalisms like ATN or CHART; ii. decisions made at 
previous point affect Focus structure construal rules, which are higher level phonologicaI rules that 
individuate intonation centre, contribute to build up adequate Intonational Groups and assign pauses to 
adequate sites, all being very sensitive to syntactic and semantic information. In the paper, I then 
concentrate on Subject/Object function association to c-structure in Italian, and its relation to ATN 
formalism, in particular HOLD mechanism and FLAGging. This is done by analysing wh- structures, 
both direct questions and relative clauses which eventually constitute non-canonical structures in 
which Subject Inversion is almost obligatory.  
   We define reversible structures at syntactic and functional level as the ones that allow their 
arguments to assume both SUBJect and OBJect functions as in the examples below (ibid. 137, number 
1,2): 
 
(12)a The secretary has been killed by the director. 
      b. The book has been read by John. 
 
While 12a. allows reversing the two core functions, the b. example doesn’t. It is clear that non-
reversible passive structures contain additional grammatical cues to speed up comprehension, which 
are only available from lexical entries in which selectional restrictions are listed. These features are 
then used to constrain assignment of semantic roles. From a purely processing point of view, passive 
structures are the canonical case of NP requiring reinterpretation when verb morphology is accessed. 
Thus, the NP SUBJect computed so far, will receive reversed Semantic Role associated to the OBJect 
in the lexical entry of the verb – in LFG by means of lexical rules.  
As said above, Italian is a language that allows Null Subjects: SUBJects in Italian have specific 
properties: 
- it can appear in preverbal – the canonical position - or postverbal position as a case of Subject 
Inversion; 
- be unexpressed as a case of obviative or extrasentential pronominal in tensed clauses; 
- be stranded or extraposed, i.e. moved out of its matrix clause and placed after heavy Complements 
(phrases or sentences) 
It is also necessary to clarify that lexical properties are paramount also in English, where not always 
NP1 appearing in preverbal position entertains SUBJect function, nor NP2 can be always interpreted 
as OBJect as the following examples clearly show (ibid. 137, numbers 3-7)4: 
 
(13)a. Computers have been given no consideration whatsoever by linguists in Italy 
      b. Her father Mary hates. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
    4 where we have cases of fronted NP2 detectable only by having access to NPs inherent semantic features. Thus, in a.,it is 
OBJect2 which has been passivized and not NP2; in b. we have a topicalized sentence with fronted NP2; in c. SELL is used 
in ergative structural configuration, in which NP2 is raised to Subject; the same applies to d., a case in which Subject NP 
would be always omitted (subjectless impersonal structures are frequently used in technical and scientific English); also e. is 
a subjectless structure, in which "tough predicate" appears and Object NP2 is raised to Subject position.	
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      c. The latest book by Calvino sells well. 
      d. The logical operator .NOT. applies to the parenthesized statement. 
      e. Geneva is easy to reach in Italy. 
 
And now briefly, NP2 need not always be interpreted as Object of its clause, as shown below (ibid. 
137, numbers 8’10)5: 
 
(14)a. There came the magician with his magic rod. 
      b. But the real murderer is the landlord. 
      c. Mary gave John a beautiful present. 
      d. In the corner stood an old boxer. 
 
Now, STRUCTURAL reversibility involves the possibility to use the same constituent order and to 
freely alternate the instantiation of grammatical functions, while the underlying Semantic Roles 
change. The result is that with Structural reversibility only one interpretation will result. Even though 
Semantic Roles can be associated interchangeably to either preverbal or postverbal NP without 
violating selectional restrictions or semantic compatibility conditions, it is the final constituent order 
and structure that decides on the interpretation. In this sense, non-reversible passives only allow a 
single well-formed mapping.  
   Coming to wh- structures we can see the difference existing between Italian and English: the 
following example is only allowed in Italian where in fact it is obligatory (ibid.138, number 13): 
 
(15)a. *This is the cheese that ate the mouse that ate the cat that chased the dog. 
    b. Questo è il formaggio che ha mangiato il topo che ha mangiato il gatto che inseguì il cane. 
    c. Questo è il formaggio che ha mangiato il topo che ha mangiato il gatto che il cane inseguì. 
    d. This is the cheese that the mouse ate that the cat ate that the dog chased. 
 
This example shows a case of non-reversible functional structure: postverbal positions are available 
structurally but not functionally in English which semantically will only allow SUBJect interpretation 
for MOUSE, CAT, DOG but require preverbal positioning. Italian makes available postverbal position 
by means of SUBJect Inversion and thus the correct interpretation is triggered by the lexicon. These 
sentence contain double non-canonical structures – relatives and inversion - and require more 
computation than canonical ones. The  canonical version would have the relative pronoun for 
CHEESE interpreted in OBJect position, then a preverbal SUBJect position for the DOG. 
   In STRUCTURAL reversibility constituent order is crucial and characterizes configurational 
languages with fixed word order. On the contrary, with FUNCTIONAL reversibility ,constituent order 
is irrelevant, and what really matters is a lexically informed and constrained mapping. In 
configurational languages, grammatical functions can be associated in a reliable way to fixed or 
canonical constituent orders - examples 13. 14. above are both structurally and lexically marked. In 
Italian no such order exists because both preverbal and postverbal constituent positions constitute an 
unmarked case for SUBJect/OBJect functional assignment. 
   As a result, a parser of Italian is unable to produce reasonable predictions on the underlying 
grammatical relations in lack of morphological and lexical cues: it will have to rely on lexical and 
extralinguistic information. To better exemplify this, we will discuss wh- constructions which in 
English are more easily computable but in Italian are usually difficult to parse. The following example 
is very instructive (taken from Ritchie, 1980, his 120): 
 
(16)a. Dove ha sepolto il tesoro che ha rubato l’uomo di cui parlavi? 
    b. Where did the man who you mentioned bury the treasure which he stole? 
    c. *Dov’è che l’uomo che hai menzionato ha sepolto il tesoro che ha rubato? 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
    5where a. is a presentation sentence with a dummy pronoun "there" and the Subject NP is in postverbal position; b. is a 
predication sentence in which something is predicated about the NP Subject "the landlord" in postverbal position; in c. the 
postverbal NP is OBject2 of ditransitive Verbs constructions, which has undergone dative shift; and in d. we have a case of 
locative inversion.	
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In a. the NP SUBJect "l'uomo" has been displaced beyond two bounding nodes - in Italian NP and S' 
count as such (Rizzi, 1980): it binds two SUBJect positions and also the NP OBJect position inside the 
lower relative clause headed by "cui". On the contrary, the Null Subject position in front of "parlavi" 
is assigned obviative or disjoint reference, to an external antecedent. The only correct version for the 
English example reported in b. is a. On the contrary c. which tries to translate literally the same order 
is ungrammatical. The same happens with yes-no questions like this one (ibid.139, number 15): 
 
(17)a. Ha finito i compiti tua sorella? 
      b. Has your sister finished her homework? 
 
where postverbal position is again reserved for NP Object and the NP Subject "tua sorella" has been 
stranded or "extraposed". Simple wh- questions have the same problem, i.e. they lack structural cues 
to help detecting functional assignment, as in examples below (ibid. 139, numbers 16,17): 
 
(18)a. Quale pesce ha pescato la segretaria? 
      b. Quale segretaria ha pescato il pesce? 
      c. Which fish did the secretary catch? 
      d. Which secretary caught the fish? 
 
Fully ambiguous structures are the following complex Italian wh- questions(ibid.139, numbers 19,20): 
 
(19)a. Chi era la persona che ha incontrato Gino? 
      b. Who was the person who met John? 
      c. Who was the person who John met? 
(20)a. Chi ha detto che avrebbe assunto il capo? 
      b. Who said that he/she would have hired the chief? 
      c. Who said that the chief would have hired? 
 
Both INCONTRARE and ASSUMERE are only transitive verbs that make available two NP positions 
which are fully functionally reversible. On the contrary PESCARE that we saw before, is not 
functionally reversible. Another possibility would be the one constituted by the example below (ibid. 
140, number 24): 
 
(21)a. Chi ha detto che sta arrivando Gino? 
      b. Who said that Gino is arriving? 
 
In this case, the only functional role that can be associated to "Gino" is the one of inverted SUBJect 
seen that ARRIVARE is an unaccusative verb. Eventually we present a case of passive focussing, 
which is in many cases obligatory – as this one - in order to convey the novelty of the event: 
 
(22)a. E’ stato ucciso il presidente Kennedy! /President Kennedy has been killed. 
       b. Il presidente Kennedy è stato ucciso./ President Kennedy has been killed. 
 
Example b. is a version of an agentless passive in which the SUBJect is already Topic of discourse and 
the news needs only be confirmed. On the contrary, 22a presents the news out of the blue. The 
question here is complicated by the fact that the SUBJect is postponed in OBJect position to convey 
new information. In a transformation grammar, this would require movement back and forth, twice: at 
first to recover the grammatical function of sentential SUBJect, and then back since the same NP 
constituent has to be interpreted as Affected Theme and not as Agent in deep structure. Example 22a. 
is impossible in English, and only 22b is allowed: linguistic theories have been using Passive 
structures to determine their difference and specialty in the treatment of this important structure. They 
have all been based on English examples: Subject inverted structures in passive constructions might 
have induced different theoretical approaches. Similar to Italian examples are Russian Subject inverted 
structures, which have been considered as strictly depending on information structure distribution, due 
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to contextual factors: Partee et al. 2011 treats these cases as Perspective Structures. Subject inversion 
in Russian involves Existential sentences, Locative inversion, Passive inversion but also Unergative 
inversion (see Glushan & Calabrese, 2014). 

3 Computing Complexity 

In the ATN formalism, examples 19/20 are analysed as follows: a question element is contained in a 
register HOLD which is used to store it temporarily until the rest of the clause is processed. Then the 
element is passed down to any constituent that might use it - NP SUBJect/OBJect - or in turn could be 
allowed to pass it down to one of its internal constituent in case of complement clauses. Eventually, 
CHI might be made to fill in the lower SUBJect position or even the lower OBJect position, but in this 
case, "il capo" should be made to climb up – or erase and substitute the contents of the register by 
taking the position now occupied by "little_pro", a certainly more expensive choice. In a CHART 
inspired parse of the same sentences, all structures would be made available and the decision to choose 
the most appropriate would be left for the discourse level to make. The HOLD mechanism does not 
seem to be particularly adequate to solve the ambiguous structures we proposed, since it usually works 
searching for a HOLE where to insert some linguistic material it has already found and judged to be 
displaced. In our case the situation is totally reversed: first come the HOLE(S) then the material to fill 
in. To suit the limitations imposed by Short-Term or working Memory, no more than 7 single 
linguistic items can be stored before they enter Long-Term Memory. This is mimicked by the working 
of an incremental parser that computes fully interpreted structures which in LFG should correspond to 
F-structures. In our previous work(2009, Chapter 3) we presented a principle-based version of the 
parser that takes advantage of the Minimalist Theory (hence MT) to instruct the "processor" while 
inputting words incrementally in the working memory. In the sections above, the theory we followed 
was LFG but in both cases it is now the lexicon that drives the computation: in fact, lexical 
information in the MT makes available features to the processor that will use Merge and Move to 
select appropriate items and build a complete structural representation. To justify memory restrictions, 
the parser takes advantage of an intermediate level of computation, called PHASE constituted by a 
fully realized argument structure preceded by a Verb. Reaching the verb is paramount also for LFG 
theory, for selection but also for grammatical function assignment. In Chesi(2016:31-32) the author 
proposes a complexity metrics called Feature Retrieval Cost (hence FRC) that he associates to the MT 
theory. In particular, the moves of an MT-inspired processor are accompanied by reading times, which 
seem to (partially) confirm the prediction of the theory. In turn, these predictions are computed on the 
basis of local and non-local features and depend strictly on the type of argument selection operated by 
the verb. This is what has been discussed above, with the so-called REVERSIBILITY notion applied 
to structure and function.  
   In addition, Chesi(ibid.33) following Friedmann et al. and Gibson(1998), assumes that referential 
properties of NPs as shown at determiner level may induce different cost measures: definite NPs being 
heavier to process than Proper Nouns, and these in turn heavier to process than deictic personal 
pronouns (you/I). This hierarchy is then partially reinforced by presence of distinct features. 
Reversibility however is a cost inducing factor, but as we saw above, it applies whenever strong 
transitive verbs are present. Eventually, linguistic elements causing main difficulties in processing are 
those definite NPs which cannot be distinguished by the parser on the basis of semantic selectional 
restrictions, and are involved in non-local (or long-distance) dependencies. The underlying idea is that 
higher costs are related to the integration of new referential material which needs to be coreferential 
with previously mentioned antecedents: this is regarded heavier but on the same level of third person 
pronouns, followed by easier to integrate Proper Nouns that can be identified uniquely in the world.  
   Following this line of reasoning, we take complexity measures to be sensible to non-canonical 
structures that are pragmatically motivated and are used to encode structured meaning with high 
informational content, related to the FOCUS/TOPIC non-argument functions in LFG. Non-canonical 
structures can be said to help the reader or interlocutor to better grasp the intended (pragmatically) 
relevant meaning in the context of use (see Birner & Ward, 2004;2006). In Levy et al.(2012) the 
authors “report an investigation into the online processing of non-projective dependencies in the 
context of prominent contemporary theories of syntactic comprehension.”(ibid.3) which is totally 
dedicated to extraposed Relative Clauses (hence ERC) in order to show that readers develop a high 
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level of expectancies for the presence of a possible non-projective or noncanonical modifying 
structure of an already computed NP head. Predictability of a certain noncanonical structure (hence 
NCS) highly depends on its frequency of use in given contexts. Italian noncanonical structures are 
relatively highly represented, as the following table shows, in our treebank called VIT(Delmonte et al., 
2007), where they have been explicitely marked with the labels indicated below: 
 

NCS/ 
Types 

LDC S_DIS S_TOP S_FOC DiscMods Total  | % Non | % NCS 
          | Project. | / TSSe 

Counts 251 1037 2165 266 12,437 16,156 |   7%   | 84.59% 

Table 1: Non-projective/noncanonical structures in VIT divided up by functional types. 

The final percentage is computed on the total number of constituents, amounting to 230,629. 6 If we 
compare these data with those made available by Mambrini & Passarotti(2013) for Latin, where the 
same index amounts to 6.65% - data taken from the Latin Dependency Treebank containing some 
55,000 tokens-, we can see that Italian and Latin are indeed very close. The second percentage is 
computed by dividing up number of NCS/TotalNumber of SimpleSentences. As for tree projectivity in 
the Penn Treebank (here marked as PT), numbers are fairly low as can be seen in the following table. 
 

TBs/NCS NCS UnxSubj TUtt TSSen 
VIT Totals 3,719 9,800 10,200 19,099 
PT  Totals 7,234 2,587 55,600 99,002 

VIT % 27.43% 51.31%   
PT % 13.16% 0.26%   

Table 2: NonCanonicalStructures and Unexpressed Subjects in VIT and PT.  

Total number of constituents for PT amounts to 720,086. Percent of NCS are computed on the number 
of Total Utterances, while percentage of Unexpressed Subjects are computed on the number of Total 
Simple Sentences. The nonprejectivity index for PT would then amount to 0.01004%. Expectancies 
for an Italian speaker for presence of a NCS are thus predictable to be fairly high, due to processing 
difficulties raised by number of Unexpressed Subjects(UnxSubj), in particular, as discussed above. 
This will not apply to an English speakers because NCS are unfrequent and used only in specific 
contexts and situations. 

4  An Experiment with Rule-Based and Statistical Dependency Parsers 

In this final section we will present results of the analysis of a highly non-canonical text, the fable of 
“the 3 little pigs”(see Appendix 1). We have been using what are regarded best parsers of Italian 
today, as they have been evaluated in EVALITA (Bosco & Mazzei, 2012; see www.evalita.it) 
evaluation campaigns. Most of them are accessible on the web7. Two of the parsers are fully statistical 
. TextPro and DeSR – while the others are hybrid rule-based/statistical parsers – TULE and VISL. We 
checked the output of the four parsers and marked both labeled and dependency errors. Results are 
shown in the table below. In Table 3. we report errors made by each parser, divided up into two 
classes, Labels and Dependencies. We then indicate number of words, and words with punctuation 
that we use to make statistics on Error Rate of each parser. As can be easily gathered, Mean values 
average well over 20% error rate with a resulting accuracy of less than 80%. Another important 
measure we report is number of fully errorless sentences: their means is below 5 over 25, that is only 
one fifth of the sentences are able to provide a correct mapping to semantics. The parsers share their 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
    6 LDC = Left Dislocated Complement S_DIS = Dislocated Subject (postposed); S_TOP = Topicalized Subject (preposed); 
S_FOC = Focalized Subject (inverted); DisMods = Discontinuous Modifers which include PP, PbyP, PofP, VP, RelCl, AP	
  
    7 http://beta.visl.sdu.dk/visl/it/parsing/automatic/parse.php 
http://hlt-services2.fbk.eu/textpro/?page_id=56 
http://tanl.di.unipi.it/it/ 
http://www.tule.di.unito.it/ 
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fully correct sentences on the total number of five which are in fact the ones containing only canonical 
structures. All remaining sentences have one or more noncanonical structure, thus showing that 
statistical data-driven parsers are unfit to cope with narrative Italian text. This is partly due to their 
models which are unable to generalize to noncanonical structure. In addition, their algorithms are 
unable to use global measures of grammaticality to improve their local choices, and in many cases 
cannot correct the choice of labeling as OBJect an inverted or simply dislocated NP, when the 
SUBJect is eventually missing, thus leaving the structure without a SUBJect.  
 
  TULE VISL DeSR TextPro Means StanfordLP 
Label 37 45 52 57 47,75 17 
Deps 32 56 44 59 47,75 24 
WordsNoPu 349 348 361 360 354,5 0 
totalWords 386 386 387 387 386,5 395 
CorrectSent 7 over 26 4 over 24 5 over 27 3 over 26 4,75 14 over 27 
ErrRtNoPu 19,77% 29,02% 26,59% 32,22% 26,90% 10,38% 
ErrorRate 17,88% 26,17% 24,81% 29,97% 24,71% 10,38% 

Table 3: Experiment with four parsers of Italian + Stanford LP 

We then used the same text in its English translation to check what Stanford Parser was able to do. 
Translating Italian fables into English erases most cases of noncanonical structures so that the result is 
a much simpler (canonical) text to parse. As can be seen, now the number of fully correct sentence is 
over half the whole set 14/27 and error rate has decreased dramatically to 10% yielding a 90% 
accuracy. 
   In the Appendix, we report the Italian text, where we marked with underscores all noncanonical 
structures, and with italics all sequences of ambiguous attachment which may cause errors. In 
addition, the story has 37 Null Subjects which have been correctly found only by TULE parser - but 
not bound to an antecedent or syntactic controller8. Then there are 9 long distance dependencies, 
relative and wh- clauses, all correctly bound again by TULE. And 9 additional so-called open 
adjuncts, participials and adjectival phrases which have only been marked as verb dependent, but 
which also need argument dependency, since they all require agreement to be checked – this being a 
shortcoming of dependency structure representation. None of these structures have been marked, and 
in fact they constitute one of the elements causing main errors, also for Stanford parser. 

 5 Conclusion 

Computing sentence complexity has been related to the level of F-structure mapping following LFG 
theoretical approach, which has no relation at all with Linear/Dominance precedence or Distance 
sensitive computation, these latter parameters having no consideration for lexical properties of Head-
Dependence or Constituent-Governor relations. To account for the processing or parsing performance 
related evaluation, at first we proposed to consider the working of the mental parser to be simulated by 
that of an incremental ATN parser. On the contrary, Blache(2011) defines a list of six constraints on 
the basis of which to compute linguistic complexity, which are based solely on structural criteria. 
Other parameters are related to frequency of words, number of phrase-level categories in a 
representation, ambiguity level of each POS-tagged word, or simply number of words in the structure. 
Dependency-structure related criteria are then used to evaluate complexity by combining Dependency 
and Linearity related constraint violations. The definition of a Global Difficulty Model is then based 
on the sum of Local complexity evaluation indices called ID (Incomplete Dependency), DLT 
(Dependency Locality Theory) and Depth (depth of syntactic structure). However, this approach is 
applied by Blache(2011) to the output of a parser, be it dependency or constituency based, be it rule or 
statistically based.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
    8 LFG theory distinguishes four cases of empty categories: syntactic controlled ones – so-called long distance 
dependencies; lexical control, subcategorized infinitivals; structural control, open adjuncts; and anaphoric control, empty 
pronominals.	
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   In a more recent paper Blache(2015) presents an approach to complexity evaluation which also 
encompasses a parsing phase. It is based on the idea that chunking and their fusion into 
“constructions” are a sufficient structural level for the default identification of meaningful parts of the 
sentence. This is then related to “Properties” of the relations between words which are again 
constituted by six constraints proposed in his previous papers. Finally, the parsing process is defined 
as consisting in “evaluating properties when scanning a new word in the sentence”(ibid., p.14). He 
then distinguishes two possible parsing styles: “shallow” (when no context is needed and linearity and 
co-occurrence are enough to define relations between adjacent words); and “deep” (when building 
different partitions of the set of words in the sentence is needed and then evaluating the properties of 
the current word is possible). However, this second case is no longer incrementally justified, requiring 
a global evaluation of the sentence. So, the new approach is called “hybrid parsing” where chunks are 
aggregated in “buffers” – these corresponding strictly speaking to the “registers” of our ATN parser. 
   Kluender(1998) demonstrates the validity of a processing approach to wh- islands in which the cost 
of holding an uninterpreted constituent in working memory explains the increased level of complexity, 
using ERPs. The approach is the constructional one where there is no constituent displacement nor 
movement to account for, but following also Falk(2009; but see also Goldberg, 2005), the explanation 
is given by the multifunctionality associated to noncanonical structural elements which in LFG theory 
receive the nonargument roles of FOCUS/TOPIC. Constructions being typically language dependent, 
may vary from English to Italian, a language this latter that allows more freedom to the position of 
constituents in the sentence. Following this approach, explaining the additional load of FOCUS 
constituents in postverbal position becomes very easy: the empty slot in SUBJect position is at first 
associated to little_pro (the Null Subject) and then searched in preceding discourse, for a coreferential 
interpretation. When the FOCUS constituent in postverbal position is reached, a new interpretation is 
proposed which substitutes the previous one, eliminating the presence of a Null Subject in working 
memory. In this way, all cases of wh- FOCUS/TOPIC resemble a case of “garden path” from a 
processing point of view. On the contrary, those cases of NP FOCUS structures like the ones 
determined by presence of an unaccusative verb, or simply a focussed passive structure, have no 
additional processing cost. Once the verb is processed, seen that Italian constructions allow both 
preverbal and postverbal SUBJect, the computation goes straightforwardly: in the case of preverbal 
position the NP is both SUBJect and TOPIC, whereas in the case of postverbal position, the NP is 
SUBJect and FOCUS in full accordance with the information theory assumption that Old comes 
before New(see Birner & Ward, 2004;2006). 
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APPENDIX 1 – The Story of the Three Little Pigs 
 
C'erano una volta tre fratelli porcellini che vivevano felici nella campagna. Nello stesso luogo 
però viveva anche un terribile lupo che si nutriva proprio di porcellini grassi e teneri. Questi 
allora, per proteggersi dal lupo, decisero di costruirsi ciascuno una casetta. Il maggiore, 
Jimmy che era saggio, lavorava di buona lena e costruì la sua casetta con solidi mattoni e 
cemento. Gli altri, Timmy e Tommy, pigri se la sbrigarono in fretta costruendo le loro casette 
con la paglia e con pezzetti di legno. I due porcellini pigri passavano le loro giornate 
suonando e cantando una canzone che diceva: chi ha paura del lupo cattivo. Ma ecco che 
improvvisamente il lupo apparve alle loro spalle. Aiuto, aiuto, gridarono i due porcellini e 
cominciarono a correre più veloci che potevano verso la loro casetta per sfuggire al terribile 
lupo. Questo intanto si leccava già i baffi pensando al suo prossimo pasto così invitante e 
saporito. Finalmente i porcellini riuscirono a raggiungere la loro casetta e vi si chiusero dentro 
sbarrando la porta. Dalla finestra cominciarono a deridere il lupo cantando la solita 
canzoncina: chi ha paura del lupo cattivo. Il lupo stava intanto pensando al modo di penetrare 
nella casa. Esso si mise ad osservare attentamente la casetta e notò che non era davvero molto 
solida. Soffiò con forza un paio di volte e la casetta si sfasciò completamente. Spaventatissimi 
i due porcellini corsero a perdifiato verso la casetta del fratello. "Presto, fratellino, aprici! 
Abbiamo il lupo alle calcagna". Fecero appena in tempo ad entrare e tirare il chiavistello. Il 
lupo stava già arrivando deciso a non rinunciare al suo pranzetto. Sicuro di abbattere anche la 
casetta di mattoni il lupo si riempì i polmoni di aria e cominciò a soffiare con forza alcune 
volte. Non c'era niente da fare. La casa non si mosse di un solo palmo. Alla fine esausto il 
lupo si accasciò a terra. I tre porcellini si sentivano al sicuro nella solida casetta di mattoni. 
Riconoscenti i due porcellini oziosi promisero al fratello che da quel giorno anche essi 
avrebbero lavorato sodo.9 
 
Once upon a time there were three little pigs who lived happily in the countryside. But in the same 
place lived a wicked wolf who fed precisely on plump and tender pigs. The little pigs therefore 
decided to build a small house each, to protect themselves from the wolf. The oldest one, Jimmy who 
was wise, worked hard and built his house with solid bricks and cement. The other two, Timmy and 
Tommy, who were lazy settled the matter hastily and built their houses with straw and pieces of wood. 
The lazy pigs spent their days playing and singing a song that said, "Who is afraid of the big bad 
wolf?" And one day, lo and behold, the wolf appeared suddenly behind their backs. "Help! Help!", 
shouted the pigs and started running as fast as they could to escape the terrible wolf. He was already 
licking his lips thinking of such an inviting and tasty meal. The little pigs eventually managed to reach 
their small house and shut themselves in, barring the door. They started mocking the wolf from the 
window singing the same song, "Who is afraid of the big bad wolf?" In the meantime the wolf was 
thinking a way of getting into the house. He began to observe the house very carefully and noticed it 
was not very solid. He huffed and puffed a couple of times and the house fell down completely. 
Frightened out of their wits,the two little pigs ran at breakneck speed towards their brother's house. 
"Fast, brother, open the door! The wolf is chasing us!" They got in just in time and pulled the bolt. 
Within seconds the wolf was arriving, determined not to give up his meal. Convinced that he could 
also blow the little brick house down, he filled his lungs with air and huffed and puffed a few times. 
There was nothing he could do. The house didn't move an inch. In the end he was so exhausted that he 
fell to the ground. The three little pigs felt safe inside the solid brick house. Grateful to their brother, 
the two lazy pigs promised him that from that day on they too would work hard.i 
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  This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: 
http://creativecommons.org/licenses/by/4.0/	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
    9 This is a modified version of the Italian version of the original story, which I have done to make it shorter.	
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Abstract

Previous researches have shown that learning multiple representations for polysemous words can
improve the performance of word embeddings on many tasks. However, this leads to another
problem. Several vectors of a word may actually point to the same meaning, namely pseudo
multi-sense. In this paper, we introduce the concept of pseudo multi-sense, and then propose an
algorithm to detect such cases. With the consideration of the detected pseudo multi-sense cases,
we try to refine the existing word embeddings to eliminate the influence of pseudo multi-sense.
Moreover, we apply our algorithm on previous released multi-sense word embeddings and tested
it on artificial word similarity tasks and the analogy task. The result of the experiments shows
that diminishing pseudo multi-sense can improve the quality of word representations. Thus, our
method is actually an efficient way to reduce linguistic complexity.

1 Introduction

Representing meanings of words by embedding them into a high dimensional vector space, so called
word embedding, is a useful technique in natural language processing. An intuitive idea is to encode one
word into a single vector, which contains the semantic information of the word in corpus (Bengio et al.,
2003; Collobert and Weston, 2008; Mnih and Hinton, 2007; Mikolov et al., 2010).

There is a consensus that natural languages always include lots of polysemous words. For example,
when the word star appears together with words like planet, satellite, it may roughly denote a kind of
celestial body; when star appears with words like movie, song, drama, it may stand for a famous person.
For most cases, we human beings can easily point out which sense a word belongs to based on its context.
Considering the polysemous words, some previous approaches have learned multiple embeddings for a
word, discriminating different senses by their context, related syntax and topics (Reisinger and Mooney,
2010; Huang et al., 2012; Chen et al., 2014; Pina and Johansson, 2014; Neelakantan et al., 2015; Cheng
and Kartsaklis, 2015; Liu et al., 2015). The authors also provided methods to disambiguate among the
multiple representations. Li and Jurafsky (2015) have demonstrated that multi-sense word embeddings
could be helpful to improve the performance on many NLP and NLU tasks.

However, this leads to another problem. It’s much more difficult for computer than human beings to
detect whether two appearances of a same word stand for the same sense. Moreover, the contexts may
be totally different even if these appearances belong to the same meaning based on human judgement.
Previous multi-sense word embedding approaches often tend to embed a word in such situation into
more than one vector by mistake (actually, they have the same meaning and should be embedded into
only one vector). Consider three different representations of word bear learnt by the method introduced
by Neelakantan et al. (2015), which are shown by their nearest neighbors in the vector space MSSG-50d.

• emerald, bears, three-toed, snake, periwinkle, ruffed, hoopoe, distinctive, unmistakable

• bird, wolf, arrow, pelican, emerald, canyon, diamond, buck, deer

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http:
//creativecommons.org/licenses/by/4.0/

This work is supported by the National Natural Science Foundation of China (grant No.61472017, M1552004).
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• pride, lady, hide, king, gift, crane, afflict, promise, reap, protect

The words clearly related to the domain animals are bolded. We could infer that the first two represen-
tations have the same meaning that points to the animal bear, and the third representation has different
meaning. We call such different learnt representations of a word with the same meaning (e.g. the first
two representations of word bear shown above) pseudo multi-sense, where we judge whether senses are
pseudo multi-sense by comparing their domains.

Given the word embeddings, which have multiple vectors for each polysemous word, we introduce an
algorithm based on domains and semantic relations to detect pseudo multi-sense, since word representa-
tions which stand for the same meaning would have the same hypernym and belong to the same domain.
Then we try to eliminate the effect of pseudo multi-sense by training a global transition matrix which
projects the original word vectors into a new vector space based on the detected pseudo multi-sense pairs,
minimizing the distance between pseudo multi-sense pairs in the vector space while keeping the spatial
relation of other pairs. We propose the algorithm in Section 3 and evaluate it in Section 4.

Obviously, detecting and diminishing pseudo multi-sense would make word sense representations,
which can be processed by computer, closer to human thinking. We also suggest this approach can
improve the performance on real world NLU tasks by evaluating the algorithm on the analogy test dataset
introduced by Mikolov et al. (2013a), and also on WordSim-353 (Finkelstein et al., 2001) and SCWS
(Huang et al., 2012) dataset which include human judgements on similarity between pairs of words.

2 Background and related work

2.1 Distributional word representations

Since Bengio et al. (2003) applied neural network to language model, which treats word embeddings as
parameters and thus it allows us to learn the language model and word embeddings at the same time,
many researchers have proposed other neural network models (Mnih and Hinton, 2007; Collobert and
Weston, 2008; Mikolov et al., 2013a) to improve in both efficiency and accuracy. What’s more, hierarchi-
cal softmax by Morin and Bengio (2005), noise contrastive estimation by Mnih and Kavukcuoglu (2013)
and negative sampling by Mikolov et al. (2013c) make it possible to learn accurate word embeddings in
a short time.

2.2 Multi-sense word embeddings

Most vector-space models (VSMs) represent a word with only one vector, which clearly fails to capture
homonymy and polysemy. And thus, Huang et al. (2012) proposed a method to generate the context
embeddings in the following way. Firstly, they generate single-sense word embeddings and compute
out the context embeddings. Then they cluster the context embeddings, and the result are used to re-
label each occurrence of each word in the corpus. Thirdly, the model they proposed is applied to the
labeled corpus to generate the multi-sense embeddings. Chen et al. (2014) took external knowledge base
into consideration and built a model to learn a separate vector for each sense pre-defined by WordNet
(Miller, 1995). Neelakantan et al. (2015) improved multi-sense word embedding model by dropping
the assumption that each word should have the same number of senses, and proposed a non-parametric
model to automatically discover a varying number of senses per word type. Cheng and Kartsaklis (2015)
proposed a syntax-aware approach for multi-sense word embeddings.

2.3 WordNet and WordNet domain knowledge

WordNet (Miller, 1995) is a large lexical database of English. Nouns, verbs, adjectives and adverbs are
grouped into sets of cognitive synonyms, namely synsets, each expressing a distinct concept. Synsets are
represented by a word, a pos tag and a label, and interlinked by means of conceptual-semantic and lexical
relations (hypernymy/hyponymy). Chen et al. (2014) used WordNet to improve word embeddings.

Magnini and Cavaglia (2000) and Bentivogli et al. (2004) presented a WordNet Domains Hierarchy,
which is a language-independent resourse composed of 164 domain labels. What’s more, González et
al. (2012) provided a graph based improvement and released a domain knowledge (Extended WordNet
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Domains) base aligned to WordNet 3.0, which we use in our experiments as domain knowledge. Ex-
tended WordNet Domains contains 170 domains and the probability of each synset in WordNet 3.0 in
each domain. The domains it provided include acoustics, agriculture, volleyball, etc.

2.4 Vector space projection
Even though bilingual data always plays an important role in the modern statistical machine translation
system, it had failed to map the missing word and phrase entries between two languages until Mikolov et
al. (2013b) proposed a simple but effective method to extend dictionaries and translation tables. The main
idea of this novel method is to learn a linear projection between the languages using a small bilingual
dictionary but making little assumption about the languages, which has proved to be able to project the
vector representation of any word from the source space to the target space accurately. Our vector space
projection algorithm is very similar to this.

3 Pseudo multi-sense detection and elimination by vector space projection

3.1 Domain based pseudo multi-sense detection
3.1.1 Direct domain similarity
Given a word and its context, we human beings can easily determine the domains this word belongs to.
WordNet makes it convenient for users to get the domains of all synsets of a word. To determine the
domain of a sense given the multi-sense word embeddings, we can intuitively define the probability that
the kth sense of word w belongs to domain d as

PD(w, k, d) ∝
∑

w′∈NN(w,k)

D(p(w′), d) (1)

where NN(w, k) is the nearest neighbors of the kth sense of word w in the given word embeddings,
p(w′) is the protocol representation of wordw′ (e.g. whenw′ is star s1, p(w′) would be star),D(p(w′), d)
is the sum probability that domain d appears in all synsets of p(w′) in WordNet provided by Extended
WordNet Domain. Then we can compute the domain similarity between the kth and the lth sense of
word w by

SimD(w, k, l) =
1
n
|TopN(PD, w, k, n) ∩ TopN(PD, w, l, n)| (2)

where TopN(P,w, k, n) is the set of x that P (w, k, x) ranks top n in decreasing order (in our experi-
ments, n = 5).

3.1.2 Semantic hierarchical similarity
However, in the knowledge base we applied, the domain knowledge is sometimes not enough for dec-
tecting pseudo multi-sense, especially for some abstract words. For example, it’s hard to specify which
domain the word extract belongs to. What’s more, based on González et al. (2012), the Extended Word-
Net Domain cannot reach the precision of 100%. So we tend to apply semantic hierarchy, particularly
hypernymy relations, to help improve our pseudo multi-sense detecting as supplement, since hypernymy
somehow contains some domain information. With WordNet, we can also get the semantic relations (e.g.
hypernymy, hyponymy, synonymy) of synsets. With the consideration of the DAG structure of semantic
relations, for hypernyms of a specific word, the nearer the hypernym, the more information it contains.
So we penalize the far hypernyms, like whole, entity, thing, which cover a large amount of words as their
hyponyms. Similar to the definition of PD(w, k, t), we can define the probability that the kth sense of
word w has the hypernym h, where h is a synset in WordNet, as

PH(w, k, h) ∝ 1
d(w, h)

∑
w′∈NN(w,k)

H(p(w′), h) · 1
d(p(w′), h)

(3)

where d(w, h) = minsw∈Synsets(w) dis(sw, h), dis(x, y) is the distance between two synsets x and y in
WordNet, H(p(w′), h) is the frequency that the synset h appears as a hypernym of a synset of p(w′) in
WordNet. In particular, if h is not a hypernym of w in WordNet, PH(w, k, h) = 0.
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We then compute the semantic hierarchical similarity between the kth and the lth sense of word w by

SimH(w, k, l) =
1
n
|TopN(PH , w, k, n) ∩ TopN(PH , w, l, n)| (4)

With the definition of domain similarity and semantic hierarchical similarity, we can compute the
similarity between the kth and the lth sense of word w by

Sim(w, k, l) = SimD(w, k, l) + SimH(w, k, l) (5)

When Sim(w, k, l) > λ, where λ is a hyper-parameter (λ = 1 in our experiments), we consider the
kth and the lth sense of word w have the same meaning. In other words, we are able to detect pseudo
multi-sense pair (wk, wl) based on Sim(w, k, l), which is called pseudo multi-sense detection.

3.2 Pseudo multi-sense elimination
Having the existing word embeddings, assume that we have a detected pseudo multi-sense group G =
{wk1 , wk2 , ..., wkn}, in which wk1 , wk2 , ..., wkn are senses of word w, taking the same meaning. Thus,
we can find a representative vector for the group. Let vs(w, ki) be the corresponding vectors of wki

, and
vr(G) be the representative vector for the group G. Such vector vr(G) can be randomly chosen from
{vs(w, k1), vs(w, k2), ..., vs(w, kn)}, or simply the mean vector of them. Other methods to compute
vr(G) are also worth trying if reasonable.

Inspired by Mikolov et al. (2013b), we assume there is a transition matrix, by which for all pseudo
multi-sense group G, ∀wki

∈ G, vwki
can be projected to vr(G). The experiments shown in Section 4

supported our assumption. In other words, we suggest that there exists a global matrix Φ, for any given
pseudo multi-sense group G = {wk1 , wk2 , ..., wkn} and its representative vector vr(G), we have

vr(G) = Φ ∗ vs(w, ki),∀wki
∈ G, ∀G (6)

Stochastic gradient descent (SGD) is a stochastic approximation of the gradient descent optimization
method for minimizing an objective function written as a sum of differentiable functions by iteration. In
order to obtain a consistent Φ for the projection of all pseudo multi-sense group, we can learn an approx-
imate Φ with SGD for optimization. Then we use the obtained Φ to project existing word embeddings,
and thus we can get a new vector space in which pseudo multi-sense has been eliminated compared to
the original space.

4 Experiments

We evaluate our pseudo multi-sense detecting and eliminating method both qualitatively and quantita-
tively. We apply our method to the released word embeddings by Huang et al. (2012) and Neelakantan
et al. (2015), which were both trained on the same Wikipedia corpus, and display the performance of
our method based on the nearest neighbor task, word similarity tasks and the analogy task. In the fol-
lowing parts, MSSG and NP-MSSG are word embeddings released by Neelakantan et al. (2015); 50d
and 300d are the dimensions of the vector space. The vector space released by Huang et al. (2012) are
50-dimensional.

4.1 Nearest Neighbors
As we hypothesized, previous multi-sense word embedding methods would produce a lot of pseudo
multi-sense examples. For the convenience of view, we only focus on the semantic relation in the qual-
itative evaluation part. We extracted the most probable hypernym for each sense of some sample words
by Eq(4), using the synset semantic relations provided by WordNet (Miller, 1995). If different represen-
tations of one word have the same hypernym, we consider them as pseudo multi-sense.

In Table 1, we show the nearest neighbors for each sense of each sample word with multiple word
embeddings and our result of pseudo multi-sense detecting. For most of the representations, according
to their nearest neighbors, we got reasonable hypernyms. However, there are also some unexpected cases
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STAR

Huang et al.

princess, series, cast, serial, midway, sparkle, 1940s, leo, closet, co-star 01
silver, boy, cat, version, adventures, stars, emerald, destroyer, terrace, planet 02
energy, disk, wheel, disadvantage, block, puff, radius, diamond, chord 03
version, bronze, standard, colors, ring, emblem, silver, wear, shoulder, red 01
workshop, shop, paper, merchandise, plain, corporation, stock, likeness 03
guard, baseball, starter, tennis, basketball, brazil, class, world, morocco, ncaa 01
appearance, entertainer, pat, alumnus, freelance, brother, session, receiver 01
fictional, ongoing, manga, super, japanese, silver, interactive, asian, fiction 01
die, express, ride, opera, spanish, musical, hour, disaster, sun, blue 01
galaxy, spiral, variable, guide, magnitude, companion, satellite, crater 02

MSSG-50d
blue, dragon, acbl, diamond, purple, legion, arrow, mercury, eagle, cross 01
fan, legend, show, moesha, heroes, guest-star, flicka, lassie, tv-movie 01
stars, sun, constellation, galaxy, eridani, pegasi, supergiant, ceti, starburst 02

01: person.n.01 02: celestial body.n.01 03: whole.n.02

ROCK

Huang et al.

blur, indulgence, pop, noise, bands, lacuna, reformed, wave, genre, taster 01
energy, silver, cat, song, cd, planet, dawn, hero, video, terrace 02
metal, classic, legendary, dubbed, american, hard, belgian, short-lived, debut, da 01
soft, shifting, disappear, fill, crystalline, false, pitch, expanse, heat, pile 03
vinyl, concert, limited, box, summer, double, dance, enhanced, gold, inch 04
hop, well-known, folk, occasional, jazz, music, concert, array, hard, pop 01
morris, miami, wood, ghost, silver, pearl, chase, corner, oak, thousand 03
hard, pop, cm, jazz, hip, hop, r&b, gutter, wave, subculture 01
hard, hip, short-lived, classic, jazz, raw, metal, ep 01
jazz, rally, star, roll, live, entertainer, appearance, session, pop, cover 01

MSSG-50d
metal, rippling, dense, swirling, chirping, blues, punk, psychedelia, bands, pop 01
sand, rocks, butte, ash, sandy, little, cedar, rocky, sugarloaf, spring-fed 03
hip, alternative, indie, progressive, hop, reggae, roll, rock/metal, post-hardcore 01

01: popular music.n.01 02: person.n.01 03: material.n.01 04: whole.n.02

NET

Huang et al.

reduction, amount, increases, stamina, zero, worksheet, improvements, sum 01
raw, atomic, destination, brave, orbit, generalize, clock, ca, exhale, fresh 02
monthly, minimum, retail, banking, dividend, investor, tax, consumer, flat, dollar 03
cash, annual, bribe, yen, generate, yen, liabilities, stocks, lifetime 03
limousine, panic, alarm, cotton, racket, rush, 9th, buffalo, corps, recovered 04
palm, stalk, blanket, challah, qibla, putting, recess, curtain, tighten, lean 04
indent, text, poser, instruction, libraries, mosaic, campaigns, graphics, imperative 04
freight, processing, volume, needs, passenger, junction, electrical, ferry, shipping 04
contribution, bonus, compensation, bribe, yen, liabilities, stocks, yen, profit 03
1909, quarterback, columbus, bills, bath, elite, 1903, tigers, affiliated, eagles 04

MSSG-50d
droplet, pile, wellbore, squeeze, amount, volume, steady, turn, moves, balance 04
boards, run, ball, spot, sideline, at-bat, clock, stretch, running, phils 04
revenue, trillion, assets, profit, billion, pre-tax, liabilities, index, us$, fdi 03

01: whole.n.02 02: seize.v.01 03: income.n.01 04: artifact.n.01

Table 1: Nearest neighbors (by cosine similarity) of sample words and the result of pseudo multi-
sense detecting. Column 1 shows the existing word embeddings we use to detect pseudo multi-sense. In
Column 2, each row shows the nearest neighbors of one sense in the vector space (Column 1). In Column
3, we present a meaning label for each sense, following the standard of WordNet synset description. We
argue that “senses” with the same label actually have the same meaning, namely pseudo multi-sense.
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from the result based on the word vectors released by Huang et al. (2012), while no such cases are found
in the vectors released by Neelakantan et al. (2015). For example, we got [whole.n.02] as the hypernym
of the three sample words (which seems too general since whole can be the hypernym of nearly all
entities), and [person.n.01] as a hypernym of ROCK (which seems not very reasonable according to
the nearest neighbors). By intuition, we suggest that is because of the quality of the word embeddings.
Possibly, the level of confidence to extract domains and hypernyms for each sense could be a metric for
evaluating the quality of word embeddings. From this point of view, the word embeddings released by
Neelakantan et al. (2015) are also with higher quality.

4.2 Word Similarity
Now we focus on applying a qualitative evaluation to our method. For each word in the embedded vector
space, we first determine the pseudo multi-sense with Eq(5). Then we try to minimize the distance
between vectors which belong to the same pseudo multi-sense group, since we argue that they actually
represent for the same meaning in the vector space, by training such a matrix Φ, which projects all
vectors to a new vector space and eliminate the distance between pseudo multi-sense vectors. We train
the matrix Φ by minimizing the following formula.

L =
∑

(x,xr)

||Φx− xr||2 (7)

where x is a vector which belongs to a pseudo multi-sense group and xr is the representative vector of the
corresponding group. In our experiments, we tried both random sampling and computing mean vector
for getting such representative vector.

4.2.1 Similarity Metrics
The similarity here is a metric between words to evaluate the performance of word embeddings, which
will be used to compare with human judgements, differently from the similarities we introduced in
Section 3, which are used to detect pseudo multi-sense.

Neelakantan et al. (2015) introduced three metrics to compute the similarity between words in multi-
sense word embeddings, which are avgSim, avgSimC and localSim, defined by the following equa-
tions.

avgSim(w,w′) =
1
K

1
K ′

K∑
i=1

K′∑
j=1

s(vs(w, i), vs(w′, j)) (8)

where K and K ′ are the numbers of senses for w and w′, vs(w, i) is the vector of the ith sense of word
w, and s(vs(w, i), vs(w′, j)) is the similarity measure between vectors vs(w, i) and vs(w′, j). In our
experiments, we apply cosine similarity as s.
AvgSimC and localSim can be computed when we have the context of the words.

avgSimC(w,w′) =
1
K

1
K ′

K∑
i=1

K′∑
j=1

P (w, c, i)P (w′, c′, j)s(vs(w, i), vs(w′, j)) (9)

where P (w, c, i) is the probability for word w to take the ith sense with context vector c.

localSim(w,w′) = s(vs(w, k), vs(w′, k′)) (10)

where k = argmaxi P (w, c, i), k′ = argmaxi′ P (w′, c′, i′).

4.2.2 WordSim-353
WordSim-353 is a standard dataset for evaluating the quality of word vectors introduced by Finkelstein
et al. (2001), which includes 353 pairs of nouns (without context). Each pair is presented with 13 to
16 human judgements on similarity and relatedness on a scale from 0 to 10. For example, pair (stock,
market) gets the score of 8.08, while pair (stock, egg) only gains the score of 1.81.

In this dataset, since the context of words is not given, we can only compute the avgSim for each pair
of word to evaluate our method. The result is shown in Table 2.
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4.2.3 SCWS
Stanford Contextual Word Similarity (SCWS) dataset proposed by Huang et al. (2012) is also a standard
dataset to evaluate the performance of word embeddings quantitatively. It contains 2,003 pairs of words
and the context they occur in.

Then as Neelakantan et al. (2015) did in their work, we also report the Spearman rank correlation
between a model’s output similarities and the human judgements. We also tried both random sampling
and mean vector to get the representative vector for each pseudo multi-sense group. The result of our
experiments are shown in Table 3.

Model avgSim
original random mean

Huang et al. 50d 64.2 65.1 65.0
MSSG 50d 63.2 65.0 65.1
MSSG 300d 70.9 70.8 70.5

NP-MSSG 50d 62.4 64.0 64.4
NP-MSSG 300d 68.6 69.1 68.8

Table 2: Experimental result on WordSim-353 dataset (Spearman ρ × 100). We apply both random
choosing and mean vector to compute the representative vector for each group of pseudo multi-sense.
Our method gains a slight improvement on all models except MSSG-300d.

Model localSim avgSim avgSimC
original random mean original random mean original random mean

Huang et al. 26.1 37.6 36.9 62.8 61.4 62.9 65.7 65.9 66.1
MSSG 50d 49.2 52.4 53.2 64.2 64.9 64.8 66.9 67.0 67.2
MSSG 300d 57.3 62.1 62.2 67.2 67.3 67.2 69.3 69.1 69.4

NPMSSG50d 50.3 55.5 54.9 64.0 64.1 64.5 66.1 66.3 66.4
NPMSSG300d 59.8 62.3 62.2 67.3 67.3 67.4 69.1 68.9 69.2

Table 3: Experimental result on SCWS dataset (Spearman ρ × 100). It shows that the elimination
of pseudo multi-sense can significantly improves the performance of word embeddings with the metric
localSim, while the performances of projected vectors on the metric avgSim and avgSimC are about the
same as those of original vectors. In other words, the elimination of pseudo multi-sense improves the
ability of representing a real sense of each sense vector locally.

4.3 Analogy
Analogy task is another method to evaluate the performance of word embeddings. In single-sense word
embeddings, if the wordA is similar to wordB in the same sense as word C is similar toD, there should
be an algebraic relationship v(A)−v(B) = v(C)−v(D), where v(A) is the vector of wordA in the word
embeddings (Mikolov et al., 2013a). Based on such relationship, we conduct the following experiment,
which shows that our method is able to improve the quality of multi-sense word embeddings.

In order to compare the quality of different versions of word vectors, our experiment runs on the
Semantic-Syntactic Word Relationship dataset, which contains five types of semantic questions and nine
types of syntactic questions, as shown in Table 4, including 19544 such quadruples totally.

For each quadruple in the test dataset, we mark it as w1, w2, w3, w4. The relationship between w1 and
w2 is similar to that betweenw3 andw4. In single-sense word embeddings, we just need to check whether
v(w4) is the most similar vector to v(w1) − v(w2) + v(w3) among all the vectors, and apply the same
procedure forw1, w2, w3. For multi-sense word embeddings, we check whether there is a combination of
senses {k1, k2, k3, k4} so that vs(w4, k4) is the most similar vector to vs(w1, k1)−v(w2, k2)+v(w3, k3),
where vs(w, k) is the vector of word w’s kth sense. What’s more, since the equivalence of the two pairs,
we also check by such procedure for vs(w1, k1), vs(w2, k2), vs(w3, k3). For every quadruple, once one
of the requirements above is satisfied, we treat it as correct. We report the accuracy for each multi-sense
vector space in Table 5.
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Type of relationship Word Pair 1 Word Pair 2
Common capital city Athens Greece Oslo Norway

All capital cities Astana Kazakhstan Harare Zimbabwe
Currency Angola kwanza Iran rial

City-in-state Chicago Illinois Stockton California
Man-Woman brother sister grandson granddaughter

Adjective to adverb apparent apparently rapid rapidly
Opposite possibly impossibly ethical unethical

Comparative great greater tough tougher
Superlative easy easiest lucky luckiest

Present Participle think thinking read reading
Nationality adjective Switzerland Swiss Cambodia Cambodian

Past tense walking walked swimming swam
Plural nouns mouse mice dollar dollars
Plural verbs work works speak speaks

Table 4: Sample quadruple instances in analogy testing dataset. The relations are divided into 5 semantic
types and 9 syntactic types.

Model Semantic Syntactic
original random mean original random mean

Huang et al. 52.8 53.5 53.4 53.5 56.1 55.9
MSSG 50d 75.8 77.5 77.4 85.2 87.9 88.0

MSSG 300d 92.0 92.8 93.1 93.3 94.1 94.5
NPMSSG 50d 74.6 75.4 75.6 80.7 82.1 82.3

NPMSSG 300d 83.9 85.7 85.9 89.0 90.2 90.1

Table 5: Test result for analogy task. We also apply both random choosing and mean vector to get the
representative vector for each pseudo multi-sense group. It shows that our improved vectors perform
better on this task.

Overall, our detection and elimination of pseudo multi-sense on word embeddings reach higher per-
formance on the nearest neighbor, word similarity and analogy task.

5 Conclusion and future work

In this paper, we introduced the concept of pseudo multi-sense, which is the word embedding models
often embed one meaning to multiple senses, to describe the common problem in multi-sense word
embeddings. Then we proposed a method based on both domains and semantic relations to detect such
cases. What’s more, we trained a global transition matrix based on the detected pseudo multi-sense from
the given word embeddings, which is used to eliminate the distance between senses actually have the
same meaning. The evaluation of our pseudo multi-sense eliminated vector showed that detecting and
eliminating pseudo multi-sense significantly improved the ability for each vector in the word embeddings
to represent for an exact meaning. We suggest that the following research directions could be considered.

• For the detection of pseudo multi-sense, taking syntactic information and other information we have
or we can extract from corpus into account is a reasonable idea to improve the performance.

• Involve the pseudo multi-sense detection and elimination into the neural network structure, so that
the learnt word embeddings could have higher quality than those learnt by existing methods without
consideration of pseudo multi-sense.

• Though we have gained an improvement on experiments, we don’t have a deep understanding about
the reason that why elimination of pseudo multi-sense works well and why pseudo multi-sense
cases are ubiquitous in all kinds of word embeddings. In future work, we could focus on finding a
reasonable explanation of the fact.
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Abstract

In this paper, we present a comparative analysis of statistically predictive syntactic features of
complexity and the treatment of these features by humans when simplifying texts. To that end,
we have used a list of the most five statistically predictive features obtained automatically and
the Corpus of Basque Simplified Texts (CBST) to analyse how the syntactic phenomena in these
features have been manually simplified. Our aim is to go beyond the descriptions of operations
found in the corpus and relate the multidisciplinary findings to understand text complexity from
different points of view. We also present some issues that can be important when analysing
linguistic complexity.

1 Introduction and Related Work

Linguistic complexity has gained a lot of attention in the last years from different points of view. In
Natural Language Processing (NLP), for example, there are two main research lines that deal with text
complexity: readability assessment (RA) and automatic text simplification (ATS). RA seeks to analyse
the complexity of the texts to classify them according to a level by means of analysis of linguistic features
and machine learning techniques (DuBay, 2004; Benjamin, 2012; Zamanian and Heydari, 2012). On the
other hand, ATS deals with the complexity of the texts in order to give a more accessible and simple
equivalent version by reducing its lexical and syntactic complexity (Shardlow, 2014; Siddharthan, 2014).
In the last years, parallel corpora of original and simplified texts have also been created in order to study
the phenomena considered as complex and the changes performed when simplifying (Caseli et al., 2009;
Bott and Saggion, 2014; Brunato et al., 2015).

In Basque, linguistic complexity has been studied from both neurolinguistic and computational points
of view. From a neurolinguistic point of view, the internal word ordering (Laka and Erdozia, 2010), the
relative clauses (Carreiras et al., 2010), and the effect of phrasal length on sentence word order (Ros et
al., 2015) have been analysed. From the computational point of view, text complexity has been studied
for readability assessment (Gonzalez-Dios et al., 2014) or automatic text simplification (Aranzabe et al.,
2012).

In this paper, from the computational point of view, we want to see if the syntactic features that are sta-
tistically predictive of readability have been considered by humans when simplifying texts and how they
have been treated. To that end, we analyse the phenomena involved in the most five predictive syntactic
features (the ratios of conditional, concessive, purpose, temporal and relative clauses) in the Corpus of
Basque Simplified Texts (CBST) (Gonzalez-Dios, 2016) in the two simplification approaches contained
(structural and intuitive). This way, we want to make a linguistic analysis of the simplified texts beyond
the description of the corpus and relate them to computational and neurolinguistic studies when possible.
So, we want to start understanding the grounds of linguistic complexity from a multidisciplinary point
of view.

This paper is structured as follows: in Section 2 we present the resources and the methodology we
have followed in this analysis and in Section 3 we show the treatment of the of the phenomena in the

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/
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corpus CBST. In Section 4 we show how the phenomena have been simplified and in Section 5 we expose
some issues that are necessary to keep on with the analysis of text complexity. Finally, we conclude and
outline the future work in Section 6.

2 Resources and Experimental Set Up

To analyse wheater the syntactic phenomena considered in the statistically predictive features have been
treated by humans, we have used two resources: a list of predictive features and a corpus of simplified
texts. To get the list of predictive features, we have based on the experiments carried out to assess the
readability of Basque texts (Gonzalez-Dios et al., 2014). In these experiments, in addition to create a
model to classify texts as simple or complex, a list with most predictive features or linguistic ratios was
created using the data mining software Weka (Hall et al., 2009) and the rankers Chi Square Ranker and
InfoGain Ranker. The features in the list are classified according to their linguistic type: global, lexical,
morphological, morpho-syntactic, syntactic and pragmatic.

To train the readability assessment model and get the list of predictive features, two corpora of sci-
entific popularisation domain were used: 1) the Elhuyar (T-comp) corpus, which contains 200 texts for
adults which, was considered as a complex corpus and 2) the Zernola (T-simp) corpus, containing 200
texts for children, was considered as simple. These corpora were analysed with the framework for the
automatic analysis of Basque (Aduriz and Dı́az de Ilarraza, 2003), the sentence and clause boundary
detector (Aranzabe et al., 2013) and the apposition detector (Gonzalez-Dios et al., 2013).

The second resource is the Corpus of Basque Simplified Texts (CBST) (Gonzalez-Dios, 2016). This
corpus compiles 227 original sentences1 of the Elhuyar (T-comp) corpus that have been simplified by
two language experts following the structural and intuitive approaches. The structural approach was
performed by a court translator that followed easy-to-read guidelines inspired by Mitkov and Štajner
(2014) such as use simple and short sentences with only a finite verb in each, use high frequency words,
use always the same word to refer to same concept, keep logical and chronological ordering, recover
elided arguments and verbs, and resolve anaphora. She was also given a set of operations performed
in a previous phase of the corpus that included operations such as substitute synonyms, split clauses or
reorder clauses. The intuitive approach was performed by a teacher following her experience on teaching
Basque as foreign language and her intuition. In both approaches the target audience was open.

So, to see how the phenomena contained in the most predictive syntactic features have been treated in
the CBST corpus, we have followed this methodology:

1. We have extracted the syntactic features from the list of predictive features and their significance
according to the two rankers (Table 1).

Ratio Chi square InfoGain
Conditional clauses / clauses 249.9054 0.7057
Concessive clauses / clauses 189.0847 0.5338

Purpose clauses / clauses 148.062 0.3808
Temporal clauses / clauses 143.678 0.3716
Relative clauses / clauses 77.1949 0.2398
Causal clauses / clauses 61.3733 0.1814
Modal clauses / clauses 60.4716 0.1657

Completive clauses / clauses 54.202 0.1632

Table 1: Most predictive syntactic features.

2. We have extracted automatically the clauses related to the five most predictive features (conditional
clauses, concessive clauses, purpose clauses, temporal clauses and relative clauses, henceforth target
clauses) from the CBST corpus.

1In total, there are 785 sentences and 13 303 words.
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3. Following the annotation of the corpus, we have performed the analysis of the target clauses by
tagging manually if they have been treated or not (binary classification) and how they have been
simplified. In the case of the relative clauses, we have added complementary information: we have
annotated if the elided element is the object or subject to be able to compare if the treatment of
clauses suits to the findings by Carreiras et al. (2010).

The results of the treatment are shown in Section 3

3 Treatment of the Predictive Syntactic Features in the CBST

In the CBST there are 114 clauses (89 sentences) that contain the target clauses. In Table 2 we show the
percentages of the target clauses that have been treated in both simplification approaches. In parentheses
we show the raw numbers.

Clause type Quantity Structural approach Intuitive approach
Conditional clauses 17 82.35 (14) 35.29 (6)
Concessive clauses 5 100.00 (5) 80.00 (4)

Purpose clauses 22 22.73 (5) 22.73 (5)
Temporal clauses 17 52.94 (9) 58.82 (10)
Relative clauses 53 79.25 (42) 52.83 (28)

Total 114 85.50 (75) 71.82 (63)

Table 2: Percentages of simplified clauses in both structural and intuitive approaches.

Looking at the results of the conditional clauses, we see that there is a big difference depending on the
approach. While in the structural approach 82.35 % has been simplified, 35.29 % has been treated in the
intuitive. The percentages of both approaches are closer in the case of the temporal clauses (structural:
52.94 %; intuitive: 58.82 %), but they also differ in the relative clauses (structural: 79.25 %; intuitive:
52.83 %). The treatment of the purpose clauses has been slight in both approaches, and we do not
have enough data for the analysis of the concessive clauses. According to the simplification approach in
general, we see that there have been more simplified target clauses in the structural approach (85.50 %)
than in the intuitive (71.82 %).

In Section 4 we present how these target sentences have been manually simplified.

4 Simplification of the Target Clauses the CBST

As we also want to know how the simplification is carried out in the target clauses, we analyse the
macro-operations that have been performed. Eight macro-operations2 are defined in the annotation
scheme of the CBST: delete, merge, split, transformation, insert, reordering, no operation and other.
The most found macro-operations in the target clauses are split and transformations. In the split oper-
ations sentences are divided, and in the transformation operations different changes are performed in
words, phrases or clauses. Transformations can be lexical, morphological, syntactic, discursive, correc-
tions and reformulations. The detailed description of each macro-operation and the operations involved
is found in Gonzalez-Dios (2016).

In the following subsections, we present the results according to the macro-operations mainly per-
formed. These macro-operations are split, transformation, split and transformation together in the same
clause and only others (delete, insert or reordering). We illustrate the results with examples of original
and simplified versions in both approaches.

4.1 Conditional Clauses
In the conditional clauses (Table 3), the most applied macro-operation has been the transformation in
both approaches. The syntactic transformations that have been applied are a) the change of the syntac-
tic connective, b) transforming a clause into a phrase, c) transforming a subordinate clause into a main

2Macro-operations are an abstraction or generalisation of different simplification operations.
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clause or d) changing the finite verb with a non finite. There have also been morphological transforma-
tions like changing the verb mood from potential or conditional to present or past indicative and lexical
transformations.

Approach Treated Split Transformation Split + Trans Only others
Structural 14 28.57 (4) 42.86 (6) 14.29 (2) 14.29 (2)
Intuitive 6 0.00 (0) 66.67 (4) 33.33 (2) 0.00 (0)

Table 3: Macro-operations performed in conditional clauses.

In Table 4 we show two examples of conditional clauses. In the first sentence, a split, an insert
and a change in the verb mood and tense (from hypothetic to present potential) have been performed
in the structural approach while in the intuitive approach only the change in the verb mood and tense
(form hypothetic to past indicative) has been carried out. In the second sentence, no operation has
been performed in the structural approach but the syntactic connective has been changed (conditional to
causal). There has been a reordering too.

Original Structural Intuitive
Bidean arrokazko planeta
txikiagoren bat aurkitu
izan balu, bereganatu egingo
zuen (...)

Bidean arrokazko planeta txiki-
agoren bat aurki dezake; or-
duan, planetak bereganatu eg-
ingo du; (...)

Bidean arrokazko planeta txiki-
agoren bat aurkitu izan bazuen,
bereganatu egingo zuen.

If it had probably found a
smaller planet made out of
stone, it would have appropri-
ated it (...)

It can find a a smaller planet
made out of stone; then, it will
appropiate the planet; (...)

If it had found a smaller planet
made out of stone, it would
have appropriated it (...)

gene konpontzailea mutatuta
badago, ezin du bere funtzioa
bete, (...)

gene konpontzailea mutatuta
badago, ezin du bere funtzioa
bete.

ezin dute funtzio hori bete mu-
tatuta daudelako; (...)

if the repairing gene is muted
it cannot perform its function,
(...)

if the repairing gene is muted
it cannot perform its function,
(...)

it cannot perform its function
because they are muted; (...)

Table 4: Example of simplifications of conditional clauses.

4.2 Purpose Clauses

In the purpose clauses (Table 5) the reordering (exactly, the operation named change of the order of
clauses) has also been used in the intuitive approach. The transformations that have been applied in both
approaches are a) the conversion of subordinate clauses into main or coordinate clauses at syntactic level,
b) lexical transformations and c) reformulations.

Approach Treated Split Transformation Split + Trans Only others
Structural 5 20.00 (1) 40.00 (2) 40.00 (2) 0.00 (0)
Intuitive 5 0.00 (0) 20.00 (1) 20.00 (1) 60.00 (3)

Table 5: Macro-operations performed in purpose clauses.

In Table 6 we show the simplified versions of two purpose clauses. In the first clause, a split has been
performed in the structural approach while no operation was performed in the intuitive (not treated).
The second clause was not treated in the structural approach while the ordering of clauses was altered
(reordering) in the intuitive.
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Original Structural Intuitive
Datu horiek eta tesian at-
eratako ondorio guztiak
baliagarriak izango dira
jarraipen berezitua egiteko (...)

(...) jarraipen berezitua egingo
zaie. Horretarako, datu horiek
guztiak eta tesiko ondorio guz-
tiak baliatuko dira.

Datu horiek eta tesian ater-
atako ondorio guztiak balia-
garriak izango dira jarraipen
berezitua egiteko (...)

All that data and the results of
the PhD thesis will be useful to
make a specialised monitoring
(...)

(...) a specialised monitoring
will be done to them. To that
end, all that data and all the re-
sults of of the PhD thesis will
be used.

All that data and all the results
of the PhD thesis will be useful
to make a specialised monitor-
ing (...)

euste-indar bera izateko,
eraso-angelua handiagoa izan
behar du, (...)

euste-indar bera izateko,
eraso-angelua handiagoa izan
behar du, (...)

eraso-angeluak handiagoa
izan behar du euste-indar bera
izateko.

to keep the same holding
strength, the clearance angle
should be bigger (...)

to keep the same holding
strength, the clearance angle
should be bigger (...)

the clearance angle should be
bigger to keep the same hold-
ing strength (...)

Table 6: Example of simplifications of purpose clauses.

4.3 Temporal Clauses

In the temporal clauses (Table 7), the transformation has also been the most used macro-operation. The
syntactic transformations that have been carried out are similar to those found in the conditional sen-
tences: a) the change of the syntactic connective, b) transforming a clause into a phrase, c) transforming
a subordinate clause into a main clause or d) changing the finite verb with a non finite). There have also
been morphological transformations (e.g. change the persons of the verb) and reformulations.

Approach Treated Split Transformation Split + Trans Only others
Structural 9 33.33 (3) 44.44 (4) 11.11 (1) 11.11 (1)
Intuitive 10 10.00 (1) 70.00 (7) 20.00 (2) 0.00 (0)

Table 7: Macro-operations performed in temporal clauses.

In Table 8 we show an example of a temporal clause which has undergone a split and a reordering of
phrases and clauses in both approaches. As we see, although the operations performed are the same, the
output text is different.

Original Structural Intuitive
Printzipio hori gertatzen da
hegazkinen hegoetan hegan
egiten ari denean, (...)

Hegan egiten dugu; orduan,
hegazkinen hegoetan gertatzen
da printzipio hori.

Printzipio hori hegazkinen he-
goetan gertatzen da; hegazki-
nak orduan egiten du hegan.

That principle happens in the
wings of the plane when it is
flying, (...)

We fly; then, that principle hap-
pens in the wings of the air-
crafts.

That principle happens in the
wings of the aircrafts; the plane
flies then.

Table 8: Example of simplifications of temporal clauses.

4.4 Relative Clauses

In the relative clauses (Table 9), although the transformation has been the most used macro-operation,
the split has also been important above all in the structural approach. The transformations that have been
carried out are, as in the conditional and temporal clauses, a) the change of of the syntactic connective, b)
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transforming a clause into a phrase, c) transforming a subordinate clause into a main clause or d) chang-
ing the finite verb with a non finite. There have also been lexical transformations and reformulations.
The other macro-operations involved are the insertion of non required phrases, the reordering of phrases
and clauses and the deletion of the phrases.

Approach Treated Split Transformation Split + Trans Only others
Structural 42 33.33 (14) 52.38 (22) 7.14 (3) 7.14 (3)
Intuitive 28 14.29 (4) 71.43 (20) 7.14 (2) 7.14 (2)

Table 9: Macro-operations performed in relative clauses.

In the sentence of Table 10 the same transformation has been performed in both approaches: the finite
verb “eusten dien” (that keeps them) has transformed into the non-finite verb “eusteko” (to keep).

Original Structural Intuitive
hegazkin horiei airean eusten
dien printzipio fisikoa (...)

hegazkin horiei airean eusteko
printzipio fisikoa (...)

hegazkin horiei airean eusteko
printzipio fisikoa (...)

the physical principle that
keeps these planes in the air
(...)

the physical principle to keep
these planes in the air (...)

the physical principle to keep
these planes in the air (...)

Table 10: Example of simplifications of relative clauses.

As relative clauses have also been studied from a neurolinguistic point of view by Carreiras et al.
(2010), now we compare our findings. They claim that Basque subject relative clauses are harder to
process than object relative clauses. So, we want to see if the relative clauses where the subject has been
elided have been mainly treated in both approaches. These results are shown in Table 11.

Approach Subject relative clause Object relative clause
Structural 80.95 (34/42) 81.82 (9/11)
Intuitive 69.04 (29/42) 9.09 (1/11)

Table 11: Simplification of subject and object relative clauses.

In the case of the structural approach, more than 80 % of the subject and object relative clauses have
been simplified. In the intuitive approach, on the other hand, almost 70 % of the subject clauses relative
clauses have been simplified while the object relative clauses have hardly been. So, we see that in the
case of the intuitive approach the results are consequent to the findings by Carreiras et al. (2010). In the
structural approach, however, we think that the guidelines have influenced these results.

5 Discussion

While carrying out these experiments and performing the data analysis, we have found some issues we
want to point out. The aim of this analysis is to guide a future study and make a reflection of the data
and resources.

The first main issue is the data scarcity problem since in some cases e.g. the concessive clauses we
were not able to analyse the results. However, we think that it is important to perform preliminary studies
that can raise other questions while bigger corpora are created or compiled.

After having detected contradictory results when comparing the treatment by human editors to the
statistically predictive features, we decided to carry out a deeper analysis of other phenomena that are
found in the sentences of our target clauses. In this analysis, we want to see e.g. if in the sentences
containing purpose clauses there are other phenomena that have been simplified. For example, in Table
12, we present a sentence containing a purpose clause where the relative clause also found has been
reformulated.
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Original Structural
Hegan egiteko, pisu hori guztia konpentsatzen
duen indar bat behar da.

Hegan egiteko pisu hori guztia konpentsatu be-
har da indar baten bidez.

To fly, it is needed a force that compensates all
that weight

To fly all that weight should be compensated by
means of a force.

Table 12: A sentence where a purpose clause has not been simplified but other phenomena have been.

These are the cases we show in Table 13: in the percentage of the second column both the target clause
and other phenomena have been treated, in the third column only other phenomena have been treated,
in the forth column only the target clause and in the fifth column no simplification has performed. We
recall that the raw numbers are shown in parentheses.

Sentences Target clause and Other phenomena Only target clause No simplification
containing other phenomena

Str. Int. Str. Int. Str. Int. Str. Int.
Conditional
clauses

70.59
(12)

29.41
(5)

17.65
(3)

52.94
(9)

11.76
(2)

5.88
(1)

0.00
(0)

11.76
(2)

Purpose
clauses

18.18
(4)

22.73
(5)

77.27
(17)

63.64
(14)

4.55
(1)

0.00
(0)

0.00
(0)

13.64
(3)

Temporal
clauses

47.06
(8)

47.06
(8)

41.18
(7)

29.41
(5)

5.88
(7)

11.76
(2)

5.88
(7)

11.76
(2)

Relative
clauses

67.92
(36)

50.94
(27)

16.98
(9)

33.96
(18)

13.21
(7)

1.89
(1)

1.89
(1)

13.21
(7)

Table 13: Applied operations in the sentences containing the target clauses.

The combination of the simplification carried out in other phenomena is not, however, homogeneous
in all the cases. It is noticeable in the case of purpose clauses, but it is not so noticeable in the rest. To
study how different phenomena may affect each other will be our next step. In fact, as we have 114 target
clauses in 89 sentences, we find that in 28.09 % of the sentences there is more than one target clause. So,
we think that other phenomena in the sentences can be important. To enlarge this analysis, based on our
manual analysis, we consider that in the future we should also take into account other parameters such as
the length of the target clause or its subordination depth to get to know why a clause has been simplified
and not the other.

Another interesting issue is the comparison of approaches, as we have seen that depending on the
approach the results vary a lot. The guidelines and the target audience human editors had in mind has
influenced their simplification decisions. This has been seen in the case of conditional and relative
clauses where the results differ the most. We think that the guideline ’use simple and short sentences
with only a finite verb in each’3 has been important when performing the simplification in the structural
approach and according to the intuition this guideline may not be needed. Moreover, in the case of the
relative clauses we have seen that it can be sufficient to treat only subject relative clauses as performed
in the intuitive approach and also corroborated by the neurolinguistic studies. The ideal situation will
be to based on the neurolinguistic works to write simplification guidelines and that is why we think that
multidisciplinary work should be encouraged.

As conclusion of the operations performed, we want to point out that both splitting and syntactic
transformations such as a) changing the syntactic connective, b) transforming a clause into a phrase, c)
transforming a subordinate clause into a main clause or d) changing the finite verb with a non finite seem
to be important operations together with e) lexical operations and f) reformulations. These operations
should be taken into account in the Basque ATS system although some of them are not feasible or require

3This guideline or a similar ones are found in many easy-to-read guidelines or recommendations in several languages.
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a deeper analysis.
We have also seen in Table 8 that the mere description of the operations is not enough to capture all

the changes performed in the sentences. This should lead to a re-thinking of the annotation scheme or
annotation methodology.

6 Conclusion and Future Work

In this paper, we have presented the treatment that the phenomena in the statistical predictive syntactic
features have undergone in the CBST corpus with the aim of contrasting machine and human perspec-
tives. We have seen that in the structural approach there is a tendency to treat these phenomena, while the
data in the intuitive approach is more diverse. In the case of relative clauses, we have related our findings
to a neurolinguistic study and we have seen that the results of the intuitive approach agree. Looking at the
simplifications macro-operations, we have corroborated the importance of the split and transformation
operations in both approaches.

In the future, we would like to carry out an analysis the combination of the phenomena at sentence
level to see how they may affect each other and to broaden this study when the CBST corpus be enlarged.
In fact, data scarcity has been a problem to draw conclusions about the results, but we want to open a way
to analyse the corpora based on different approaches. We also plan to reanalyse and compare our results
as new neurolinguistic study are carried out and published, since we consider that multidisciplinary
approaches can be helpful to get to understand linguistic complexity.
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Abstract

Pause analysis of key-stroke logged translations is a hallmark of process based transla-
tion studies. However, an exact definition of what a cognitively effortful pause during
the translation process is has not been found yet (Saldanha and O’Brien, 2013). This
paper investigates the design of a key-stroke and participant- dependent identification
system of cognitive effort to track complexity in translation with keystroke logging
(cf. also (Dragsted, 2005) (Couto-Vale, in preparation)). It is an elastic measure
that takes into account idiosyncratic pause duration of translators as well as further
confounds such as bi-gram frequency, letter frequency and some motor tasks involved
in writing. The method is compared to a common static threshold of 1,000 ms in
an analysis of cognitive effort during the translation of grammatical functions from
English to German. Additionally, the results are combined with an eye-tracking
analysis for further validation. The findings show, that at least for smaller data sets
a dynamic pause assessment may lead to more accurate results than a generic static
pause threshold of similar duration.

1 Introduction

Translation studies can be grouped into two major fields of research: Product-based translation
studies and process-based translation studies. In the former, corpus based studies are currently
being used for example to find out what makes translation different from original texts in
a lingua-culture. Process based studies are rather interested in the emergent translation
and how it comes into being. The interest in process based translation research has been
growing exponentially in the past twenty years due to technological advances like affordable
eye-tracking equipment and key-stroke logging programs that allow researchers to analyze the
translators’ behavior while translating along with the emergent product. Both methods can
be used to operationalize cognitive effort during translation. Straightforwardly, reading times
of stretches of the source text can for example be operationalize processing difficulties during
the process of translation. For stretches of text with higher complexity longer reading times
would be expected (Shreve et al., 2010). Complexity in the process of translation does not only
encompass syntactic features of the source text but also typological differences between the
two languages in question modulating the possibilities of rendering the lexical-semantics of the
source to something equivalent in the target language. Also multiple translation possibilities
for words add to the complexity of the task of translation(Schaeffer et al., 2016). This is
also reflected in longer production times and thus pauses (Dragsted, 2005). However, what
exactly a pause is, is subject to debate in translation process research. Typical pause measures
that have been applied by scholars of translation process research, range from one (Jakobsen,
1998) to five seconds (cf. Saldanha and O’Brien (2013) for an overview). However, these

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/
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pause limits were chosen relatively arbitrarily and it is hard to tell if they are too high or
too low to capture translation related cognitive effort (ibid., 121). Also, different translators
may have different baselines of production speed and an inter-keystroke span of 1,000 ms
(Jakobsen, 1998), for example, might be an indicator of increased cognitive effort for one
person but not for another. More recent approaches have been modelling translator dependent
baselines for identifying a minimal pause length of cognitive effort (cf. Dragsted, 2005 and
Couto-Vale, in preparation) thus neutralizing a confounding factor like participant-specific
baselines of pausing behavior. Dragsted manually searched for a plausible pause value for one
participant. This allowed her to develop a relative measure for pause length across subjects.
She divided the randomly selected participant’s production speed minus the time spent on
revision by the identified pause value (Dragsted, 2005). While superior too a very rigid pause
identification measure, Couto-Vale, (in preparation) rightly notes that Dragsted’s measure
can still be improved upon. Couto-Vale’s method involves a further adjustment of a minimal
cognitively effortful pause based on the type of character produced. This means he employs
a classification system for characters that need one or more action keys like ’shift’ to be
produced. He classifies characters by means of the action key combinations first and then
classifies them into categories of pauses 32 ms, which is a custom threshold . The category
with the highest number of pauses is multiplied by two and additional 128 ms (also arbitrarily)
are added to the threshold. Inter-key spans of a character of a respective key-combination
higher than this threshold are considered to be cognitively effortful. Couto-Vale, (in prepa-
ration) suggests to combine participant specific and key combination specific thresholds. This
appears reasonable and useful, however, why exactly this formula should yield cognitively
effortful pauses does not become clear. There is, thus, still a need for further differentiation
between mere typing related inter key spans (which are essentially confounds) and cognitively
effortful pauses. Among such confounding factors are not only key combinations such as those
considered by Couto-Vale, (in preparation) but also frequency effects of letters and letter
bigrams which should be accounted for when assessing cognitive effort during text production.
Their influence on inter key spans is at the heart of this article an will be discussed further below.

2 Modeling dynamic thresholds

For the method of pause identification, we draw upon Couto-Vale’s (in preparation) category
based classification system. In order to identify a cognitively effortful pause, we assign a charac-
ter to the subcategories of participant, case, bigram frequency and character frequency first and
then combined these to a supercategory. A character like ’a’, typed by participant A1 in the
German word haben (’have’) would thus be categorized by means of the ID of the participant,
the type of key pressed and frequency information which then combined to a super category with
the label: ’participantA1|lower-case|high bigram frequency| high character frequency’. A script
classifies characters as upper case (shift-key + character-key), lower case , space or deletions.
Deletions and space characters are grouped separately from the character keys. Especially dele-
tions behave very differently since they almost always occur with an inter-key span of below 10
ms. The reason for this is that the backspace-key was kept pressed until the mistyped word was
deleted. The keystroke logger Translog-II (Carl, 2012), which was used to record the keystrokes
for the data at hand, recognizes this event as multiple key presses with a minimal inter-key
span. These minimal spans would have skewed the pause analysis due to a large number of very
low values. For alphabetical characters, each character press is also characterized as belonging
to a high frequency group of German letters or a low frequency group. Characters receiving
the same classification are grouped into the same category along with their inter-key spans in
milliseconds. If an inter-key span exceeded 10,000 milliseconds, it was excluded beforehand since
this pause was deemed unlikely to be linked to the complexity of the input, but rather lexical
decision problems or dictionary look-ups. Inter-key spans in a super category consisting of par-
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ticipant, case and frequency classifications were tagged as a cognitively effortful pause when
they were higher than the third quartile + three times the interquartile range of that category.
Such values can be considered extreme outliers (Norman and Streiner, 2007) and it is thus likely
that most of the inter-key spans below this threshold are related to normal typing activity. For
the frequency classifications, character frequencies below the median of the character frequency
lists are classified as ’low frequency’ and above as ’high frequency’. The same is done for bi-
gram frequencies. However, keeping the frequency types apart led to super-categories with the
frequency classification of low|low, low|high, high|high or high|low. Due to the very fine grained
distinctions some categories did not receive many data points. This would have made it difficult
to make a reliable judgement with respect to outliers. Therefore a way to combine bigram and
character frequencies was devised to reduce the number of subcategories and thus attenuate this
problem.

3 Assessing possible interaction effects of frequency types

The formation of a sum score could have distorted the effects frequency on processing effort
of either if character frequency would be modulating the effect bigram frequency on inter-key
spans (or vice versa). In order to avoid this, a possible interaction effect of both was explored.
Five translations of the same text by five different translators were analyzed statistically. Their
keystrokes were logged with Translog-II (Carl, 2012). The participants were allowed to use an
online dictionary, though this might affect pausing behavior and may be responsible for very
long pauses not related to the processing of linguistic complexity but vocabulary problems. The
five participants were German students of English linguistics enrolled in their master’s and the
source text was an abridged popular scientific text written in English. Prior to the translation,
the participants were asked to copy a short German text, in order to familiarize themselves
with the keyboard. The data consists of the participants’ keystrokes and the inter-key spans
associated with them. Only inter-keyspans between two characters were taken into account.
Pauses after mouse-events or arrow-keys were excluded. The term inter-key span will be used
instead of pause in order to differentiate it from time spans signifying a possible cognitively
effortful pause (cf. the KD-files of the CRITT Translation Process Database for a similar data
structure (Schaeffer et al., 2016).)

The data was analyzed by means of linear mixed regression model in R using the R-package
lme4 (Bates et al., 2015). Mixed regression models allow to control against item-specific
variation. We applied the R-package lmer-test which calculates p-values with a combination
of F-tests and likelihood ratio tests through Satterthwaite approximations (Kuznetsova et
al., 2015). Cognitive effort was operationalized by the inter-keyspans for preceding each
character in milliseconds. This measure was log-scaled in order to approximate a normal
distribution. The model was enriched with case information (upper, lower), bigram-frequency
and character-frequency (interval data) sourced from the ’Wortschatz’ project (UniLeipzig,
2012) (Lyon, 2012). Since no data was available for bigram frequencies for characters preceded
by ’space’, the mean bigram frequency was used as a proxy for these cases. Punctuation marks
and spaces were excluded from the analysis as were deletions. Since no bigram information
was available for word initial characters, these were assessed with the character frequency only.
Both were modelled as an interaction effect. The frequencies were log-scaled and z-scored.
Each source text token was given a unique ID to control against item-specific variation in
the form of a random effect. Participant specific variation was factored in by modeling
each participant as a random effect as well. The final model was: Pausetime per character
˜ bigram frequency * Character Frequency + Case+ (1|Unique Source Text ID)+ (1|Participant)
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Figure 1: The interaction effect of bigram fre-
quency and character frequency on the inter-
key span. High frequency characters occuring
in high frequency bigrams lead to shorter inter-
key spans.

The model retreived a highly significant
effect for the interaction between bigram fre-
quency and Character Frequency (b=0.08,
p<0.001). Also the main effects for Char-
acter Frequency (b=-0.21, p<0.001) and bi-
gram frequency (b=-0.17, p<0.001) were sig-
nificant as was Case (b=-2.04, p<0.001).
These findings for case corroborate Couto-
Vale, (in preparation) suggestion to use key
combination-dependent thresholds when de-
termining pauses. However, the results
obtained here may be confounded by the
fact that almost every upper case letter is
also located word-initially which alone leads
to longer inter-key spans (Immonen and
Mäkisalo, 2010) so that it is hard to differen-
tiate between the effect of upper case letters
and word-initial characters. While the es-
timate of both frequency types is distinctly
weaker than that of case, the results show that the higher the letter and bigram frequency,
the smaller the inter-key spans. This is especially pronounced for high frequency letters in high
frequency bigrams, as can be determined from the significant interaction between these two vari-
ables. These differences may become the decisive factor for being either correctly within a static
pause threshold or erroneously above it. In order to account for this interaction effect the com-
bined frequency category was formed by multiplying the z-scored frequencies for a character by
the z-scored frequencies of a bigram it occured in at second position. The super-categories thus
consisted of inter-key spans of key presses classified by ’participant|case|combined frequency’.1

4 Comparison with a static threshold

To test if the dynamic method performs better than the static one, the cognitive effort during
the translation of grammatical subjects from English into German was compared with the effort
during the translation of other grammatical functions. The same materials and participants
from section 2 were used. Additionally, the source texts were annotated with grammatical
functions following the Cardiff Grammar (Fawcett, 2008) and aligned with the productions. For
the analyses, cognitive effort was operationalized by the average time per pause while translating
a grammatical function from an English source text to a German target text. This means, that
the time associated with each identified pause for the translation of a grammatical element in the
source text was summed up and then divided by the number of identified pauses. The minimum
threshold to identify a pause for the static method was set to 1,000 ms which is an often used
customary threshold (Carl and Kay, 2011), (Jakobsen, 1998). The minimum threshold for the
dynamic method of pause identification was calculated in the way described above i.e. by means
of category- dependent outlier identification. Inter-key spans of > 20 seconds were excluded,
since they were likely to be caused by dictionary look-ups and not linguistic complexity. The
participants and materials were the same as in Section 2. Eye-tracking data in form of the
total reading time for the grammatical functions was used to triangulate the findings. Again
linear mixed models were employed. For the pause-related models we controlled for the length
of the translation of a grammatical function by counting the number of typed and deleted
characters (’TT item length’). For the reading related model the length (in characters) of the
grammatical functions of the source text was controlled for (’ST item length’). participant and

1In order to classify a key as high or low frequency, the median frequency of the combined frequency category
was used as the decisive criterion as before
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item-specific variation were modeled as random effects: Operationalization of ’Cognitive Effort’
˜ Grammatical Functions + Item Length (count data)+ (1|Participant)+(1|Unique Source Text
ID)

The dynamic measure of the average time spend in pause found significantly higher average
pause time for the translation of conjunctions (b=1611.69, p< 0.05) and the translations of
main verbs (b=1213.79, p< 0.05). compared to that of grammatical subjects.2 The static
measure, however, did not find significant effects for the translation of coordinating conjunctions
(b=1286.64, p= 0.15) or main verbs (b=1213.79, p= 0.06). The eye-tracking data corroborates
the results of the dynamic but not the static method of pause identification since the results
for the measure of Total Reading Time for the variables Coordinators (b=-0.42, p<0.05) and
Main Verb (b=-0.52, p<0.0001) are significant here, too3. Still, the static measurement found
marginally significant results for the translations of main verbs and it is possible that with
more datapoints, the static measure would have found similar results to that of the dynamic
measurement. Another interesting observation is that the estimates for Coordinators and Main
Verbs in the reading time measure are negative and not positive as in the pause measures.
Usually, longer reading times are associated with higher processing effort in monolingual reading.
However this relationship of reading time to cognitive effort does not necessarily hold true
for translation since it is a very complex task. It is more likely that the translation of these
grammatical functions requires excessive target text monitoring and local decision making that
is not bound to the source text any more - once the necessary information is acquired. This
case highlights the need to look at both eye-tracking data and keystroke logging data to draw
conclusions about cognitive effort in translation.

5 Conclusion

This paper shows that additionally to participant-specific and key-combination dependent
thresholds, it is worthwhile to also include frequency information for letters and bigrams in
the target language to identify cognitive effort in translation, since they have a significant inter-
action effect on inter-key spans.
While the static threshold did not show the significant results of the eye-tracking data and the
dynamic pause measure, it is very possible, that with more data points the static threshold
would have found similar results. Using static thresholds with larger amounts of data might
thus still be a useful approach to identify cognitive effort in translation if time and resources are
scarce. For smaller data sets a dynamic pause measure seems to be a more appropriate solution
to identify cognitive effort and linguistic complexity along with it.
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Abstract

Data driven approaches to readability analysis for languages other than English has been plagued
by a scarcity of suitable corpora. Often, relevant corpora consist only of easy-to-read texts with
no rank information or empirical readability scores, making only binary approaches, such as
classification, applicable. We propose a Bayesian, latent variable, approach to get the most out
of these kinds of corpora. In this paper we present results on using such a model for readability
ranking. The model is evaluated on a preliminary corpus of ranked student texts with encourag-
ing results. We also assess the model by showing that it performs readability classification on
par with a state of the art classifier while at the same being transparent enough to allow more
sophisticated interpretations.

1 Introduction

Modern models of readability analysis for classification often use classification algorithms such as
SVM (Petersen, 2007; Feng, 2010; Falkenjack et al., 2013) which give us an assessment whether a text is
easy-to-read or not. Such models have a very high accuracy, for instance, a model using 117 parameters
from shallow, lexical, morphological and syntactic analyses achieves 98,9 % accuracy (Falkenjack et
al., 2013). However, these models do not tell us much about whether a given text is easier to read than
any other text, other than the binary classification. In order to perform a more fine grained prediction
we normally need to train the models using a corpus of graded texts, for an overview of such methods
see Collins-Thompson (2014).

There are attempts to grade texts without an extensive corpus of graded texts (Pitler and Nenkova,
2008; Tanaka-Ishii et al., 2010). Tanaka-Ishii et al. (2010) present an approach which predicts relative
difficulty based on pairwise comparison between texts and thus models degree of readability on an ordinal
scale. Probabilistic models have also been used, by for instance Martinez-Gómez and Aizawa (2013).
Their model is based on a Bayesian network that comprises 22 linguistic features. The model is trained
on a corpus with eye fixations as a measure of reading difficulty. The paper focuses on readability
diagnosis and presents a variety of linguistic features important for readability.

In this paper we present a novel way of assessing the relative readability of texts based on the latent
variable of a Bayesian Probit model trained for classification. The Probit model is a straightforward
way to model the probability that a text is considered easy-to-read or not. In its traditional interpretation
it belongs to the wider family of linear classification models. However, in this paper we illustrate that
when using a latent variable interpretation, the Probit model lends itself particularly well to readability
assessment.

The probabilistic nature of the Probit model allows us to interpret and assess the relative readability
between texts. Roughly, if P (YText1 = 1|XText1) > P (YText2 = 1|XText2) then Text1 is easier to read
than Text2. Meanwhile, the latent variable underlying the Probit model is even easier to interpret and
might even be viewed as a semi-linear and affine measure of degree of readability in itself.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/
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2 Method

We construct both a Probit model and a Support Vector Machine for classifying easy-to-read texts. How-
ever, here we focus on presenting the Probit model as the SVM is already well established in the field of
readability assessment. We also present the various evaluation methods used to assess the Probit method.
We begin, however, by describing our corpora.

2.1 Corpora

We use three different Swedish corpora. Two are used to train the model and evaluate the classification
performance of the model. The third corpus is used to evaluate the ranking performance of the model.

2.1.1 Training and classification evaluation
The source of easy-to-read texts is LäSBarT (Mühlenbock, 2008). We also use the general text corpus
SUC (Ejerhed et al., 2006). From each of these two corpora we have selected 700 texts with a similar
distribution of lengths. We make the assumption that texts from SUC are not easy-to-read but in reality
we expect a small portion of the SUC-texts to actually be easy-to-read. This means that the sets are not
well separated making perfect classification infeasible.

This set of 1400 texts from LäSBarT and SUC are labelled according to their source corpus and split
into a training set of 350 texts from each corpus and a test set of the same size.

2.1.2 Ranking evaluation
We also use 9 sets of ordered texts from the MASTER project (Kanebrant et al., 2015). This corpus
consists of 30 texts split into partially overlapping sets. There are 14 samples of general fiction split
in 3 partially overlapping sets of 6 texts, 8 samples from social science textbooks split in 3 partially
overlapping sets of 4 texts, and 8 samples from natural science textbooks split in 3 partially overlapping
sets of 4 texts.

Each set is ordered through the texts being labelled with the average performance of weak readers on
reading comprehension tests based on the text, where weak readers are defined as those readers scoring
below the mean on all texts they were assigned (3 for general fiction or 2 for social and natural sciences).
The readers were students in the Swedish 4th grade, 6th and 8th grade corresponding to an age of 11, 13
and 15 years respectively, giving rise to the 3 sets in each genre. The number of weak students we had
access to varied, but for grades 4 and 6 we had roughly 200 weak students per text each year, whereas
the number of weak students for grade 8 were rarely above 30 per text.

We refer to this corpus as preliminary as the sample of students used in this paper does not correspond
to all data collected by Kanebrant et al. (2015) and has not gone through rigorous post-processing. At
this time however, this is the only empirically based readability ranked data in Swedish.

2.2 Feature set

We use the small set of features for readability classification presented in Falkenjack and Jönsson (2014).
This feature set is the result of a genetic feature selection scheme in an attempt to eliminate parsing based
features1.

The set consist of 8 features, of which 6 are part-of-speech (in which delimiters are included) tag
unigrams for adverbs (AB), interrogative/relative possessive pronouns (HS), cardinal numbers (RG), and
major (MAD), minor (MID) and pairwise (PAD) delimiters. The last two features consist of OVIX, or
Word variation index (Ordvariationsindex), a type-token ratio based measure normalized for use on texts
with different lengths, and SweVocH, the ratio of words in the text belonging to a lexicon of ”highly
frequent words” in a reference corpus. The feature set was optimized specifically for use with an SVM
classifier (Falkenjack and Jönsson, 2014) but we assume it will work well enough with other models as
well.

1Accuracy of the small feature set on the task of classifying the SUC and LäsBart corpora is 98.5% compared to 98.9%
for a 119 parameter model, that also includes parsing based features, although these high accuracies might be a result of some
over-fitting due to the lack of a separate test set not used for cross-validation.
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2.3 For comparison: Support Vector Machine

The Support Vector Machine (SVM) is a linear classification model that can be viewed as state-of-the-art
in easy-to-read classification with high accuracies achieved even with small feature sets (Falkenjack and
Jönsson, 2014). The SVM works by finding a hyperplane in feature space which optimally separates
two classes. This can be extended to non-linear models using different kernel functions but in this paper
we use a linear SVM. Fitting an SVM to data entails solving a Quadratic Programming problem, in
this paper we use Platt’s Sequential Minimal Optimization algorithm (Platt, 1998) accessed through the
kernlab library (Karatzoglou et al., 2004) for the R statistical programming language.

2.4 Probit model

The Probit model is a well established model in statistical learning, introduced in the 1930s (Gaddum,
1933; Bliss, 1934) and used primarily for classification. It is closely related to the younger but somewhat
more well known Logit model, or Logistic regression, but has some properties which makes it especially
suitable to Bayesian modelling (McCulloch et al., 2000). The Probit model takes the form given in
Equation 1

Pr(Y = 1 | X) = Φ(XTβ) (1)

where Φ is the Cumulative Distribution Function for the Standard Normal Distribution (if Φ is replaced
by the logistic function we get the Logit model), Y is the dependent variable, or label, and X are the
covariates, or features, on which Y depend. In the readability classification case, Y is an indicator value
indicating whether the text is easy-to-read or not, while X is a vector of feature values of the features
covered in Section 2.2.

A particular strength of the Probit model for readability analysis is that it can be viewed as a latent
variable model. A latent variable model is a model which assumes one or more unobserved, or latent,
variables which connect observed variables. If we assume a latent variable Y ∗ and an error term ε ∼
N(0, 1) then a latent variable equivalent to Equation 1 can be written as Equation 2.

Pr(Y ∗ > 0 | X) where Y ∗ = XTβ + ε and Y =

{
1 if Y ∗ > 0
0 otherwise.

(2)

This formulation allows us to view the Probit model as a linear regression over an unobserved, or
latent, real valued variable which underlies the assigned labels in the classification problem. This is
particularly useful when different classes are defined by the degree of some linear property as in the
case with easy-to-read classification where the underlying property is degree of readability which now is
being indirectly modelled on an interval scale.

2.5 Model estimation: Gibbs Sampling

Fitting a Probit model to data can be done in a number of ways. For the traditional Frequentist Probit
model, often referred to as Probit regression, Maximum Likelihood Estimation is the preferred method.
This approach is well established but yields only a point estimate of β.

In the Bayesian framework we want to estimate the full posterior distribution for the model. For
the Probit model, as for many other statistical models, this problem turns out to be infeasible to solve
analytically so a numerical approach is generally applied instead. A Markov Chain Monte Carlo sampler
can be used to draw a sample from the posterior distribution of a Probit model. If the prior distributions
over β are Normal we have conjugacy with the Normal distribution of the errors and a Gibbs sampler can
be constructed using a data augmentation scheme based on the latent variable interpretation presented
above (Albert and Chib, 1993).

We use a C++ implementation of such a Gibbs sampler, accessed through the R statistical programming
language using the MCMCpack library (Martin et al., 2011).
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2.5.1 Prior
As we use a Bayesian fitting method we need to supply a prior. However, we opt to use only a weak
regularization prior rather than a more informative prior based on any belief about specific coefficient
values.

We use 0 as prior mean for all coefficients and 100× I as prior covariance (= 1/100× I prior preci-
sion), effectively putting an independent N(0, 100) prior on each coefficient. This prior is only weakly
informative but keeps the coefficients from growing towards infinity and the covariances from growing
towards 1, thus avoiding over-fitting. We also standardize the covariates, which avoids introducing a bias
to any specific coefficient when using equal priors.

2.5.2 Sampling scheme and MCMC diagnostics
For a Gibbs sampler of a Bayesian Probit model, the output is draws from the posterior distribution over
the coefficients β. As successive draws from an MCMC sampler are not independent, we thin our sample
by keeping only every 200th generated draw. We also discard the first 500 thinned draws in a burn-in
phase. We first show that the sample converges to the true posterior by running 5 parallel chains, taking
a sample of 5 000 draws from each chain. To illustrate that the chains converge on the same distribution
we calculate the potential scale reduction factor (Gelman and Rubin, 1992) for each feature and plot
the value of these as the chain gets longer (Brooks and Gelman, 1998). The so called Gelman plots in
Figure 1 show values very close to 1 for all features and thus indicate that the chains have converged to
the same distribution which we can assume is the true posterior. The MCMC diagnostics are performed
using the CODA library (Plummer et al., 2006).
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Figure 1: Gelman plots for the 8 feature coefficients and the intercept.

After illustrating that all the chains converge to the true posterior, we simulate a single longer chain,
keeping a total of 100 000 draws. We compute the maximum inefficiency factor (IF) for the sample. The
IF is a measure of the loss of efficiency from using a dependent rather than independent sample and is
calculated for each feature (Heckman and Leamer, 2001). In this case, the maximum IF is ∼1.02 which
is acceptable.
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2.6 Prediction

The fitting approach we use model the class label only as a function of the latent variable and fits the
latent variable to the data. This means that besides traditional measures of classifier performance we can
also inspect this latent readability value for each text.

For instance, we can plot the distributions for all true positives and all false positives and see whether
true positives are generally more readable, according to the latent variable, than false positives (see
Figure 3). This latent variable can also be viewed as a measure of classifier confidence and can, by
definition, be converted into a probability for use in ensemble methods.

2.6.1 Posterior predictive distribution

Going one step further we should realize that we do not have a single instance of the Probit model. We
do not, as is usual in Frequentist statistics, have only a Maximum Likelihood Estimate (MLE) of the
”best fitting” instance.

Rather, we have 100 000 draws from the posterior distribution of the model. That is, effectively we
have 100 000 instances of the Probit model. Each of these instances can be used to predict a value for a
new observation, giving us 100 000 values for this observation. These values constitute a sample from
the posterior predictive distribution, or PPD, for that observation.

This PPD can be used to calculate, for instance, the probability that text T1 is easier to read than text
T2 according to the model, by simply calculating what proportion of the draws that result in Y ∗

T1
< Y ∗

T2
.

We can also inspect the posterior predictive distribution directly. The variance of which can be viewed
as another measure of confidence, but rather our confidence in the model itself than the model’s confi-
dence when making a specific prediction.

2.7 Evaluation

We present results from two evaluations, one classification task using the SUC/LäSBarT dataset and one
ranking evaluation on the smaller MASTER data set.

2.7.1 Classification

While this paper focuses on ranking, it should be noted that what we are actually modelling is a classifier.
Thus, we should say something about how the PPD is used for classification. To be clear, within the
Bayesian paradigm, the full PPD is the answer to the question ”What is the degree of readability of text
T ?”, however, we can do a lot with the PPD. Firstly, we can transform it into a probability of belonging
to either class by simply computing the ratio of draws generating each class label.

A more refined way of assigning actual class labels utilizes Bayesian decision theory, which, in short,
combines the PPD with a loss function. This loss function can take many forms but can be described as
a way to quantify the cost of making different erroneous decisions. The task is then to find and make
those decisions which minimize the expected loss.

In our case, the decision to make is what label or probability to apply to a new observation. However,
as classification is not the main focus of this paper we will simply use the sign of the PPD mean value as
decision rule. This also makes comparisons to the SVM reference classifier easy.

2.7.2 Latent variable ranking

To evaluate the model for ranking we use the small sets of ordered texts from the MASTER project (Kane-
brant et al., 2015) covered in Section 2.1.

We compute PPD of the latent variable readability for each text and the corresponding ranking of the
texts. Using these distributions and the reference readability, as defined in Section 2.1, we can compute
the posterior distribution of regular Pearson correlation as well as Kendall rank correlation, also known
as Kendall’s τ . Kendall’s τ is a correlation metric used for comparing different total orders (or with some
tweaking, partial orders as well) on the same set (Kendall, 1948).
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Support Vector Machine
Easy Non-easy

Easy 341 17
Non-easy 9 333

Probit model, posterior mean
Easy Non-easy

Easy 340 14
Non-easy 10 336

Table 1: Confusion matrices for the two classifiers.

3 Results

We present three results. First we present the estimated posterior of the Probit model, then we compare
its ability to classify texts to a more conventional SVM model, and finally we give preliminary results on
the Probit model’s ability to also rank texts.

3.1 Fitted model

For completeness we plot the posterior densities for all coefficients in Figure 2.

Figure 2: The posterior densities for all coefficients.

3.2 Classifier performance

Table 1 depicts the confusion matrices for the two classifiers. As can be seen the two models are com-
paratively good as classifiers with roughly 96.3% accuracy for the SVM and 96.6% accuracy for Probit.

Figure 3 shows kernel density estimates of the posterior predictive distributions for all texts, separated
into the four false/true positive/negative categories. As we can see, the distributions for incorrectly
classified texts lie closer to 0 for both false positives and false negatives than for correct classifications.
Generally this can be interpreted to mean that the confidence of the classifier is lower for these examples
or that their estimated degree of readability is less extreme.

However, it is also illuminating to look at a the PPDs of the first correctly and the first incorrectly
classified texts.

In the first plot in Figure 4 we can see the posterior distribution of readability for a correctly classified
easy-to-read text. This distribution is centred far from 0 implying a high degree of class confidence by
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Figure 3: Total densities for false labels and true labels. Negative values correspond to easy to read texts
and positive are non-easy.

Figure 4: The posterior predictive distribution of readability values for one correctly and one erroneously
classified easy-to-read text.

the model as well as a low degree of difficulty, i.e. a high degree of readability.
If we instead look at the second plot in Figure 4 we see the posterior distribution of readability for an

incorrectly classified easy-to-read text. This text belongs to the easy-to-read corpus but has a posterior
mean on the non-easy-to-read side of 0, i.e. it is classified as non-easy-to-read. We can see that the
posterior mean lies relatively close to zero and a not insignificant part of the distribution actually lies on
the correct side of 0, note also that the x-axis scales differ between the two plots, the variance of the first,
”correct”, PPD is smaller than that of the second, ”erroneous”, PPD.

3.3 Latent variable ranking

Figure 5 presents the posterior distributions of the Pearson ρ and Kendall τ correlations. The bars
indicating posterior mass of Kendall τ are scaled to the height of the graphs. A large τ indicate strong
rank order correlation and a large ρ indicate a strong linear correlation.

For both types of correlation, the distributions vary among different test sets but the majority of the
sets show a definite correlation and some sets show a strong correlation. General fiction for grades 4 and
6, social science for grade 4 and natural science for grades 6 and 8 looks very good while social science
grade 8 and natural science grade 4 still show some correlation. However, social science grade 6 and
general fiction grade 8 show basically no correlation at all. It should be restated that the test sets are
small and preliminary, and not investigated for any specific problems with the data, but even so, we view
the fact that 5 out of the 9 test sets show strong correlations with our predicted rankings, and another 2
shows some correlation, as promising.

4 Conclusions

We have presented the Probit model, its latent variable interpretation, a Bayesian approach to fitting a
Probit model to data based on this interpretation, as well as interpretations of other aspects of the model.
The Bayesian approach gives us posterior distributions over all coefficients and predicted values. These
express the uncertainty of the model and, though outside the scope of this paper, lend themselves to
advanced approaches to decision making.
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Figure 5: Posterior density of Pearson ρ and scaled mass of Kendall τ correlations.

To further assess the model we also compared its ability to classify texts to a state of the art SVM
classification model. We show that for classification the Probit model performs more or less on par with
a Support Vector Machine model even when using a feature set developed for SVM.

We also have the predicted values of the latent variable, readability, which we use for readability
ranking; one of the main reasons for using the Probit model. The results from the evaluation of readability
are promising and encourage further research.

Future work will focus on developing a fitting algorithm allowing us to utilize mix of binary classified
data and a small amount of ranked data to train a hybrid of the Probit model presented in this paper and
the Ordered Probit model (Becker and Kennedy, 2010). Hopefully by then a less preliminary data set of
ranked documents from the MASTER project might be available for evaluation.
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Abstract

Informed by research on readability and language acquisition, computational linguists have de-
veloped sophisticated tools for the analysis of linguistic complexity. While some tools are start-
ing to become accessible on the web, there still is a disconnect between the features that can in
principle be identified based on state-of-the-art computational linguistic analysis, and the analy-
ses a teacher, textbook writer, or second language acquisition researcher can readily obtain and
visualize for their own collection of texts.

This short paper presents a web-based tool development that aims to meet this challenge. The
Common Text Analysis Platform (CTAP) is designed to support fully configurable linguistic fea-
ture extraction for a wide range of complexity analyses. It features a user-friendly interface,
modularized and reusable analysis component integration, and flexible corpus and feature man-
agement. Building on the Unstructured Information Management framework (UIMA), CTAP
readily supports integration of state-of-the-art NLP and complexity feature extraction maintain-
ing modularization and reusability. CTAP thereby aims at providing a common platform for
complexity analysis, encouraging research collaboration and sharing of feature extraction com-
ponents to jointly advance the state-of-the-art in complexity analysis in a form that readily sup-
ports real-life use by ordinary users.

1 Introduction

Linguistic complexity is a multifaceted construct used in a range of contexts, including the analysis of
text readability, modeling the processing difficulty of sentences in human sentence processing, analyzing
the writing of second language learners to determine their language proficiency, or for typological com-
parison of languages and their historical development. To analyze linguistic complexity in any of these
contexts, one needs to identify the observable variedness and elaborateness (Rescher, 1998; Ellis, 2003,
p. 340) of a text, which can then be interpreted in relation to the nature of the task for which a text is read
or written, or the characteristics of the individuals engaged in reading or writing. In this paper, we are
concerned with this first step: identifying the elaborateness and variedness of a text, sometimes referred
to as absolute complexity (Kusters, 2008).

Measure of absolute complexity for the purpose of selecting reading materials or the analysis of learner
language range from more holistic, qualitative perspectives to more analytic, quantitative approaches.
While we here focus on the latter, reviews of both can be found in Pearson and Hiebert (2014), Collins-
Thompson (2014), Benjamin (2012), Ellis and Barkhuizen (2005) and Wolfe-Quintero (1998).

The present paper describes a system that supports the extraction of quantitative linguistic features
for absolute complexity analysis: the Common Text Analysis Platform (CTAP). CTAP is an ongoing
project that aims at developing a user-friendly environment for automatic complexity feature extraction
and visualization. Its fully modularized framework enables flexible use of NLP technologies for a broad
range of analysis needs and collaborative research. In the following sections, we first sketch demands

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0
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that a system for complexity analysis and research should satisfy, before providing a brief description of
the CTAP modules and how they are integrated to address the demands.

2 Identifying Demands

In order to find out how complexity had been measured in L2 research, Bulté and Housen (2012) reviewed
forty empirical studies published between 1995 and 2008 and compiled an inventory of 40 complexity
measures used in these studies (pp. 30–31). Although they found that there was “no shortage of complex-
ity measures in SLA studies”, most studies used no more than 3 measures to measure complexity. This
was largely “due to the lack of adequate computational tools for automatic complexity measurement and
the labour-intensiveness of manual computation” (p. 34). The authors were optimistic that some online
complexity analyzers would come out in the near future and the situation would change.

As Bulté and Housen predicted, a number of complexity analysis tools were released in the past few
years (e.g., Xiaofei Lu’s Syntactic and Lexical Complexity Analyzers1, CohMetrix’s Web interface to its
106 complexity features2, and Kristopher Kyle’s Suite of Linguistic Analysis Tools3, etc.). While they
make it possible for researchers to measure absolute linguistic complexity easier and faster, these tools
were generally not designed for collaborative research and are limited in terms of usability and platform
compatibility, provide no or very limited flexibility in feature management, and do not envisage analysis
component reusability. As a result, they are not suitable (and generally were not intended) as basis for
collaborative research on complexity, such as joint complexity feature development.

Commercial systems such as ETS’s TextEvaluator4 and Pearson’s Reading Maturity Metric5 also im-
plemented automatic complexity analysis for readability assessment (see Nelson et al. (2012) for a com-
prehensive review and assessment of such systems.) However, the commercial nature of these systems
limits the transparency of the mechanisms they employ and future research cannot be freely developed on
this basis. The Text Analysis, Crawling, and Interpretation Tool TACIT (Dehghani et al., 2016) provides
an open-source platform for text analysis. While linguistic complexity analyses could be integrated in
this framework, it so far is primarily geared towards crawling and text analysis in a social media context,
e.g., for sentiment analysis.

These complexity analysis tools overlap in terms of the complexity features offered by different sys-
tems. For example, the tools exemplified earlier contain a significant amount of lexical feature overlap
across systems. While this can be useful for cross-validating calculated results, it also duplicates anal-
yses options without giving the user the choice of selecting the set of analyses needed to address the
specific needs. A more optimal scenario would be based on a common framework where developers of
feature extraction tools can collaborate and share analysis components, release analysis tools to be used
by researchers who focus on different aspects of the complexity problems (e.g., relative complexity for a
specific target audience).

Another issue of existing complexity analysis tools concerns (re)usability. Many of these tools are
released as standalone precompiled software packages or program source code. Precompiled packages
not only cause cross-platform compatibility problems, but also are difficult to adapt to meet the user’s
specific needs. The source code option provides maximum flexibility, but are usable only to expert users
or programmers. It should be noted that a lot of complexity researchers are linguists, psychologists, or
cognitive scientists, but not necessarily computer scientists or programmers. Consequently, developing
a complexity analysis system with user-friendly interface and visualization features are on demand.

Last but not least, there is also the challenge of complexity feature proliferation over the past years.
Researchers are systematically exploring and identifying new features that contribute to our understand-
ing of linguistic complexity. For example, CohMetrix (McNamara et al., 2014) provides 106 metrics for
measuring cohesion and coherence. Housen (2015) identified more than 200 features for measuring L2

1http://www.personal.psu.edu/xxl13/download.html
2http://cohmetrix.com
3http://www.kristopherkyle.com
4Formerly SourceRater, cf. https://texteval-pilot.ets.org/TextEvaluator
5http://www.pearsonassessments.com/automatedlanguageassessment/products/100000021/

reading-maturity-metric-rmm.html#tab-details
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complexity. Vajjala (2015) accumulated another 200 features for doing readability assessment. Although
features overlap across systems, the number of complexity features used and compared by researchers
is large and likely to grow . Not every study needs to use all these features, nor any tool provides a full
set. Researchers interested in linguistic complexity arguably would benefit from a system that readily
supports them in choosing and applying complexity analyses from a large repository of features, without
requiring NLP expertise.

3 System Architecture of CTAP

The CTAP system is designed to address the issues reviewed in the previous section. The goal is a system
that supports complexity analysis in an easy-to-use, platform independent, flexible and extendable envi-
ronment. The system consists of four major user modules—Corpus Manager, Feature Selector, Analysis
Generator, and Result Visualizer—as well as a Feature Importer administrative module. Figure 1 shows
the system architecture and module relationships.

Figure 1: CTAP modules and their relationship

The Corpus Manager helps users manage the language materials that need to be analyzed. They can
create corpora to hold texts, folders to group corpora and tags to label specific texts. The text labels will
then be used to help filter and select target texts for analysis. They can also be used to group texts for
result visualization purposes.

Other complexity analyzers usually limit users to a fixed set of features that the analyzer extracts.
The Feature Selector from CTAP enables users to group their selection of the complexity features into
feature sets. This flexibility is realized by utilizing the Unstructured Information Management framework
(UIMA6) provided by the Apache Foundation. By using the UIMA framework, every complexity feature
can be implemented as an Aggregate Analysis Engine (AAE) which chains up a series of primitive
Analysis Engines (AEs). Each AE may be a general purpose NLP components, such as a sentence
segmenter, parser, or POS tagger. It may also be one that calculates some complexity feature values based
on analysis results from upstream AEs or components. This setup enables and encourages reusability of

6https://uima.apache.org
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AEs or analysis components, thus making collaborative development of complexity feature extractors
easier and faster.

After collecting/importing the corpora and selecting the complexity features, the users can then gener-
ate analyses in CTAP’s Analysis Generator. Each analysis extracts a set of features from the designated
corpus. Results of the analysis are then persisted into the system database and may be downloaded to
the user’s local machine for further processing. The user can also choose to explore analysis results with
CTAP’s Result Visualizer. The UIMA framework supports parallel computing that can easily scale out
for handling big data analysis needs.

The Result Visualizer is a simple and intuitive module that plots analysis results for the user to visualize
preliminary findings from the analysis. It supports basic plot manipulation and download. Figures 2–5
show screenshots of the user modules.

Figure 2: Corpus Manager module screen shot

Figure 3: Feature Selector module screen shot

4 Design Features of CTAP

The target users of the CTAP system are complexity feature developers and linguists or psychologists
who might not necessarily be computer science experts. As a result, the system features the following
design.
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Figure 4: Analysis Generator module screen shot

Figure 5: Result Visualizer module screen shot

Consistent, easy-to-use, friendly user interface. The CTAP system is deployed as a Web application,
which strikes a balance between usability, flexibility and cross-platform compatibility. The GUI provided
on the Web makes it easy to access, user-friendly and platform neutral. The CTAP client frontend was
written with Google Web Toolkit7 (GWT), an open source and free technology that enables productive
development of high-performance web applications. This avoids the necessity to compile the software
for different operating systems, which has been proved to be a major frustration for small development
teams or single developers who do not have enough resources to deal with platform differences.

Modularized, reusable, and collaborative development of analysis components. The CTAP anal-
ysis back-end is written under the UIMA framework. Each analysis unit is implemented as a UIMA
AE. Since a lot of the AEs are commonly required by different complexity features, modularizing anal-
ysis into smaller AEs makes it easier to reuse and share components. The AEs included into CTAP are
open sourced and we encourage contribution from feature developers. A community effort will enhance
complexity research to a greater extent.

7http://www.gwtproject.org
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Flexible corpus and feature management. This feature is a luxury in light of the existing complexity
analysis tools. However, this feature is of special value to users with lower information and commu-
nication technology competence. Users choose from the feature repository the system provides a set
of features that meet their needs, the CTAP system then generates a UIMA AAE to extract the chosen
feature values. It frees users from tediously editing analyzer source code, which is also often error-prone.

5 Summary and Outlook

The CTAP project is under active development at the moment. A demo version of the system has been
finished (http://www.ctapweb.com), establishing the feasibility of the design, architecture, and
the features described in this paper. Additional functionality, such as allowing users to add their own
feature extractors and providing modules supporting machine learning to combine the collected evidence
will be added in the near future. We are currently working on populating the system with complexity
feature extractors implemented as UIMA AEs by either migrating existing analyzer code as well as
reimplementing features reported on in other complexity studies. To validate and exemplify the approach,
we plan to replicate the state-of-the-art linguistic complexity analyses for English (Vajjala and Meurers,
2014) and German (Hancke et al., 2012) using CTAP, making the components on which the analyses are
based readily available.

In making the tool freely available under a standard Creative Commons by-nc-sa licence, we would
also like to call for contribution from other researchers. Interested parties are encouraged to join and
contribute to the project at https://github.com/ctapweb. Only by making use of joint effort
and expertise can we envisage a production level system that can support joint progress in the complexity
research community, while at the same time making the analyses readily available to ordinary users
seeking to analyze their language material—be it to study language development or to develop books
better suited to the target audience.
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Abstract

We bring together knowledge from two different types of language learning data, texts learners
read and texts they write, to improve linguistic complexity classification in the latter. Linguistic
complexity in the foreign and second language learning context can be expressed in terms of
proficiency levels. We show that incorporating features capturing lexical complexity informa-
tion from reading passages can boost significantly the machine learning based classification of
learner-written texts into proficiency levels. With an F1 score of .8 our system rivals state-of-
the-art results reported for other languages for this task. Finally, we present a freely available
web-based tool for proficiency level classification and lexical complexity visualization for both
learner writings and reading texts.

1 Introduction

Second or foreign (L2) language learners pass through different development stages commonly referred
to as proficiency levels. A popular scale of such levels is the Common European Framework of Reference
for Languages (CEFR) (Council of Europe, 2001). As learners advance to higher levels, the complexity
of the linguistic input that they are able to comprehend (receptive skills) and the output that they pro-
duce (productive skills) increases in terms of both lexical and grammatical patterns. Although learners’
receptive and productive knowledge overlap, they only do so partially, the latter being typically a subset
of the former corresponding to a somewhat lower linguistic complexity overall (Barrot, 2015).

In previous work, NLP methods have been successfully applied for assessing separately receptive and
productive L2 levels (see section 2). We, on the other hand, hypothesize that, since a shared linguistic
content exists between what L2 learners are exposed to (L2 input texts, e.g. reading passages from
coursebooks) and what they produce (L2 output texts, e.g. essays), transferring knowledge from one
text type may improve the classification of linguistic complexity levels in the other. We focus on the
automatic prediction of CEFR levels for L2 learner essays for a number of reasons. Essay writing is
a popular means to assess learners’ proficiency level and it is a rather subjective and time-consuming
task. Moreover, such data is rather scarce and cumbersome to collect (Volodina et al., 2016). Our target
language is Swedish since corpora for both L2 text types are available for this language.

We compare two different strategies aiming at improving L2 essay classification results without ad-
ditional data of this type: (i) employing a word list based on a coursebook corpus for lexical features,
(ii) domain adaptation experiments, i.e. training a machine learning model on L2 input texts and using
it to classify the essays. We first compare the distribution of words per CEFR levels in the essays using
two different word lists and find that a list based on L2 input texts correlates well with the manually as-
signed CEFR labels of the essays. Using this list in machine learning experiments produces a significant
performance boost which exceeds our domain adaptation attempts and compares well also to previously
reported results for this task. Finally, we present an online tool for assessing linguistic complexity in L2
Swedish input and output texts that performs a machine learning based CEFR level classification and a
lexical complexity analysis supported by a color-enhanced visualization of words per level.

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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2 Background

Recently a number of attempts emerged at the classification of CEFR levels in input texts (also known as
L2 readability) which include, among others, systems for French (François and Fairon, 2012), Portuguese
(Branco et al., 2014), Chinese (Sung et al., 2015), Swedish (Pilán et al., 2015), and English (Xia et
al., 2016). The same type of classification for learner-written texts remains somewhat less explored.
Investigations include Vajjala and Lõo (2014) for Estonian and Hancke (2013) for German reporting an
F1 score of .78 and .71 respectively. The systems above are based on supervised learning methods based
on rich feature sets.

Relatively few studies exist in the field of assessing the complexity and quality of L2 texts with the use
of domain adaptation. Experiments relying on such methods have been explored so far for transferring
essay grading models between writing tasks based on different prompts (Zesch et al., 2015; Phandi et
al., 2015), and for L2 readability classification by transferring models trained on texts written for native
language users to reading passages aimed at L2 learners (Xia et al., 2016).

3 Receptive and Productive L2 Swedish Corpora

Two corpora with L2 focus are currently available for Swedish: SweLL (Volodina et al., 2016), com-
prised of L2 output texts in the form of learner essays, and COCTAILL (Volodina et al., 2014) containing
L2 coursebooks written by experts for L2 learners. The essays in the SweLL corpus were written by adult
L2 Swedish learners (with available metadata) and they address a variety of topics. In the case of the
coursebook corpus, COCTAILL, instead of using it in its entirety, we only include reading passages in
our dataset. Other coursebook components whose linguistic annotation may be less reliable (e.g. gapped
exercises) are excluded. We derive the CEFR level of the reading texts from the level of the lesson (chap-
ter) they occurr in. It is worth mentioning that these two corpora are independent from each other, i.e. the
essays written by the learners are not based on, or inspired by, the reading passages.

Both corpora span beginner (A1) to advanced (C1) proficiency with texts manually labeled for CEFR
levels, and automatically annotated across different linguistic dimensions. These include lemmatization,
part-of-speech (POS) tagging and dependency parsing using the Sparv pipeline1 (Borin et al., 2012).
Since A1 level is rather under-represented in both corpora, we exclude them from our experiments. The
distribution of texts per type and CEFR level in our datasets is shown in Table 1, where A2 corresponds
to elementary level, B1 to intermediate, B2 to upper intermediate and C1 to advanced level.

Writer (text type) Unit A2 B1 B2 C1 Total

Learner (L2 output) Texts 83 75 74 88 320
Tokens 18,349 29,814 32,691 60,095 140,949

Expert (L2 input) Texts 157 258 288 115 818
Tokens 37,168 79,124 101,297 71,723 289,312

Table 1: Overview of CEFR-level annotated Swedish datasets.

4 L2 Lexical Complexity: a Comparison of Word Lists

KELLY (Volodina and Kokkinakis, 2012) is a popular L2 Swedish word lists, compiled based on web
corpora. It contains 8,425 headwords with not only frequency information, but also suggested CEFR
levels based on normalized frequencies. The list has been successfully applied previously in machine
learning experiment for classifying CEFR levels in L2 input texts (Pilán et al., 2015).

SVALex (Francois et al., 2016) is another Swedish word list with an L2 focus, created recently. The list
contains word frequencies based on reading passages from COCTAILL (see Section 3), which, however,
are not connected to suggested CEFR levels. Therefore, we propose an enhanced version of this list,

1https://spraakbanken.gu.se/sparv/
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SVALex+, that includes mappings from frequency distributions to a single CEFR label following the
methodology described in Alfter et al. (2016). To create the mappings, as a first step, frequency counts
are normalized. Part of this consists of taking the raw frequency counts from SVALex and calculating
per-million-word (PMW) frequency distributions for all words. These distributions are complemented
with word diversity distributions, i.e. information about how often a word is used in different coursebooks
at each level in the COCTAILL corpus. The intuition is that, if a word is used often at a certain level,
but only in one book, it is less representative of a level than if it appears in several coursebooks. We then
combine these two distributions into one single normalized frequency (Freqn) value for each word by
taking the average of the PMW frequency distribution and the word diversity distribution.

The second step consists of mapping these normalized frequencies to CEFR levels. Rather than map-
ping to the CEFR level at which a word first appears, we establish a significant onset of use, a threshold
indicating a difference between normalized frequency distributions that is sufficiently large for a level
to qualify as mapping for a word. We set this threshold to 0.4 based on initial empirical investigations
with L2 teachers during which the overlap between teacher- and system-assigned levels for a small sub-
set of words have been compared. Thus, we map each word to the lowest CEFR level L for which
Freqn

L−Freqn
L−1 > 0.4 holds, with L−1 being the previous CEFR level and Freqn

L−1 = 0 if L = A1.
Table 2 compares the percentage of tokens belonging to different CEFR levels based on KELLY and

SVALex+ (rows) per essay CEFR level (columns).

Essay CEFR levels

KELLY SVALex+

A1 A2 B1 B2 C1 A1 A2 B1 B2 C1
A1 69.0 72.91 72.56 73.3 70.91 74.28 77.86 65.09 61.96 56.92
A2 4.08 3.96 4.18 4.31 5.22 2.54 3.6 8.01 9.31 10.67
B1 1.2 1.79 1.52 2.4 3.16 1.73 2.91 9.82 12.59 14.28
B2 .67 .68 1.17 .83 1.11 .43 .66 .86 1.07 1.86
C1 .43 .31 .31 .4 .5 .14 .17 .33 .48 .81

Table 2: Distribution of token CEFR levels (in %) per essay CEFR levels.

We can observe that the distribution of tokens per CEFR level based on KELLY remains rather un-
changed: A1 and C2 level essays contain, for instance, approximately the same amount of A1-C1 tokens.
SVALex+, on the other hand, correlates better with the overall CEFR level of the essays. The highlighted
cells show a decrease of lower level tokens in higher level essays and an increase of higher level tokens in
more advanced essays. This would suggest that using SVALex+ may improve CEFR level classification
performance for learner essays. The amount of B2 and C1 tokens seems still rather limited even at higher
levels which can be explained to some extent by SVALex+ containing receptive vocabulary that learners
might not be able to use productively.

5 Essay Classification Experiments

5.1 Feature Set

We use the feature set that we described in Pilán et al. (2015) and Pilán et al. (2016) for modeling
linguistic complexity in L2 Swedish texts. The 61 features of this set can be divided into five sub-groups:
length-based (e.g. average sentence and token length), lexical (e.g. amount of tokens per CEFR level),
morphological (e.g. past verbs to verbs ratio), syntactic (e.g. average dependency length) and semantic
features (e.g. number of senses). For a more detailed description of the feature set see the cited works.

5.2 Experimental Setup

We use the sequential minimal optimization algorithm from WEKA (Hall et al., 2009) and the feature
set mentioned above for all experiments. Results are obtained using 10-fold cross-validation, unless
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otherwise specified. Reported measures include F1 and quadratic weighted kappa (κ2), a distance-based
scoring function taking into consideration also the degree of misclassifications. Our baselines consist of
assigning the most frequent label in the dataset to each instance (MAJORITY) and cross-validated results
on the learner essays using KELLY (E-KELLY) for lexical features.

Domain adaptation We compare these to two models using information from SVALex+ (E-
SVALEX+ with SVALex+ instead of KELLY and E-KELLY&SVALEX+ including both lists), as well
as to two simple domain adaptation setups inspired by Daumé III and Marcu (2006). In a domain adap-
tation scenario, data from a source domain is used to predict labels in a different, target domain. In our
SOURCE-ONLY setup, a model trained on coursebook texts is applied to the essays, our target domain.
In +FEATURE the CEFR levels predicted by a model trained on coursebook texts is used as an additional
feature when training a classifier for the essays. For both the SOURCE-ONLY and the +FEATURE setup
the KELLY list has been used.

5.3 Classification Results
The results of our experiments are presented in Table 3.

Essays (baselines) Essays (using SVALex+) Coursebooks→ Essays

F1 κ2 F1 κ2 F1 κ2

MAJORITY .120 .000 E-SVALEX+ .808 .922 SOURCE-ONLY .438 .713
E-KELLY .721 .886 E-KELLY&SVALEX+ .816 .930 +FEATURE .709 .879

Table 3: Results for different classification improvement strategies.

Substituting KELLY-based features with their SVALex+ based equivalents increases classification per-
formance substantially, from .721 to .822 in terms of F1. This is most likely connected to the fact that
word frequencies based on the general (web) corpus, KELLY, reflect less precisely learners’ progression
in terms of lexical complexity compared to SVALex+, which is based on texts explicitly intended for
L2 learners (see Table 2). Combining both KELLY and SVALex+ achieves a slight gain, but the per-
formance difference remains rather negligible compared to using SVALex+ alone. The high κ2 values
for the SVALex+ based models indicate that very few misclassifications occur with a distance of more
than one CEFR level. By inspecting the confusion matrices we find that only two instances fall into this
category for the E-SVALex+ model, and none for E-KELLY&SVALex+.

Applying a coursebook model to the essays (SOURCE-ONLY) results in a radical performance drop
compared to the in-domain models, which indicates that the distribution of feature values in L2 input and
output texts differ to a rather large extent. For the same reason, adding the output of a coursebook based
classifier (+FEATURE) performs less accurately than the E-KELLY baseline. These results, however, do
not exclude the possibility of a successful transfer between these domains. Additional domain adaptation
techniques may be able to bridge the gap between the source and target domain distributions.

Our SVALex+ based models achieve state-of-the-art performance compared to CEFR level classifica-
tion systems for other languages such as the German system with .71 F1 from Hancke (2013), and the
Estonian one with .78 F1 by Vajjala and Lõo (2014). Both of these systems, however, were built using
an approximately three times larger annotated in-domain corpus.

6 An Online Tool for L2 Linguistic Complexity Analysis

To put our L2 linguistic complexity analysis methods to practical use, we have made them available as a
free online tool2. Figure 1 shows the web interface of the current version of our system.

Users can type or paste a text in a text box and indicate whether the text was written by experts as
reading material (”Text readability”) or by learners (”Learner essay”). The text is then automatically
analyzed in several steps. First, it undergoes an automatic linguistic annotation with Sparv (e.g. POS

2https://spraakbanken.gu.se/larkalabb/texteval

123



Figure 1: The interface for linguistic complexity analysis

tags, dependency relations). Then the annotated text is fed to a machine learning algorithm based on
the feature set described in section 5 that assesses the overall linguistic complexity of the text provided
in terms of CEFR levels3. Some simple statistics and values for traditional readability measures (e.g.
average token length, LIX (Björnsson, 1968)) are also included in the final results at the bottom of the
page.

In addition to an overall assessment, a detailed visual L2 lexical complexity analysis can be performed.
Users can highlight words of different CEFR levels in their text by ticking one (or more) of the check
boxes in the right-side menu. The visualization highlights receptive and productive vocabulary items
within the same CEFR level with the darker and lighter shade of the same color respectively. The
highlighting is based on information from two vocabulary list: SVALex+ for receptive vocabulary and
a word list based on SweLL (Alfter et al., 2016), for productive vocabulary, created using the mapping
approach described in Section 4 for SVALex+.

7 Conclusions

We described an exploration of different methods to improve the classification of texts produced by L2
Swedish learners into proficiency levels reflecting L2 linguistic complexity. By incorporating informa-
tion from coursebooks in the form of lexical features indicating the distribution of CEFR levels per token
in the texts, we created a system that reaches state-of-the-art performance reported for other languages
for this task. Finally, we presented an online tool for linguistic complexity analysis of L2 texts. In
the future, additional domain adaptation techniques could be tested for these text types and the effects
of incorporating a learner essay based word list on the classification of L2 input texts could also be
investigated.

3Currently these are in-domain models based on KELLY which we plan to update with the improved (E-SVALex+) model.
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Abstract

Arabic writing is typically underspecified for short vowels and other markups, referred to as
diacritics. In addition to the lexical ambiguity exhibited in most languages, the lack of diacritics
in written Arabic adds another layer of ambiguity which is an artifact of the orthography. In
this paper, we present the details of three annotation experimental conditions designed to study
the impact of automatic ambiguity detection, on annotation speed and quality in a large scale
annotation project.

1 Introduction

Written Modern Standard Arabic (MSA) poses many challenges for natural language processing (NLP).
Most written Arabic text lacks short vowels and diacritics rendering a mostly consonantal orthogra-
phy (Schulz, 2004). Arabic diacritization is an orthographic way to describe Arabic word pronunciation,
and avoid word reading ambiguity. In Arabic, diacritics are marks that reflect the phonological, morpho-
logical and grammatical rules. The lack of diacritics leads usually to considerable lexical and morpholog-
ical ambiguity. Full diacritization has been shown to improve state-of-the-art Arabic automatic systems
such as automatic speech recognition (ASR) systems (Kirchhoff and Vergyri, 2005) and statistical ma-
chine translation (SMT) (Diab et al., 2007). Hence, diacritization has been receiving increased attention
in several Arabic NLP applications (Zitouni et al., 2006; Shahrour et al., 2015; Abandah et al., 2015;
Belinkov and Glass, 2015). Building models to assign diacritics to each letter in a word requires a large
amount of annotated training corpora covering different topics and domains to overcome the sparseness
problem. The currently available MSA diacritized corpora are generally limited to religious texts such
as the Holy Quran, educational texts or newswire stories distributed by the Linguistic Data Consortium.

This paper presents a work carried out within a project to create an optimal diacritization scheme for
Arabic orthographic representation (OptDiac) project (Zaghouani et al., 2016a; Bouamor et al., 2015).
The overreaching goal of our project is to manually create a large-scale annotated corpus with the diacrit-
ics for a variety of Arabic texts. The creation of manually annotated corpora presents many challenges
and issues related to the linguistic complexity of the Arabic language. In order to streamline the anno-
tation process, we designed various annotation experimental conditions in order to answer the following
questions: Can we automatically detect linguistic difficulties such as linguistic ambiguity? To what ex-
tent is there agreement between machines and human annotators when it comes to detecting ambiguity?
Can the automatic detection of the ambiguity speed up the annotation process?

In the next two sections we discuss related work (Section2) and the annotation framework (Section 3).
Afterwards, we present the experimental setup in Section 4. In Section 5, we present the results of the
evaluation experiment and in Section 6, we analyze the annotation disagreement errors found during the
evaluation.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details:
http://creativecommons.org/licenses/by/4.0/
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2 Background and Related Work

2.1 Arabic Diacritics

The Arabic script consists of two classes of symbols: letters and diacritics. Letters comprise long vow-
els such as ’A’, ’y’, ’w’ as well as consonants.1 Diacritics on the other hand comprise short vowels,
gemination markers, nunation markers, as well as other markers (such as hamza, the glottal stop which
appears in conjunction with a small number of letters, elongation, dots on letters, and emphatic markers).
If present, these diacritics marks help to render a more precise reading of a given word in context as ob-
served in the ARET project (Maamouri et al., 2012). In this experiment, we are mostly addressing three
types of diacritical marks: short vowels, nunation (marker for indefiniteness), and shadda (gemination).

The available Arabic text content has some percentage of these diacritics present depending on domain
and genre. For instance, religious text such as the Quran is fully diacritized to minimize chances of
reciting it incorrectly as discussed in (Atwell et al., 2010). The same finding applies in most children
educational texts and classical poetry. However, the majority of news text and variety of other genres are
sparsely diacritized: For example, around 1.5% of tokens in the United Nations Arabic corpus bear at
least one diacritic (Diab et al., 2007).

2.2 Annotation Ambiguity

In general, there are several reasons that may cause disagreement in annotation decisions including hu-
man errors, lack of precision in the guidelines, and the lack of expertise and training of the annotators.
This disagreement rate further increases due to the inherent natural ambiguity in the human language
itself where various interpretations for a word are possible. Such linguistic ambiguity has been reported
in many annotation projects involving various linguistic phenomenon, such as the coreference relations,
the predicate-argument structure, the semantic roles and the L2 language errors (Versley and Tbingen,
2006; Iida et al., 2007), prosodic breaks (Jung and Kwon, 2011; Ruppenhofer et al., 2013; Rosen et
al., 2013), as well as the various Arabic PropBank projects (Diab et al., 2008; Zaghouani et al., 2010;
Zaghouani et al., 2012) and the Arabic TreeBank (Maamouri et al., 2010).

Poesio and Artstein (2005) classify ambiguity into explicit and implicit types. The explicit ambiguity
refers to the individuals’ understanding of the annotation task. On the other hand, implicit ambiguity
refers to those revealed after observing and contrasting the annotation done in the same task by other an-
notators. Annotators are generally asked to detect and resolve ambiguous cases, which can be a difficult
task to accomplish. This leads to a lower inter-annotator agreement in such tasks.

2.3 Annotation Complexity

There are many studies that evaluate the language complexity in addition to the quality of manual an-
notation and also allow the identification of many factors causing lower inter-annotator agreements. For
example, Bayerl and Paul (2011) showed that there is a correlation between the inter-annotator agree-
ment and the complexity of the annotation task; for instance, the larger the number of categories is, the
lower the inter-annotator agreement is. Moreover, the categories prone to confusions are generally lim-
ited. This brings out two complexity issues related to the number of categories and to the existence of
ambiguity between some the categories as explained in (Popescu-Belis, 2007). Furthermore, there are
some annotation tasks for which the choice of a label is entirely left to the annotator, which can lead to
even more complexity and lower agreement. In our project, the annotators frequently encounter complex
linguistic issues such as ambiguity and the multiple possible and acceptable solutions including the free
edit mode. In the next sections, we present these issues in detail.

3 Annotation Framework

The annotation pipeline in large annotation projects requires the involvement of many dedicated parties.
In our project, the annotation is led by a lead annotator with a team of four native Arabic-speaking an-
notators from three Arab countries (Egypt, Palestine, and Tunisia) and a programmer. All the annotators

1Arabic transliteration is presented in the Buckwalter scheme (Buckwalter, 2002)
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hold at least a university-level degree and they have a good knowledge of the Arabic language. The lead
annotator is responsible for the entire annotation pipeline including the corpus compilation, the annota-
tion of the gold-standard evaluation files, the guidelines, the ongoing training of the annotators, and the
evaluation of the annotation quality throughout the lifespan of the project.

3.1 Guidelines

Before starting the task, we provided the annotators with detailed guidelines, describing our diacritiza-
tion scheme and specifying when and where to add the diacritics required. We describe the annotation
procedure and explain how to deal with borderline cases. We also include several annotated examples to
illustrate the specified rules. We provide some examples of each case including the diacritization excep-
tions and some specific rules for: the Shadda gemination mark, the Soukoun (absence of a vowel) and
the Nunation marks at the end of a word. Moreover, in some cases, the letters followed by a long Alif
letter @, should not be diacritized as it is considered a deterministic diacritization as in

���A�JJ
Ó� /miyvAqu/

’Treaty’ and not
���A

��JJ
Ó� /miyvaAqu/.2 A summary of the most common Arabic diacritization rules is also
added as a reference in the guidelines.

3.2 Annotation Tool

We designed and implemented MANDIAC, a web-based annotation tool and a work-flow management
interface (Obeid et al., 2016), the tool is based on QAWI (Obeid et al., 2013) a token-based editor,
used to annotate and correct spelling errors in Arabic text for the Qatar Arabic Language Bank (QALB)
project.3 The basic interface of the annotation tool is shown in Figure 1, apart from the surface controls,
the interface allows annotators to select from an automatically generated diacritized words list and/or edit
words manually as shown. The annotation interface allows users to undo/redo actions, and the history
is kept over multiple sessions. The interface includes a timer to keep track of how long each sentence
annotation has taken. We used the timer feature to measure the annotation speed later on during the
evaluation experiments.

Figure 1: Editing a word marked as possibly ambiguous

2In this case the short vowel /a/ following the letter �H /v/ should not be added as specified in the Arabic diacritization
guidelines.

3The Qatar Arabic Language Bank (QALB) project is large-scale manually annotated Arabic text correction project (Za-
ghouani et al., 2014; Zaghouani et al., 2015; Zaghouani et al., 2016b; Mohit et al., 2014; Rozovskaya et al., 2015).
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4 Experimental setup

4.1 Evaluation sets
We use the corpus of contemporary Arabic (CCA) compiled by Al-Sulaiti and Atwell (2006). It is
a balanced corpus divided into the following genres: autobiography, short stories, children’s stories,
economics, education, health and medicine, interviews, politics, recipes, religion, sociology, science,
sports, tourism and travel. The CCA corpus text genres were carefully selected by its compilers since the
target users of the corpus were mostly language teachers and teachers of Arabic as a foreign language.
Various metadata information are included in the corpus such as the information about the text, the author
and the source. In order to use the CCA corpus, a normalization effort was done to produce a consistent
XML mark-up format to be used in our annotation tool. Furthermore, we split paragraphs and sentences
by period and remove repeated sentences after the initial segmentation in order to start the annotation
process.

4.2 Annotation Process
The annotation consists of a single annotation pass as commonly done in many annotation projects due
to time and budget constraints (Rozovskaya and Roth, 2010; Nagata et al., 2006; Izumi et al., 2004;
Gamon et al., ). While performing the annotation task, the annotators do not need to add the diacritics
for each word, instead, we use MADAMIRA (Pasha et al., 2014), a system for morphological analysis
and disambiguation of Arabic, to provide automatically diacritized candidates. Therefore, the annotators
are asked to choose the correct choice from the top three candidates suggested by MADAMIRA, when
possible, if it appears in the list. MADAMIRA is able to achieve a lemmatization accuracy of 96.0% and
a diacritization accuracy of 86.3%. Otherwise, if they are not satisfied with the given candidates, they
can manually edit the word and add the correct diacritics. We hypothesize that such integration of an
automatic analyzer in the annotation process will lead to a much faster annotation than purely manual
annotation, provided that the preassigned tags are sufficiently accurate.

4.3 Ambiguity Detection
In order to classify each word as ambiguous or not, we apply several preprocessing and filtering steps
on the datasets. We run MADAMIRA on the datasets to provide us with all possible morphological
analyses associated with confidence scores for each word in context. MADAMIRA applies SVM and
language models to derive predictions for the words morphological features and then scores each words
analysis list based on how well each analysis agrees with the model predictions. The top scoring analysis
is MADAMIRA’s most probable reading of the word in context. We hypothesized that ambiguous words
in context would have other competing high-scoring analyses within a threshold difference from the top
scoring one. Based on a previous experience, we chose the threshold to be 15%, therefore, we keep the
top scoring analysis and all other analyses that are within 15% difference from the top one. We further
reduce this list to remove redundant and insignificant variants based on certain criteria. We remove case
and mood diacritic marks, which encode inflectional properties. Additionally, we remove the diacritics of
the third possessive pronouns because its diacritic marks are highly affected by the case and mood marks
that we attempt to neutralize. Additionally, we filter out nouns that are exactly the same but differ only
in the letter Alef normalization ( @ @




@

�
@ |, >, <, { and A) (e.g �é�J
K.� A

	j�J�
�	KB� @ Al<inotixAbiy∼ap and �é�J
K.� A

	j�J�
�	KB� @

AlAinotixAbiy∼ap ‘The electoral’); thus, if we have two instances differ only in Alef normalization we
only keep one of them. We also remove the addition of gemination sign known as shaddah (∼) to the
Sun letters to assimilate the letter Lam (È l) of a preceding definite article ’Al’ in nouns (e.g. �ø
 	P�A

	JË @
AlnAziy∼ and �ø
 	P�A

�	JË @ Aln∼Aziy∼ ‘The Nazi’ and also in �é�J.
�	« �QË @ Alragobap and �é�J.

�	« ��QË @ Alr∼agobap ‘The
desire’). The above filtering process is performed because it decreases the possible analyses but they
do not have an impact in detecting the lexical ambiguity which is our goal. We finally make sure that
the remaining analyses are unique because we may end up with repeated words after removing specific
diacritics marks; additionally, words that are the same orthographically but differ in other features such
as lemma and part of speech tags are also removed.
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If the resulting list of possible analyses contain more than one possibility, the word is marked as
ambiguous; otherwise, it is believed to be not ambiguous. Words that have no analysis generated using
MADAMIRA are also considered ambiguous. For each sentence, we count the number of words that
are marked as ambiguous using our approach, and then calculate the percentage of ambiguity. We sort
the sentences according to their ambiguity percentages in descending order so that we give annotators
ranked sentences for annotation. Because we are concerned with MSA dataset only, we further filter out
dialectal sentences using AIDA (Elfardy and Diab, 2012), a tool that classifies words and sentences as
MSA (formal Arabic) or DA (Dialectal Arabic).

5 Evaluation

For the evaluation, we used a sample of 10K-Words from the CCA corpus representing 4 domains with
approximately 2.5K-words per domain (children stories, economics,sports and politics). We have three
experimental conditions for three evaluations carried over a period of six weeks.

1. The first condition (COND1): In the first experimental condition (COND1), four annotators were
given raw undiacritized sentences and were asked to add the missing diacritics as per the guidelines.
They either select one of the top three diacritization choices computed by MADAMIRA or manually
edit the word.

2. The second condition (COND2): In the second experimental condition (COND2), we provided
the raw undiacritized sentences to a first group of two annotators (Group 1) and we asked them to
mark and add the required diacritics only to the words they believe are ambiguous while ignoring
the rest of the non ambiguous words in the sentence.

3. The third condition (COND3): For the third experimental condition (COND3), we gave, to a dif-
ferent group of two annotators (Group 2), the same sentences assigned to Group 1 while having
the sentences explicitly marked as potentially ambiguous using the MADAMIRA as explained pre-
viously (again the top three MADAMIRA choices were provided). Furthermore, in COND3, the
annotators were asked to tell whether they agree or not with the ambiguity class provided for each
word using the tool and also by adding the missing diacritics in case they agree that the given word
is ambiguous.

The Inter-Annotator Agreement (IAA) is measured by using pairwise percent agreement averaged
over all pairs of annotations (APP). The pairwise percent agreement (also called observed agreement) is
computed as the percentage of times two annotators assign the same label to a unit. If a single letter in a
given word has one diacritization mismatch, then the whole word is considered as disagreement. A high
APP score denotes that at least two annotators agree on the annotation and therefore, the probability that
the annotation is erroneous is very small.

CCA Corpus
APPCOND1 83.10%
APPCOND2 69.09%
APPCOND3 88.31%

Table 1: Inter-Annotator Agreement (IAA) in terms of Average Pairwise Percent agreement (APP)
recorded during the evaluation of 10K-words from the CCA dataset in three experimental conditions;
higher is better.

Furthermore, in order to measure the impact on the annotation speed, we measured the mean annota-
tion time by computing the average time required to annotate a word for a sentence and then average it
over all sentences for a given experimental condition by all the annotator. The Average annotation speeds
are shown in Table 2.
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Annotation Speed
Words / MinuteCOND1 8.22
Words / MinuteCOND2 6.59
Words / MinuteCOND3 10.09

Table 2: Average annotated words per minute recorded during the evaluation of 10K-words from the
CCA dataset in three experimental conditions

The results obtained in Table 1 and Table 2 show that in COND1 the annotators obtained a fairly good
agreement of 83.10% and average speed of 8.22 words/minute ranking in the second place in terms of
performance overall. COND2 obtained surprisingly has the lowest agreement of only 69.09% and also
lowest time performance of only 6.59 words / minute. A follow up with the annotators revealed that the
results of COND2 are due to the fact that annotators spent a lot of time thinking whether a given word
is ambiguous or not so they can add the required diacritics. This leads to spending more time due to the
hesitation in addition to the difficulty of the task as we will show in the next section. Finally, COND3
reveals the best overall performance with a high agreement of 88.31% and the highest rate of words per
minute of 10.09. The results of COND3 can be explained by the automatic ambiguity analysis provided
to the annotators which substantially reduced the hesitation in deciding if a given word is ambiguous and
therefore it reduced the annotation possibilities by assisting the annotators in their decisions.

6 Error analysis

We found that a large number of the agreement errors are due to the inherent linguistic complexity of the
Arabic language leading to some annotation hesitations and inconsistency between the annotators when
there is an obvious ambiguity in the context. For instance, in many cases the annotators did not agree on
whether to add the diacritics or not, while in other cases, the annotators disagreed on the interpretation
of the word. We compiled below the list of the most important cases of disagreement observed during
the error analysis.

1. Lexical Ambiguity: This means that a word could carry more than one acceptable reading
(homonymy) such as in the case of the word (ÉJ. �̄ qbl which has the following two lexical read-

ings a.
�

É�J.
��̄ qabola ‘before’ and b.

�
É�J. �̄� /qibala/ ‘capability’.

2. Morphological Ambiguity: For this category, we observed two types of annotation disagreement:
word-structure ambiguity and inflection ambiguity. The diacritization of word structure can be
interpreted as a morphological task. As in the diacritization of the second letter of trilateral verbs
such as in �I. ���m��'
 �I. �� �k Hasiba/yaHosabu ‘To think’ versus �I. ��

�m��'
 �I. �� �k /Hasaba/yaHosibu/ ‘To
count’. Since the Arabic language is a morphologically rich language, each inflected word could
have a different way to be diacritized, especially in cases where some pronouns are attached to

the verbs or the nouns as in A 	J �� �k
�

@ /AaHosanA/ ‘they help/do good’ (3rd,Dual,Masculine) versus in

A�	J �� �k
�

@ /AaHosan∼A/ ‘we help/do good’ (1st,Plural). In another disagreement case, we found some

cases of verbal voice inflection confusion between the active voice and the passive voice such as in��Y �ª��K /taEud∼u ‘she counts’ versus
��Y �ª��K /tuEid∼u/ ‘It is considered’.

3. Part of Speech Ambiguity (POS): This is one of the most frequent disagreement cases found
during the error analysis, in fact, it is common to have many possible POS for a given word in

Arabic depending on the personal interpretation of the sentence as in the case of the verb �I. J
m.��
�	'

/nujiybu/ ‘we+answer’ versus the adjective �I. J
m.��
�	' /najiybN/ ‘outstanding’.

4. Case Endings Ambiguity:
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In Arabic, the case endings are those attached to the ends of words to indicate the words’ grammat-
ical function. Using the case endings correctly, requires a solid knowledge of grammar. With no
surprise, we found many annotation disagreement in this category. For example, the genitive �H� C

��K
/valAvK/ ‘three’ was confused with the nominative

��HC
��K /valAvN/ ‘three’.

5. The indeclinable nouns (Diptote): Indeclinable nouns are a type of nouns that have special case
endings rules and they only have two possible case endings. When the noun is indefinite, the
possible case endings are /-a/ for the genitive and /-u/ for the nominative, while the accusative has

no nunation. We located several cases of Diptote errors when the noun is indefinite such as in: �ZA
���® ���

�

@

/¿a$iq∼A‘a/ ‘brothers’ (genitive) versus Z� A
��® ���

�

@ ‘brothers’ with a wrong genitive nunation marker.

6. Phonology ambiguity: As the diacritization is considered an orthographic representation of the
phonological phenomena, some phonological cases depend on the phonological context and some
changes could happen as a result of an assimilation phenomena. For example, we noticed several
cases of disagreement related to the definite article Al as it could be pronounced in two ways: the
first way is known as the sun letter /Al/ where the letter /l/ is silent and a gemination diacritic sign
is marked on the following letter. The second case is the moon letter /Al/, where the letter /l/ is
pronounced as in the example of

��é ���ë�
��YË@ /Ald∼h$apu/ ‘The+surprise’ versus

��é ��� �ë �YË@ /Aldah$apu/
‘The+surprise’.

7. Pragmatic variations: In this type of disagreement, the annotators were confused between two
possible and acceptable ways to pronounce a given word and the difference is only dictated by the
regional usage as the case of the word ú
ÍðX /dwly/ ‘international’ which could be diacriticized as

/dawoliy∼/ ú
Í
�ð �X or as /duwaliy∼/ �ú
Í

�ð �X.

8. Level of Diacritization: We observed that frequently, the annotators did not agree on the level of
diacritization to be added despite the existence of guidelines. Cases of disagreement like the fol-
lowing are frequently observed: �H� AÓ �	Q���

�
Ê �ÒÊË� liAlmulotazimAt ‘for+the+committed’(PL+Fem.) versus

�H� AÓ 	Q���Ê �ÒÊË� /liAlmultazmAt/ ‘for+the+committed’(PL+Fem.).

9. Diacritization Typos: While not frequent, several cases of extra diacritics marks were added acci-
dentally by the annotators as in A 	K �Qå�����̄ /qaS∼aronA/ ‘We+abridged‘ versus the wrong extra diacritic

a in A 	K �Qå�����̄ /qaaS∼aronA/.

Conclusion

In this paper, we present our method to detect the ambiguous annotation cases within a Diacritization an-
notation project. We discussed the complex linguistic challenges inherent in Arabic linguistic annotation.
The results obtained in the evaluation suggest that the automatic ambiguity detection could effectively
reduce the annotation time and also increase the Inter-annotator agreement. Moreover, we believe that
the higher the accuracy of MADAMIRA choices, the faster the annotation could be as as manual edits
will be reduced. However, we believe that the nature of the ambiguity of the Arabic language as attested
by many disagreement cases, has strongly impacted the overall agreement results. On the other hand,
we believe that a better agreement could be achieved if the annotators followed the annotation guidelines
consistently.
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Abstract

Computational linguistic approaches to sign languages could benefit from investigating how com-
plexity influences structure. We investigate whether morphological complexity has an effect on
the order of Verb (V) and Object (O) in Swedish Sign Language (SSL), on the basis of elicited
data from five Deaf signers. We find a significant difference in the distribution of the order-
ings OV vs. VO, based on an analysis of morphological weight. While morphologically heavy
verbs exhibit a general preference for OV, humanness seems to affect the ordering in the opposite
direction, with [+human] Objects pushing towards a preference for VO.

1 Introduction

Word order is one of the most well-documented grammatical features of the (spoken) languages of the
world. One specific case regarding word order is the order of a Verb V and its (direct) Object O in a
simple transitive clause. In a sample of 1,519 languages of the world, 46.9% (n = 713) of the languages
have a dominant OV order, whereas 46.4% (n = 705) have a dominant VO order (Dryer, 2013).1

For signed languages, the two observed dominant word orders are SOV and SVO, for which the lat-
ter has been generalised as a grammatical order in most sign languages. However, a number of factors
are said to affect the ordering of O and V, for instance that morphologically complex verbs (e.g., those
exhibiting morphological reduplication, handshape or directional object agreement, or coinciding with
non-manual marking) prefer a verb-final position, hence occurring after its object. One reason for this
ordering preference has been suggested to relate directly to the interaction between the verb and its ob-
ject, since some complexity features involve types of “agreement” with the object. Thus, the idea is that
the object needs to be introduced before verb agreement with the object is available on the verb (Napoli
and Sutton-Spence, 2014). This relates directly to findings from spoken languages, for which it has been
noted that the ordering of verb and controller NP affects the agreement realisation, such that verbs pre-
ceding their controller NP do not always agree with the controller (Corbett, 2006). Furthermore, among
spoken languages, word order also interacts with the presence or absence of morphological marking.
For instance, SOV languages generally differentiate Subject and Object on the basis of morphological
marking (e.g., case), while SVO languages differentiate these argument roles by word order alone (i.e.,
by linear distance between the arguments) (Sinnemäki, 2010). In a study looking at young, emerging
sign languages, it was argued that humanness as an animacy feature accounts for word order preferences,
in that SOV is preferred unless both S and O are [+human], in which case SVO is preferred (Meir et al.,
in press).

For Swedish Sign Language (SSL), the dominant word order has been identified as SVO (Bergman and
Wallin, 1985), which has also been corroborated by a small-scale corpus study more recently (Börstell
et al., 2016). Although different types of morphological complexity (e.g., reduplication and agreement)
have been suggested to influence word order in SSL (Bergman and Wallin, 1985; Bergman and Dahl,

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/

1The remaining 101 languages in the sample allow for both orders, neither being dominant.
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Table 1: Features of morphological complexity in SSL

Handshape Whether an Object classifier was present in the verb’s handshape (Emmorey, 2003).
Directionality Whether an Object location was present in the verb’s movement (Padden, 1988).
Reduplication Whether the verb was reduplicated (Bergman and Dahl, 1994).
Non-manual Whether a non-manual morpheme accompanied the verb (Crasborn, 2006).

1994), no study has explicitly addressed this issue. Thus, the aim of this study is to use statistical boot-
strapping methods to establish whether morphological complexity affects the order of Object and Verb
in SSL. By doing so, we seek to tease apart the different factors influencing word order patterns in SSL,
and incorporate the notion of morphological complexity more explicitly as a property of signed language
grammar, particularly with regard to the interaction between morphology and syntax. Uncovering the
intricacies of this interaction can also be helpful for developing sign language technology, and can serve
as a starting point when annotating sign language corpora. Information about the effect of complexity
can be used to inform machine learning systems, e.g., by including this information as features, or by
predicting a verb’s complexity as an auxiliary task in a neural network (see, e.g., Plank et al. (2016) and
Bjerva et al. (2016)).

2 Data and Methodology

2.1 Data and Annotations

The data consisted of video recorded descriptions of 17 transitive events (see Table 2) by five Deaf signers
of SSL (4 male; aged 18–44), all using SSL as their first language. The signers were individually recorded
describing the stimuli events to another signer, who was instructed to correctly identify the described
event from three different options. Descriptions were annotated in the ELAN software (Wittenburg et
al., 2006). In total, 145 individual transitive verbs were annotated for the categories in Table 1.

Handshape and Directionality involve morphological complexity dependent on the Object: Object
classifier handshapes are selected on the basis of the Object’s physical properties; Directionality involves
the incorporation of referential locations in signing space, such that the verb moves between – or agrees
with – locations established for various discourse referents (here, the Object(s)). Both of these categories
entail the verb form being altered according to its Object, in a sense making the verb form dependent on
physical and spatial properties of the Object. This has been suggested to influence the order of O and V,
such that an Object-dependent Verb follows its Object, i.e., OV (Napoli and Sutton-Spence, 2014).

The latter two categories also involve morphological complexity, but rather independent from the
Object: Reduplication involves phonological repetition, for signed language often associated with aspec-
tual and/or pluractional morphology (Fischer and Janis, 1990; Bergman and Dahl, 1994); Non-manual
concerns the addition of non-manual markers (e.g., facial expression, or so-called oral adverbs2) accom-
panying a verb. These are associated with both phonological and morphological weight, and are also
found to be associated with a post-Object position (Napoli and Sutton-Spence, 2014).

Each individual verb in the data set was coded for these four categories by one of the authors of this
paper. If a verb occurred with two objects (i.e., a direct and an indirect object), the verb token was
counted as two items: once for each object. The annotations were binary features (yes vs. no), but for
the Object-dependent categories (i.e., Handshape and Directionality) also matched to the relevant object.
That is, the Handshape value yes would only be assigned for the object indexed by the handshape. Each
item in the data set was also annotated for whether its Object was human or inanimate.3 Thus, we
could differentiate the four complexity features’ effect on word order on the basis of the animacy of the
Object in question.

Each Object was also annotated as Overt or Elliptical: that is, if the Object occurred within the same
clause as its Verb, it was coded as Overt; if the Object was present in an adjoining clause, it was coded

2Adding adverbial meaning by use of grammaticalised mouth gestures.
3In the elicitation stimuli, no referents were [-human,+animate].
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Table 2: Video clips for the clause elicitation task
Valency Event

Monotransitive

A girl tearing a paper
A man placing a book on a bookshelf
A girl pulling a cart through a living room
A man tapping a watermelon on a table
A woman lifting a box onto a table
A girl pulling a man by the hand
A woman looking at a man
A girl feeding a woman
A woman rolling a ball on the floor
A woman pushing a girl
A man tapping a girl by the shoulder
A girl brushing a woman’s hair
A man washing a plate

Ditransitive

A woman giving a shirt to a man
A man throwing a ball to a girl
A man showing a woman a picture
A woman taking a pair of scissors from a girl

Table 3: Comparison between OV and VO orders per condition. Numbers indicate p-values as obtained
by the bootstrap test, with p-values indicating the probability that the OV condition is not significantly
more complex than the VO condition. n/a indicates a too small sample size to examine the difference in
question.

Object type All Overt Overt-hum Overt-inanim

DO + IO < 0.0005 < 0.01 < 0.05 < 0.001
DO < 0.0005 < 0.01 > 0.05 < 0.001
IO > 0.05 n/a n/a n/a

as Elliptical.4 For the latter, the order of V and O was determined by linear order on the utterance level.

2.2 Statistical Analysis

In order to avoid making unwarranted assumptions about the distribution of the variable we investigate
(verb complexity), we chose to use a non-parametric bootstrapping test (Efron and Tibshirani, 1990;
Efron and Tibshirani, 1994). Instead of fitting the parameters of a distribution specified a priori to our
data, we repeatedly resample from our original sample (the data) to estimate the amount of variation and
thus the significance of our results. For a high-level introduction to this statistical method, we refer the
reader to Calmettes et al. (2012).

In the data set used in this paper, we compare annotations of 145 verbs. We calculate the complexity
of each verb as being the number of features present, divided by the maximum number of features (see
Table 1). We then use bootstrap resampling to estimate the populations as divided into two groups,
comparing the complexity between OV and VO items.5 We subdivide our data into groups depending
on whether or not the argument is overt, and if so whether or not this argument is [+human] or
[+inanimate]. Additionally, we investigate whether the Object in question is direct (DO) or indirect
(IO). This leads to a total of 12 possible comparisons between the OV and VO orders.

3 Results and Analysis

Running a bootstrap resampling test with resampling, using 10,000 iterations estimating the mean of the
populations, yields differences at the p-levels reported in Table 3, with p < 0.05 indicating that the mean
complexity of OV is significantly higher than that of VO.

4Cases of covert, implicit (i.e., semantic) Objects were excluded from the data set.
5We use the implementation found at http://gcalmettes.github.io/bootstrap-tools/.
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Figure 1: Mean complexity (y-axis) and number of samples (numbers above each bar) per condition.
IOBJ inanimate is not plotted as the condition contains no data.

We see a division here on the basis of animacy. For all tokens (DO + IO), we see that the mean
complexity in OV is significantly higher than that of VO across conditions. For the DO tokens, the same
is true for all conditions but the overt-human. For the IO tokens, there is no significant difference
between OV and VO based on complexity. Instead, an important aspect here is that the IO row contains
several n/a cells. This is due to that fact that for the IO tokens (of which all are [+human]), the
distribution of VO vs. OV is so skewed that practically all items fall into the former category, making
statistical testing impossible (see Figure 1).6 This should be taken as an indication that humanness is,
in fact, associated with the VO order to a high degree, which corroborates the findings by Meir et al. (in
press). Thus, while morphologically complex verbs prefer the OV order, humanness pushes towards VO.

4 Discussion and Conclusions

We have shown that morphological complexity is a relevant factor when investigating word order patterns
in SSL. From a computational perspective, this suggests that machine learning approaches to SSL could
benefit from using morphological complexity and animacy as features. As claimed for other sign lan-
guages (Napoli and Sutton-Spence, 2014), the incorporation of Object features (Handshape classifiers
and Directionality) together with other morphological features (Reduplication and Non-manual mark-
ing) influence the ordering of V and O in SSL. Furthermore, animacy features of the Object also affect
the ordering of V and O, such that [+human] Objects push towards the order VO. As argued by, e.g.,
Meir et al. (in press), this would be explained by disambiguation strategies in reversible sentences, ob-
servable in several emerging sign languages. That is, for sentences in which both S and O are possible
Agents, the roles are disambiguated by separating S from O by putting V in between the two. In the case
of non-reversible sentences, this strategy is not needed, and other preferences may play a larger role.
For general linguistic theory, this relates to the notion of Differential Object Marking (Bossong, 1985;
Aissen, 2003), and the preference of explicitly marking Objects that are high in the prominence hierarchy
(e.g., animacy).
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Brita Bergman and Östen Dahl. 1994. Ideophones in Sign Language? The place of reduplication in the tense-
aspect system of Swedish Sign Language. In Carl Bache, Hans Basbøll, and Carl-Erik Lindberg, editors, Tense,
Aspect and Action. Empirical and Theoretical Contributions to Language Typology, pages 397–422. Mouton de
Gruyter.

Brita Bergman and Lars Wallin. 1985. Sentence structure in Swedish Sign Language. In William C. Stokoe and
Virginia Volterra, editors, Sign language research ’83, pages 217–225, Silver Spring, MD. Linstok Press.

Johannes Bjerva, Barbara Plank, and Johan Bos. 2016. Semantic Tagging with Deep Residual Networks. In
Proceedings of COLING 2016, Osaka, Japan, December.

Carl Börstell, Mats Wirén, Johanna Mesch, and Moa Gärdenfors. 2016. Towards an annotation of syntactic struc-
ture in Swedish Sign Language. In Eleni Efthimiou, Stavroula-Evita Fotinea, Thomas Hanke, Julie Hochgesang,
Jette Kristoffersen, and Johanna Mesch, editors, Proceedings of the 7th workshop on the Representation and
Processing of Sign Languages: Corpus Mining, pages 19–24, Paris. European Language Resources Association
(ELRA).

Georg Bossong. 1985. Differentielle Objektmarkierung in den Neuiranischen Sprache. Gunter Narr Verlag,
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Abstract

Language complexity is an intriguing phenomenon argued to play an important role in both lan-
guage learning and processing. The need to compare languages with regard to their complexity
resulted in a multitude of approaches and methods, ranging from accounts targeting specific
structural features to global quantification of variation more generally. In this paper, we investi-
gate the degree to which morphological complexity measures are mutually correlated in a sample
of more than 500 languages of 101 language families. We use human expert judgements from
the World Atlas of Language Structures (WALS), and compare them to four quantitative mea-
sures automatically calculated from language corpora. These consist of three previously defined
corpus-derived measures, which are all monolingual, and one new measure based on automatic
word-alignment across pairs of languages. We find strong correlations between all the measures,
illustrating that both expert judgements and automated approaches converge to similar complex-
ity ratings, and can be used interchangeably.

1 Introduction

Languages are often compared with regard to their complexity from a computational, theoretical and
learning perspective. In computational linguistics, it is generally known that methods mainly developed
for the English language do not necessarily transfer well to other languages. The cross-linguistic varia-
tion in the amount of information encoded at the level of a word is, for instance, recognized as one of the
main challenges for multilingual syntactic parsing (formulated as The Architectural Challenge (Tsarfaty
et al., 2013)). Complexity of this kind is also found to influence machine translation: translating from
morphologically rich languages into English is easier than the other way around (Koehn, 2005). From
the perspective of human learning, interesting relationships have been established between the size of
populations and morphological complexity (Lupyan and Dale, 2010), as well as the proportion of second
language learners and the complexity of case systems: languages with more non-native learners tend to
have fewer cases (Bentz and Winter, 2013). These findings are attributed to learning pressures reducing
complexity.

An important problem for comparing language complexity is the lack of a standard complexity mea-
sure applicable to a wide range of languages and research questions. Many definitions and measures
have been proposed to assess linguistic and, in particular, morphological complexity (Baerman et al.,
2015; Sampson et al., 2009). The respective approaches to calculating complexity, and their scope of
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application, can vary considerably. While factors that need to be taken into account in assessing language
complexity are rather well studied, little is known on how different measures relate to each other.

The goal of this paper is to assess the degree to which different language complexity measures are
mutually correlated. We are especially interested in the relation between a measure derived from hu-
man expert judgements, and several corpus-based measures that do not involve human judgements. We
quantify the relations between the measures using 519 languages of overall 101 families represented
both in the World Atlas of Language Structures (WALS) (Dryer and Haspelmath, 2013) and in parallel
corpora (Koehn, 2005; Mayer and Cysouw, 2014). Our findings suggest that the correlation between the
measures is strong enough to allow their interchangeable use.

2 Related work

There is a recent rise of interest in defining and measuring linguistic complexity, reflected in three vol-
umes on the topic (Sampson et al., 2009; Baerman et al., 2015; Miestamo et al., 2008). In this spirit,
some of our data sources have already been used for quantitative comparisons of a wide range of lan-
guages. Lupyan and Dale (2010), for instance, extract indicators of morphological complexity from the
WALS, and relate them to the size of speaker populations. In a similar vein, Bentz and Winter (2013)
and Bentz et al. (2015) investigate the relationship between morphological complexity, lexical diversity,
and the proportion of adult second language learners in speaker populations. We adopt an approach to
quantifying the typological data similar to the one presented in these studies, but we adapt it to the needs
of our comparison.

The idea of using parallel corpora for language complexity comparison dates back to Greenberg
(1959). It was revived with the development of large parallel corpora and computational tools for their
processing. Cysouw and Waelchli (2007) provide an overview of how massively parallel texts can be
applied to cross-linguistic studies, and describe the potential of such corpora. Recently, massively paral-
lel corpora have been used for studies in lexical typology (Waelchli and Cysouw, 2012), and word order
typology (Östling, 2015).

Finally, a new data set specifically intended for information content comparison is under construction
at Google (Sproat et al., 2014). The goal of this project is to provide maximally parallel sentences in
a set of languages with detailed functional glosses. Once completed, this data set will enable more
comprehensive complexity measures than those used in our paper, however, for a relatively small set of
languages.

3 Measures

In this section, an overview of the measures used is given. We start with the quantification of expert
judgements extracted from the WALS. Next, we move to four corpus-based approaches using type-token
ratios, unigram word entropy, relative entropy of word structure, and word alignments.

3.1 Typological measure based on WALS: CWALS

We choose 28 chapters/features of the World Atlas of Language Structures (Dryer and Haspelmath, 2013)
which are relevant for describing morphology. For example, Chapter 30A “Number of Genders” gives
a range of 5 values from “None” to “5 or more”, which we directly map to values 1 to 5 indicating
increasing complexity. Some features are binary. For instance, Chapter 67A on “The Future Tense”, gives
a binary distinction between whether there is a morphological marker or not. We code this as 0 and 1.
In other chapters such as 70A “The Morphological Imperative” the values have to be reordered to reflect
an increasing complexity of morphology. Details about the chapters, their categories, the necessary
transformations, and the final values are given in Appendix 8.1.

We arrive at 28 WALS features of morphology with values ordered by increasing use of morphology to
encode the feature. There are 1713 languages in WALS for which at least 1 feature value is given. There
are only 10 languages for which all 28 features are available. Note, however, that our transformations
result in scales of different sizes for different features. To make the values comparable, we normalize all
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the values to the interval [0,1]. As a normalization factor we use each feature’s maximum value, so that
the value of 1 across all the features corresponds to the maximum use of morphology.

Based on the obtained data set we assign a morphological complexity score to each language by
averaging the values of the features:

CWALS =
∑n

i=1 fi

n
, (1)

where fi is the feature value of feature i, and n is the number of features available per language. Hence,
CWALS is the feature value average per language.

Table 3.1 gives CWALS values for the subset of 34 languages which are represented by either 27 or 28
features.

ISO Name Family No. Chapters C WALS
tur Turkish Altaic 27 0.775
evn Evenki Altaic 27 0.748
abk Abkhaz Northwest Caucasian 28 0.704
zul Zulu Niger-Congo 27 0.684
swh Swahili Niger-Congo 27 0.675
qvi Quechua (Imbabura) Quechuan 28 0.662
eus Basque Basque 28 0.647
apu Apurina Arawakan 27 0.573
lez Lezgian Nakh-Daghestanian 28 0.568
arz Arabic (Egyptian) Afro-Asiatic 28 0.563
hun Hungarian Uralic 28 0.558
heb Hebrew (Modern) Afro-Asiatic 27 0.529
wyb Ngiyambaa Pama-Nyungan 27 0.528
ckt Chukchi Chukotko-Kamchatkan 28 0.519
khk Khalkha Altaic 27 0.516
tiw Tiwi Tiwian 27 0.495
hix Hixkaryana Cariban 27 0.489
hae Oromo (Harar) Afro-Asiatic 27 0.487
jpn Japanese Japanese 27 0.474
aey Amele Trans-New Guinea 27 0.456
rus Russian Indo-European 28 0.453
ell Greek (Modern) Indo-European 28 0.452
spa Spanish Indo-European 27 0.440
deu German Indo-European 27 0.397
kut Kutenai Kutenai 28 0.357
ind Indonesian Austronesian 28 0.336
eng English Indo-European 28 0.329
hau Hausa Afro-Asiatic 28 0.322
plt Malagasy Austronesian 27 0.309
ayz Maybrat West Papuan 27 0.292
rap Rapanui Austronesian 27 0.218
mri Maori Austronesian 27 0.194
yor Yoruba Niger-Congo 28 0.178
vie Vietnamese Austro-Asiatic 27 0.141

Table 1: Morphological complexity values according to features represented in the WALS. This is a
subset of 34 languages with 27 or 28 feature values, though not necessarily of the same features.

3.2 Corpus-based measures
Word entropy: CH We also measure morphological complexity using word entropy (CH ) as described
in Bentz and Alikaniotis (2016). This reflects the average information content of words. By trend,
languages that have a wider range of word types, i.e. packing more information into word structure,
rather than phrase or sentence structure, will score higher on this measure.

A “word” is here defined as a unigram, i.e. a string of alpha-numeric Unicode characters delimited by
white spaces. Let T be a text that is drawn from a vocabulary of word types V = {w1, w2, ..., wV } of size
V = |V|. Further assume that word type probabilities are distributed according to p(w) = Pr(T = w)
for w ∈ V . The average information content of word types can then be calculated as (Shannon and
Weaver, 1949)

H(T ) = −
V∑

i=1

p(wi) log2(p(wi)). (2)

A crucial step to estimate H(T ) is to get word type probabilities p(wi). The maximum likelihood or
plug-in estimator just takes type frequencies normalized by the overall number of tokens. However, this
estimator underestimates the entropy, as it does not take into account unseen types, which is especially
problematic for small texts (Hausser and Strimmer, 2009). A method with a faster convergence rate is the

144



James-Stein shrinkage estimator (Hausser and Strimmer, 2009). Word probabilities are here estimated
as

ˆpwi
shrink = λ ˆpwi

target + (1− λ) ˆpwi
ML, (3)

where p̂i
ML denotes the word probability according to the maximum likelihood account, λ ∈ [0, 1] is

the “shrinkage intensity”, and p̂target
i is the “shrinkage target”, namely the maximum entropy case of a

uniform pwi = 1
V . Hausser and Strimmer (2009) illustrate that the optimal shrinkage parameter λ can

be found analytically. Given this parameter, the probability p̂shrink
wi

plugged into the original entropy
equation yields

ˆH(T )
shrink

= −
r∑

i=1

ˆpwi
shrink log2( ˆpwi

shrink). (4)

Relative entropy of word structure: CD CD is taken from Koplenig et al. (2016), and inspired by
earlier accounts to measure different dimensions of language complexity by making use of Lempel-Ziv
compression algorithms (Juola, 1998; Juola, 2008; Montemurro and Zanette, 2011; Ehret and Szm-
recsanyi, 2016).1 Let T be a text that is drawn from an alphabet of characters (not words as above)
A = {c1, c2, ..., cA} of size A = |A|. Kontoyiannis et al. (1998) illustrate that the per character entropy
of T can then be estimated as

Ĥ(T ) =

[
1
n

n∑
i=1

li
log2(i+ 1)

]−1

, (5)

where n is the overall number of characters in the text T , and li is the length of the longest substring
from position i onward that has not appeared before, i.e. in T i−1

1 . Note that the average match length li is
related to the redundancy and predictability in T . If match-lengths are generally long, then there is more
redundancy and more predictability, if they are short, then there is less redundancy and less predictability
in the text.

To estimate the amount of redundancy/predictability contributed by within-word structure, Koplenig
et al. (2016) replace each word token in T by a token of the same length but with characters randomly
drawn with equal probability from the alphabet A. The entropy of the original text is then subtracted
from the masked text to yield

D̂ = Ĥ(Tmasked)− Ĥ(T original). (6)

The bigger D̂, the more information is stored within words, i.e. in morphological regularities. This
measure of morphological complexity is denoted CD in the following.

Type/Token ratios: CTTR We take the ratio of word types over word tokens as a simple baseline
measure (Kettunen, 2014). The range of word types is expanded by productive morphological markers.
Hence, higher values of CTTR correspond to higher morphological complexity. Given a text T drawn
from a vocabulary of word types V = {w1, w2, ..., wV } of size V = |V| the measure is

CTTR =
V∑V

i=1 fri
, (7)

where V is the number of types, and fri is the token frequency of the ith type.

1Note that Koplenig et al. (2016) do not call this a “complexity” metric, since they remain neutral about whether word
internal structure is more or less difficult to grasp from the perspective of a learner.
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Word alignment based measure: CA Finally, we consider a measure based on word alignment,
which, to our knowledge, has not been implemented before. Word alignment is an essential step in
phrase-based statistical machine translation (Koehn et al., 2003). The intuition behind the alignment
based approach is that words in morphologically richer languages tend to be translated, and therefore
aligned, to several words in a morphologically poorer language. As in the case of CH and CTTR mea-
sures the term “word” is understood here in an orthographic sense.

Word alignment from a source to a target language can result in three different scenarios2: a single
word in the source language is aligned to a single word (“OneToOne”) or several words (“OneToMany”)
in the target language, or several words in the target language are aligned to a single word in the source
language (“ManyToOne”). We illustrate these cases by an example of alignments from English to Rus-
sian in Figure 3.2:

English

ManyToOne

will make

zdelajuRussian

OneToOne

said

skazali

OneToMany

because

potomu chto

Figure 1: Example of three word alignment categories in a word-aligned English to Russian text.

When word alignments are performed from a morphologically poorer to a morphologically richer
language, “ManyToOne” alignments tend to be more frequent than ‘OneToMany” alignments, and the
other way around. This observation can be quantified using CA measure:

CA =
#ManyToOne−#OneToMany

#AllAlignments
, (8)

where #ManyToOne is the number of all alignments from “ManyToOne” category, #OneToMany is the
number of all alignments from “ManyToOne” category, #AllAlignments is the number of all alignments.
A single alignment can be represented by one arrow as in Figure 3.2.

A positive value of CA indicates that the target language is packaging more information into single
words than the source language, negative values correspond to the opposite case. Hence, languages can
be compared using CA values based on word alignments from a fixed source language. An inherent
property of the CA measure is that it is derived based on fully parallel bilingual texts and therefore takes
into account direct realisations of how languages encode information through word alignments. The
alignment measure is therefore conceptually different from the other three monolingual measures.

4 Data and methods

The corpus-based measures CD, CH , CA and CTTR are calculated using parallel corpora. CD (Koplenig
et al., 2016) is estimated based on the the Book of Matthew (New Testament) from the Parallel Bible
Corpus (PBC) (Mayer and Cysouw, 2014). This gives a sample of 1124 so-called “doculects”, i.e.
indirect representations of languages (defined by ISO-639-3 codes). CH is estimated based on a sample
of parallel texts from the PBC (all books), the Universal Declaration of Human Rights (UDHR),3 and the
European Parliament Corpus (EPC) (Koehn, 2005). This amounts to 1242 doculects. CTTR is calculated
for 1144 doculects of the full PBC.4

Since the implementation of CA requires sentence aligned bitexts with a fixed source language, it
is estimated based on PBC with Hebrew being fixed as a source language. However, the complete

2Here we assume that the symmetrization heuristic (Och and Ney, 2003) is applied to alignments.
3http://unicode.org/udhr/
4Note that differences in numbers of doculects can derive from a specific book (e.g. Book of Matthew) not being translated

into specific languages.
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Bible only exists for around 16% of the languages covered by the PBC. In order to ensure that we use
fully parallel texts to calculate the CA measure, and that these are consistent in terms of the size and
content across languages, we only use the New Testament (NT). The average size of the NT appears to
be sufficient for producing stable ranking results as confirmed by convergence tests with an increasing
amount of parallel verses (see Appendix 8.2).

The PBC as well as the other parallel corpora available for large scale comparative studies is usually
rather short in comparison to bilingual text data used to train classical alignment models for machine
translation. Therefore we use the Efmaral alignment method (Östling and Tiedemann, 2016) which
proves to be the optimal solution for relatively short texts in terms of accuracy and efficiency.

In order to compare different corpus-based measures and the WALS-based measure, we merge the
data sets by ISO-639-3 codes. Thus we end up with a data set of 519 languages for which all measures
are available.

5 Results

In this section we first investigate how all considered measures of morphological complexity agree be-
tween each other using the full dataset and the subsets corresponding to the three biggest language fam-
ilies in our data: Atlantic-Congo, Austronesian, Indo-European, as well as the rest of the 101 families
referred further as “Other”. Then we proceed with a comparison of how corpus-based measures correlate
with the WALS-based measure when we consider increasing subsets of typological features.

5.1 Pairwise correlations between complexity measures

As a result of applying each complexity measure to the data we get a ranked list of languages. Therefore
we choose the non-parametric Spearman rank correlation to evaluate associations between each pair of
measures.

Figure 2 gives an overview of pairwise correlations between all 5 morphological complexity measures
for the full dataset of 519 languages. The density plots on the diagonal panels show the distribution of
values for each measure. The lower off-diagonal panels illustrate the correlations between the measures
using scatterplots. Each plot shows linear regressions fitted based on subcategorized data: Atlantic-
Congo (red), Austronesian (green), Indo-European (blue) and “Other” (purple). The upper panels quan-
tify the correlations for the overall data set (black), and by family (respective colour). Notice that the
scale on the y-axis does not apply to the density plots, only to the scatterplots.

The lower off-diagonal scatterplots show that there is always a positive correlation between the dif-
ferent measures, and that this holds across all the four subsets of our data. For the full data set, the
correlations between corpus-based measures are generally stronger (ranging from 0.756 to 0.918) than
the correlations with CWALS (ranging from 0.318 to 0.437). The strongest correlation is found between
CD and CTTR (0.918), and the weakest between CWALS and CA (0.318). All correlations reported here
are significant at the p < 0.001 level.5

5.2 Correlations with the WALS measure

Figure 3 focuses on correlations between the typological measure CWALS and the corpus-based mea-
sures CD, CH ,CA, and CTTR. The values on the left-hand side of the graph correspond to Spearman
correlations for each measure calculated over all languages with at least 1 feature, a total of 519. These
numbers correspond to the ones given in the first row of Figure 2. The right-hand side of the graph shows
correlations over languages which are represented by at least 27 features in the WALS, a total of 23.6

Note that as we increase the minimum number of features from WALS to be included, we reduce the
number of languages (indicated by the size of the dots). As can be seen from the graph, inclusion of
more features results in stronger agreement between the corpus-based measures and CWALS . Towards
the right hand side we observe the highest values of correlations between CWALS and the corpus-based
measures, reaching 0.89 for CD, 0.88 for CTTR, 0.86 for CH , and 0.70 for CA. The intermediate cases

5Though see Koplenig (forthcoming) for an argument against hypothesis testing in corpus linguistics.
6This is less than the 34 languages in Table3.1 since not all of them are found in the parallel corpora.
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Figure 2: Pairwise correlations between all 5 complexity measures. The lower off-diagonal panels show
scatterplots with fitted linear regression lines and 95% confidence intervals. The diagonal panels show
density plots for the respective data set. The upper off-diagonal panels give pairwise Spearman corre-
lations. Colours indicate the three major language families Atlantic-Congo (red), Austronesian (green),
Indo-European (blue), and the rest subsumed under “Other” (purple). The correlation given in black is
the overall correlation. The full data set with 519 languages is used.

have lower coverage of languages as well as less overlap of features between them. This leads to higher
disagreement between the measures while they still show common trends. The results illustrate that
given enough information in the WALS, CWALS correlates just as good with corpus-based measures as
these do amongst each other.

6 Discussion

Our results of comparing different morphological measures provide two major insights:

1. We used four vastly differing automated approaches of measuring morphological complexity
(CD,CH ,CA, and CTTR) in actual language production, i.e. parallel corpora. They all display
strong correlations between each other, i.e. strong agreement on which languages are morpholog-
ically complex, and which are not. This is encouraging, since it illustrates that the judgements of
these automated methods converge despite the conceptual differences.

2. Given enough feature values, the expert judgements of the WALS also converge with the automated
corpus-based methods when ranking languages on a morphological complexity scale, which is re-
flected in Spearman correlations of up to 0.89. This is remarkable when considering how much
expert knowledge and working hours go into writing of descriptive grammars, and assembling them
in databases like WALS. If our sole objective is to rank languages in terms of morphological com-
plexity, the automated methods yield high agreement with the outcome of a human expert rating.
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Figure 3: Spearman correlations of the corpus-based measures with CWALS . The x-axis corresponds
to a subcategorization of the languages included to calculate the correlations. For example, “27” means
that only languages which have values in at least 27 WALS chapters are included, which is the case for
23 languages, and so on. All correlations are significant (p < 0.001).

Since all the measures correlate strongly, the reason for choosing either of them depends on the objec-
tive and the data limitations of a given study. In the following, we discuss some of the advantages and
disadvantages of the respective measures.

6.1 Advantages and disadvantages of the measures

The objective of the WALS is to give an overview of phonetic, morphological, lexical and syntactic prop-
erties of a large and balanced sample of languages. It is a collaborative effort of dozens of experts to
establish a data base that allows cross-linguistic comparisons. As such, it is a rich source for typological
studies. However, by necessity it is only a coarse-grained reflection of the actual dimensions of complex-
ity. For example, classifying a language by whether it uses 2, 3, 4, etc. nominal case markers (chapter
49) does not tell us how productive these markers are in actual language production. Note, also, that the
coverage of WALS in terms of features per language is sparse. If we want to include all 28 features, then
we end up with a sample of only 10 languages.

The corpus-based measures allow us to look at real instances of morphological productivity in texts
across many languages. All of them can be estimated from corpora directly and efficiently, without
much prior processing. The only requirement for CH , CD and CTTR is that word types are delimited in
a consistent manner, e.g. by white spaces – or other non-alphanumeric characters. Hence, these measures
come without much theoretical “baggage”, and are cross-linguistically comparable. At this point, they
can be applied to ca. 1500 languages via massively parallel corpora like the PBC.

The simplest corpus-based measure is CTTR. Once word types are defined, it is easily and straight-
forwardly computed from a text. However, a drawback of CTTR is that it does not take into account
subtle differences in the distributions of word tokens over word types. CH is a more accurate reflection
of the actual distributions. However, just like CTTR, CH does not distinguish between effects due to
breadth of the base lexicon, on one hand, and word formation processes such as derivation, inflection or
compounding, on the other. Also, it does not reflect differences in regular and irregular morphological
processes. For example, the irregular pair go→went will contribute just as much to higher CH as the
regular pair sprint→sprinted.
CD has the advantage of distinguishing regular from irregular processes of word formation. Regular
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suffixes as in the example above will introduce systematic redundancy reflected in D̂. However, masking
within-word structure requires a further processing step that might introduce biases which are not well
understood yet. Also, despite picking up on regular patterns within words, CD does still not distinguish
between different types of word formation.

Likewise, CA does – at this stage – not distinguish between different types of word formation. This
could be overcome by considering alignments on the type level. Given the sum of all alignments for a
word type, it is expected that the diversity of alignments will be lower for a word in a language with rich
morphology, since the word types are expected to be rarer (less frequent). Therefore, a measure based
on word type level alignments could distinguish between morphological and lexical diversity. Also, the
influence of the choice of source language on the results needs to be clarified in future studies.

6.2 Conceptualizing morphological complexity

“Linguistic complexity” more generally, and “morphological complexity” in particular, are polysemous
concepts. Here, we focused on defining and comparing different quantitative measures. They neces-
sarily hinge upon different conceptualizations of complexity. The account based on WALS chapters is
a paradigm-based approach. Harnessing descriptive grammars, typologists attribute a given number of
paradigmatic distinctions to languages, which, in turn, reflect their complexity. Measures such as CTTR,
CD and CH , on the other hand, could be called distribution-based. They conceptualize complexity
with reference to the distribution of word tokens over word types used in a given language. Finally, the
translation-based account CA is not applicable to single languages, but conceptualizes complexity via
the problem of translating a concept from one language to another. Clearly, all of these are conceptu-
alizations in their own right, with specific implications for language learning and usage. However, they
turn out to be strongly correlated – across the board – since they all reflect different nuances of the same
principle: linguistic complexity relates to the fundamental information-theoretic concept of uncertainty
or choice when encoding and decoding a message.

7 Conclusions

We have tested four conceputally different measures of morphological complexity across more than 500
languages of 101 families. The overall results suggest that different corpus-based measures are highly
consistent when ranking languages according to morphological complexity. Moreover, measures based
on typological expert judgements are also converging onto similar rankings if enough language specific
information is given. These findings help to establish a quantitative, empirical, and reproducible account
of morphological complexity, and linguistic typology more generally.
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Matti Miestamo, Kaius Sinnemäki, and Fred Karlsson. 2008. Language complexity: Typology, contact, change.
John Benjamins Publishing.

Marcelo A Montemurro and Damián H Zanette. 2011. Universal entropy of word ordering across linguistic
families. PLoS One, 6(5):e19875.

Franz Josef Och and Hermann Ney. 2003. A systematic comparison of various statistical alignment models.
Computational Linguistics, 29:19 – 51.

Robert Östling and Jörg Tiedemann. 2016. Efficient word alignment with Markov Chain Monte Carlo. Prague
Bulletin of Mathematical Linguistics, 106, October. To appear.
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8 Appendices

8.1 Transformations of WALS features

Chapter Name Categories Transformation Final Values
22A Inflectional Synthesis 7 (ordinal) none 1-7
26A Prefixing vs. Suffixing in Inflectional Morphology 6 (non-ordinal) binarization 0-1
27A Reduplication 3 (non-ordinal) binarization 0-1
28A Case Syncretism 4 (ordinal) reorder 1-4
29A Syncretism in Verbal Person/Number marking 3 (ordinal) none 1-3
30A Number of Genders 5 (ordinal) none 1-5
33A Coding of Nominal Plurality 9 (partially ordinal) binarization 0-1
34A Occurrence of Nominal Plurality 6 (ordinal) none 1-6
37A Definite Articles 5 (non-ordinal) binarization 0-1
38A Indefinite Articles 5 (non-ordinal) binarization 0-1
49A Number of Cases 9 (ordinal) remove 1-8
51A Position of Case Affixes 9 (non-ordinal) binarization 0-1
57A Position of Pronominal Possessive Affixes 4 (non-ordinal) binarization 0-1
59A Possessive Classification 4 (ordinal) none 1-4
65A Perfective/Imperfective Aspect binary none 0-1
66A The Past Tense 4 (ordinal) reorder 1-4
67A The Future Tense binary none 0-1
69A Position of Tense/Aspect Affixes 5 (non-ordinal) binarization 0-1
70A The Morphological Imperative 5 (partially ordinal) recategorization 1-4
73A The Optative binary none 0-1
74A Situational Possibility 3 (non-ordinal) binarization 0-1
75A Epistemic Possibility 3 (non-ordinal) binarization 0-1
78A Coding of Evidentiality 6 (non-ordinal) binarization 0-1
94A Subordination 5 (non-ordinal) binarization 0-1
101A Expression of Pronominal Subjects 6 (non-ordinal) binarization 0-1
102A Verbal Person Marking 5 (partially ordinal) recategorization 1-3
111A Nonperiphrastic Causative Constructions 4 (non-ordinal) binarization 0-1
112A Negative Morphemes 6 (non-ordinal) binarization 0-1

Table 2: Recoding of WALS chapters. The column “Categories” gives the type of of the original WALS
variable represented in the respective chapter. “Transformations” is a short description of how the chap-
ters where recoded. “Final Values” gives the range of ordinal values used to reflect the morphological
complexity.
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8.2 Convergence tests for CA

Figure 4: Convergence tests for the CA measure. The source language for alignments is English. For
each size of the verse number X the CA measure is averaged across 50 samples with X randomly drawn
parallel verses. The grey line corresponds to the average number of verses available for NT in PBC.
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Abstract

Comparable or parallel corpora are beneficial for many NLP tasks. The automatic collection of
corpora enables large-scale resources, even for less-resourced languages, which in turn can be
useful for deducing rules and patterns for text rewriting algorithms, a subtask of automatic text
simplification. We present two methods for the alignment of Swedish easy-to-read text segments
to text segments from a reference corpus. The first method (M1) was originally developed for
the task of text reuse detection, measuring sentence similarity by a modified version of a TF-IDF
vector space model. A second method (M2), also accounting for part-of-speech tags, was devel-
oped, and the methods were compared. For evaluation, a crowdsourcing platform was built for
human judgement data collection, and preliminary results showed that cosine similarity relates
better to human ranks than the Dice coefficient. We also saw a tendency that including syntactic
context to the TF-IDF vector space model is beneficial for this kind of paraphrase alignment task.

1 Introduction

Automatic text simplification is defined as the process of reducing text complexity, while maintaining
most of the content (Chandrasekar and Srinivas, 1997; Carroll et al., 1998). While the first approaches
handled the task of automatically simplifying texts by the application of hand-crafted rules, cf. Rennes
and Jönsson (2015) for a recent example for Swedish, data-driven methods have gained momentum in
text simplification, as in other areas within natural language processing.

By using large corpora of aligned monolingual material, it is possible to automatically extract patterns
or rules but since such induction requires large amounts of aligned material, hand-crafted systems are
often the only practically performable alternative for languages without such resources. To automatically
collect comparable corpora would result in large-scale resources useful for deducing rules and patterns
for text rewriting algorithms, particularly beneficial for less-resourced languages with sparse linguistic
resources.

In this study, we hypothesized that we could extend the work of Sanchez-Perez et al. (2014), origi-
nally developed for test reuse detection, to detect paraphrased segments from two corpora; one of them
containing only easy-to-read material, and the other representing the full spectra of Swedish texts. We
replicated the algorithm proposed by Sanchez-Perez et al. (2014), and contrasted this method to a method
that included part-of-speech tags as context. An ongoing crowdsourcing evalutation is presented, in terms
of evaluation design and preliminary results.

2 Related Work

The creation of aligned comparable monolingual corpora has been suggested as a step for several tasks
within the field of natural language processing, such as paraphrasing (Barzilay and Elhadad, 2003; Dolan
et al., 2004), automatic text summarisation (Knight and Marcu, 2000; Jin, 2002), terminology extrac-
tion (Hazem and Morin, 2016), and automatic text simplification (Bott and Saggion, 2011; Coster and
Kauchak, 2011; Klerke and Søgaard, 2012).

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/
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According to Nelken and Shieber (2006), the alignment task of monolingual corpora differs from
the multi-lingual counterpart. While the latter exhibits conformity between source and target documents,
aligned monolingual material is characterised by being similar in content, rather than linguistically, mak-
ing many established methods developed for multi-lingual alignment less successful.

Since the aim of monolingual text alignment is to find similar text fragments, it forms an important
subtask of applications such as text reuse detection. The method described in this paper is inspired by the
approach used by Sanchez-Perez et al. (2014), originally developed for the task of text reuse detection,
measuring sentence similarity by a modified version of a TF-IDF vector space model. Other approaches
to monolingual text alignment have measured sentence similarity by TF-IDF. Nelken and Shieber (2006)
used this similarity score, treating each individual sentence as a document, in order to estimate the prob-
ability that two sentences are aligned using logistic regression, achieving higher accuracy than previous
systems. This was confirmed by Zhu et al. (2010) who showed that when comparing the TF-IDF ap-
proach by Nelken and Shieber (2006) to other similarity measures for monolingual text alignment, the
former outperformed the other two measures (word overlap and maximum edit distance).

For the task of text simplification, easy-to-read material aligned to their original counterparts would
be beneficial. One way to ensure that a text is easy-to-read is by applying readability metrics. For
Swedish, the standard readability metric is the Readability Index, LIX (Björnsson, 1968), but recently, its
dominance has been questioned (Mühlenbock and Johansson Kokkinakis, 2009; Heimann Mühlenbock,
2013). Another measure, often said to complement LIX for Swedish, is the Word Variation Index,
OVIX (Hultman and Westman, 1977). The readability metrics considered in this study are further defined
in section 3.3.

An automatic evaluation of paraphrases requires annotated data. Crowdsourcing enables a cheap and
effective way of collecting multiple annotations from multiple annotators for one task. For annotation
tasks, Snow et al. (2008) showed that crowdsourced annotations are similar to traditional annotations
made by experts. The field of natural language processing has used crowdsourcing for various tasks
within the NLP area, often by the use of Amazon’s Mechanical Turk (Callison-burch et al., 2006). For
Swedish, this is a resource that is lacking and it can be a tedious task to collect human annotated data.

3 Method

This section will describe the text resources used in this study, as well as an overview of the replicated
algorithm and the experimental design of the evaluation.

3.1 Corpora

LÄSBART (Mühlenbock, 2008) is a Swedish corpus containing a collection of easy-to-read material of
a total of 1.1 million tokens. Four genres are represented in the corpus; easy-to-read news texts, fiction,
community information, and children’s fiction.

STOCKHOLM-UMEÅ CORPUS (SUC) (Källgren et al., 2006) is a corpus of one million words of
published Swedish texts written in the 1990’s. The corpus is balanced according to genres and anno-
tated with part-of-speech tags, morphological features, lemmas, and some structural and functionally
interpreted tags.

Although both LÄSBART and SUC were previously tagged, the corpora were annotated again for this
study, in order to create a more uniformly annotated amount of text. For this, we used STAGGER (Östling,
2013), a part-of-speech tagger based on the averaged perceptron.

3.2 Algorithm

The alignment algorithm followed the procedure described in Sanchez-Perez et al. (2014), whose original
purpose was to detect text reuse. By the use of a TF-IDF vector space model, the similarity between text
fragments was calculated, with a slight modification: each sentence was considered a document, and
the full collection of sentences in the original document was considered the document collection. Thus,
rather than an inverse document frequency measure, an inverse sentence frequency was calculated. Each
pair of text fragments was given a similarity score (cosine measure and Dice coefficient), and if the score
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exceeded a certain threshold, originally 0.33, the text fragments were considered similar, and were thus
aligned. The alignment was performed in two iterations, where the first iteration, followed the procedure
given by Sanchez-Perez et al. (2014) with vectors based on lemmatised words, and the second iteration
included part-of-speech tags as context information, in addition to the lemmatised lower cased words.
The replicated method will henceforth be known as M1, and M2 denotes the method using part-of-speech
tags as context. By introducing the part-of-speech tags, we reasoned that we would improve the precision
for disambiguating words and enable synonyms higher probability (Turney et al., 2010).

This algorithm was used to align one text segment originating from SUC with text segments originating
from the LäSBarT corpus. The aim of this procedure was to construct the monolingual corpus consisting
of reference segments (RS) aligned with easy-to-read segments (ES). The threshold of a cosine of 0.33,
presented by Sanchez-Perez et al. (2014), was used as a minimum value for aligning a candidate segment.
No maximum value was used, and a cosine of 1.0 was thus an admissible paraphrase candidate.

3.3 Features
To assess the algorithms’ ability to produce more readable paraphrases, a number of readability measures
can be used, see for instance Falkenjack et al. (2013). In this study we limit ourselves to using only a
variety of commonly used readability measures, for Swedish.

N-gram overlap. An evaluation of two texts’ similarity can be aided by the measure of shared n-
grams between text pairs. In this evaluation, each paired segment, one RS paired to one ES, was treated
as a collection of n-grams, with n ranging from 1 to 4. The proportion of intersecting n-grams in ES and
RS was computed, and divided by the total number of n-grams in RS, resulting in a value ranging from 0
to 1. This value represents the overall mean n-gram overlap between the aligned segments. A value of 1
indicates that the ES is an exact copy of, or contained within, the RS. We used this measure to compare
the overall n-gram overlaps between the two methods.

LIX, readability index (Björnsson, 1968), Equation 1. Ratio of words longer than 6 characters coupled
with average sentence length. By computing this measure we were able to examine how the values differ
from the original corpora’s LIX, and gain a better understanding of the subset in comparison with the
full set. These values were computed for M1 and M2 separately.

LIX =
n(w)
n(s)

+ (
n(words > 6 chars)

n(w)
× 100) (1)

where n(s) denotes the number of sentences and n(w) the number of words.
OVIX, word variation index, Equation 2. Originally developed by Hultman and Westman (1977) and

related to type-token ratio. Logarithms are used to cancel out type-token ratio problems with varying
text length. In this paper, OVIX was computed by treating the collection of aligned cluster sentences,
originating from SUC, and the aligned text segments, originating from LäSBarT, as corpora. As for LIX,
this measure is taken into account for evaluating the subsets of the two corpora.

OV IX =
log(n(w))

log(2− log(n(uw))
log(n(w)) )

(2)

where n(w) denotes the number of words and n(uw) the number of unique words.
Length. Measures of long documents and words have been used in readability studies (Feng, 2010)

and as a baseline for evaluating new features (Pitler and Nenkova, 2008). In this paper we computed the
average word length as the average characters per word, the average number of long words per segment
and the average number of words per segment. As for OVIX and LIX, the measures were computed by
treating each subset of the corpora, containing only RS or only ES, as its own document.

Cosine similarity, Equation 3, calculates the cosine angle between two non-zero n-dimensional vec-
tors, as the dot product of two vectors normalised by the product of the vector lengths. The cosine
similarity measure ranges between -1 and 1, where a value closer to 1 indicates a high similarity between
vectors. For the purpose of aligning paraphrases, we assumed that a cosine value of 1 is unwanted since a
paraphrase is defined by being syntactically different at the same time as being semantically equivalent.
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cos(A, B) =
A ·B

||A|| · ||B|| (3)

The Dice coefficient, Equation 4, is defined as the product of 2 times the number of features in com-
mon by the sum of the length of RS and the length of ES. For M1, using lemmatised lower case words
as features and for M2 by also including the part-of-speech tags as features. This value ranges from 0
to 1 and represents the similarity of two segments, where a value closer to 1 means a higher similar-
ity between the segments. As for the cosine similarity measure, we assumed that a Dice value of 1 is
undesirable for this specific paraphrasing task.

Dice(A, B) =
2 |A ∩B|
|A|+ |B| (4)

3.4 Crowdsourcing Evaluation

In this study, crowdsourcing was used to assess the two methods.The aligned items used for evaluation
were chosen by only considering the RS that were paired with at least one ES at every cosine value (0.40,
0.50, 0.60, 0.70, 0.80), rounded to 2 decimals. When multiple sentences with the same cosine value were
encountered, one was randomly chosen. The aim of this heuristic was to be able to better assess the
cosine threshold values.

Typically, the recruitment process is managed by an employer, such as Amazon’s Mechanical Turk.
Since our evaluation task treated texts in Swedish, we constructed our own platform to host the tasks and
collect the annotated data. For this project, the recruitment was made by public postings on Facebook
and e-mails to current graduate students at a Swedish University. The recruitment post stated the aim of
the tasks and contained a link to our web page. The web page presented the RS randomly to annotators
followed by the (randomly ordered) aligned ES. Similarity judgements were made by rating the pair on a
scale 0-4, corresponding to the following categories, as proposed in the Cross-Level Semantic Similarity
Task of Semeval 2014 (Nakov and Zesch, 2014):

4. The two items have very similar meanings and the most important ideas, concepts, or actions in the
larger text are represented in the smaller text.

3. The two items share many of the same important ideas, concepts, or actions, but those expressed in
the smaller text are similar but not identical to the most important in the larger text.

2. The two items have dissimilar meaning, but the shared concepts, ideas, and actions in the smaller
text are related (but not similar) to those of the large text.

1. The two items describe dissimilar concepts, ideas and actions, but might be likely to be found
together in a longer document on the same topic.

0. The two items do not mean the same thing and are not on the same topic.

All categories were translated into Swedish. Even though Antoine et al. (2014) presented results
that favour choosing 3 ordinal categories over 5, we believe that the nuances introduced by letting the
crowdworkers annotate 5 categories will result in a richer understanding on how to choose the threshold
value. The participants were not trained for the task, i.e. no example task was shown prior to the
test. Studies have shown that training can render more precise results for individual workers (Le et al.,
2010). As we had no experience on how the ranked categories relate to paraphrases, we chose to omit a
training phase for the crowdworkers. There was no time restriction for the individual tasks, nor for the
crowdsourcing test as a whole. When every aligned text item had been judged, the annotator was able
to proceed. This process was repeated until reaching an end, where all aligned items had been given a
ranking, or until leaving the annotation web page by choice.
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4 Results

In this section, the preliminary results describing the performance of the alignment algorithm are pre-
sented and compared. As presented in Table 1, M2 resulted in higher arithmetic mean value for cosine
as well as for Dice. The method produced 18,115 more aligned groups than did M1. As a result of more
aligned groups, M2 contained about eight million more aligned text segments than M1. As for n-gram
overlap, M1 had higher unigram overlap (0.31) than M2 (0.18), indicating that for M1, the ES is more
alike the RS only considering the words, than of M2. The alignment clusters for both M1 and M2 were
normally distributed with less occurrences towards the extreme values, both for cosine and Dice.

M1 M2
Arithmetic mean Dice 0.47 0.50
Arithmetic mean cosine 0.49 0.50
Std deviation, Dice 0.13 0.13
Std deviation, cosine 0.09 0.10
Total number of aligned cluster 113,993 132,108
Total number of aligned text segments 9,294,015 17,422,338
Unigram overlap 0.31 0.18
Bigram overlap 0.05 0.04
Trigram overlap 0.01 0.01
Quadrigram overlap 0.0 0.00

Table 1: Comparison of M1 and M2 regarding descriptive features.

4.1 Alignment without context (M1)
This section presents results containing the shallow features measured for both sides of the alignment of
the replicated method originally presented by Sanchez-Perez et al. (2014).

M1 SUC LäSBarT RStotal EStotal RSsubset ESsubset

Tot. no of tokens 1,048,657 1,142,666 5,378,071 344,951,473 181 1,308
% of long words 26.55 18.03 0.09 0.14 0.05 0.02
No. of unique tokens 106,853 49,776 17,362 26,889 30 179
LIX 41.97 27.46 18.4 24.22 -* -*
OVIX 90.9 68.83 49.22 50.04 31.93 29.33
No. of sentences 68,038 121,212 617,167 33,247,883 19 95
Avg. sentence length 15.41 9.43 10.37 8.71 6.20 6.77
Avg. word length 5.21 4.58 4.10 3.93 3.9 3.33
M2
Tot. no. of tokens 1,048,657 1,142,666 2,455,941 419,768,883 252 1,377
% of long words 26.55 18.03 0.09 0.15 0.007 0.05
No. of unique tokens 106,853 49,776 15,369 21,871 50 221
LIX 41.97 27.46 24.93 16.67 -* -*
OVIX 90.9 68.83 49.66 49.23 21.55 32.03
No. of sentences 68,038 121,212 314,399 41,658,621 25 125
Avg. sentence length 15.40 9.43 7.80 10.07 4.30 6.25
Avg. word length 5.21 4.58 3.50 3.88 3.30 3.80

* LIX is only applicable for documents rather than unique sentences

Table 2: Feature values of corpora, alignments and subsets for M1 and M2.

In Table 2, the shallow features of the original corpora are presented, as well as the corresponding
values of the aligned total (RStotal and EStotal), and the subset later evaluated by crowdsourcing (RSsubset
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and ESsubset). The readability metric, LIX, features a lower value for the RS as well as for the ES. The
OVIX value for the RS compared to SUC is lower, as well as the OVIX value for the ES, when compared
to LäSBarT.

The greater number of tokens and sentences is due to the fact that the total number of sentences con-
tains multiple copies as a result of segments which are considered candidates in different alignment
setups. The average sentence length and the average word length comparing the three; full corpora,
aligned total and evaluated subset, show a converging tendency for RS and ES with respect to the read-
ability metrics as well as for the length features.

4.2 Alignment with context (M2)

The descriptive results for M2 are found in the second section of Table 2, as well as the shallow features
of the full original corpora, the aligned total (RStotal and EStotal), and the evaluated subset (RSsubset and
ESsubset). Both readability metrics for RS are lower than for the corresponding original corpus. For LIX,
this also applies for ES and LäSBarT. This converging tendency is also noticeable for M2, where the RS
segments might be the most easy-to-read segments in the original corpora, and vice versa for ES. As with
M1, M2 resulted in an occurrence distribution similar to M1, where a lesser frequency of aligned pairs
is present, as a result of an extreme value.

4.3 Evaluation

Rank RS ES Cosine Dice Method
0 Jag vet inte, sa jag. Jo, jag vet. 0.50 0.57 M1

I don’t know, I said Yes, I know.
1 Ja, det är du, säger Oscar. – Ja, det säger alla! 0.60 0.60 M1

Yes, you are, says Oscar. – Yes, everybody says that!
2 Vad är det med dig? – Vad är det som har hänt? 0.40 0.43 M1

What’s up with you? – What has happened?
3 Vad är det? –Vad skulle det vara? 0.80 0.86 M1

What is it? – What would that be?
4 Jag vet inte, sa jag. Jag vet inte. 0.70 0.55 M1

I don’t know, I said. I don’t know.
0 Majsan rycker på axlarna. Tanne ryckte tag i henne. 0.40 0.36 M2

Majsan shrugs. Tanne grabbed her.
1 Vad menar du? Vad hade han gjort dig? 0.60 0.60 M2

What do you mean? What did he do to you?
2 undrar jag. undrade hon 0.80 0.67 M2

I wonder she wondered
3 Varför då? Jaså, varför det? 0.50 0.44 M2

Why? Oh, really? Why?
4 Det visste jag. Jag visste det, fan jag visste det. 0.80 0.80 M2

I knew that. I knew it, damn, i knew it.

Table 3: Examples sentences per rank category for sentences aligned by M1 and M2.

The heuristic rendered 220 aligned items to evaluate by crowdsourcing, each containing one RS and
one ES from each cosine value. 95 of the aligned items were from M1 and the remaining 125 were
from M2. Table 3 presents some examples from the alignment clusters which have been evaluated
for each method. The alignments are presented with a typical rank that annotators have been giving
them. The examples illustrate how the aligned sentences are loosely coupled by the words present in
the sentences. The preliminary results of the mapping of cosine similarity and participant ranking is
presented in Figure 1, with cosine values divided into intervals. There is a tendency of M2 scoring
consistently higher than M1.

The preliminary results of the mapping of Dice similarity and participant ranking is presented in Fig-
ure 2, with Dice values divided into intervals. The results of the first and last intervals clearly differ from
the remaining intervals due to skewed data, and can in this context be considered outliers. From interval
0.31–0.40 to interval 0.71–0.80, the Dice similarity seems to stabilise for values over 0.5. These prelim-
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inary results propose that M2 provides a more stable relationship between the human ranked categories
and the similarity measures.

5 Discussion

As the sentences in Table 3 imply, the easy-to-read segments seem syntactically alike and faithful to the
reference segments on a word level. This is not always desirable for the task of extracting paraphrases.
Extracting paraphrases that are dissimilar by their word usage, but semantically equivalent, enables us to
achieve data that better fit the definition of paraphrases. This will be addressed in future work.

As seen in Figues 1 and 2, M2 seems to relate better to human ranking than M1. We will further
explore this in a more thorough statistical analysis of a larger amount of data when available.

It is still not clear whether or not there is a limit as to how large either side of the segment should be,
i.e. that a larger chunk of ES could be aligned with a smaller chunk of RS, or vice versa. The algorithm
allows the aligned chunks to be expanded beyond sentence boundaries, meaning that the lengths of the
resulting segments are only limited by the length of the entire document.

We presented the relationships between the annotated rankings and the cosine and Dice groups. These
show trends which we believe can be used to accept a cosine higher than 0.33 as the threshold for deciding
which segments to treat as candidate paraphrases.

In designing our annotator task, we chose to let annotators be new to the tasks in the sense that the
crowdworkers had no intuition about how we would rate a pair of text segments. Thus, they were not
primed to any systematic approach for solving the tasks, contrary to previous studies (Le et al., 2010).
This has probable explanation effects on the variance in the annotated data and the possible disagreement
the annotators seem to display. But it is possible that these results are only preliminary and that the
gathering of more data would result in higher agreement across the categories. It would be interesting to
study the alignments that people had more difficulty to agree upon, since that analysis itself could have
an effect on the way we understand features of readability in text or intra class differences in peoples’
ability to read and understand text segments. It might prove to be necessary to divide crowdworkers into
groups based on some training task, measuring reading ability. For a language such as Swedish, there is
no available platform to invite human annotators, nor is it possible to give crowdworkers any payment.
There are multiple ways in which NLP can be helped by the work of human annotators, and we perceive
this as an opportunity to develop and distribute a platform that could be used as portal for NLP scientists
for collecting data based on peoples language skills.

6 Conclusions and future work

Data collection is ongoing, but preliminary conclusions of this study are that 1) the Dice coefficient does
not seem to correspond well with human ranking, 2) the method with part-of-speech tags included (M2)
provides a more stable relationship between the human ranked categories and the similarity measures
and, 3) the framework developed for this study proved to be an effective tool for collecting data when
crowdsourcing human rankings for a NLP task.

In this study we assumed that the corpus data would entail that the ES was easy-to-read based on the
typology of the data. Future work will try to validate the readability of the aligned ES to assure that an
ES is easier than its corresponding RS. At the time of writing, the data collection is ongoing, and final
results from the evaluation, including a thorough statistical analysis, will be presented in future work.
From the evaluation, a cosine threshold value will be estimated. The final goal is an aligned monolingual
corpus, from which it is possible to deduce patterns and operations for the purpose of automatic text
simplification.
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Abstract

This work presents a framework for the automatic construction of large Web corpora classified
by readability level. We compare different Machine Learning classifiers for the task of readabil-
ity assessment focusing on Portuguese and English texts, analysing the impact of variables like
the feature inventory used in the resulting corpus. In a comparison between shallow and deeper
features, the former already produce F-measures of over 0.75 for Portuguese texts, but the use
of additional features results in even better results, in most cases. For English, shallow features
also perform well as do classic readability formulas. Comparing different classifiers for the task,
logistic regression obtained, in general, the best results, but with considerable differences be-
tween the results for two and those for three-classes, especially regarding the intermediary class.
Given the large scale of the resulting corpus, for evaluation we adopt the agreement between
different classifiers as an indication of readability assessment certainty. As a result of this work,
a large corpus for Brazilian Portuguese was built1, including 1.7 million documents and about
1.6 billion tokens, already parsed and annotated with 134 different textual attributes, along with
the agreement among the various classifiers.

1 Introduction

Text readability assessment refers to measuring how easy it is for a reader to read and understand a
given text. In this context methods for automatic readability assessment have received considerable
attention from the research community (DuBay, 2004). The task of attributing a readability level to a
text has a wide range of applications, including support for student reading material selection (Petersen
and Ostendorf, 2009) or help for clinical patients (Feng et al., 2009). It can also be used for ensuring that
instructions and policies are written in an easily comprehensible way even for readers with low education
(McClure, 1987). It can also contribute to the task of text simplification, evaluating the obtained version
to indicate if further simplification is needed (Aluisio et al., 2010). Recently, authors such as Petersen
and Ostendorf (2009), Vajjala and Meurers (2014) and Scarton et al. (2010) have started treating this
task as one of text classification, using corpora manually annotated with readability classifications to
train automatic learning models, based on a large set of text metrics, including deeper features, for
example derived from n-gram language models and parse trees. However, an important limitation to this
approach is the small availability of reliably annotated train data. Moreover, this task is known to be very
subjective, and even human annotators present a high disagreement rate in their evaluations (Petersen
and Ostendorf, 2009).

In this work, we aim to develop large corpora classified by readability levels. To achieve this objective
we present a study of different Machine Learning approaches to the task of readability assessment of
texts, focusing on Portuguese, and apply the relatively recent concept of building corpora from the Web
(Bernardini et al., 2006) to automatically generate large corpora classified by readability levels. For
that, we follow the framework proposed by Wagner Filho et al. (2016), where a readability classifier

1http://www.inf.ufrgs.br/pln/wiki/index.php?title=BrWaC
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/
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was incorporated into a crawler, but changing the classifier position in the pipeline so that we can work
with both low and high-cost complexity features. We also experiment with learning models trained on
several different reference corpora, in both Portuguese and English, and investigate the relevance of the
agreement between them.

We focus our study on two hypothesis: (H1) a learning model trained in a reference annotated corpus
is able to classify a new corpus so that its classes present significant linguistic differences and (H2) the
use of syntactic attributes contributes to a better classification. As a result of this work, a new Portuguese
corpus of around 1.6 billion tokens was built and annotated with four different readability classifiers.
This paper is structured as follows. In Section 2, we discuss some relevant work in the literature and, in
Section 3, we present our materials and methods, especially our training data, features and classification
algorithms and our Web corpus collection framework. In Section 4, we apply our methodology and
validate our hypothesis trough a series of experiments. Finally, in Section 5 we present our conclusions
and ideas for future work.

2 Related Work

Some traditional works in readability classification include, for example, Flesch and others (1946), Dale
and Chall (1948), Gunning (1952), which were based in shallow textual measures. A very known ex-
ample, the Flesch Reading Ease index (Flesch and others, 1946), uses the number of syllables per word
and words per sentence to determine lexical and syntactic complexity. For Portuguese, Martins et al.
(1996) adapted the Flesch Reading Ease index to account for language differences, and Érica Sapgnolo
and Finatto (2014) analysed Brazilian news texts to generate lists of simple words.

The classical readability measures have been criticized for applying a superficial analysis of textual
characteristics, ignoring, for example, that larger sentences may be clearer and more explicative than a
smaller equivalent (Williams, 2004). These formulas are not able to capture several elements of cohesion
and textual difficulty, according to McNamara et al. (2002), who also point that these tools force editors
to modify the text to increase the calculated readability, but actually reducing cohesion. Recent studies
tried to apply automatic approaches that better approximate the complexity of a text, for example using
n-gram language models to identify reading ease. Petersen and Ostendorf (2009) trained Support Vector
Machines using a corpus created from an educational newspaper, Weekly Reader, with different versions
for four different grade levels, completed with articles for adults from the Associated Press. They worked
with lexical and syntactic features and also with traditional formulas. Investigating the contribution of
syntactic features, it was observed that they were not good enough separately, but contributed to the
general performance. Complementarily, Vajjala and Meurers (2014) applied 152 lexical and syntactic
attributes to classify a corpus of subtitles from different BBC channels for children and adults, also using
SVMs. The most predictive attribute was shown to be the age of acquisition. Similar approaches were
applied in multiple other languages, including Italian (Dell’Orletta et al., 2011), German (Hancke et al.,
2012) and Basque (Gonzalez-Dios et al., 2014). In Portuguese, Scarton and Aluı́sio (2010) classified
articles for children and adults from local newspapers, using a SVM trained on 48 psycholinguistic
features and obtaining an F-measure of 0.944.

Wagner Filho et al. (2016) proposed a framework to take advantage of the increasing availability of
language content in the Web to create large repositories of text suitable for different reading levels,
incorporating a readability classifier to a pipeline similar to the one used by Baroni et al. (2009) to build
a series of large Web corpora, such as the ukWaC (Baroni et al., 2009), composed by 1.91 billion tokens
and 3.8 million types. This pipeline is composed by four steps: (1) identification of an appropriate
set of seed URLs, (2) post crawling cleaning, (3) detection and removal of near duplicate content and
(4) annotation. Considering the large corpora size made possible by these approaches and the current
limitations in readability assessment, in this paper, we build on these works, experimenting with different
training corpora in both English and Portuguese, and applying the resultant learning models to a large
collection of documents obtained from the Web.
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3 Materials and Methods

In this section, we describe the series of resources and the methodology that were applied to achieve our
objective of developing large corpora classified by readability levels. Sections 3.1, 3.2 and 3.3 present,
respectively, our corpora, classification models and readability features, while Section 3.4 presents the
proposed Web corpora collection framework.

3.1 Corpora

We selected a series of corpora (described in Table 1) to represent different levels of readability. Aim-
ing to avoid language specific readability issues, we explored corpora for both Portuguese (Wikilivros,
ESOC, PSFL, ZH, BrEscola) and English (Wikibooks, SW, BB). Wikilivros (Elementary School, High
School and College levels) was constructed in Wagner Filho et al. (2016). The É Só o Começo (ESOC)
corpus contrasts classic literature works in Portuguese with adapted versions for modern language use.
Para o Seu Filho Ler (PSFL) e Zero Hora (ZH), corpora of news articles, were constructed by Aluisio
et al. (2010), the former comparing articles for children with articles for adults, and the latter comparing
original articles for adults with two different levels of simplification (natural and strong). Brasil Escola
(BrEscola), a corpus of educational materials for children and teenagers, Wikibooks, a corpus of virtual
books for readers of different proficiency levels (Beginner, Intermediary, Advanced and Professional),
and Britannica Biographies (BB), a corpus of biographies with versions in three different readability lev-
els (Elementary, Medium and High), were collected especially for this study, crawling different sections
of the websites of the same names2. The Simple Wikipedia (SW) corpus was compiled by Coster and
Kauchak (2011), pairing articles from the English and Simple English versions of Wikipedia3.

In the case of the corpora Wikilivros, ZH, Wikibooks and BB, which consider more than two readabil-
ity levels, tests were also done with adapted binary versions, in order to verify the impact of the number
of classes in the classifier performance. For that, in Wikilivros and BB, the most simple and most dif-
ficult levels were selected. In ZH, we used the original and the natural simplification class, since the
strong simplification was exaggerated for our classification purposes, and, in Wikibooks, we discarded
the Beginner class, which was too small, and grouped the Advanced and Professional classes.

Language Corpus Classes Documents Sentences Types Tokens

PT

Wikilivros 3 78 38,865 54,462 636,309
ESOC 2 130 21,667 32,180 442,391
PSFL 2 259 3,075 8,628 51,963
ZH 3 279 7,127 8,511 107,930
BrEscola 2 9,083 200,132 95,928 3,516,097

EN
Wikibooks 4 35 65,704 24,638 897,971
SW 2 4,480 515,230 183,824 10,384,518
BB 3 2,385 101,149 45,687 1,747,733

Table 1: Description of the readability corpora

3.2 Classification models

We worked with the Weka Machine Learning tool (Hall et al., 2009) for generating classification models,
especially with its implementations SMO, from the Sequential Minimal Optimization algorithm for SVM
training (Platt, 1998), SimpleLogistic, for construction of linear logistic regression models (Landwehr et
al., 2005), DecisionStump, for the one level decision tree (Iba and Langley, 1992), and RandomForest,
for construction of a forest of decision trees (Breiman, 2001). All models performances were evaluated
using F-measure and 10 fold cross-validation. These models represent a variety of approaches to text
classification, and also allow us to evaluate any possible algorithm bias in the task.

2http://brasilescola.uol.com.br, https://en.wikibooks.org and http://school.eb.com
3We used here only articles that presented more than 30 sentences in both versions.
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3.3 Readability features

Given our intention of assessing the contribution of different categories of language features, a large set
of 134 different language attributes for Portuguese and 89 for English was selected. From basic counts,
we worked with numbers of sentences, words, syllables, letters and types. We also calculated the average
number of words per sentence (WPS), syllables per word (SPW) and the Type-Token Ratio, a measure of
lexical diversity. The average and standard deviation of letters per word (AWL) were also used, based on
the hypothesis that more complex texts are more prone to present larger words, given the more frequent
presence of prefixes and suffixes, which aggregate new meaning to words.

From classical readability metrics, we used the Flesch Reading Ease (English and Portuguese versions)
(Flesch and others, 1946; Martins et al., 1996), the Coleman-Liau Index (Coleman and Liau, 1975), the
Flesch Grade Level, the Automated Readability Index (Senter and Smith, 1967), Fog (Gunning, 1952),
SMOG (Mc Laughlin, 1969) and, for English, the Dale-Chall Formula (Dale and Chall, 1948) as well.4

In order to account for word ambiguity, a metric based on the hypothesis that more commonly used
words, and therefore easier to understand (Vajjala and Meurers, 2014), tend to present multiple meanings
in a language, we used the average number of senses from BabelNet (Navigli and Ponzetto, 2010), for
Portuguese, and WordNet (Miller, 1995), for English. Moreover, following Si and Callan (2001), we
worked with the average frequency in a general corpus (AFGC) and standard deviation as frequency
measures, based on the hypothesis that words with higher frequencies in a general corpus tend to be
more knownand, therefore, included in more levels of texts, while rarer words are more inclined to be
restricted to more complex levels.

We also worked with a series of closed word lists to count word classes (stopwords, prepositions,
articles, pronouns, personal and possessive pronouns (PP), conjunctions and functional words), particles
(“e”, “ou” and “se”, in Portuguese, and their respective equivalents in English “and”, “or” and “if ”)
(McNamara et al., 2002) and simple words. For this last category, we used the lists DG and CB5,
DG+CB, CHILDES (MacWhinney, 2000) and the concatenation of all, in Portuguese. In English, we
used the lists Oxford 3000, Dale-Chall (Dale and Chall, 1948), CHILDES (MacWhinney, 2000) and
once again the concatenation of all of them. Simple word lists are a traditional resource in text difficulty
assessment, having been notably used by Dale and Chall (1948) and also by Petersen and Ostendorf
(2009), who used lists of frequent words in the lower class for a similar purpose. Finally, the incidence
of unknown words (Unknown)6 was used as a indicative of rarer, more complex vocabulary, possibly
domain-specific.

Finally, we worked with counts based based in syntactic analysis, including part of speeches (18 for
Portuguese and 20 for English) and dependency tags (72 for Portuguese and 27 for English), besides 7
measures of verb analysis, including verb transitivity, passive voice, average number of modifiers and
average sub-categorization frame length. In Portuguese, we also analysed the incidence of verbs in the
imperative mood. All these counts are frequently used as indicators of syntactic complexity, according
to the online tool Coh-Metrix (McNamara et al., 2002). The parsers Palavras (Bick, 2000) and Rasp
(Briscoe et al., 2006) were used to obtain these features for Portuguese and English, respectively.

Since we want to assess the contribution of different feature categories, a few specific groups were
defined. The selected groups were: sub-categorization (transitivity, average number of modifiers, av-
erage sub-categorization frame length), classical readability formulas, descriptors (counts of sentences,
words, syllables, letters and types and TTR) and corpora-based (incidence of unknown words, average
frequency in a general corpus, lists of simple words). Moreover, we also divided our complete fea-
ture sets in three categories according to their computational costs: shallow (counts and lists), medium
(part-of-speech tagging dependent) and deep (parsing or WordNet dependent).

4For the different versions of the Flesch formulas we computed the number of syllables in a word using, for English, an
approximation based on the number of vowels and, for Portuguese, a rule-based syllabification tool (Neto et al., 2015).

5Available at http://www.ufrgs.br/textecc/porlexbras/porpopular/massafiles/Lista_FINAL_
MASSA.pdf (Érica Sapgnolo and Finatto, 2014)

6We consider unknown words all words not present in a list (3 million words for Portuguese and 840 thousand for English).
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3.4 Web corpora collection framework
In order to build a large corpus from Web content, we followed the pipeline approach from Bernardini
et al. (2006), incorporating a readability classifier as in Wagner Filho et al. (2016). We followed the ap-
proach from Boos et al. (2014), submitting pairs of words with medium frequency in a general corpus to
a search engine API, and obtaining the ten first results for each query. These results were then expanded
collecting all the links contained in them as well. For the collection, cleaning and near duplicate content
removal phases, we used the implementation provided by Ziai and Ott (2005), with some adaptations,
such as the adoption of a more efficient text cleaning tool, jusText (Pomikálek, 2013). The Palavras
(Bick, 2000) parser was used to enrich the corpus with syntactic annotation.

4 Experiments

In this section we present a comparison of different features categories (Section 4.1); evaluation of clas-
sification models (Section 4.2); and assess the generalisation of these models (Section 4.3). Finally, in
Section 4.4, we create an large corpus of Web content, which we classify with our models in Section 4.5.

4.1 Feature analysis
In order to determine the most relevant features and also observe the effect of varying the training data
used in our models, we worked with the entropy-based algorithm information gain7. We used the feature
groups (defined in Section 3.3) to perform a more detailed evaluation, based in the average rank of the
features when ordered decreasingly according to information gain. The results are presented in Table 2 ,
which corroborated to our previous observation that classical formulas have a great relevance in English
but not in Portuguese, while textual descriptors presented a good classificatory power in both languages.
Another noticeable pattern was that in both languages shallow features outperformed deep ones.

It was observed that most of the training corpora, in both studied languages, exhibited a large quantity
of shallow attributes (e.g. basic counts) and readability formulas amongst the most predictive. Shallow
attributes are indeed known to be good indicators, being this the reason for the creation of the classical
formulas. However, this was especially observed in the corpora built trough manual simplification of text
content (ESCO, PSFL, ZH, SW and BB), what supports McNamara et al. (2002) claims of the excessive
influence of these metrics in authors of simple texts. Another possible interpretation, contrasting English
and Portuguese corpora, is that the classical formulas, having been created focusing on the former, are
good classifiers for it, but in Portuguese present a poorer performance. A noticeable exception to this
behaviour was the pair of corpora Wikilivros and Wikibooks, which did not present almost any shallow
metric amongst the twenty more relevant. This may be attributed to the collaborative approach adopted
by the websites which gave origin to these corpora, resulting in a classification produced by regular
users, who may consider other factors besides the language complexity in their assessments, such as the
nature of the content. The great relevance of simple word lists in classifying Wikibooks also indicates the
attention of users to the vocabulary. Therefore, the use of these corpora to train readability classifiers may
lead to over-fitting on not necessarily relevant textual characteristics. Another factor to be considered in
these corpora is that they present closer classes with fuzzy borders (more advanced High School texts
and simpler College texts, for example, may be very similar), what may indicate that deep attributes are
relevant to a more accurate classification.

4.2 Model performance analysis
We trained classifiers (discussed in Section 3.2), and the linear logistic regression algorithm, SimpleLo-
gistic, presented, overall, the best results for both languages, possibly due to its built-in feature selection
(Table 3 presents the F-measures for this algorithm8). The DecisionStump algorithm, which constructs
a one-level decision tree with the most significant feature, offered an interesting baseline, achieving
good results in some corpora, but not necessarily generalisable. The algorithms RandomForest, which
constructs a forest of complete decision trees, and SMO, also achieved good results. As expected, the

7We used the InfoGainAttributeEval implementation available in the Weka toolkit.
8For reasons of space, we omit the results for the remaining ones.

168



Wikil. PSFL ZH BrEsc ESOC Avg Pt Wikib. SW BB Avg En
Shallow 49,98 39,68 41,91 43,01 43,99 43,71 25,53 33,21 32,23 30,32
Medium 24,51 54,90 28,43 40,03 71,17 43,80 73,41 55,84 53,67 60,97
Deep 83,58 82,17 86,36 83,61 77,11 82,56 50,41 51,55 53,68 51,88
Subcat. 46,53 84,00 29,60 82,90 38,62 56,33 26,18 64,45 62,45 51,03
Formulas 48,03 21,88 6,83 65,22 88,12 46,01 30,40 7,03 5,50 14,31
Descrip. 63,12 3,53 32,92 25,52 8,12 26,64 39,92 11,42 17,28 22,87
C. based 49,73 54,06 60,01 40,30 29,29 46,67 21,91 51,76 50,30 41,32

Table 2: Average rank of feature classes in the different training corpora (smaller values indicate a bigger
relevance to a given class)

intermediary classes were always the most difficult to classify correctly, but still presented reasonable
performance. Comparing the tests with the two versions of the ZH corpus, a great negative impact in
performance was observed when considering three classes. Comparing shallow and deep attributes, we
observed that the former tend to present a good classificatory power with a low computational cost but,
in five out of eight scenarios, the performance was enhanced with the combination of both categories,
confirming the results of François and Miltsakaki (2012) that shallow attributes are great indicators of
readability while the combination with deeper attributes is positive, and also our hypothesis H2.

Lang. Corpus All Shallow Medium Deep Formulas Descriptors

PT

Wikilivros 0.71 (0.24) 0.75 (0.15) 0.67 (0.24) 0.69 (0.23) 0.59 (0.23) 0.59 (0.26)

ESOC 0.98 (0.03) 0.99 (0.02) 0.96 (0.03) 0.98 (0.03) 0.69 (0.10) 0.90 (0.07)

PSFL 0.99 (0.01) 0.98 (0.01) 0.81 (0.10) 0.99 (0.01) 0.80 (0.09) 0.98 (0.01)

ZH2 levels 0.89 (0.08) 0.82 (0.13) 0.82 (0.06) 0.83 (0.04) 0.80 (0.10) 0.83 (0.12)

ZH3 levels 0.63 (0.04) 0.55 (0.04) 0.56 (0.08) 0.53 (0.07) 0.58 (0.11) 0.61 (0.08)

BrEscola 0.81 (0.01) 0.77 (0.01) 0.65 (0.02) 0.67 (0.01) 0.66 (0.03) 0.67 (0.03)

EN
Wikibooks 0.48 (0.25) 0.51 (0.26) 0.54 (0.33) 0.49 (0.15) 0.75 (0.24) 0.49 (0.28)

SW 0.92 (0.01) 0.91 (0.01) 0.82 (0.02) 0.88 (0.01) 0.88 (0.01) 0.89 (0.01)

BB 0.86 (0.02) 0.83 (0.03) 0.62 (0.02) 0.80 (0.02) 0.80 (0.02) 0.79 (0.02)

Table 3: Average F-measures and standard deviations for the regression classifiers trained in different
sets of features (best results are bold, and the italic if for not statistically different from best result)

4.3 Generalisation analysis
An important concern when training a classification model is how much this model will be able to be
generalized beyond the training data. This is especially relevant in this context, where the training data
are, by definition, very limited in volume, while the quantity of data we want to classify is very large.
Initially, we analysed the compatibility between the different models. Using the lists of features ordered
by information gain obtained in Section 4.1, we assessed the Spearman rank correlation between the
different corpora. These results were very weak, indicating very little similarity between them. The
closest corpora were Wikilivros and ZH, with a correlation of 0.62.

In a complementary analysis, we implemented projection tests, testing in a corpus a simple logistic
model trained in another, in all possible combinations of our corpora in Portuguese9. For this tests, we
worked with models trained in the binary versions of all corpora. The results indicted once again lit-
tle agreement between the models, but were coherent with their individual characteristics. For example,
classifiers trained in corpora with a higher complexity threshold between the classes (Wikilivros and ZH)
classified most documents of corpora for children/teenagers (PSFL, BrEscola) as simple, and vice versa.

9We excluded the ESOC corpus, considering that this corpus presents language differences that are not resultant only from
different complexity but also from differences between language use nowadays and the time of the original works.
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The only exception for this behaviour was the projection of the model trained in BrEscola onto Wik-
ilivros, which presented null performance in the upper level, opposed to the expected. Considering the
weak agreement observed between the different models, we decided to employ the agreement between
all of them in order to obtain a more generalisable classification (Enrı́quez et al., 2013).

4.4 Web corpus collection
Following the framework established in Section 3.4, we started with six thousand random pairs of average
frequency words from a frequency list10 obtained from several corpora from the Linguateca repository,
after the removal of stopwords. These pairs were submitted to the Microsoft Bing API, and the resultant
sixty thousand URLs were expanded by breadth first recursion in two levels, producing around twenty
four million seeds of “.br” extension, as in Boos et al. (2014). These were then processed, resulting in
corpus with 1.56 billion tokens, 4.15 million types (TTR 0.0026). All the documents were annotated
with Palavras parser and the 134 different features described in Section 3.1.

4.5 Large corpus classification
In this section, we present the results of the classification of the collected Web corpus with the learning
models trained in Section 4.2. We chose to apply here the models generated with the SimpleLogistic
algorithm, since, besides having presented a better performance, they are easily implementable through
a series of regression equations operating with the attribute values calculated by the last module of our
pipeline. We work with the models trained in the whole set of attributes, and only those trained in
two class scenarios, given the performance limitations observed in three class classifiers. The results
are presented in Table 4, and as we already expected, considering the projection tests, the agreement
between our models was small. Only 126,245 (7.5%) documents were classified as simple by all models,
while only 17,634 (1%) were unanimously difficult. Discarding the BrEscola classifier, the remaining
three agreed in 210,879 (12.5%) as simple and 149,279 (8.8%) as difficult11. This classifier presented an
unexpected behaviour, since, considering its low complexity threshold (texts for children against texts for
teenagers), we expected most documents to be classified as difficult. Moreover, it had already presented
the poorest performance in the cross-validation tests in Section 4.2 and an unexpected behaviour in the
projection tests in Section 4.3.

Model Simple documents Difficult documents
SimpleLogisticPSFL 613,877 (36.4%) 1,076,173 (63.6%)
SimpleLogisticZH 448,199 (26.5%) 1,241,851 (73.5%)
SimpleLogisticWikilivros 1,413,211 (83.7%) 276,839 (16.3%)
SimpleLogisticBrasil Escola 1,417,339 (83.9%) 272,711 (16.1%)

Table 4: Behaviour of the different classifiers in the collected Web corpus

Due to the size of the resulting corpus a qualitative analysis of the classification was done in terms
of the behaviour of the different readability indicator features in the corpus classified with the different
models presented in Table 4. Additionally we also analysed the agreement between all models. For that,
all feature values were normalized to enable the comparison per feature category, as seen in Table 5. We
also show the differences observed in the PSFL training data, for reference purposes. This corpus was
selected due to its performance in the cross-validation tests, and because produced the most balanced
document distribution. All classifiers resulted in significant differences between simple and complex
documents in all categories of features (114 out of the 134 features presented statistically significant
differences in all models with p<0.01, and 121 with p<0.05), confirming our hypothesis H1. It is
important to note that, even though these indicators were part of our initial set of features, they were not
necessarily the ones on which the model was trained, since only 10 features were selected by the simple

10http://dinis2.linguateca.pt/acesso/tokens/formas.totalbr.txt
11PSFL and ZH agreed in 245,431 (14%) documents as simple and 873,405 (52%) as difficult, while PSFL and Wikilivros

agreed in 519,870 (31%) simple and 182,832 (11%) difficult and ZH and Wikilivros in 380,094 (22%) and 208,734 (12%).
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logistic built-in feature selection. While in the individual models, the differences between the final
classes were, more subtle than in the training data, considering the agreement between all classifiers, the
observed differences were consistently larger. This result indicates that using more than one model can
be a relevant approach for Web content classification, offering a more strict classification, less prone to
over-fitting to the characteristics of a given corpus, especially considering the frequent small size of the
available readability-annotated training data.

Category PSFL train data PSFL ZH Wikilivros 3-model agreement
Shallow 0.15 0.15 0.08 0.11 0.27
Medium 0.30 0.06 0.09 0.09 0.17
Deep 0.29 0.10 0.10 0.16 0.23
Sub-categorization 0.07 0.03 0.06 0.05 0.10
Formulas 0.19 0.06 0.09 0.08 0.20
Descriptors 0.16 0.62 0.27 0.11 0.82
Corpora-based 0.09 0.04 0.01 0.12 0.09

Table 5: Average difference per feature category between the simple and complex classes in the PSFL
train corpus and in different classifications of our Web corpus

5 Conclusion

In this work, we presented a comparative study of different machine learning approaches to the task of
readability assessment of texts in Portuguese and English, working with a framework for automatic gen-
eration of large corpora classified by readability from the Web. We observed that, as previously found
in the literature for English (François and Miltsakaki, 2012), shallow, low computational cost features
present a very good classificatory performance, although the complete set including deeper features out-
performs them in most cases, validating our hypothesis (H2), that complex text attributes contribute to the
classification according to readability levels in Portuguese. Nonetheless, in a comparison with English,
we observed that classical formulas, based in these shallow features, tend to present more relevance in
that language, which is explainable since they were developed focusing on its characteristics. The lo-
gistic regression presented the best classification results overall, although there was a great performance
difference between classifiers for two and three levels, especially when it comes to the intermediary class,
showing the difficulty of this task in a non-binary context. Finally, regarding the generalization of the
classifiers, there was disagreement between the models trained in different reference corpora, reflecting
the connection between the model training and the desired classification in the final corpus.

We applied the proposed methodology and the generated models in a large scale, observing significant
differences between the classes in the collected Web corpus, for several indicators of readability. These
differences were even greater when we considered only the documents in which three different mod-
els agreed in the classification, demonstrating the benefits of applying multiple models simultaneously to
improve text classification (this will also contribute for the next phase of the project, a manual assessment
by linguists). This confirmed our hypothesis (H1) that a learning model trained in a reference annotated
corpus is capable of classifying a new corpus satisfactorily. The contributions of this work also include
the large Web corpus produced and classified by four different learning models with different charac-
teristics, which can contribute to further studies. As future work, new analysis must be done over the
characteristics of the different documents classes in the classified corpus, including the manual sample
assessment by linguists and a more fine-grained assessment of documents. Moreover, this approach can
be straightforwardly expanded to develop large readability corpora for other languages.
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Abstract

This work investigates the application of a measure of surprisal to modeling a grammatical varia-
tion phenomenon between near-synonymous constructions. We investigate a particular variation
phenomenon, word order variation in Dutch two-verb clusters, where it has been established that
word order choice is affected by processing cost. Several multifactorial corpus studies of Dutch
verb clusters have used other measures of processing complexity to show that this factor affects
word order choice. This previous work allows us to compare the surprisal measure, which is
based on constraint satisfaction theories of language modeling, to those previously used mea-
sures, which are more directly linked to empirical observations of processing complexity. Our
results show that surprisal does not predict the word order choice by itself, but is a significant
predictor when used in a measure of uniform information density (UID). This lends support to
the view that human language processing is facilitated not so much by predictable sequences of
words but more by sequences of words in which information is spread evenly.

1 Introduction

According to functionalist theories of language, the way humans process language has shaped the gram-
mars of natural languages (Hawkins, 2014). While it is not always clear whether a particular grammatical
rule or construction can be viewed as a consequence of general language processing mechanisms, there
is certainly evidence suggesting that processing efficiency plays a role — speakers may choose to use
different constructions in more complex contexts. This is particularly clear in contexts where grammat-
ical variation is possible. Sometimes a speaker can choose between different constructions to express a
similar meaning. A well-known example of two such near-synonymous constructions in English is the
dative alternation: [SUBJ gave DO to IO] or [SUBJ gave IO DO]. When a ditransitive verb is used, a
speaker can almost always choose between those two constructions. For this particular alternation, and
others like it, many studies have shown that a wide range of factors affect the choice (Gries, 2001; Bres-
nan et al., 2007; Colleman, 2009; Wasow et al., 2011), including factors related to language processing,
and that the choice is not random.

These near-synonymous constructions are a particularly interesting case for the study of language
processing, because other factors that may affect linguistic form, such as (most aspects of) meaning and
grammaticality, are the same across both constructions. Nevertheless, usage differences can be observed
between the two alternatives, even when produced by the same speaker. What remains to explain these
differences is other factors such as information structure, other pragmatic factors or (relative) processing
complexity. To be able to take such factors into account, near-synonymous constructions are often studied
using (large) text corpora and multifactorial statistical models. A range of variables that are considered
to be empirical operationalizations of relevant factors (e.g. a factor such as DEFINITENESS, which can
be related to information structure or processing complexity) are measured for each instance of the

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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construction in the corpus, and modeled statistically. The model can then show how much each of
those variables contributes to explaining the variation. This approach was first taken by Gries (2001) for
English optional particle movement, studying the alternation between constructions where the particle
‘up’ is placed before or after the noun phrase:

(1) John picked up the book.

(2) John picked the book up.

The dative alternation was also studied using this method, by Bresnan et al. (2007). The variables that
are found to be significant predictors in these multifactorial corpus studies are often related to language
processing. Finding that construction (1) is preferred in contexts that are more difficult to process, Gries
(2001) proposed the Processing Hypothesis for particle movement:

The multitude of variables (most of which are concerned with the direct object NP) that seems
to be related to Particle Movement can all be related to the processing effort of the utterance.
(Gries, 2001)

However, the definition of processing effort or processing complexity used in these studies is generally
quite broad. A wide variety of measures and features that can be linked to processing complexity are
used, as well as theoretical notions applying to various domains of language. While the results of this
approach are interesting, it is difficult to generalize over the factors discussed in such studies when so
many different things constitute processing complexity. There are also more specific theories of language
processing that are internally consistent and that have been used to account for a range of phenomena.
While they may not cover all domains of linguistic complexity, they help to make the notion of processing
effort more directly quantifiable. This means that they can be used as a single measure, that they can
therefore be tested on large corpora.

In this work, we test such a specific theory. We test a basic implementation of constraint satisfaction
models of language processing by applying an n-gram language model to a case of grammatical variation
between near-synonymous constructions. We use this n-gram model as a measure of surprisal, which,
according to constraint satisfaction models of language processing, is a measure of processing complex-
ity. This particular case of variation, Dutch verb clusters, has previously been studied using the type
of multifactorial statistical model just described, and significant effects of processing complexity were
found in these studies (De Sutter, 2007; Bloem et al., in press). By comparing our results to the results
of these studies, our study can serve as a test of n-gram language models as a measure of processing
complexity, and perhaps even of the surprisal theory it is based on.

We will start by introducing our case study of Dutch verb clusters in section 2. Section 3 will address
models of language processing and how language processing has been argued to affect grammatical
variation in previous work. Section 4 describes our data, in section 5 we describe our language model,
and in section 6 we present our results. The results are discussed in section 7.

2 The case of Dutch two-verb clusters

Just like other Germanic languages, Dutch expresses properties such as tense and aspect by means of
auxiliary verbs. As Dutch is (mostly) verb-final, these verbs end up clustered together at the end of the
sentence. But unlike in other Germanic languages, these verb clusters allow a high degree of word order
variation. Even in two-verb clusters, both logical word orders are possible in almost all cases:

(3) Zij
She

zei
said

dat
that

ze
she

het
it

gelezen
read

had
had

‘She said that she has read it.’
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(4) Zij
She

zei
said

dat
that

ze
she

het
it

had
had

gelezen
read

‘She said that she has read it.’

The difference in word order is generally assumed not to correspond to a meaning difference, so we
can consider these constructions to be near-synonymous. As in other instances of near-synonymous con-
structions, a wide variety of factors has been shown to correlate with this alternation (De Sutter et al.,
2007) and several generalizations over these factors have been proposed: sentence rhythm (De Schutter,
1996), information weight (De Sutter et al., 2007) and also minimizing processing complexity (De Sut-
ter, 2005; Bloem et al., in press). Bloem et al. argue that the order in example (4), called the ascending
order, is easier to process than the alternative order (3), called the descending order, because it correlates
with features that are considered to be more difficult to process. This is similar to how Gries (2001)
argued that the construction in example (1) is easier to process. Additional evidence comes from the
claim that the ascending order is also acquired earlier by children (Meyer and Weerman, 2016).

In Bloem et al.’s (in press) study, factors that are expected to correlate with the verb cluster word order
variation are tested using a multifactorial model, and it is argued that those factors relate to process-
ing complexity (besides the ones that mark different constructions). As an example, a factor relates to
processing complexity when some psycholinguistic study has measured that a particular factor is more
difficult to process. A set of such factors can be viewed as an a measure of processing complexity.
However, another approach to measuring processing complexity is also possible and has been used in
other corpus studies of grammatical variation phenomena: to implement a theoretical model of language
processing, and test that on instances of the constructions of interest extracted from a corpus. The next
section will elaborate upon these two methods of measuring processing complexity, and discuss studies
that used them.

3 Processing complexity

Processing complexity, from a human subjects perspective, refers to the amount of cognitive effort re-
quired to produce or comprehend an utterance. Speakers prefer to minimize their use of cognitive re-
sources, formulating sentences in a way that minimizes processing complexity when multiple ways to
express something are available. Listeners seem to process complex sentences more slowly and make
more comprehension errors (Jaeger and Tily, 2011). This human subjects definition of complexity has
also been called ‘relative complexity’, in constrast to ‘absolute complexity’ which is the formal com-
plexity of the linguistic system (i.e. grammar) being used. Generally, only relative complexity is invoked
in studies of grammatical variation.

There are at least two ways in which the notion of processing complexity can be invoked to account
for grammatical variation in a corpus. Firstly, one can take a theoretical model of language processing,
and apply it to instances the constructions under study from a corpus. The model might predict that one
construction is more difficult to process than the other, or perhaps only in certain contexts. Secondly,
one can use empirical measures of processing complexity, based on psycholinguistic experiments. If
experiments have shown that people exhibit slower reading times or make more errors in sentences with
feature A than with feature B, this can be taken to mean that feature A is more difficult to process. One
can then test in a corpus whether the constructions under study occur more with the ‘easy’ feature or the
‘complex’ feature. This section will discuss these two approaches.

3.1 Theoretical models

Among theoretical models of language processing, two main approaches can be identified: constraint-
satisfaction models, and resource-limitation (or memory-based) models (Levy, 2008).

Resource-limitation models focus on the idea that there is some limited cognitive resource, such as
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memory, that limits people’s capacity to process and produce language. Gibson’s (1998) Dependency
Locality Theory is a prominent example of this approach. In this theory, among other constraints, longer-
distance dependencies are dispreferred because they require more memory, and are therefore considered
more difficult to process. Another such model, which is frequently referred to in linguistics, is formed
by the efficiency principles of Hawkins (2004; 2014). The first principle in his theory is Minimize
Domains, which states that dependency relations in the smallest possible domains are the most efficient.
These principles are argued to play an important role in shaping what is grammatical, though they can
be applied to the study of grammatical variation as well. Wiechmann and Lohmann (2013) applied this
theoretical model in their multifactorial corpus study of prepositional phrase ordering, an alternation in
English where the order of a verb’s two PP arguments (an adjunct and a complement) is free:

(5) The astronomer gazed [into the sky] [through his telescope].

(6) The astronomer gazed [through his telescope] [into the sky].

One factor they derive from the theory is that a shorter PP argument might prefer the first position, fol-
lowing the principle of Minimize Domains (the phrasal combination domain would be shorter with that
ordering). Their model did not have a very high predictive accuracy over the corpus data. This is a com-
mon finding in these studies, as not every factor can be included in the model — factors such as prosody
and information structure are difficult to test using a standard annotated corpus. Nevertheless, they found
that the constraints theorized by Hawkins (2004) held for the corpus data they studied. However, they do
not compare the effect of these constraints to other factors that often affect variation, such as empirical
measures of processing complexity. Only the additional factor ‘information status’ is discussed.

Furthermore, these principles cannot easily be applied to every case of grammatical variation. The
Wiechmann and Lohmann study discusses a case of interconstituent alternations, involving the ordering
of constituents. However, in our case study of Dutch two-verb clusters, the alternation takes place within
the verb phrase domain, and is therefore an intraconstituent alternation. As noted by De Sutter (2009, p.
226–227), principles like Minimize Domains do not necessarily apply here. So, we will look to the other
main approach to modeling language processing.

The other approach, constraint satisfaction models, uses information from various domains of lan-
guage (i.e. lexical, pragmatic) to consider various parallel alternative interpretations or parses of a sen-
tence during processing. Furthermore, they relate processing difficulty to expectation, which is often
grounded in probability theory (Jurafsky, 2003) or relatedly, measures of surprisal (Hale, 2001; Levy,
2008). Therefore, this has also been called the Surprisal framework. In Hale’s surprisal theory, log-
probability is considered a measure of the difficulty of a word. More surprising sequences of words or
structures (that have lower probability) are considered to be more difficult to process and therefore more
complex. These measures have been used to make various predictions about processing complexity that
were verified using empirical data from psycholinguistic experiments. The concept of minimizing sur-
prisal has also been called uniform information density (UID). This term is frequently used in linguistic
studies, for example by Levy and Jaeger (2007). This UID measure measures the same thing as the
perplexity measure, which is often used by computational linguists to evaluate language models. Levy
and Jaeger (2007) studied it in the context of syntactic reduction, namely the possible omission of ‘that’
as a relativizer, which can also be considered a form of grammatical variation. In their study, an n-gram
language model is a significant predictor of relativizer omission, as well as more syntactic features that
are considered to have predictive power. This n-gram model was trained on a version of the Switchboard
corpus in which all optional relativizers were omitted. However, no comparison with empirical measures
of processing complexity is made. The UID measure has also been found to predict variation in other
domains of language, such as discourse connective omission (Asr and Demberg, 2015). Therefore, this
approach links probabilistic models of language that are typically used in natural language processing,
to processing complexity.
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3.2 Empirical measures

We have just seen some examples of corpus studies of grammatical variation in which a particular the-
oretical model of processing complexity is used as the basis of the analysis, but usually, processing
complexity is defined more broadly. An example of such a definition of processing complexity can be
found in the first multifactorial corpus study of grammatical variation, where Gries (2001) states: “My
idea of the notion of processing effort is a fairly broad one: it encompasses not only purely syntactic
determinants, but also factors from other linguistic levels”. He lists phonologically indicated process-
ing cost, morphosyntactically determined processing cost, semantically conditioned processing cost, and
discourse-functionally determined processing cost.

In De Sutter’s (2007) variational corpus study of verb clusters, he interprets five factors that have
previously been linked to verb cluster order variation in terms of cognitive cost. For example, the factor
‘frequency’ is interpreted as an indicator of cognitive cost, since psycholinguistic studies (i.e. reaction
time studies) have shown that lower-frequency words are processed more slowly. In a subsequent corpus
study, Bloem et al. (in press) provide an overview of nine such factors that correlate with the word order
variation in a large corpus. Just as other corpus studies of variation, this study is operationalized as a
logistic regression model predicting which of the two orders is likely to be used, given the factors as
predictors or independent variables. These factors are shown in Table 1. In this table, they are ranked
by their information gain as measured in the stepwise regression procedure performed by Bloem et al.
(in press). In this procedure, one starts with an empty model, and adds the most informative factor each
time, measuring the information gain. This measure is expressed as an Akaike Information Criterion
(AIC) value, which measures information loss. A higher AIC means that more information is lost by the
model, compared to the original data set. Therefore, the highest-ranked factors account for the largest
amount of variation.

Rank Factor AIC Decrease
0 (none) 463279 —
1 Type of auxiliary 382538 80741
2 Priming 378185 4353
3 ‘te’-infinitive 374378 3807
4 Extraposition 371413 2965
5 Length of middle field 369817 1596
6 Frequency of the main verb 368744 1073
7 Information value 367806 938
8 Morphological structure of the main verb 366870 936
9 Multi-word units 366162 708
10 Structural depth 365674 488
11 Definiteness 365461 213

Table 1: List of factors in the Bloem et al. (in press) model of verb cluster order variation, ranked by
information gain.

Factors 1 and 3 are control variables. Using a different auxiliary verb changes the meaning of a verb
cluster construction and different auxiliary verbs have different word order preferences, so this factor
obviously predicts word order in this kind of model, even though it is not a processing complexity factor.
For the other factors, Bloem et al. discuss how they can be linked to results from psycholinguistic
studies in which the factors, or similar ones, are measured, as well as to verb cluster order variation.
Several of these factors are the ones that De Sutter (2007) also discussed. FREQUENCY is also included
here (6th in the table), as well as syntactic PRIMING (2nd), which is argued to ease processing on the
basis of priming studies. The LENGTH OF THE MIDDLE FIELD of the sentence (5th) is also discussed,
where a longer middle field is argued to be more difficult to process due to longer dependencies. The
factor EXTRAPOSITION (4th) indicates whether a prepositional phrase was extraposed and positioned
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after the verb cluster, which has been argued to ease processing, and the factor INFORMATION VALUE

(7th) measures the information value of the word before the verb cluster (i.e. whether it is a function
word or content word). The factor MORPHOLOGICAL STRUCTURE OF THE MAIN VERB (8th) refers to
seperable verbs, such as afwassen ‘wash up’ — such verbs appear to have a strong preference for the
ascending order. The MULTIWORD UNIT factor (9th) indicates whether the verb cluster is (part of) a fixed
expression, and STRUCTURAL DEPTH (10th) refers to the depth of the verb cluster in the syntactic tree of
the sentence. Lastly, as for the factor DEFINITENESS of the last word before the verb (11th), definiteness
is argued to be more difficult to process on the basis of a study with language-impaired children, among
other work. More detailed descriptions of the factors, their link to the notion of processing complexity
and their effect on word order are provided by Bloem et al. (in press).

All of the factors listed in Table 1 are statistically significant predictors of verb cluster word order, and
they are all linked to processing complexity. In the present study, we will use this study as a basis of
comparison for our probabilistic language model based on the constraint-satisfaction theory of language
processing. Outside of the world of multifactorial corpus studies, processing complexity is also often
defined in terms of empirical psycholinguistic measures, as evidenced by Bach et al.’s (1986) study on
the processing complexity of larger verb clusters, where processing complexity is measured in terms of
error rate and comprehensibility judgements.

4 Data

For reasons of comparison, we use the same corpus that was used by Bloem et al. (in press), which
is the Wikipedia section of the Lassy Large corpus (van Noord, 2009). This corpus consists of a 145
million word dump of the Dutch-language Wikipedia in August 2011, and among these words, we can
find 827.709 two-verb verbal clusters in total. The corpus has been automatically annotated with full
syntactic dependency trees by the Alpino parser for Dutch (van Noord et al., 2006). While we do not need
the annotation to train our language model, we do need it to automatically find and extract verb cluster
constructions — extracting any sequence of two verbs is not sufficient. Furthermore, the annotation was
used to extract the empirical measures of processing complexity used by Bloem et al. (in press), used as
factors in their model. The corpus was split into a training set (90%) and test set (10%), and from each
set, the verb clusters and the factors were extracted. We also extracted plaintext, but tokenized, versions
of the training and test sets for creating the language model.

5 Language model

To model the surprisal or predictability of a verb cluster, we trained a trigram language model on the
plaintext corpus. We used Colibri Core (van Gompel and van den Bosch, 2016) to implement the
language model efficiently. Colibri Core’s compression and counting algorithms enabled the modeling
of this fairly large corpus without requiring excessive amounts of memory. The model was trained
by having Colibri count n-grams and storing them as an unindexed pattern model. We used 3 as the
maximum construction length (n = 3) and no minimum length (to get trigrams, bigrams and unigrams),
and no skipgrams. The construction threshold was set to 2, i.e. n-grams that only occur once are not
included in the language model. Because we use an automatically annotated corpus, including such
hapax legomena would be likely to result in the inclusion of many tokenization errors at the cost of more
memory.

A Colibri unindexed pattern model stores frequencies, but not probabilities. We perform maximum
likelihood estimation (MLE) on the model over the training data to obtain probabilities during the test
procedure. When testing, we iterate through all verb clusters extracted from the test set portion of the
corpus, and estimate their probability and perplexity using frequency counts from the Colibri pattern
model. For each of the two verbs in a cluster, we use linear interpolation to include trigram, bigram and
unigram construction counts in the estimate. Furthermore, we use generalized additive smoothing, over
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the unigram constructions only, to account for out of vocabulary words in the test set. Therefore, our
maximum likelihood estimation for a single verb is performed as follows:

P̂ (wn|wn−1wn−2) =λ1P (wn|wn−1wn−2)
+ λ2P (wn|wn−1)
+ λ3P (wn) where P (wn) =

δ + c(wn)
δ|V |+ c(N)

(1)

λ1, λ2 and λ3 refer to the interpolation weights of trigram, bigram and (smoothed) unigram probabilities
respectively. δ is the smoothing parameter. V refers to the vocabulary size (or, the number of types in the
language model), N to all tokens, and c() refers to counts. We can now use perplexity per word (PPW)
as a measure of surprisal for individual verbs or verb types. Perplexity is a measure of predictability or
surprisal and it is generally used to compute how well a language model predicts a word in a sequence,
or a sequence of words. We compute PPW as follows:

PP(W ) = 2−log2(P (V1 )P (V2 )) (2)

p(V 1) and p(V 2) are the estimated probabilities of the two verbs in the cluster (as estimated in Equa-
tion 1).

However, we would also like to have a measure of the predictability of the verb cluster as a whole. To
this end, we also compute the perplexity per word over both words in the verb cluster:

PP(C) = 2−
1
2
log2(P (V1 )P (V2 )) (3)

The log probabilities of P (V 1) and P (V 2) are multiplied by 1/2 because the verb cluster can be regarded
as a sequence of length 2.

As noted, this measure is similar to Uniform Information Density as defined in previous work. We did
not evaluate our language model in detail, because the goal of this study is not to have an optimal model
for natural language processing. Rather, it is an attempt to see whether a basic form of a constraint-
satisfaction model of language processing can account for verb cluster order variation, so we aim to
make as few assumptions about the nature of the language model as possible.

6 Results

We ran the testing procedure to obtain perplexity values for each verb cluster with a range of parameter
settings. We decided on a set of parameters to use based on two criteria. Firstly, regarding the con-
struction length, we wanted the linear interpolation weights to be somewhat balanced between unigram,
bigram and trigram probabilities in order to have a representative trigram model that does not rely too
much on unigram or bigram probabilities. Longer construction lengths seem more cognitively plausible.
Secondly, even though we do not consider a well-performing language model to be essential for this
study, we chose parameter settings that resulted in a low overall perplexity per word, computed over
all verbs within the clusters. This resulted in a model with the interpolation weights set at λ1 = 0.3,
λ2 = 0.45, λ3 = 0.25, and a smoothing parameter of δ = 0.5. We take perplexity to be an indicator
of complexity following (Hale, 2001) who took log-probability as an indicator of complexity, as well as
subsequent work in constraint-based models of language processing.

As a reminder, we repeat examples (3) and (4), showing the two possible word orders. Example (7) is
in the descending order, where the main verb comes first and the auxiliary verb, in this case hebben ‘to
have’, comes last. Example (8) is in the ascending order, which is the opposite:

(7) Zij
She

zei
said

dat
that

ze
she

het
it

gelezen
read

had
had

‘She said that she has read it.’
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(8) Zij
She

zei
said

dat
that

ze
she

het
it

had
had

gelezen
read

‘She said that she has read it.’

Word order Perplexity
Ascending order clusters 1681.2
Descending order clusters 1675.8
Overall PPW 1679.8

Table 2: Perplexity per word (PPW) results for the two word orders, over all test-set clusters.

Table 2 shows that the perplexity per word of clusters in the ascending order, which is the more
frequent order, is slightly higher than that of clusters in the descending order. At first sight, this seems
to confirm the processing hypothesis of Bloem et al. (in press) — the ascending order occurs in contexts
of higher surprisal, and therefore lower predictability. This would confirm their idea that the ascending
order is easier to process — to minimize surprisal and maintain uniform information density, one would
use the less complex construction in the more complex context.

The difference seems small though, only 5.4 units of perplexity. We can test the predictive power of
this measure for predicting word order by defining a logistic regression model over this data. In this
model, word order is the dependent variable, a binary outcome variable that can be either ‘ascending’
or ‘descending’, and verb cluster perplexity (as defined in Equation 3) is the predictor variable. In this
model, the perplexity factor is significant (p < 0.05), with a z-score of 2.2. As for the effect size,
according to the model, for a one unit increase in perplexity, the log odds of the cluster being in the
ascending order increases by 0.00000000035 (3.5e−10). In other words, the effect size is tiny. For
confirmation, we also tested the predictive power of the model by computing the concordance index
(c-index). A c-index of 0.5 indicates chance level prediction, while 1 is perfect. This model’s c-index,
based on 100 bootstrap repetitions, is 0.493, while multifactorial models of verb cluster order variation
had c-indexes of 0.803 (De Sutter, 2005) and 0.765 (Bloem et al., 2014). Therefore, we cannot consider
this result to be reliable.

Condition Value Perplexity

Linear position
First verb 2264.9
Second verb 1245.8

Verb type
Auxiliary verb in cluster 714.0
Main verb in cluster 3952.0

Position and type
Auxiliary verb in descending cluster 178.2
Main verb in descending cluster 15763.5
Auxiliary verb in ascending cluster 2445.8
Main verb in ascending cluster 1155.6

- Overall PPW 1679.8

Table 3: Perplexity per word (PPW) results for various conditions, over all test-set clusters.

To analyze this negative result, we can look at the perplexity per word values of individual verbs,
for different verb types and verb positions. These different conditions are listed in table 3. We can
distinguish two conditions here: the position of the verb in the linear order of the sentence (does it come
first or last), and whether the verb is an auxiliary verb or a main verb. These are essentially two features
of the two word orders: in the ascending order, the first verb is the auxiliary verb while the second verb
is the main verb, while the reverse is true for the descending order.

As for the linear position, we can observe that the first verb of a cluster is less predictable than the
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second verb. This seems logical, because in a two-verb cluster, the first verb is always followed by
another verb. As for the verb type, we observe a bigger difference in perplexity between auxiliary verbs
and main verbs — auxiliary verbs are much more predictable than main verbs. This can also be expected,
because there is a limited number of auxiliary verbs (including any verbs that select another verb in a
cluster), while main verbs can be anything and may include unknown words. This shows that linear
position and verb types are both confounding factors in computing verb cluster surprisal. However, these
observations do not control for the fact that the ascending order is more frequent, and therefore main
verbs more often occur in the second position in linear order.

Therefore, it may be more informative to look at perplexity values for both linear position and verb
type, as shown in table 3. This shows that perplexity is distributed quite differently in both orders. In
the descending order, the main verb comes first. The perplexity for this is very high — the descending
main verb is very surprising both because main verbs are more surprising, and because verbs in the first
position are more surprising. Conversely, the auxiliary verb, which comes second, has very low surprisal.
In the ascending orders, the two factors balance each other out — the auxiliary verb (low surprisal factor)
comes first (which is a high surprisal factor). The main verb (high surprisal) comes last (low surprisal).
In other words, instances of the ascending order have a more uniform information density.

Based on this result, we define a measure of verb cluster information density, which is the absolute
difference between the log probabilities of both verbs in the cluster:

UID(C) = |log2(P (V1 ))− log2(P (V2 ))| (4)

Again, P (V1 ) and P (V2 ) are the estimated probabilities of the two verbs in the cluster (as estimated
in Equation 1). Putting this factor in a logistic regression model gives us a c-index of 0.686 according
to the procedure described for the previous model (except that the measure from Equation 4 is used,
instead of that in Equation 3). This is of course a lot better than 0.493, especially for a model with
a single predictor. The effect of the factor is also highly significant. We can now test whether this
UID-effect holds when we also include the nine empirical measures of processing complexity (and the
control variables) from the study of Bloem et al. (in press). This would tell us if our cluster-UID-measure
measures the same thing as the empirical measures from that study.

This can be done by adding the UID measure from Equation 4 to the multifactorial regression model
of Bloem et al. as a predictor variable. To do so, we created a regression model that includes all of
the factors listed in Table 1 as predictors, as well as our UID measure, and that has word order as the
dependent variable. We found that adding UID to the Bloem et al. model significantly improves it. A
global comparison of the original model and the model with the UID factor using the χ2-test shows that
the residual deviance drops from 54880 to 48795, and this is statistically significant (p < 0.001). We also
observe that the UID-measure is highly significant in this model, with an odds ratio is 0.788, indicating
a decrease in the odds of observing an ascending order when the UID-measure is higher (which is when
the density is less uniform). Furthermore, if we perform stepwise regression with this model to measure
information gain, the UID factor is ranked second after the control factor TYPE OF AUXILIARY. In
Table 1, which lists information gain for the Bloem et al. model, it would be listed second. It is therefore
the most informative factor related to processing complexity in the new model. However, the predictive
value of the model does not improve — the original model has a predictive value of c = 0.7897, and
adding our UID-measure gives us c = 0.7896, a negligible difference.

Surprisingly, there is no multicollinearity in this model. The variance inflation factor (VIF) for each
factor is very low (< 1.2, 1.203 for the UID factor). This indicates that the UID-measure does not
correlate with the factors from the Bloem et al. model, but is complentary to them instead.
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7 Discussion

Our results show that perplexity-per-word as a measure of surprisal does not predict word order variation
in two-verb clusters, even though it has been argued that processing complexity predicts word order. The
perplexity values computed on the basis of the probabilities from the n-gram language model that we
used cannot be considered a measure of processing complexity. However, a derived measure of uniform
information density (UID), which measures a difference in surprisal within the verb cluster construction
on the basis of the same language model, does predict the word order variation. We furthermore showed
that this UID measure improves upon a previous model, that was based on empirical measures of pro-
cessing complexity. Therefore, our UID measure can be viewed as complementary to these measures
when accounting for word order variation in two-verb clusters.

This result indicates that part of the variation that the empirical measures account for, is also accounted
for by the UID measure, but not all of it. Furthermore, not all of the variation that the UID measure
accounts for, is accounted for by the empirical measures. More broadly, human subject measures and a
computational measure of complexity were combined, and this combination lead to an improvement in
explanatory power for this grammatical variation. We chose to use a measure in the Surprisal framework,
or constraint satisfaction modeling approach, because Dependency Locality Theory is not so clearly
applicable to verb cluster order variation, which is an intraconstituent alternation.

Our analysis also showed that verb clusters in the ascending order generally have a more uniform
information density than verb clusters in the descending order. This is because both linear position and
the type of verb affect the predictability of a verb, and in the ascending word order, these two factors
balance each other out. Under the assumption made by Levy and Jaeger (2007) that uniform information
density indeed facilitates processing, our findings seem to support the processing hypothesis for Dutch
verb cluster order. However, the direction of the effect is not clear - it can either be argued that the
ascending order is easier to process because it has a more uniform information density, or it can be
argued that the ascending order is more difficult to process, because speakers use it in more predictable
contexts (that are less difficult to process). In future work, this ambiguity could be clarified by studying
the information density of not only the verbs themselves, but also the words before and after the verbs.

While we believe that Dutch verb cluster word order is a typical case of near-synonymous word order
variation, this raises the question of whether these findings would hold for other cases of grammatical
variation. Our result does not necessarily mean that surprisal measures are not representative of pro-
cessing complexity in general. Surprisal has been shown to be informative in other studies of other
phenomena, for example to discover contexts in which a relativizer is preferred (Levy and Jaeger, 2007).
Furthermore, surprisal can be and has been measured in a variety of ways. We implemented it in a very
basic way. Hale (2001) measured surprisal using a probabilistic parser rather than an n-gram language
model. Perhaps a measure of surprisal that takes more structure or syntax into account would be more
predictive of verb cluster order variation or other alternations. The measure can and has been imple-
mented on the basis of other structural elements rather than words, such as constructions, part-of-speech
sequences, topic models, or any other level of structure that one could train a language model over In fu-
ture work, it would be interesting to try computing surprisal in the same way as Hale (2001), to compute
it at a different level of structure, or to use more elaborate language models containing larger chunks or
skipgrams. A delexicalized n-gram model could be used to make the measures we used more sensitive to
structure. For our particular case it would also be interesting to define our prediction task in a different
way — to learn more about the word order variation, it would be interesting to adapt the language model
such that it only predicts the order of the cluster, rather than the specific words in it. This might tell us
more about how predictable the cluster orders are, regardless of the specific lexical items involved.

Nevertheless, our findings do provide evidence that uniform information density may be a better oper-
ationalization of constraint satisfaction models of language processing than plain surprisal, when one is
studying an alternation involving multiple words. Uniform information density should be considered as a
measure of processing complexity, particularly in multifactorial corpus studies of grammatical variation.
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Abstract

The relative contributions of meaning and form to sentence processing remains an outstanding
issue across the language sciences. We examine this issue by formalizing four incremental com-
plexity metrics and comparing them against freely-available ROI timecourses. Syntax-related
metrics based on top-down parsing and structural dependency-distance turn out to significantly
improve a regression model, compared to a simpler model that formalizes only conceptual combi-
nation using a distributional vector-space model. This confirms the view of the anterior temporal
lobes as combinatory engines that deal in both form (see e.g. Brennan et al., 2012; Rogalsky and
Hickok, 2009) and meaning (see e.g., Wilson et al., 2014). This same characterization applies to
a posterior temporal region in roughly “Wernicke’s Area.”

1 Introduction

Processing complexity in human language comprehension remains a central challenge for computational
psycholinguistics. Investigations of this essentially biological phenomenon typically rely on formalized
complexity metrics. These metrics reflect some aspect of the language being comprehended: some are
form-based in the sense of syntactic structure while others are meaning-based in the sense of conceptual
information.

But what is the biological basis of the processing that these metrics index? The clinical syndrome
semantic dementia suggests that the anterior temporal lobes (ATLs) perform some sort of conceptual
combination (for a review, see Patterson et al., 2007). But it remains unclear whether this conceptual
processing overlaps or is separate from form-based processing e.g. based on syntactic phrase structure.

To disentangle the influence of form and meaning in sentence processing in different brain regions, we
used stepwise regression against freely-available ROI timecourses (Brennan et al., 2016). The regressors
in these statistical models are incremental complexity metrics formalizing several different cognitive and
linguistic theories about processing difficulty in form and meaning. The pattern of improvements across
these steps suggests a role for syntactic processing, above and beyond conceptual combination. This re-
sult is consistent with the experimental work of Rogalsky and Hickok (2009) as well as the correlational
work of Brennan et al. (2012) on which we build. The remainder of the paper is organized into four sec-
tions: Section 2 reviews our syntactic and semantic complexity metrics; Section 3 describes the material
and data analysis methods; Section 4 presents the results and Section 5 discusses the implications of the
results and concludes the paper.

2 Quantifying complexity factors

We quantify two different aspects of syntactic complexity: Structural Distance and Node Count (this
latter metric previously investigated in Brennan et al., 2016), and we use vector-space model to quantify
semantic complexity as Lexical-Semantic Coherence. In evaluating the contribution of these complexity
metrics, we control for linear order in two ways: Lexical sequences from Google Book ngrams (Michel,
2011), and the linear order of parts of speech using the same POS trigram model in Brennan et al. (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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2.1 Structural Distance

One form-related aspect of processing difficulty derives from memory load induced by integration of two
syntactically dependent words (Wanner and Maratsos, 1978; O’Grady, 1997; Gibson, 1998). Following
Baumann (2014), we quantify this load as Structural Distance, i.e., the number of phrase-structural tree
nodes between two dependent words. We obtained both phrase structures and dependency relations for
every sentence using the Stanford Parser (Klein and Manning, 2003; de Marneffe et al., 2006). Structural
Distance is then the number of nodes traversed between the head and the dependent in the phrase struc-
tural tree. We considered only the rightmost word in any dependency relation. For words in multiple
dependency relations, we summed the structural distances.

2.2 Node Count

Another form-based complexity metric is Node Count, which is the number of phrase structural nodes in
between successive words in a sentence. This expresses a form of Yngve’s (1960) Depth hypothesis (see
also Frazier, 1985). We examined X-bar structures generated by Minimalist Grammars in the sense of
Stabler (1997). These structures reflect grammatical analysis by Van Wagenen et al. (2014). We counted
the number of nodes in these trees that would be visited by a top-down parser (see Hale, 2014).

2.3 Lexical-Semantic Coherence

Our meaning-based metric Lexical-Semantic Coherence is built on vector-space models. Vector-space
models represent word meaning based on co-occurrence statistics from a large text corpus (e.g., Baroni
et al., 2014; Erk, 2012). Cosine similarity between the word vectors have been found to influence
eye-fixation times (Pynte et al., 2008), word pronunciation duration (Sayeed et al., 2015), and fMRI
activation patterns (Mitchell et al., 2008). We used latent semantic analysis (LSA; Landauer and Dumais,
1997) to build our semantic vector space model. The training data were the whole book of Alice in
Wonderland. We first built the type-by-document matrix where the rows are all the words in the book
and the documents are all the paragraphs. The input vector space was transformed by singular value
decomposition (SVD), and truncated to a 100-dimensional vector space. The context vector is the average
of the previous 10 word vectors. We used negative cosine between the target word vector and the context
vector to represent lexical-semantic coherence: higher negative cosine value indicates less semantic
coherence.

2.4 Linear Order

Our control predictors include the lexical and POS trigram models. Linear order of words, as reflected
in a Markov chain, has been successful in modeling human reading performance (Frank and Bod, 2011;
Frank et al., 2015). We used the freely-available trigram counts from the Google Books project (see e.g.
Michel, 2011) and restricted consideration to publication years 1850-1900, i.e., the year surrounding the
publication of Alice in Wonderland. We backed off to lower-order grams where necessary: coverage was
1725/2045 for trigrams and 1640/1694 for bigrams. The POS trigram regressor from ?) served as an
additional control. We then used surprisal of the trigram probabilities to link the probability of a word in
its left-context to BOLD signals (see Hale, 2001; 2016).

3 Methods

3.1 Data acquisition

The ROI timecourses from Brennan et al. (2016) come from twenty-five native English speaker (17
female, 18-24 years old, right-handed) listening to a story while in the scanner. The story was the first
chapter of Alice in Wonderland, lasting for about 12.4 minutes. Participants completed twelve multiple-
choice questions after scanning. The detailed imaging parameters and preprocessing procedures are
described in Brennan et al. (2016).
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3.2 Regions of interest

Six regions of interest (ROIs), including the left anterior temporal lobe (LATL), the right anterior tempo-
ral lobe (RATL), the left inferior frontal gyrus (LIFG), the left posterior temporal lobe (LPTL), the left
inferior parietal lobe (LIPL) and the left premotor region (LPreM).

Both functional and anatomic criteria guided the precise positioning of these ROIs. . The functional
criterion derives from an atheoretical Word Rate regressor, which has value 1 at the offset of each word
in the audio stimulus, and 0 elsewhere. This localizer identified regions whose BOLD signals were
sensitive to word presentation. Each ROI sphere (10 mm radius) was centered on a peak t-value of at
least 2.0 within the anatomical areas.

3.3 Data analysis

3.3.1 Estimating hemodynamic response
Following Just and Varma (2007), we convolved each complexity metric’s time series with SPM12’s
canonical hemodynamic response function (HRF). These time series are made orthogonal to the con-
volved Word Rate vector since it is our localizer for defining the ROIs.

3.3.2 Stepwise regression
We tested the unique contribution of each model by conducting stepwise model comparisons against
the ROI timecourses. The null model included fixed effects for head movements (dx, dy, dz, rx, ry,
rz) and word rate; We also included fixed effects for word frequency, f0, and root mean square
(RMS) intensity of the speech into our null model, which were also convolved with the same HRF.
word frequency was based on the SUBTLEXus corpus (Brysbaert and New, 2009), which contains 51
million words from the subtitles of American films and television series. The random effects included a
random intercept by participant and a random slope for word rate:

BOLDnull = BOLD ∼ dx+ dy + dz + rx+ ry + rz + rate+ f0 + intensity + frequency(1 + rate|subject) (1)

We then added regressors in a particular order: surprisal of trigram lexical, negative cosine sim-
ilarity between word vector and context vector (semantic coherence), surprisal of trigram pos,
top-down node count and structural distance between dependent words. Model fit was assessed
using chi-square tests on the log-likelihood values to compare different models. Both the predictors
were converted to z-scores before statistical analysis. Statistical significance was corrected for multiple
comparisons across six ROIs with the Bonferroni method (the adjusted alpha-level is 0.05/6=0.0083).

4 Results

4.1 Correlation between predictors

The correlation matrix shows highest values for word rate and intensity (r = 0.58). This is expected
as word rate tracks the presentation of a word, which is generally higher in intensity than silences.
Similarly, f0 is also moderately correlated with intensity (r = 0.39) and word rate (r = 0.37).
semantic coherence and word frequency have a correlation coefficient of 0.38; no other two pa-
rameters has a correlation coefficient higher than 0.3.

4.2 Model comparison

The complexity parameters are subsequently added to the six baseline models. In the ATLs, an improve-
ment in the goodness of fit is obtained for Lexical-Semantic Coherence, but Structural Distance is also
significant for the RATL. All the parameters are highly significant for the LPTL, roughly corresponding
to the traditional “Wernicke’s area”. Lexical-Semantic Coherence and Structural Distance also signifi-
cantly improve model fit in the LIPL. However, only the linear order lexical and POS trigram models are
significant for the LIFG. The statistical details for the model comparisons are shown in Table 1.
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(a) Step-wise model comparison results for LATL.

Parameter df LogLik χ2 p
∅ 15 -11661
A trigram lexical 16 -11625 71.3 <.001
B semantic coherence 17 -11614 22.8 <.001
C trigram pos 18 -11608 12.7 <.001
D node count 19 -11605 4.3 0.04
E structural distance 20 -11605 0.9 0.34

(b) Step-wise model comparison results for RATL.

Parameter df LogLik χ2 p
15 -11221

trigram lexical 16 -11210 23.1 <.001
semantic coherence 17 -11202 15.2 <.001

trigram pos 18 -11196 11.6 <.001
node count 19 -11196 1.9 0.2

structural distance 20 -11189 13.3 <.001

(c) Step-wise model comparison results for LIFG.

Parameter df LogLik χ2 p
∅ 15 -10653
A trigram lexical 16 -10648 9.3 0.002
B semantic coherence 17 -10647 2.5 0.11
C trigram lexical 18 -10639 16.5 <.001
D node count 19 -10636 6.5 0.011
E structural distance 20 -10635 0.2 0.657

(d) Step-wise model comparison results for LPTL.

Parameter df LogLik χ2 p
15 -11898

trigram lexical 16 -11867 62 <.001
semantic coherence 17 -11851 32 <.001

trigram pos 18 -11821 60 <.001
node count 19 -11810 22 <.001

structural distance 20 -11800 19 <.001

(e) Step-wise model comparison results for LIPL.

Parameter df LogLik χ2 p
∅ 15 -12027
A trigram lexical 16 -12027 0.0 0.853
B semantic coherence 17 -12022 9.1 0.003
C trigram pos 18 -12019 5.8 0.016
D node count 19 -12017 5.8 0.016
E structural distance 20 -12000 34.0 <.001

(f) Step-wise model comparison results for LPreM.

Parameter df LogLik χ2 p
15 -12133

trigram lexical 16 -12125 15.8 <.001
semantic coherence 17 -12121 9.0 0.003
trigram lexical 18 -12120 2.1 0.143

node count 19 -12119 0.9 0.348
structural distance 20 -12117 4.3 0.039

Table 1: Step-wise model comparison results for all regions of interest.

5 Discussion & Conclusions

The meaning-based metric Lexical-Semantic Coherence is a significant predictor across a broad network
of regions including the ATLs, LPTL, LIPL and LPreM. This is consistent with previous findings im-
plicating bilateral ATL in conceptual combination (Rogalsky and Hickok, 2009; Wilson et al., 2014;
Pylkkänen, 2015). The form-related metric Structural Distance accounts for the RATL activity even on
top of Lexical-Semantic Coherence, suggesting that the ATLs are also involved in syntactic computation
(Humphries et al., 2006; Brennan et al., 2012; Brennan et al., 2016).

The LPTL activity is highly correlated with all the syntactic and semantic complexity metrics. As
shown in Wehbe et al. (2014), multiple regions spanning the bilateral temporal cortices represent both
syntax or semantics. Our results further confirms their suggestion that syntax and semantics might be
non-dissociated concepts.

No semantic or syntactic metric is significantly correlated with the LIFG, or the “Broca’s area”. This
fails to support traditional models derived from the deficit-lesion studies that have long associated syn-
tactic computation with the LIFG (e.g., Ben-Shachar et al., 2003; Caplan et al., 2008; Just et al., 1996;
Stromswold et al., 1996). .

To sum up, our correlational results from fMRI suggest that the temporal lobes perform a kind of
computation that is both syntactic in the classical sense of phrase structure, and semantic in the sense of
word-embeddings. One set of questions this work leaves open is the precise relationships between these
two predictors – for instance, temporal precedence. Other methods, such as MEG, may provide further
insight here as suggested by van Schijndel et al. (2015).
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Abstract

This paper investigates the use of automatic speech recognition (ASR) errors as indicators of
the second language (L2) learners’ listening difficulties and in doing so strives to overcome the
shortcomings of Partial and Synchronized Caption (PSC) system. PSC is a system that generates
a partial caption including difficult words detected based on high speech rate, low frequency, and
specificity. To improve the choice of words in this system, and explore a better method to detect
speech challenges, ASR errors were investigated as a model of the L2 listener, hypothesizing
that some of these errors are similar to those of language learners’ when transcribing the videos.
To investigate this hypothesis, ASR errors in transcription of several TED talks were analyzed
and compared with PSC’s selected words. Both the overlapping and mismatching cases were
analyzed to investigate possible improvement for the PSC system. Those ASR errors that were
not detected by PSC as cases of learners’ difficulties were further analyzed and classified into
four categories: homophones, minimal pairs, breached boundaries and negatives. These errors
were embedded into the baseline PSC to make the enhanced version and were evaluated in an
experiment with L2 learners. The results indicated that the enhanced version, which encom-
passes the ASR errors addresses most of the L2 learners’ difficulties and better assists them in
comprehending challenging video segments as compared with the baseline.

1 Introduction

Automatic speech recognition technology has formed the integral part of many language learning tools
and CALL systems particularly for evaluating, training and improving L2 pronunciation and speaking
skill (Neri et al., 2003; Witt, 2012; Thomson and Derwing, 2014). However, this technology has rarely
been used for developing listening skill. When it comes to listening skill, instructors are often disadvan-
taged by the lack of readily available information about the challenges and difficulties of the audio/visual
input. Therefore, they suggest the use of assistive tools, such as caption, to help the learners overcome
their listening difficulties (Danan, 2004; Winke et al., 2010).

It is criticized, however, that captioning can allow the learner to comprehend the speech by reading
the text even without listening (Pujolà, 2002; Vandergrift, 2011). In this view, captioning cannot serve
the purpose of promoting the use of listening skill for language learners. To assist L2 learners in training
listening skill, an alternative captioning tool called partial and synchronized caption (PSC) was developed
(Mirzaei et al., 2016b). The system attempts to realize effective listening by presenting difficult words
in the caption and hiding easy ones. PSC employs ASR technology to synchronize each word to the
corresponding speech segment in order to allow text-to-speech mapping. It then selects difficult words
based on the speech rate, frequency, and specificity of the words (Figure 1). These three factors are
accounted for the major causes of L2 listening difficulties according to many studies (Griffiths, 1992;
Révész and Brunfaut, 2013). However, there are a number of other factors such as hesitation, distortion,
breached boundaries, etc. that play equal roles in making L2 listening challenging for language learners
(Field, 2003; Bloomfield et al., 2010). To investigate such factors, this paper attempts to use the ASR

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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1

If I tried to make a new earIf I tried to make a new earIf I tried to make a new ear

If . tried .. make . … …If . tried .. makeIf 

.. . ….. .. make . new ear.. . ….. .. make..

Figure 1: Caption types: (top) Full caption, (mid) Baseline partial and synchronized caption(PSC),
(bottom) Enhanced PSC. TED talk by Alan Russell: The potential of regenerative medicine

technology in order to detect the problematic speech segments and to improve the choice of words in the
PSC system.

Spontaneous speech such as TED talks presents numerous challenges to both ASR systems and L2
listeners. These challenges often lead to the erroneous performance of the ASR systems (Radha and Vi-
mala, 2012; Goldwater et al., 2010). Such errors potentially involve useful information on the difficulties
of speech. Accordingly, the main idea of the paper is to consider the ASR system as a potential model
for L2 learners, which will encounter similar difficulties in the perception of the speech and transcription
of the audio, thereby could be an indicative of areas of learner difficulties in listening.

Previous studies have compared the ASR systems performance with native and non-native speakers
(but not L2 learners) of the target language. These studies are known as ASR-HSR (human speech
recognition) research (Meyer et al., 2006; Scharenborg, 2007; Vasilescu et al., 2011). The majority
of these studies conclude that HSR outperforms ASR especially in spontaneous speech and suggest
different methods to improve the quality of the ASR output and reduce the word error rate (Moore and
Cutler, 2001; Scharenborg, 2007). In this study, however, rather than considering ASR errors as major
drawbacks of these systems, we are focusing on them as a rich source that elucidates the difficulties of
speech. In this view, ASR errors and PSC selected words share some cases as they both refer to similar
sources of difficulties. Nevertheless, the ASR errors include a wider range of factors and can introduce
undiscovered features, hence can be complementary for the PSC system. In this regard, in an earlier
study, we compared the ASR errors with L2 learners’ mistakes on transcribing the audio in a contrastive
analysis of ASR and L2SR (second language speech recognition). To this end, an in-depth error analysis
was performed between the ASR systems and L2 learners (Mirzaei et al., 2015). The results of this
study confirmed that some parts of the input were difficult to decode by both ASR systems and language
learners and these often led to the erroneous performance of both. Thus, it was concluded that ASR
errors could provide insights on detecting challenging speech segments.

To further investigate this concept, in this study, ASR errors and PSC’s selected words are compared to
specify the degree of overlap and differences. Through this analysis, those ASR errors, which were not
included in the PSC’s selected words, were detected. Next, the underlying factors that associated with the
emergence of these groups of errors were investigated. Drawing upon literature, it was found that some
of these root-cause factors lead to listening difficulties for L2 listeners (Field, 1998; Field, 2003). This
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Figure 2: Schematic of the PSC system architecture. Julius ASR system was trained using 780 hours
of TED talks and used to transcribe the given video. Via a word-level forced-alignment procedure, the
original transcript is synchronized with the speaker’s utterance. Several features are extracted for each
word in the Feature Extraction module. Considering the user’s proficiency level, the Rule Engine marks
difficult words and generates the Baseline PSC. The ASR errors, on the other hand, signals other types of
listening difficulties, which are extracted using ASR Error Processing Unit. These instances are included
to the Baseline PSC to generate the Enhanced PSC.

indicates that these errors can provide useful hints for detecting difficult words or phrases. Accordingly,
the aim of the present paper is to detect those parts of the speech that cause listening difficulties for L2
learners by attending to the ASR errors and incorporating them into PSC to provide better assistance
for the L2 learners. Moreover, ASR correct cases that were contrarily detected to be difficult by PSC’s
features, were utilized as a signal for relatively easier segments of speech and used to remove too easy
words from the PSC (Figure 2). The enhanced PSC will then build on the baseline system, employing
the ASR clues. This enhanced version aims to outperform the baseline PSC in providing essential clues
for recognition of the listening tasks to the L2 learners.

2 Method

52 TED talks (approximately 15 hours) were used in this study. Julius 4.3.1 ASR system (Lee
and Kawahara, 2009) was employed to generate the transcripts for these talks. This ASR system was
trained using 780 hours of TED talks based on the lightly-supervised training approach (Naptali and
Kawahara, 2012). Human-annotated transcripts for these talks were readily available from the TED
website and used to evaluate the ASR output. Using forced alignment method, the two transcripts were
aligned in word-level to enable error detection. Next, the errors were classified into deletion, insertion
and substitution categories as shown in Table 1. ASR error rate was 19.8% with the majority of errors
belonging to substitution categories.

2.1 Comparison of ASR Output and PSC Selection

PSC was generated for these videos controlling for high speech rate, low frequency, and specific or aca-
demic words. The selected words to be shown in the PSC based on the above categories were compared
with the ASR errors to find the degree of overlap. We assumed that ASR errors and PSC’s selected words
should share some cases, as both refer to the difficult words. Table 2 indicates that 3.7 percent of the
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Categories Frequency (%)
Total Words 145,663
ASR Correct 116,807 (80.2%)
ASR Errors 28,856 (19.8%)

ASR Error Substitution 24,269 (16.7%)
ASR Error Insertion 2,928 (2.0%)
ASR Error Deletion 1,659 (1.1%)

Table 1: ASR error analysis

ASR Correct (80.2%) ASR Errors (19.8%)
PSC shown words (17.7%) (a) 14.0% (b) 3.7%
PSC hidden words (82.3%) (c) 66.2% (d) 16.1%

Table 2: ASR performance versus baseline PSC’s choice of words. In (a) PSC categorized the words
as difficult cases based on its three features, but ASR managed to correctly recognize them. Cell (b)
indicates difficult sections according to both PSC and ASR, whereas cell (c) accounts for easy regions
of the speech. Cell (d) counts the challenging words for ASR that PSC missed to select. The proposed
enhancement on PSC aims to utilize ASR errors for hiding too easy words and showing the difficult
words that the baseline PSC missed, i.e., to move words from (a) to (c) and from (d) to (b).

cases are common between ASR errors and PSC shown words, however, 16.1 percent of the ASR errors
could not be explained by PSC’s features.

To better understand the results, the ASR errors were further analyzed taking PSC’s features into
account, i.e. frequency, speech rate and specificity features. Similar to PSC, the speech rate of the
ASR errors were calculated in syllables per second, the frequency was estimated based on the corpus
of contemporary American English - COCA (Gardner and Davies, 2013) and the specific words were
detected by referring to the Academic Word List (Coxhead, 2000) and academic corpus of COCA. Figure
3 illustrates the comparison between ASR errors with PSC selection.

Figure 3(a) depicts the distribution of the mutual cases between the ASR errors and PSC’s selected
words based on the speech rate, frequency, and specificity. As the figure suggests speech rate is the
primary factor that selects the words for PSC and is also the major factor that leads to the emergence of
the ASR errors (58%). The frequency factor shows 20 percent of overlap between the PSC shown words
and the ASR errors. Finally, specific words are by default set to be always shown in the PSC system, yet
only a small number of these words cause ASR errors (6%).

2.2 Analysis of ASR Correct Cases

While our assumption is that ASR errors can indicate problematic speech segments for L2 listeners.
ASR correct cases can specify easy items, which may not be necessarily needed to appear in PSC.
Looking back to Table 2, our analysis reveals that 14.0% of the ASR correct cases are categorized as
difficult words by PSC and are shown in the caption. To explore these cases, we made similar analysis
considering the speech rate, frequency and specificity factors. Figure 3(b) demonstrates how these three
features are responsible for words in this category, i.e. PSC shown words and ASR correct output. As
the figure shows, speech rate (43%) is still the main reason to show these words in PSC, while many of
the words brought by the speech rate factor could be correctly transcribed by our ASR system; indicating
that these words were not too difficult. Examples include the words such as one, every, open, look,
etc., which have high frequency and can be simply excluded from PSC without causing a barrier for L2
listeners. Thus, the findings notify the importance of refining our speech rate threshold on ASR correct
cases to prevent the inclusion of difficult cases in PSC.

On the other hand, our investigation revealed that few instances of the words shown in PSC based
on the frequency feature seem to be unnecessary. For instance, words such as dystopia, piggybacking,
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(a) ASR errors versus PSC
shown words

(b) ASR correct versus PSC
shown words

Figure 3: Feature analysis of PSC shown words regarding the correctness of ASR output

pandemic, larceny, abyss, could be correctly transcribed by the ASR, but are infrequent to many L2
listeners and hence likely to be unknown.

Based on our findings, while specific words are always shown in PSC, many of them are not infre-
quent. For example, words such as positive, science and research are categorized as academic terms.
However, these words are very frequent and the majority of L2 listeners should have no problem with
them. Likewise, highly frequent Proper nouns (e.g. China and Obama) could be simply omitted from or
repeated less in the PSC. Meanwhile, our ASR system could also correctly transcribe these words. These
findings suggest that frequency of specific words and proper nouns should be considered when deciding
on their inclusion in PSC.

2.3 Analysis of ASR Erroneous Cases
The strategies to refine the choice of words in PSC based on excluding easy cases are taken for granted in
this study. However, a thorough investigation is needed to ensure that segments including ASR errors are
actually difficult for L2 learners. Our earlier experiment with L2 listeners, who were asked to transcribe
ASR erroneous cases, revealed that learners have substantial difficulties in transcribing segments that
include ASR errors (Mirzaei et al., 2016a).

Based on these results, we augmented the baseline PSC to automatically detect these groups of errors
(ASR errors not shown in PSC). We have limited the scope of the automation in this stage to the nine
categories of homophones, minimal pairs, negatives, breached boundaries, verb inflections, deter-
miners, prefixes/suffixes, possessives and plural cases, since the root-causes of other ASR errors were
difficult to discover, hence these categories were discarded in this study. Our earlier study (Mirzaei et al.,
2016a) showed that from among all categories, four of them are beneficial for L2 learners: homophones,
minimal pairs, breached boundaries and negative cases.

Verb inflections and prefix/suffix derivations of the words are detected using word lemmatizers and
COCA word stem list, while language-specific grammar rules are used to detect possessives and plurals.
Detecting homophones and minimal pairs rely on word-to-phone mappings empowered by CMU Pro-
nouncing Dictionary. The dictionary allows mappings from words to their pronunciations in the ARPA-
bet phoneme set, which in turn enables us to detect homophones and minimal pairs. Homophones are
defined as two words with different writings, but identical ARPAbet transcripts (e.g., blue /B L UW/
and blew /B L UW/). In the case of ASR substitution errors, we select the closest pronunciation of a
word in the transcript to its ASR-hypothesized utterance. Some special cases are handled, for instance,
American and British spelling differences were considered.

Two words are minimal pairs if their phonetics has a Levenshtein distance of one, and they have distinct
meaning. This distance enables the detection of different types of minimal pairs: initial consonant (e.g.,
rot /R AA T/ and lot /L AA T/), vowels (e.g., pen /P EH N/ and pan /P AE N/), and final
consonant (e.g., hat /HH AE T/ and had /HH AE D/). Miniml pairs are found to be difficult to
distinguish for the L2 learners (e.g., lay /L EY/ and clay /C L EY/) (Weber and Cutler, 2004). This
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category also includes the third person in the present tense and past tense for regular verbs, which we
preferred to exclude from the list.

Wrong boundary detection can be attributed to numerous factors, many of which are rare or hard to
regulate. In this sense, some of the most studied phenomena are considered that may lead to wrong
boundary detection in L2 listening. One of these rules is the frequency rule (Field, 2008; Cutler, 1990),
which is built upon the idea that listeners tend to associate what the speaker says to high-frequency words
when the speaker actually uses less frequent or unknown word (e.g., dusty senseless drilling→ thus he
sent his drill in). This is in line with what happens in ASR system when facing out-of-vocabulary words
(Chen et al., 2013). To implement this rule, the average of ASR-hypothesized error phrase on the false
boundary is calculated and compared to the average of the original phrase. Function words are excluded
from calculations for having an excessive high frequency, as argued in (Cutler, 1990).

Another pattern that elicits breached boundary is a special arrangement of strong and weak syllables
within one word or consecutive words (Cutler, 1990). Strong syllables typically signal for the beginning
of the word, which explains why learners tend to insert a boundary when they encounter a strong syllable
(e.g., it was illegal → it was a legal). On the other hand, learners often remove the boundaries and
combine the words when they encounter a week syllable (e.g., paint with a brush→ paint without rush).
Attending to these rules, we tried to detect such boundary cases in our algorithm.

Resyllabification (Field, 2003) is another rule which often refers to the attachment of final consonant
to the following syllable (e.g., last hour→ glass tower).

Assimilation (Cruttenden, 2014) is another common phenomenon, in which one sound becomes sim-
ilar or more like a nearby sound (e.g., did you go? → di due go). Assimilation patterns are restricted in
English. Therefore, we followed the standard patterns in (Cruttenden, 2014) to detect such cases.

Accordingly, we calculate the Levenshtein distance of the phonetic representations of the transcript
and ASR-hypothesized phrase. If the distance doesn’t exceed a pre-defined threshold (e.g., four differ-
ences), we proceed to examine the frequency of the words. If the flagged ASR error involved words
with higher frequency (obtained by COCA corpus), then we may have a breached boundary. Along with
the frequency check, we draw upon the stress pattern, syllabification, and assimilation rules to precisely
detect the misrecognized boundary cases.

Finally, there are numerous situations where acoustic artifacts and speaker disfluencies or high speech
rate prevent the listener from hearing the words accurately. Negative forms, in this regard, are the most
likely ones to be misrecognized, while they are important to distinguish for understanding the meaning
of the sentence. Given the difference between can and can’t, for example, is a subtle one, these cases
are frequently misrecognized by many L2 listeners. Other instances such as legal and illegal are equally
important as their misrecognition can thoroughly change the meaning. To assist learners in this regard,
we detected all the negative forms, which were among the ASR errors to include in the PSC system.

3 PSC Enhancement

To enhance the PSC system we apply the clues derived from the investigation of ASR errors and PSC
selected word. The analysis provided us with useful insights on removing easy cases from the baseline
PSC in order to provide room for inclusion of more difficult words in the enhanced version. To this
end, the frequency of specific words (academic terms) was taken into account in the enhanced version.
Referring to COCA academic word corpus, we could retrieve the frequency of these words and by de-
termining a threshold based on an expert suggestion, we aimed to exclude trivial specific words in the
enhanced version. The same strategy was used for highly frequent proper nouns (e.g. America, Paris).
In the enhanced PSC, the frequency of these cases is based on the frequency of their occurrences in TED
corpus. Another enhancement on the exclusion of the easy cases regards the speech rate threshold, which
was refined by defining a secondary threshold. In the case of ASR correct output, a stricter threshold was
applied to prevent the speech rate factor from bringing in too many easy words. Through these improve-
ments, many of the easy cases were excluded from the enhanced version. In the next step, difficult cases,
which were detected based on ASR erroneous output were embedded into the PSC. These cases, which
include homophones, minimal pair, breached boundaries and negatives were automatically detected and
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incorporated into the PSC system to foster L2 listening for the learners. Table 3 presents the distribution
of shown and hidden words in the enhanced PSC based on ASR correct and erroneous cases. As the
table shows, using ASR clues, we could successfully move some of the easy cases (3.6%) from (a) to
(b), i.e exclude trivial words from PSC shown to PSC hide. More importantly, our enhanced version
encompasses more of the ASR errors (cases were moved from (d) to (b) to provide an effective scaffold
for L2 listeners (7.1%). It should be noted that a comparable number of shown words in both the baseline
and enhanced version were maintained (the enhanced version includes an even lower amount of words)
in order to enable a fair comparison.

ASR Correct (80.2%) ASR Errors (19.8%)
PSC shown words (17.5%) (a) 11.4% (b) 7.1%
PSC hidden words (82.5%) (c) 69.8% (d) 12.7%

Table 3: ASR performance versus Enhanced PSC’s choice of words

4 Experimental Evaluation

While some improvement could be anticipated based on these enhancements, an experiment was con-
ducted in order to confirm our hypothesis that the enhanced PSC is more helpful to the learners than the
baseline.

4.1 Participants
The participants of this study were 38 Japanese and Chinese students who enrolled in CALL courses at
Kyoto University. They were undergraduates, majoring in different fields such as engineering, law, sci-
ence, etc. All participants had TOEIC ITP scores between 450 to 560, notifying that they were beginners
to pre-intermediates. There were 8 females and 30 male students.

4.2 Material
20 TED videos were selected for this experiment. All talks were delivered by native American English
speakers. We excluded the effect of other accents such as British English in our experiment. From these
videos, those segments in which there was a difference between the baseline and the enhanced PSC
were extracted. These segments included ASR error – PSC hide cases i.e. they involved one of the four
categories of minimal pair, homophone, breached boundary, and negative.

4.3 Procedure
Two type of questions were designed for this experiment:

Transcribing: The participants were asked to watch a series of video segments, each segment lasting
from 25 to 35 seconds. Once a video paused, the participants were supposed to transcribe the last
few words that they have heard. Each segment ended with 4∼6 words, including the target word(s),
all replaced by a blank. Videos were paused at irregular intervals and the participants were not aware
of the exact time of the pause in order to simulate real-life listening. Moreover, the target word(s)
was among the words to be transcribed and the participants had no clue about it. A timer was set for
each question and the participants were supposed to transcribe the words right after the pause without
having excess time to overthink or analyze, but to type down exactly what they have recognized. It was
anticipated that immediately after the transcription, the participants could recognize their difficulties and
misrecognitions, therefore immediately after transcribing the audio, the participants received two types
of captions (baseline and enhanced PSC) to choose from. They were supposed to select the caption that
included more of their misrecognized words, i.e., the ones that can better assist them to overcome their
listening difficulties. Both the baseline and the enhanced versions included the same number of words,
but different choices to make a fair comparison.

Paraphrasing: To make a more quantitative analysis, students were randomly assigned into two
groups. One group received the baseline PSC, whereas the other one received the enhanced version.
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(a) Part 1: Transcribing and choosing from base-
line and enhanced PSC – the graph shows the num-
ber of participants who chose baseline PSC (PSC
V1) versus Enhanced PSC (PSC V2).

(b) Part 2: Paraphrasing based on the type of cap-
tion received in each group: baseline (PSC V1) vs.
enhanced (PSC V2) – The graph shows the para-
phrasing scores in the two groups.

Figure 4: Experimental results

They were asked to watch the videos with the assigned type of caption and paraphrase the last sentence
of each segment whenever the video was paused. Paraphrase test focuses on the recognition of a specific
part of listening material thus the participants’ answers on paraphrasing the last segment are based on the
caption clues they have received in each group. It was assumed that the group who received the enhanced
PSC had better hints to disambiguate the sentence and select the best paraphrasing choice.

5 Results

The results of this experiments should be explained in two parts: (1) the number of times the enhanced
PSC was chosen over the baseline PSC after the transcription task (qualitative analysis) and (2) the scores
of the participants on paraphrasing the last sentence based on the type of the caption they had received
(quantitative analysis).

Figure 4(a) shows the analysis of the results on participants’ preferences regarding the selection be-
tween the baseline and the enhanced PSC. As the figure shows the number of times the participants
preferred the enhanced PSC is significantly higher than the baseline version (61% versus 39%).

Our quantitative analysis on the participants’ paraphrasing scores illustrated in figure 4(b) demon-
strates that the students in the enhanced PSC group gained statistically higher scores than their peers in
the baseline group (based on a t-test analysis). While the baseline PSC group answered the questions
chance-like (50.9% correct versus 49.1% incorrect), the enhanced PSC group could choose the correct
answer 76% of the time.

The results reveal that some of the ASR errors signal problematic speech segments and ASR clues
could be used for facilitating recognition and comprehension of the input. Moreover, our findings iden-
tified that some improvements are realized in the enhanced PSC, which makes it more preferable to the
L2 listeners. Furthermore, the enhanced version, which encompasses useful ASR errors, can better assist
the L2 listeners compared to the baseline.

6 Conclusion

The study investigated the use of ASR errors in detecting problematic speech segments and improving
the word selection criteria in PSC. Following a thorough analysis, it was found that several categories in
the ASR errors signal the difficulties for the L2 listeners. These categories include homophones, minimal
pairs, negative, and breached boundaries. Our baseline PSC system was extended to detect these cases
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and generate the enhanced PSC drawing upon these clues. On the other hand, analysis of these errors
provided some insights on how to refine PSC’s selection by omitting too easy cases.

Experiment with the L2 listeners confirmed this hypothesis that some of these errors can predict L2
listening difficulties; hence the enhanced PSC, which includes these cases, can effectively assist the L2
listeners. To conclude our in-depth analysis on the ASR errors revealed that ASR systems epitomize a
model of an L2 listener, shedding light on both easy and difficult words and phrases in the input, which
can be directly used to enhance the PSC system in order to foster L2 listening.
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Abstract

Eye-tracking reading times have been attested to reflect cognitive processes underlying sentence
comprehension. However, the use of reading times in NLP applications is an underexplored area
of research. In this initial work we build an automatic system to assess sentence complexity
using automatically predicted eye-tracking reading time measures and demonstrate the efficacy
of these reading times for a well known NLP task, namely, readability assessment.

We use a machine learning model and a set of features known to be significant predictors of
reading times in order to learn per-word reading times from a corpus of English text having
reading times of human readers. Subsequently, we use the model to predict reading times for
novel text in the context of the aforementioned task. A model based only on reading times gave
competitive results compared to the systems that use extensive syntactic features to compute
linguistic complexity. Our work, to the best of our knowledge, is the first study to show that
automatically predicted reading times can successfully model the difficulty of a text and can be
deployed in practical text processing applications.

1 Introduction

Quantifying the complexity of a sentence has been one of the central goals of psycholinguistics (Gibson,
2000; Lewis, 1996; Levy, 2008). Decades of experimental research has shown us that certain kinds
of syntactic patterns are more complex than others. For example, in English, object relative clause is
generally assumed to be more difficult than the active counterpart e.g. (Gibson, 2000). Similarly center-
embeddings lead to more complexity (Lewis and Vasishth, 2005). Such experiments try to establish a
causal link between complex linguistic pattern and processing difficulty. The difficulty is manifested
in slower response of a measurable variable (e.g. reaction time, gaze duration, etc.). The eye-tracking
experimental paradigm is known to capture processing difficulty during naturalistic reading (Just and
Carpenter, 1980; Frazier and Rayner, 1982; Clifton et al., 2007).

Deploying insights from eye-movement research for Natural Language Processing (NLP) tasks is an
upcoming area of research. Previous works have used fixation durations (and saccades) as features in
their prediction models. For example, eye-movement data has been used to model translation difficulty
(Mishra et al., 2013), sentiment annotation complexity (Joshi et al., 2014), and sarcasm detection (Mishra
et al., 2016). Recent works have also incorporated eye-tracking data as features in sequence models for
part-of-speech tagging (Barrett et al., 2016; Barrett and Søgaard, 2015).

In this exploratory work, we build an automatic system to assess sentence complexity using auto-
matically predicted eye-tracking reading time measures and demonstrate the efficacy of these reading
times for READABILITY ASSESSMENT. Readability assessment is the task of automatically classifying
text into different levels of difficulty (Petersen and Ostendorf, 2009; Feng, 2010; Vajjala and Meurers,
2014). One use of such difficulty assessment could be to evaluate text simplification, e.g. to automati-
cally simplify Wikipedia text for the English L2 learners (Zhu et al., 2010; Woodsend and Lapata, 2011;
Coster and Kauchak, 2011; Wubben et al., 2012; Siddharthan and Mandya, 2014). There is also a large

This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/
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body of work that has attempted to quantify and automatically compute the complexity of a text using
various linguistic features (Kincaid et al., 1975; Flesch, 1948; Gunning, 1968; Si and Callan, 2001).
See Vajjala Balakrishna (2015) for an extensive review. Such quantification becomes necessary for tasks
such as text simplification (Siddharthan, 2014) and for L2 learners’ systems (Schwarm and Ostendorf,
2005). So far previous work in text simplification (and more generally in NLP) has not explored directly
using various eye-tracking reading time measures while quantifying linguistic complexity. Clearly, such
reading times are not available for new text and hence need to be automatically predicted. For machine
translation evaluation, Mishra et al. (2013) formulate a translation difficulty index which is computed
using eye-movement data, but they do not directly predict reading time measures.

Our work, to the best of our knowledge, is the first study to show that automatically predicted reading
times can successfully model the difficulty of a text and can be deployed in practical text processing
applications. We use a machine learning model and a set of features known to be significant predictors of
reading times in order to learn per-word reading times from a corpus of English text having reading times
of human readers. Subsequently, we use the model to predict reading times for novel text for readability
assessment. For this task, a model based only on reading times gave competitive results compared to the
systems that use extensive syntactic features. Our best-performing model, which combines learned read-
ing times with other sentence-level features, comes close to state-of-the-art results reported previously
for the dataset used in this work (Ambati et al., 2016; Vajjala and Meurers, 2016).

The paper is organized as follows. Section 2 provides an overview of our two-level hierarchical sys-
tem. Section 3 describes our model to automatically predict per-word reading time using a wide range
of lexical as well as syntactic features. Subsequently, Section 4 reports on our readability assessment
experiments using predicted reading times from the above model. Finally, we conclude the paper in
Section 5.

2 Approach

Our approach comprises of two modules:

1. Reading time (RT) prediction: System-1 using lexical and syntactic features to predict the reading
times (RTs) of each word in the sentence

2. Sentence level prediction: System-2 using predicted reading times (outputted by System-1) and
other sentence-level features for the task of readability assessment.

Supervised learning algorithms were employed to train both systems (1) and (2).

2.1 Motivation: Why predict RTs?

An obvious question that could be asked about our approach is ‘Why build a two-step system?’ or ‘Why
use predicted RTs when one can use linguistic features directly?’. Several reasons present themselves in
support of our approach:

1. We would like to explore the extent to which behavioural measure of processing difficulty can be
used to predict sentential complexity.

2. It is known from the experimental psycholinguistic literature that eye-tracking RTs can reflect in-
creased linguistic complexity (Clifton et al., 2007; Vasishth et al., 2012). A model that predicts RTs
for each word in a sentence can contribute to a fine-grained picture of reading difficulty at various
points in a sentence, in contrast to sentence-level features.

3. Finally, previous works cited in the introduction have demonstrated the efficacy of using RTs for
various NLP applications. Many of these works, e.g. (Mishra et al., 2016), have used gold RTs
(reading times collected from participants). Clearly, if one needs to use RTs for large amount of
novel text, they have to be automatically predicted.
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3 System 1 - Predicting Reading Times

In this section we discuss the features that can impact reading time prediction. We do this using an abla-
tion study and using Pearson’s coefficient. Only those features which cause an increase in R2 goodness
score are selected for the final model.

3.1 Data Set
The Dundee eye-tracking corpus (Kennedy, 2003) was used to train the reading time prediction system.
It has eye-movement record of 10 participants on a large collection of newspaper text. We used 2378
sentences (50597 words) from the Dundee corpus. We randomly divided the data (at sentence level, and
not word level) into training (60%), development (20%) and test (20%) splits. RTs for all the subjects
were pooled into one set.1

Our task is to predict the reading times of each word in a sentence. We will focus on 4 types of
measures – first fixation duration, first pass duration, regression path duration and total duration. Together
these measures represent the ‘early’ and ‘late’ measures and are known to reflect sentence processing
difficulty (Clifton et al., 2007). First fixation duration (FFD) is the duration of the first fixation on a
region. First pass duration (FPD) is the sum of all the fixations on a region from the time it was first
entered until it was left. Regression path duration (RPD) is the sum of all the fixations on a region from
the time it was first entered until moving to the right of the region. Total fixation duration (TD) of a
region is the sum of all fixations on a region including re-fixations after it was left. All these measures,
of course, assume that the region in question has been fixated.

3.2 Feature Set
The features used in the model have been attested to influence lexical and syntactic processing reading
and it has been established conclusively that all these features are significant predictors of reading times
(Rayner, 1998; Juhasz and Rayner, 2003; Demberg and Keller, 2008; Clifton et al., 2007; van Schijndel
and Schuler, 2015). We use both low level predictors like word length, sentence length, word frequency
and age of acquisition (in years) as well as high level predictors like surprisal.

Word length has been taken as it is from the Dundee corpus. Sentence length is the number of words
in a sentence. Word frequency is the unigram frequency in the entire English Wikipedia text. The age
of acquisition gives the average age and standard deviation at which a word is learnt (Kuperman et al.,
2012). This reflects the familiarity of a word, which has been shown to affect lexical processing (Juhasz
and Rayner, 2006). These features have previously been shown to be helpful in predicting the difficulty
in reading (Vajjala Balakrishna, 2015). British National Corpus (BNC) (Aston and Burnard, 1998) was
used to calculate forward transition probability – P (wk|wk−1) and backward transition probability –
P (wk|wk+1) for each word.

In addition, we also added surprisal (Hale, 2001; Levy, 2008), entropy reduction (Hale, 2006), em-
bedding depth and embedding difference (Wu et al., 2010) computed by an incremental probabilistic
left-corner parser (van Schijndel et al., 2013). Surprisal models comprehension difficulty where words
which are more predictable in a given syntactic or lexical context are read faster (lower surprisal values)
compared to less predictable words (higher surprisal values). Mathematically, surprisal at word k+1,
Sk+1 = − log P (wk+1|w1...wk). In our incremental left-corner probabilistic parser, strings of a lan-
guage are assumed to be generated by Probabilistic Context Free Grammars (PCFGs). So each word wk

has a prefix probability computed by summing the probabilities of all trees T in the span of words w1 to
wk. Surprisal is estimated as the difference in the prefix probabilities at successive words. Both syntactic
and lexical surprisal are standout predictive measures for reading times regardless of word class (Wu et
al., 2010).

Entropy reduction at word index = i is defined as: max{0, Hi−Hi−1}, where Hi is the entropy func-
tion. So, it is the reduction in (syntactic) uncertainty at the appearance of word at index = i. Embedding
depth is a quantitative measure reflecting memory load caused due to center embeddings (left branching
parse tree nodes contained within right branching ones). A weighted version of this measure obtained

1For more details regarding the Dundee corpus, kindly refer to section 2.1 in Kennedy and Pynte (2005)
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by multiplying with the parse probability is also used. Embedding difference is defined as the difference
between the embedding depth at the current beam and the previous beam (Wu et al., 2010). (Howcroft,
2015) also uses the features from Wu et al (2010) for readability assessment and shows that they induce
modest gains over other features. However, that work does not use reading times as features. In addition,
we added eight more features emitted by the left-corner parser. These represent hierarchical structure
decisions made by the parser and encode memory operations like cue activation, initiation, termination
and wait. For more details, please refer to (van Schijndel and Schuler, 2013).

3.3 Model
We used linear regression using python-sklearn (Pedregosa et al., 2011) to predict the reading times. All
features were standardized.

3.4 Experiments
Pearson’s Coefficients Study
We calculated Pearson’s coefficient for each of the features w.r.t. the four reading times, first fixation
duration, first pass duration, regression path duration, and total fixation duration. Almost all correla-
tions reported are significant at p<0.01.2. These results can be seen in Table 1. We find that most of the
features show low correlation with the 4 duration measures in question (first fixation, first pass, regres-
sion and total fixation duration). However, as expected the word length and surprisals is found to have
high positive correlation while frequency and familiarity (mean age of acquisition - AoA) have negative
correlations with RT. We move forward with the ablation study with first fixation duration, as among the
four durations features seem to be most correlated with first fixation in general.

S. Features First Fixation First Pass (Gaze) Regression Total Fixation
No. Duration Duration Duration Duration
1 Word Length 0.765 0.722 0.700 0.668
2 Sentence Length -0.009 -0.008 -0.010 -0.011
3 Wikipedia Frequency -0.142 -0.133 -0.129 -0.126
4 Mean AoA (in years) 0.048 0.032 0.028 0.021
5 Standard Dev. in AoA -0.048 -0.058 -0.059 -0.067
6 Total Surprisal 0.369 0.368 0.365 0.358
7 Lexical Surprisal 0.372 0.372 0.369 0.363
8 Syntactical Surprisal -0.067 -0.074 -0.073 -0.072
9 Entropy Reduction -0.008 -0.013 -0.008 -0.013
10 Embedding Depth 0.102 0.092 0.086 0.084
11 Embedding Difference 0.051 0.046 0.043 0.045

Table 1: Pearson’s Correlation Coefficient of features w.r.t. different reading times.

Ablation Study
We did an ablation study to select the best features for the model that predicts first fixation duration.
The results can be seen in Table 2. In total there were 20 features in the model. Instead of exploring
all (20!) orders, features were added incrementally based on the following rationale. At first, we added
all the low-level predictors of reading times described in previous work (Demberg and Keller, 2008). In
the case of the remaining features, we added the frequency-based predictors of reading difficulty next
and finally memory-based predictors. This distinction was based on Collin Phillips’ theory of ground-
ing (Phillips, 2013), which characterizes memory load costs as predictors of comprehension difficulty
after frequency-based costs have already been taken into account. If the goodness of the learned regres-
sion curve improved, the feature was retained in the final model3. The process helped in ascertaining the

2Except in case of sentence length w.r.t. first fixation and first pass, where p-value is 0.03 and 0.02 respectively.
3Issues related to multicollinearity have also been sidestepped in this initial analysis. We intend to address these issues in

the future work.
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relevance of individual feature in the model. We find that the word frequency, age of acquisition, total
and syntactic surprisals lead to largest increase in the goodness score. Interestingly, lexical surprisal does
not appear to be a significant contributor, probably because, word frequency already captures much of
the effect (cf. Demberg and Keller, 2008).

S.No. Features R2 score S.No. Features R2 score
1 Word Length 0.267 7 Lexical Surprisal 0.575
2 Sentence Length 0.500 8 Syntactical Surprisal 0.579
3 Word Frequency 0.504 9 Entropy Reduction 0.579
4 Mean Age of Acquisition (AoA) 0.532 10 Embedding Depth 0.580
5 Standard Deviation in AoA 0.533 11 Embedding Difference 0.580
6 Total Surprisal 0.576 12 Hierarchical structure feats 0.585

Table 2: Ablation study done on features by adding them incrementally to the FFD regression model.

Implementation and Results
We trained our model for all the four reading times, i.e. RTs for all the subjects were pooled into one
set. The results can be seen in Table 3. R2 score gives the goodness of the model. A closer look at the
predicted reading times showed that on a number of occasions the regression model predicted very low
non-zero reading times which were non-existent in the Dundee corpus. Therefore, we set a threshold (84
ms) for predicted reading times (for Fixed Fixation Duration), and any prediction less than this threshold
was reduced to 0.0 ms. The threshold was fixed on the development set. As can be seen from table 3,
using a threshold led to an improvement.

Reading Times R2 score
First Fixation Duration 0.585 0.649 [84 ms]

First Pass (Gaze) Duration 0.549 0.600 [88 ms]
Regression Path Duration 0.521 0.570 [91 ms]
Total Fixation Duration 0.510 0.516 [98 ms]

Table 3: Performance of System 1 on different eye-tracking measures. The number inside [] shows the
threshold value.

3.5 Discussion
Predictions for first fixation duration are consistently better than other eye-tracking measures. The post
hoc addition of threshold improved the performance significantly, and we see that R2 score reaches
upto 0.649 for first-fixation duration. First-fixation durations are known to reflect both low-level lexical
processing (Clifton et al., 2007) as well as syntactic processes (Vasishth et al., 2012).

We were unable to do equally well on other measures such as first pass duration, regression path
duration and total fixation duration compared to first fixation duration. So, while the current results are
promising, more experiments with regards to alternative models need to be explored. In particular, it will
be interesting to investigate if feature selection differs from one eye-movement to the other. This will
shed some light on the feature-measure mapping. In addition, alternative/additional features that could
correlate better with these measures need to be tried out. Finally, other measures such as regression
probability, etc. need to investigated. These issues will be taken up as part of future work.

4 System 2 - Readability Assessment

The task that we evaluate the system discussed in the previous section is readability assessment. The
exact task of readability assessment is the following:

Given a pair of two sentences (Sentence1, Sentence2) identify which one belongs to standard Wikipedia
and which to simple Wikipedia. Sentence 1 and sentence 2 are paraphrases of the same idea.

206



Vajjala and Meurers (2016) have previously built a system to accomplish this task using various lin-
guistic features. They used features produced by a non-incremental syntactic parser and found them
to be useful in the task. They also used lexical semantic properties from WordNet, features encod-
ing morphosyntactic properties of lemmas, word-level psycholinguistic features such as concreteness,
meaningfulness and imageability extracted from the MRC psycholinguistic database as well as age of
acquisition (AoA). Their model achieved an accuracy of 74.58%.

Motivated by the incremental nature of human sentence processing, Ambati et al. (2016) use features
extracted from an incremental Combinatory Categorical Grammar (CCG) parser to achieve higher ac-
curacy on this task. Their feature set included sentence length, height of the CCG derivation, the final
number of constituents, CCG rule counts and complexity of CCG category. Their model achieved an
accuracy of 78.87%.

Our system is also motivated by human sentence processing. However, unlike Ambati et al. (2016),
we directly use predicted reading times to model complexity of a sentence. As discussed in section 3,
the model that predicts reading times is based on psycholinguistically motivated lexical and syntactic
features.

4.1 Data Set

The dataset used for evaluation is the dataset released by Ambati et al. (2016). This is a cleaned subset
of the parallel sentence pairs collected by Hwang et al. (2015). The data contains 150K sentence pairs of
standard Wikipedia (WIKI) and simple Wikipedia (SIMPLEWIKI). Ambati et al. (2016) further removed
pairs containing identical sentences which resulted in 117K clean pairs. We randomly divided the data
into training (60%), development (20%) and test (20%) splits.

4.2 Feature Set

Sentence-1 features Sentence-2 features

sentence1 word1: 169 sentence2 word1: 189

sentence1 word2: 110 sentence2 word2: 309

sentence1 word3: 215 sentence2 word3: 85

sentence1 word4: 219 sentence2 word4: 85
... ...
... ...

Table 4: Example features in a sentence pair (each column contains the feature name and value separated
by a space). The features values are in milliseconds.

Vajjala and Meurers (2016) formulated the readability assessment task as a ranking task, instead of
a classification task. In our model we simply classify within a pair of sentences. For a sentence, we
first predict reading time for each word (using System 1). The features are of the form “Word Posi-
tion:Predicted RT”. “Word Position” is the feature name and corresponds to the position of a word in
a sentence, and predicted RT (which models first fixation duration) is its value. We define a sample as
a pair of sentences. To avoid using same feature name for each sentence we simply concatenate “sen-
tence1” or “sentence2” before all the feature names. For example, consider the following sentence pair
from the dataset:

1. With a higher humidity, the rate of evaporation is less.

2. Under conditions of high humidity, the rate of evaporation of sweat from the skin decreases.
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Assuming the following reading times for words in the first sentence – “with: 169ms”, “a: 110ms”,
“higher: 215ms”, “humidity: 219ms”, “the: 149ms” and so on, the features for our ‘Base RT’ model are
depicted in Table 4. The features from both the sentences together are then used to train the classification
system. So the total number of features equal to twice the number of words in the longest sentence in
our corpus as we work with sentence pairs.

The ‘Base RT’ model uses only these word-level features. We also experimented with a model that
uses sentence-level features in addition to the base model features. This ‘Extended RT’ model contained
the following additional features: sentence length, normalized (w.r.t. sentence length) sum of predicted
reading time of the sentence. The incremental probabilistic left-corner parser (van Schijndel et al., 2013)
was used to further add the following features: sum of total surprisal of all words, sum of lexical surprisal
of all words, sum of syntactical surprisal of all words and log of parse probability of the entire sentence.

4.3 Model

As discussed in section 4.2, the pair of sentences are represented as a multiset of its features. We use
a bag of words unigram model, except the features we use are not just words the sentences have, but
‘wordposition:predicted RT’. The model assumes that relevant properties of the syntactic structure have
already been captured by System-1 (discussed in section 3) to predict the reading time. Logistic regres-
sion classifier, using python-sklearn (Pedregosa et al., 2011) was used for the classification task. We
also experimented with SVM (Hearst et al., 1998) and SVMrank (Joachims, 2006), used by Vajjala and
Meurers (2016), but these models were unable to outperform the logistic regression model. 4

4.4 Results

A 10 fold cross-validation was done to obtain the accuracies. We evaluated the model with all four
predicted durations (first fixation, first pass, regression and total). The best results were obtained with
predicted first fixation duration therefore we show only those figures in Table 5.

Model Accuracy (%)
Vajjala and Meurers, 2016 (Baseline) 74.58
Ambati et.al, 2016 (State-of-the-art) 78.87

System 2 (Base RT model) - SVMrank 73.79
System 2 (Base RT model) - Pairwise Classification 73.82

System 2 (Extended RT model) - SVMrank 75.09
System 2 (Extended RT model) - Pairwise Classification 75.21

Table 5: Performance of models with predicted first fixation duration.

Table 5 depicts 74.58% as the classification accuracy of Vajjala and Meurers (2016). It needs to
be noted that the Vajjala and Meurers (2016) paper reports an accuracy of 82.7% on their evaluation
data. The number 74.58% is taken from the Ambati et. al (2016) paper. This figure was obtained by
Ambati and colleagues as a result of running the Vajjala and Meurers code on their evaluation data5. As
mentioned before, we used the same evaluation data as Ambati et. al (2016). Hence Table 5 results are
all based on the same dataset and thus directly comparable.

4.5 Discussion

We tested our model with the both SVMrank strategy as used by Vajjala and Meurers (2016) and the
pairwise classification strategy discussed in section 4.2. In both cases, pairwise classification performs
slightly better than SVMrank.

The Base RT model using just the predicted reading times and the word positions achieves an accuracy
of 73.82%. This shows that predicted reading time alone can be successfully employed as a predictor

4Time taken by the system - Incremental Parser: The data set was divided into 100 sections and parsing was done in parallel.
Each section took almost 10 hours. Final training: Takes around 5 min for around 120K sentences pairs.

5See Footnote 7 of Ambati et al 2016
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to compute sentence complexity. Our Extended RT model achieves an accuracy of 75.21% which is
marginally better than the Vajjala and Meurers (2016) model. The Ambati et al. (2016) system is still the
best performing system. To see how much do reading times contribute to our system, we ran a model
with just sentence level features from extended model and no Base RT features, which had the accuracy
of 73.6% (1.6 points lower). This indicates that reading times do contribute to boost our model accuracy.

Note that, similar to Ambati et al. (2016), our RT prediction model (discussed in section 3) uses many
syntactic features. These features include surprisal, entropy reduction, embedding depth, embedding
difference, etc. The syntactic features in the Ambati et al. (2016) model (such as CCG rule counts, CCG
categories) are much more fine-grained in terms of the different syntactic phenomenon that they capture.
In would be very interesting to see if these fine-grained features can lead to improvement in a model that
predicts eye-movement reading measures. We plan to test this out as part of our future work. Also, our
results are based on just one eye-tracking measure, i.e. first fixation duration. Future work can try to
improve this performance by exploring multiple measures in a single model.

5 Conclusion

We used a machine learning model and a set of features known to be significant predictors of reading
times in order to learn per-word reading times from a corpus of English text having reading times of
human readers. Subsequently, we used the model to predict reading times for novel text in the context
of readability assessment. For this task, a model based only on reading times gave competitive results
compared to the systems that use extensive syntactic features.

Notwithstanding the debate on strict vs loose connection between parsing processes and eye move-
ments (Just and Carpenter, 1980) (also see, Vasishth et al., 2012), it has been conclusively established
that sentence parsing events are manifested in reading times. Since automatic quantification of complex-
ity is required in a number of NLP tasks/evaluations, models based on automatically predicted reading
times present themselves as an attractive alternatives to the current methods. Our work, to the best of
our knowledge, is the first study to show that such a model is indeed viable. We demonstrated that it
can be used to successfully model the difficulty of a text and can be deployed in practical text processing
applications. In addition to technological advances in field of NLP, we also envisage that our system
can potentially facilitate scientific inquiries in human sentence processing. Prior to running behavioural
experiments involving human subjects, our method can be used to formulate precise hypothesis by gen-
erating reading times for the test sentences.
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Abstract

The article presents results of entropy rate estimation for human languages across six languages
by using large, state-of-the-art corpora of up to 7.8 gigabytes. To obtain the estimates for data
length tending to infinity, we use an extrapolation function given by an ansatz. Whereas some
ansatzes of this kind were proposed in previous research papers, here we introduce a stretched
exponential extrapolation function that has a smaller error of fit. In this way, we uncover a
possibility that the entropy rates of human languages are positive but 20% smaller than previously
reported.

1 Introduction

Estimation of the entropy rate of natural language is a challenge originally set up by Shannon (Shannon,
1948; Shannon, 1951). The entropy rate quantifies the complexity of language, precisely the rate how fast
the amount of information grows in our communication with respect to the text length. Today, the entropy
rate provides an important target for data compression algorithms, where the speed of convergence of
the compression rate to the entropy rate is an informative benchmark. Measuring the entropy rate is also
the first step in answering what kind of a stochastic process can model generation of texts in natural
language, an important question for many practical tasks of natural language engineering.

An important theoretical question concerning the entropy rate, which has also been noted in the do-
mains of computational linguistics (Genzel and Charniak, 2002) and speech processing (Levy and Jaeger,
2007), is whether the entropy rate of human language is a strictly positive constant. The overwhelming
evidence collected so far suggests that it is so—in particular, the amount of information communicated
per unit time in English text is generally agreed to be about 1 bpc (bit per character) (Shannon, 1951;
Cover and King, 1978; Brown et al., 1983; Schümann and Grassberger, 1996). Although this is what
we might intuitively expect, Hilberg formulated a hypothesis that the entropy rate of natural language
is zero (Hilberg, 1990). Zero entropy rate does not imply that the amount of information in texts is not
growing, but that it grows with a speed slower than linear. From this perspective we want to provide as
exact estimates of the entropy rate for natural language as possible.

Precise estimation of the entropy rate is a challenging task mainly because, mathematically speaking,
the sought parameter is a limit for text length tending to infinity. To alleviate this problem, previous great
minds proposed estimation methods based on human cognitive testing (Shannon, 1951; Cover and King,
1978). Since human testing is costly, however, such attempts remain limited in terms of the scale and
number of tested languages. In contrast, although any conceivable data size can only be finite, today’s
language data have become so large in scale that we may reconsider estimation of the entropy rate using
big data computation. This point was already raised by (Shannon, 1948), which led to important previous
works such as (Brown et al., 1983) in the domain of computational linguistics. Both of these articles and
many other that followed, however, mostly considered the English language only.

In contrast, in this article, we present the results of entropy rate estimation using state-of-the-art large
data sets in six different languages, including up to 7.8 gigabytes of data in English. We try to estimate
the entropy rate by compressing these data sets using the PPM algorithm and extrapolating the data
points with a carefully selected ansatz function. Whereas a couple of ansatz functions were previously
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proposed in (Hilberg, 1990; Crutchfield and Feldman, 2003; Ebeling and Nicolis, 1991; Schümann and
Grassberger, 1996), here we introduce another function, which is a stretched exponential function and
enjoys the same number of parameters as previous proposals. The new functions yields a smaller error of
fit. As a result, we arrive at the entropy rate estimates which are positive but 20% smaller than previously
reported.

2 Entropy Rate

Let X∞
1 be a stochastic process, i.e., an infinite sequence of random variables X = X1, X2, X3, . . . with

each random variable Xi assuming values x ∈ X, where X is a certain set of countably many symbols.
For natural language, for instance, X can be a set of characters, whereas X∞

1 is an infinite corpus of texts.
Let Xj

i , where i ≤ j, denote a finite subsequence Xj
i = Xi, Xi+1, . . . , Xj of X∞

1 and let P (Xj
i = xj

i )
denote a probability function of the subsequence Xj

i . The Shannon entropy of a finite subsequence Xj
i

is defined as:
H(Xj

i ) = −
∑
xj

i

P (Xj
i = xj

i ) log2 P (Xj
i = xj

i ), (1)

where sequences xj
i are instances of Xj

i (Shannon, 1948). In contrast, the entropy rate of the infinite
sequence X is defined as (Cover and Thomas, 2006):

h = lim
n→∞

H(Xn
1 )

n
. (2)

The entropy rate is the amount of information per element for the data length tending to infinity.
Let us note that the entropy rate quantifies the asymptotic growth of the number of possible values

of an infinite sequence X∞
1 . Roughly speaking, there are effectively only 2nh possible values for a

subsequence Xn
1 , where n is the sequence length. In other words, condition h > 0 is tantamount to

an exponential growth of the number of possible sequences with respect to n. Value h = 0 need not
mean that the number of possibilities does not grow. For instance, for a sequence Xn

1 whose number of
possibilities grows like 2A

√
n, as supposed by Hilberg (1990), we have h = 0. Although the number of

possibilities for such a sequence of random variables grows quite fast, the speed of the growth cannot be
properly measured by the entropy rate.

The entropy rate thus quantifies, to some extent, the degree of randomness or freedom underlying
the text characters to follow one another. For human languages, the occurrence of a linguistic element,
such as a word or character, depends on the previous elements, and there are many long repetitions.
This results in a lower value of the entropy rate than for a random sequence, but the ultimate degree of
randomness in natural language is hard to simply guess. Whereas Hilberg (1990) supposed that h = 0
holds for natural language, this is only a minority view. According to the overwhelming experimental
evidence the entropy of natural language is strictly positive (Shannon, 1951; Cover and King, 1978;
Brown et al., 1983; Schümann and Grassberger, 1996). We may ask however whether these known
estimates are credible. In fact, if convergence of H(Xn

1 )/n to the entropy rate is very slow, this need not
be so. For this reason, while estimating the entropy rate, it is important to investigate the speed of the
estimate convergence.

3 Direct estimation methods

There are several methods to estimate the entropy rate of natural language. These can be largely divided
into methods based on human cognitive testing and methods based on machine computation. Estimation
via human cognitive testing is mainly conducted by showing a substring of a text to a human examinee
and having him or her guess the character to follow the substring. This method was introduced by Shan-
non (1951). He tested an unmentioned number of examinees with the text of Dumas Malone’s “Jefferson

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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the Virginian” and obtained h ≈ 1.3 bpc. This method was improved by Cover and King (1978) as a sort
of gambling. The results with 12 examinees produced an average of h ≈ 1.34 bpc. Human cognitive
testing has the advantage over methods based on machine computations that the estimates of entropy
rate converge faster. Unfortunately, such human cognitive testing is costly, so the number of examinees
involved is small and the samples are rather short. It is also unclear whether human examinees guess the
text characters according to the true probability distribution.

In contrast, today, estimation of the entropy rate can be performed by big data computation. For this
paradigm, two specific approaches have been considered so far.

1. The first approach is to estimate the probabilistic language models underlying formula (2). A rep-
resentative classic work is (Brown et al., 1983), who reported h ≈ 1.75 bpc, by estimating the
probability of trigrams in the Brown National Corpus.

2. The second approach is to compress the text using a data compression algorithm. Let R(Xn
1 ) denote

the size in bits of text Xn
1 after the compression. Then the code length per unit, r(n) = R(Xn

1 )/n,
is always larger than the entropy rate (Cover and Thomas, 2006),

r(n) ≥ h. (3)

We call r(n) the encoding rate in the rest of this article.

In the following we will apply the second approach. In fact, there are various algorithms to compress
texts. Within our context we are interested in universal methods. A universal text compressor guarantees
that the encoding rate converges to the entropy rate, provided that the stochastic process X∞

1 is stationary
and ergodic, i.e., equality

lim
n→∞ r(n) = h (4)

holds with probability 1. Among the important known universal compressors we can name: the Lempel-
Ziv (LZ) code (Ziv and Lempel, 1977), the PPM code (Bell et al., 1990), and a wide class of grammar-
based codes (Kieffer and Yang, 2000), with many particular instances such as SEQUITUR (Nevill-
Manning and Witten, 1997) and NSRPS (Non-Sequential Recursive Pair Substitution) (Ebeling and
Nicolis, 1991; Grassberger, 2002). Whereas all these codes are universal, they are not equal. Let us
briefly describe some properties of these compressors. First of all, they are based on different principles.
The LZ code and the grammar-based codes compress texts roughly by detecting repeated substrings and
replacing them with shorter identifiers. A proof of universality of the LZ code can be found in (Cover
and Thomas, 2006), whereas the proof of universality of grammar-based codes can be found in (Kieffer
and Yang, 2000). In contrast, the PPM code is an n-gram based language modeling method (Bell et al.,
1990) which applies variable length n-grams and arithmetic coding. The PPM code is guaranteed to be
universal when the length of the n-gram is considered up to infinity (Ryabko, 2010).

A very important question for our application is the scaling of the encoding rate of universal codes
for finite real data. Since the probabilistic model of natural language remains unknown, the notion
of universality may serve only as a possible standard to obtain a stringent upper bound. One may raise
some doubt that natural language is strictly stationary since the word probabilities do vary across time, as
indicated by (Baayen, 2001). Moreover, many off-the-shelf compressors are not strictly universal, since
they are truncated in various ways to gain the computational speed. Therefore, a suitable compressor can
only be chosen through experimental inspection.

Among state-of-the-art compressors, we have considered zip, lzh, tar.xz, and 7-zip LZMA for the
LZ methods and 7-zip PPMd for the PPM code. In Figure 1 (right panel) we show how the encoding
rate depends on the data length for a Bernoulli process with p = 0.5 (left panel, listed later in the first
line of the third block of Table 1) and for natural language data of Wall Street Journal corpus (right
panel, listed in the third line of the third block of Table 1). First, let us consider the Bernoulli process,
which is a simple artificial source. Formally, the Bernoulli process is a sequence of independent random
variables taking the value of 1 with probability p and 0 with probability 1 − p. There are two known
theoretical results for this process: The theoretically proven encoding rate of the LZ code is as much as
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Figure 1: Compression results for a Bernoulli process (p = 0.5, left panel) and Wall Street Journal (right
panel) for LZ, PPM, and SEQUITUR.

r(n) = A/(log n) + h (Louchard and Szpankowski, 1997), whereas the encoding rate for the PPM code
is proved to be only r(n) = A(log n)/n + h (Barron et al., 1998; Atteson, 1999). Thus the convergence
is extremely slow for the LZ code and quite fast for the PPM code. This exactly can be seen in Figure 1
(left panel), where all data points for the LZ code remain way above 1.0 bpc, the true entropy rate, while
the data points for the PPM code practically converge to 1.0 bpc.

As for natural language data, whereas the empirical speed of convergence is much slower for the
Wall Street Journal, the gradation of the compression algorithms remains the same. Algorithms such as
zip and lzh get saturated probably because they are truncated in some way, whereas SEQUITUR, 7-zip
LZMA and 7-zip PPMd gradually improve their compression rate the more data they read in. Since the
encoding rate is visibly the smallest for 7-zip PPMd, in the following, we will use this compressor to
estimate the entropy rate for other natural language data.

4 Extrapolation Functions

Many have attempted to estimate the entropy rate via compression. For example, paper (Bell et al.,
1990) reported h ≈ 1.45 bpc for the collected works of Shakespeare in English. Majority of the previous
works, however, reported only a single value of the encoding rate for the maximal size of the available
data. Whereas any computation can handle only a finite amount of data, the true entropy rate is defined
in formula (2) as a limit for infinite data. The later fact should be somehow taken into consideration,
especially if convergence (4) is slow, which is the case of natural language. One way to fill this gap
between the finite data and the infinite limit is to use extrapolation. In other words, the encoding rate r(n)
is calculated for many n and the plots are extrapolated using some function f(n). Since the probabilistic
model of natural language is unknown, function f(n) has been considered so far in form of an ansatz.

Previously, two ansatzes have been proposed, to the best of our knowledge. The first one was proposed
by Hilberg (1990). He examined the original paper of (Shannon, 1951), which gives a plot of some upper
bounds of H(Xn

1 )/n. Since Hilberg believed that the entropy rate vanishes, h = 0, his ansatz was

f0(n) = Anβ−1, (5)

with β ≈ 0.5, according to Hilberg. If we do not believe in a vanishing entropy rate, the above formula
can be easily modified as

f1(n) = Anβ−1 + h, (6)

so that it converges to an arbitrary value of the entropy rate, cf., (Crutchfield and Feldman, 2003). An-
other ansatz was given in papers (Ebeling and Nicolis, 1991) and (Schümann and Grassberger, 1996). It
reads

f2(n) = Anβ−1 ln n + h. (7)
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Table 1: Data used in this work, its size, its encoding rate, entropy rate and the error
encoding f1(n) f3(n)

Text Language Size rate h error h error
(chars) (bit) (bit) ×10−2 (bit) ×10−2

Large Scale Random Document Data
Agence France-Presse English 4096003895 1.402 1.249 1.078 1.033 0.757
Associated Press Worldstream English 6524279444 1.439 1.311 1.485 1.128 1.070
Los Angeles Times/Washington Post English 1545238421 1.572 1.481 1.108 1.301 0.622
New York Times English 7827873832 1.599 1.500 0.961 1.342 0.616
Washington Post/Bloomberg English 97411747 1.535 1.389 1.429 1.121 0.991
Xinhua News Agency English 1929885224 1.317 1.158 0.906 0.919 0.619
Wall Street Journal English 112868008 1.456 1.320 1.301 1.061 0.812
Central News Agency of Taiwan Chinese 678182152 5.053 4.459 1.055 3.833 0.888
Xinhua News Agency of Beijing Chinese 383836212 4.725 3.810 0.751 2.924 0.545
People’s Daily (1991-95) Chinese 101507796 4.927 3.805 0.413 2.722 0.188
Mainichi Japanese 847606070 3.947 3.339 0.571 2.634 0.451
Le Monde French 727348826 1.489 1.323 1.103 1.075 0.711
KAIST Raw Corpus Korean 130873485 3.670 3.661 0.827 3.327 1.158
Mainichi (Romanized) Japanese 1916108161 1.766 1.620 2.372 1.476 2.067
People’s Daily (pinyin) Chinese 247551301 1.850 1.857 1.651 1.667 1.136

Small Scale Data
Ulysses (by James Joyce) English 1510885 2.271 2.155 0.811 1.947 1.104
À la recherche du temps perdu French 7255271 1.660 1.414 0.770 1.078 0.506
(by Marcel Proust)
The Brothers Karamazov Russian 1824096 2.223 1.983 0.566 1.598 0.839
(by Fyodor Dostoyevskiy)
Daibosatsu toge (by Nakazato Kaizan) Japanese 4548008 4.296 3.503 1.006 2.630 0.875
Dang Kou Zhi (by by Wan-Chun Yu) Chinese 665591 6.739 4.479 1.344 2.988 1.335

Using this ansatz, paper (Schümann and Grassberger, 1996) obtained h ≈ 1.7 bpc for the collected works
of Shakespeare and h ≈ 1.25 bpc for the LOB corpus of English.

We have used up to 7.8 gigabytes of data for six different languages and quite many plots were avail-
able for fitting, as compared to previous works. As will be shown in §6.1, function f1(n) does not fit
well to our plots. Function f1(n), however, is no more than some ansatz. If we can devise another ansatz
that fits better, then this should rather be used to estimate the entropy rate. In fact we have come across
a better ansatz. The function we consider in this article is a stretched exponential function,

f3(n) = exp(Anβ−1 + h′), (8)

which embeds function f1(n) in an exponential function and yields the entropy rate h = exp h′. In fact,
function f3(n) converges to h slower than f1(n). In a way, this is desirable since slow convergence of
the encoding rate is some general tendency of the natural language data. As a by-product, using function
f3(n) we will obtain smaller estimates of the entropy rate than using function f1(n).

5 Experimental Procedure

5.1 Data preparation
Table 1 lists our data, including each text, its language and size in the number of characters, its encoding
rate using the full data set (the minimal observed encoding rate), and the extrapolation results for the
entropy rate h, including the error of the estimates—as defined in §5.2 and analyzed later. We carefully
chose our data by examining the redundancies. Many of the freely available large-scale corpora suffer
from poor quality. In particular, they often contain artificially long repetitions. Since such repetitions
affect the entropy rate estimates, we have only used corpora of a carefully checked quality, making sure
that they do not contain large chunks of a repeated text.

The table contains two blocks. The first block contains state-of-the-art large-scale corpora of texts. As
will be shown in our experiments, the plots for the raw corpora often oscillated due to the topic change.
To overcome this problem we have performed randomization and averaging. First, we have shuffled the
corpora at the level of documents and, second, we have averaged ten different random permutations for
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each corpus. The experimental results shown from the 4th column to the last one of Table 1 pertain to
so processed language data. As for the Japanese and Chinese data, in addition to the original texts of
the Mainichi and People’s Daily newspapers, the Romanized versions were generated.1 In contrast, the
second block of Table 1 contains long literary works in five different languages. These data have not
been randomized. The data in the first and second blocks encompass six different languages.

5.2 Detailed procedure
To estimate the entropy rate, we have used the 7-zip compressor, which implements the PPMd algorithm.
As discussed in §3, this compressor seems the best among state-of-the-art methods. It compresses best
not only the real Wall Street Journal corpus but also the artificial Bernoulli process. For this reason,
we have used this compressor. Further detailed options of the PPMd algorithm were carefully chosen.
Since the 7-zip program compresses by recording statistics for file names as well, the input text was fed
to the compressor via a Unix pipe so that the compression was conducted without a file name. We also
carefully excluded the header of the compressed file (which includes the name of the compressor etc.).
This header is included in the compressed file but does not count to the proper compression length.

Another important option of the 7-zip program concerns the maximal n-gram length used by the PPM,
called here MAX. As noted in §3, when MAX is infinite the compression method is universal. But the
larger MAX is, the slower the compression procedure becomes. Therefore, any available compressor
sets an upper bound on MAX, whereas the user can choose the MAX value smaller than this bound (the
bound equals 32 in the case of 7-zip PPMd). However, even within this preset range, it was not always
the case that a larger MAX resulted in a better encoding rate. Therefore, in our work, for each full data
set, we searched for the value of MAX that achieved the best encoding rate and consistently used those
best encoding rates for different subsets of the full data set.

Having clarified these specific issues, our detailed experimental procedure, applied to each data set
from Table 1, was as follows. First, for every n = 2k, where k = 6, 7, . . . , log2(data size), the first n
characters of the full text were taken. This subsequence, denoted Xn

1 , was then compressed using the 7-
zip program, and its size R(Xn

1 ) in bits was measured to calculate the encoding rate r(n) = R(Xn
1 )/n.

The obtained encoding rates for different n were fitted to the ansatz functions f(n) = fj(n), where
j = 1, 2, 3, 4. When encoding rates r(ni) = R(Xni

1 )/ni for K distinct values of ni were obtained, the
fit was conducted by minimizing the square error as follows:

error =

√∑K
i=1(ln r(ni)− ln f(ni))2

K
. (9)

The logarithm was taken here to ascribe a larger weight to the errors of the larger n, since we were
particularly interested in the tail behavior of the data points.

6 Experimental Results

6.1 Fitting Results
Figure 2 shows our results for the Wall Street Journal (WSJ) corpus (Table 1, first block, seventh line),
which is the benchmark corpus most typically used in the computational processing of human language.
The figure shows the encoding rate r(n) (vertical axis) as a function of the text size in characters n (hor-
izontal axis). The left panel of Figure 2 shows the results obtained from the original text. The encoding
rates tend to oscillate, which is due to topic changes in the corpus. Such oscillation is visible in majority
of the natural language data, where some data can oscillate much worse than WSJ. In the context of en-
tropy rate estimation such oscillation was already reported in paper (Schümann and Grassberger, 1996).
Some possible way to cope with this problem is to shuffle the text at the level of documents. The right
panel of Figure 2 shows the average encoding rate for the data 10-fold shuffled by documents. The data
points in the right panel oscillate less than in the left panel. At the same time, since shuffling the docu-
ments introduces some randomness, the entropy rate estimate is about 1% larger for the randomized data

1KAKASI and Pinyin Python library software were used to Romanize Japanese and Chinese, respectively.
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Figure 2: Encoding rates for the Wall Street Journal corpus (in English). The left panel is for the original
data, whereas the right panel is the average of the data 10-fold shuffled by documents. To these results
we fit functions f1(n) and f3(n).

than for the original corpus. Both panels of Figure 2 show two fits of the encoding rate, to extrapolation
functions f1(n) and f3(n)—given by formulae (6) and (8), respectively. Whereas, visually, it is difficult
to say which of the functions fits better, we can decide on that using the value of error (9). The estimates
of the entropy rate are h = 1.32 with error being 0.0130 for f1(n) and h = 1.061 with error being
0.00812 for f3(n). We can suppose that function f3(n) yields both a smaller entropy rate estimate and a
smaller fitting error.

This hypothesis can be confirmed. We conducted the analogous fitting to all our data sets for three
ansatz functions f1(n), f2(n), and f3(n). The fitted values of h and error for f1(n) and f3(n), for both
10-fold randomized corpora and non-randomized texts are listed in Table 1 in the last four columns. The
average values of the error for f1(n), f2(n) and f3(n) were 0.0113, 0.0194, and 0.00842 across all data
sets, respectively. The plots therefore fit the best to f3(n). Among the three ansatz functions, function
f2(n) is the worst choice. In contrast, the stretched exponential function f3(n) seems better than the
modified Hilberg function f1(n) and it consistently yields smaller estimates of the entropy rate.

6.2 A Linear Perspective
If the exponent β does not depend on a particular corpus of texts, i.e., if it is some language universal,
then for all three functions f1(n), f2(n), and f3(n) we can draw a diagnostic linear plot with axes:
Y = r(n) and X = nβ−1 for f1(n), Y = r(n) and X = nβ−1 ln n for f2(n), and Y = ln r(n) and
X = nβ−1 for f3(n), respectively. In these diagnostic plots, the entropy rate corresponds to the intercept
of the straight line on which the data points lie approximately. Since we observe that exponent β is
indeed some language universal, we use these plots to compare different text corpora.

In these plots, ansatzes f1(n), f2(n), and f3(n) can be analyzed as a form of linear regression. Let us
focus on f3(n), the function that yields the minimal fitting error. If we put Y = ln r(n) as the vertical
axis and X = nβ−1 as the horizontal axis where β = 0.884, the average value for the fit to f3(n), then
the plots for all large scale natural language data (first block of Table 1) can be transformed as shown in
Figure 3. It can be seen that each set of data points is roughly assembled in a linear manner.

In Figure 3, the black points are English, the white ones are Chinese, and the gray ones are other
languages including Romanized Chinese and Japanese. Two main groups of plots can be seen in Figure
3, one lower and one upper, where the lower plots in black are for English and the upper plots in white are
for Chinese . The results for other languages, shown in gray, are located somewhere between English and
Chinese. The gray plots appearing amidst the lower group indicate Romanized Japanese and Chinese.
These results show that the script type distinguishes the amount of information per character.

Two straight lines were obtained in Figure 3 for the English and Chinese groups by least squares fitting
to all data points from each group, respectively. Since the horizontal axis indicates variable X = nβ−1,
condition n → ∞ corresponds to condition X = 0. The intercept of a fitted straight line is thus the
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Figure 3: All large scale natural language data (first block of Table 1) from a linear perspective for
function f3(n).

logarithm of the entropy rate. The intercepts are h′ = 0.126 and h′ = 1.348, with the corresponding
entropy rates h = 1.134 bpc and h = 3.849 bpc, for the English and Chinese groups, respectively.
Compared to the values reported previously, the entropy rate estimate h is smaller by 20%. Interestingly,
a similar analysis can be conducted for ansatz f1(n). For this function, by using the average of β =
0.789, the final h was found to be 1.304 and 4.634 for English and Chinese, respectively, which is
similar to previous reports. Therefore, the estimate of the entropy rate depends on the used ansatz, with
the better fitting ansatz yielding estimates smaller than generally agreed.

Given our results, we may revisit the question whether the entropy rate of natural language is a strictly
positive constant. Our estimates of the entropy were obtained through extrapolation. Thus, the possibility
of a zero entropy rate cannot be completely excluded but it seems highly unlikely in view of the following
remark. Namely, if the entropy rate is zero, then the data points should head towards negative infinity
in Figure 3. However, the plots do not show such a rapid decrease for data size of the order of several
gigabytes. On the contrary, all endings of the plots for large data sizes are slightly bent upwards. Hence
we are inclined to believe that the true entropy rate of natural language is positive and close to our
estimates. Of course, a far larger amount of data would be required to witness the behavior of the plots
in the margin between the infinite limit and the largest data size considered in our experiment.

7 Conclusion

In this article, we have evaluated the entropy rates of several human languages by means of a state-of-the-
art compression method. Compared to previous works, our contribution can be summarized as follows.
First, we have calculated the compression rates for six different languages by using state-of-the-art cor-
pora with sizes of up to 7.8 gigabytes. Second, we have extrapolated the empirical compression rates
to some estimates of the entropy rate using a novel ansatz, which takes form of a stretched exponential
function. This new ansatz function fits better than the previously proposed ansatzes and predicts smaller
entropy rates than reported before. Especially for English, where the vast majority of previous works
suggested an entropy rate around 1.3 bpc, our new results suggest the possibility of a value around 1.1
bpc. Some future extension of our work might be to simply enlarge the data, but it will not be trivial to
obtain a uniform corpus of a larger scale. Hence, in the future work, it may be advisable to look for other
computational approaches to the problem of entropy estimation.
The complete version of this article is available at (Takahira et al., 2016)
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DFG Center for Advanced Study
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Abstract

The morphological complexity of languages differs widely and changes over time. Pathways of
change are often driven by the interplay of multiple competing factors, and are hard to disentan-
gle. We here focus on a paradigmatic scenario of language change: the reduction of morphologi-
cal complexity from Latin towards the Romance languages. To establish a causal explanation for
this phenomenon, we employ three lines of evidence: 1) analyses of parallel corpora to measure
the complexity of words in actual language production, 2) applications of NLP tools to further
tease apart the contribution of inflectional morphology to word complexity, and 3) experimental
data from artificial language learning, which illustrate the learning pressures at play when mor-
phology simplifies. These three lines of evidence converge to show that pressures associated with
imperfect language learning are good candidates to causally explain the reduction in morpholog-
ical complexity in the Latin-to-Romance scenario. More generally, we argue that combining
corpus, computational and experimental evidence is the way forward in historical linguistics and
linguistic typology.

1 Introduction

Languages inevitably change over time. Sounds are added or removed from phoneme inventories, mor-
phological markers are grammaticalized or lost, word orders permute in historical variants. Causal ex-
planations for these phenomena are often complex – or lacking all together – since they have to cope
with the interplay of learning and usage in a multitude of social settings, at different times, in different
places.

We here focus on a prominent change from Latin towards the Modern Romance languages: the sys-
tematic loss of morphological markers in all descendant languages of the common proto-language over
hundreds and thousands of years. Latin marked grammatical functions by means of inflectional vari-
ants of the same word root, thus displaying complex word forms. For example, the Latin word for
“brother” frater was inflected to yield fratres, fratribus, fratris, fratrum, fratri, fratre, etc. according
to singular/plural and case distinctions. This complexity is considerably reduced in Modern Romance
languages, where there are often simpler singular/plural distinctions as in Italian fratello/fratelli, French
frère/frères, and Spanish hermano/hermanos.

A theory currently gaining ground at the interface of historical linguistics, linguistic typology and soci-
olinguistics maintains that reduction in morphological complexity might be driven by learning pressures,
namely imperfect learning by non-native adults (McWhorter, 2002; McWhorter, 2011; Trudgill, 2011;
Wray and Grace, 2007). Adults learning a foreign language often lack the breadth of exposure to the
target language that a native speaker would have. Thus, they only partially learn the range of inflectional
variants of a word, and omit morphological markers in their language production (Papadopoulou et al.,
2011; Haznedar, 2006; Gürel, 2000). If non-native speakers represent a considerable part of the overall
speaker population, they might drive the language towards morphological simplification.

This line of reasoning was recently backed by quantitative analyses. Across different language families
and areas it was shown that languages spoken by more people (a proxy for the proportion of non-native
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speakers) tend to have lower morphological complexity (Lupyan and Dale, 2010), that languages with
more non-native speakers have less complex morphological case marking (Bentz and Winter, 2013), and
that languages with more non-native speakers have fewer word forms more generally (Bentz et al., 2015).

Our hypothesis is that imperfect language learning might also explain the loss of inflections from
Classical Latin towards the Romance languages. These formed as the Roman empire expanded into the
European continent, and later evolved into modern day Romance languages. In the process of expansion,
Vulgar Latin varieties must have “recruited” considerable numbers of non-native speakers, which might
have reduced the range of word forms in usage across the whole population of speakers (Herman, 2000;
Bentz and Christiansen, 2010; Bentz and Christiansen, 2013). Over several generations, this mechanism
can lead to considerable loss of morphological marking. We here present three lines of evidence to give
such language change hypotheses an empirical and quantitative foundation.

1. A growing number of diachronic and synchronic corpora (see Cysouw & Wälchli (2007)) are avail-
able to measure patterns of change, rather than using single, isolated examples. Typological analy-
ses based on corpora have the advantage of reflecting actual language production and usage, rather
than expert judgement only. They are reproducible and transparent. In line with a range of earlier
studies (Juola, 1998; Milin et al., 2009; Moscoso del Prado, 2011; Bentz et al., accepted; Ehret
and Szmrecsanyi, 2016; Wälchli, 2012; Wälchli, 2014), we here apply corpus-based methods to
measure morphological complexity.

2. NLP tools allow us to automatically and efficiently analyze large collections of texts. This is here
illustrated with lemmatization, i.e. neutralization of inflected word forms to their base forms, also
called lemmas. Thus we can tease apart the effect of inflections from other factors influencing the
complexity of words.

3. Psycholinguistic experiments elicit the learning pressures that drive language change. So-called
iterated learning experiments are particularly helpful to understand multiple factors shaping in-
formation encoding strategies in artificial languages (Kirby et al., 2008; Kirby et al., 2015). We
here reanalyse data gathered in an artificial language learning experiment where inflectional mark-
ing is transmitted over several generations of “normal” and “imperfect” learners (Berdicevskis and
Semenuks, forthcoming).

We would argue more generally that an integration of corpus, computational and experimental evidence
is a valid strategy for understanding changes in any other set of languages and their phonological, mor-
phological and syntactic features.

2 Methods

2.1 Corpora
To control for constant content across languages, we use two sets of parallel texts: 1) the Parallel Bible
Corpus (PBC) (Mayer and Cysouw, 2014),1 and 2) the Universal Declaration of Human Rights (UDHR)
in unicode.2 Details about the corpora can be seen in Table 1. The general advantage of the PBC is
that it is bigger in terms of numbers of word tokens per language (ca. 280K), compared to the UDHR
(ca. 1.8K). They represent two different registers: religious writing and transcribed speeches. This is
important to ensure that the trends observed extrapolate to different text types. In our analyses, we focus
on the Romance languages available in these corpora.

2.2 Estimating the Complexity of Words
We apply an information-theoretic measure of word complexity. Imagine a language that repeats the
same word over and over again. This language is maximally redundant, each instance (token) of the
same word (type) does essentially not store any information, hence this language has minimum word

1Last accessed on 09/03/2016
2http://unicode.org/udhr/
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Parallel Corpus Size ∅ Size Texts Lang.
PBC ≈ 420M ≈ 280K 1471 1083
UDHR ≈ 650K ≈ 1.8K 356 333

Table 1: Information on the parallel corpora used.

complexity. In contrast, a language with an infinite number of different words, expressing an infinite
number of concepts, packs a lot of information into words, i.e. has maximum word complexity. Natural
languages range in between these extremes (Bentz et al., 2015), displaying a variety of distributions of
word tokens over word types. Such differences in type-token distributions can be measured by calculating
their entropies. The classic Shannon entropy (Shannon and Weaver, 1949) is defined as

H = −K
r∑

i=1

pi log2(pi). (1)

Where K is a positive constant determining the unit of measurement (which is bits for K=1 and log to
the base 2), r is the number of ranks (or different word types) in a word frequency distribution, and pi is
the probability of occurrence of a word of ith rank.

According to the maximum likelihood account, the probability pi is simply the frequency of a type
divided by the overall number of tokens in a text. However, it has been shown that this method under-
estimates the entropy, especially for small texts (Hausser and Strimmer, 2009). To estimate entropies
reliably, the James-Stein shrinkage estimator (Hausser and Strimmer, 2009) is used here instead. Ac-
cording to this approach the estimated probability per type is

p̂i
shrink = λp̂target

i + (1− λ)p̂i
ML, (2)

where λ ∈ [0, 1] is the shrinkage intensity and p̂target
i is the so-called “shrinkage target”. Hausser &

Strimmer (2009) suggest to use the maximum entropy distribution as a target, i.e. p̂target
i =

1

V
. This

yields

p̂i
shrink =

λ

V
+ (1− λ)p̂i

ML. (3)

The idea here is that the estimated probability p̂i
shrink consists of two additive components, λ/V and

(1− λ)p̂i
ML respectively. In the full shrinkage case (λ = 1), Equation 3 yields p̂i

shrink = 1/V , i.e. the
maximum entropy. In the no shrinkage case (λ = 0), Equation 3 yields p̂i

shrink = p̂i
ML, i.e. the ML

estimation that is biased towards low entropy. Given empirical data, the true probability is very likely to
lie somewhere in between these two cases and hence 0 < λ < 1. The optimal shrinkage can be found
analytically. Finally, the probability pshrink

i plugged into the original entropy equation yields

Ĥshrink = −K
r∑

i=1

p̂i
shrinklog2(p̂i

shrink). (4)

Ĥshrink is a robust approximation of the word entropy calculated from a text collection. It reflects the
shape of type-token distributions. A long-tailed distribution will have higher Ĥshrink, i.e. higher overall
word complexity, while a short tailed distribution will have lower Ĥshrink, i.e. lower overall word
complexity. We use the R package entropy for shrinkage entropy estimations (Hausser and Strimmer,
2014).
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Language Tokens unknown %
Latin 11427 266 2.5
Italian 15314 888 5.8
French 17602 983 5.6
Spanish 15581 907 5.8

Table 2: Information on number and percentage of tokens unknown to the TreeTagger in a combined
corpus of the PBC and UDHR. Note that only verses of the PBC which are parallel across several hundred
languages were taken into account here. This explains the relatively low number of tokens.

2.3 Lemmatization and Inflectional Complexity
Note that the overall complexity of words is driven by a range of factors. Consider the example of
the Latin lexeme frater “brother” again, which is frequently used in the Bible. As is illustrated in Fig-
ure 1, in Latin we get a whole range of inflectional variants, while in Italian, French and Spanish this
range is reduced to the singular/plural forms. However, inflection is but one process besides derivation,
compounding, contraction and others that shape type-token distributions (Bentz et al., accepted).
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Figure 1: Reduction of inflectional variants from Latin to the Romance languages. Here exemplified
with the occurrence of the word for “brother” in the Latin, Italian, French and Spanish texts of the PBC.

To tease apart inflectional complexity (Cinfl) we can estimate the difference in entropy before (Hraw)
and after lemmatization (Hlem):

Cinfl = ∆H = Hraw −Hlem (5)

This requires automatic (or manual) neutralization of inflectional variants of the same word root in a
corpus, i.e. lemmatization (see Moscoso del Prado (2011) for a similar account). In the following, this
process is outlined for both the natural and artificial languages used here.

Natural Languages: Word types of some natural languages can be lemmatized using the TreeTagger
(Schmid, 1994). It first associates the respective word type with a POS tag (and case indication if rele-
vant), and then derives the most likely lemma, thus outputting wordType/POS/lemma. For example, for
the Latin proper noun fratrem “brother.ACC.SG” the TreeTagger outputs: fratrem/N:acc/frater. Like-
wise, for an inflected verb such as creavit “create.3P.SG.PST” it outputs creavit/V:IND/creo (where creo
“create.1P.SG.PRES” is taken as the default lemma instead of the infinitive creare).

The TreeTagger is based on a statistical model trained on samples of manually lemmatized text. It
provides high accuracy on words already seen in the training set (close to 100%). The words that are
unknown to the tagger result in higher error rates. Table 2 shows the percentage of unknown word types
for each language. We use the PBC for lemmatization, since it is the bigger corpus in number of tokens.
The Romance languages that can be lemmatized using the TreeTagger are: Latin, Italian, French, and
Spanish.

Artificial Languages: The morphological structure of the artificial language used in our analyses is
outlined in Section 2.4, and illustrated in Appendix 6.1. Note that descendant languages usually preserve
much of this structure. We lemmatize the artificial languages by the following rules:
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1. Only if two word forms occur at the same place in the utterance (i.e. first or second), can they be
neutralized to the same lemma.

2. Moreover, word forms have to adhere to the following similarity criteria to be neutralized to the
same lemma:

• Words that occur at the first place are “nouns”, they always denote an entity. For nouns, the
similarity criterion is the normalized Levenshtein distance between the two forms, which has
to be smaller than 0.50. In the initial languages, noun stems consisted of three letters, with a
plural marker being a one-letter ending. However, more complicated systematic ways to mark
number emerged in some descendant languages, which is why the threshold is 0.50 instead of
0.25.

• Words that occur at the second place are “verbs”, they always denote an event. For verbs, the
first letter has to be the same. In the initial languages, verb forms always consisted of two
letters, the first of which was a stem, the second an agreement marker. In the descendant lan-
guages, the stem letter is usually preserved, while the agreement marker can undergo various
changes.

3. The shortest form of a given paradigm is chosen as the lemma. For example, the nouns seg and segl
(PL.) are lemmatized to seg. If there are several forms of equal length, the most frequent one of
these is chosen as the lemma. If there is a tie, the first form the algorithm comes across is chosen.3

2.4 Iterated Learning Experiments

The experimental data are taken from an iterated learning experiment (Berdicevskis and Semenuks,
forthcoming). In the experiment, an artificial miniature-language called “epsilon” is learned and trans-
mitted from one participant to the next in an online setting. 15 isomorphic variants of epsilon are created
to be transmitted in 15 separate chains. “Isomorphic” here means that the grammatical structure of the
variants is the same, but the vocabulary is different. Thus, phrases are built based on a selection of
two nouns (e.g. seg, fuv) and three verb roots: e.g. m- “to fall apart”, r- “to grow antlers”, b- “to fly”.
Morphological features include number marking on nouns (e.g. SG: -∅, PL: -l) and agreement on verbs
(e.g. agreement with seg: -o, agreement with fuv: -i). Phrases consisting of nouns and verbs have to be
learned based on visual scenes of moving objects. For example, the phrase segl bo would be paired with
a picture where several seg objects fly. Overall, this leads to 15 epsilon variants made up of 16 possible
phrases matching 16 possible scenes (see Appendix 6.1).

Transmission chains consist of 10 generations (one participant per generation). There are 45 transmis-
sion chains, 15 for the normal learning condition (there are no imperfect learners in the population), 15
for what is called a temporarily interrupted condition (there are imperfect learners in generations 2-4)
and 15 for a permanently interrupted condition (there are imperfect learners in generations 2-10). Note
that the same 15 epsilon variants were used for all three conditions.

Imperfect (non-native) learning is simulated via less exposure. “Native” learners have six training
blocks to learn the artificial language epsilon, whereas “non-native” imperfect learners have only half of
the training blocks.

For further analyses, we collapse the 15 transmission chains per condition to one “corpus” consist-
ing of the word tokens produced in each generation. This yields around 280 tokens (noun and verb
forms) used in each generation of 10 learners. Finally, there were 450 participants (45 chains times 10
generations), all of them native speakers of Russian.

3Sometimes an utterance does not contain a verb, even though there is an event occurring on the stimulus image. We do not
posit empty tokens for these cases, which means that there is some variation in the corpus size across languages, both for the
lemmatized and non-lemmatized versions. If a participant produced one verb-less utterance, it means that their output language
will lack one word form which it might have had if the participant chose to name every event.
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3 Results

3.1 Corpus Analyses

First, we want to measure the exact difference in word complexities between Latin and the Romance
languages. To this end, we use the shrinkage entropy estimation method (Section 2.2) applied to our
parallel corpora. As is illustrated in Figure 2 for both the PBC and the UDHR, Modern Romance lan-
guages have systematically lower word entropies. While Latin has a word entropy of ∼ 10.5 (PBC) and
∼ 8.5 (UDHR) respectively, Modern Romance languages fall below 9.75 and 8.2. Note that for some
languages we get different translations (e.g. 6 translations into Portuguese in the PBC), and hence a
range of entropy values. This variation is indicated by 95% confidence intervals in Figure 2 and also
Figure 3. Overall, these analyses illustrate that in the ca. 2000 years since Latin was last spoken as a
native language, the word entropy of its daughter languages systematically declined by around 10-15%.4
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Figure 2: Reduction of word entropy from Latin to the Romance languages in two parallel corpora
(PBC and UDHR). ISO 639-3 codes are given on the x-axis: Latin (lat), Italian (ita), Romanian (ron),
French (fra), Portuguese (por), Catalan, (cat), Spanish (spa), Romansh (roh), Galician (glg), Asturian
(ast), Ladino (lad).

3.2 Inflectional Complexity Reduction: Latin to Romance

Secondly, to pin down the reduction in inflectional complexity, we apply the lemmatization method out-
lined in Section 2.3. The results of this analysis for Latin, Italian, French and Spanish can be seen in
Figure 3. Grey dots indicate the word complexities for the raw texts (Hraw), black dots indicate the
word complexities after lemmatization (Hlem). The difference between these indicates the inflectional
complexity of each language, or in other words, how much information is stored in inflectional variants
of word roots. This is highest for Latin (Cinfl = ∆H ∼ 2.5), and systematically lower for Italian,
French and Spanish (Cinfl = ∆H ∼ 1.5). Hence, the complexity of inflectional marking has systemat-
ically dropped in the 2000 years between Latin and its descendant languages. Namely, around 1 bit of
information – formerly stored in inflectional marking – is now either lost or replaced by another level of
encoding (Ehret and Szmrecsanyi, 2016; Koplenig et al., 2016; Moscoso del Prado, 2011).

3.3 Iterated Learning Experiments

The missing link to explain the entropy reduction in natural languages is the actual behaviour of language
learners and users. Their impact on word entropy is illustrated here with data gathered from epsilon.
Figure 4 gives an overview of the entropy change in the aggregated epsilon variants over 10 generations
of transmission. The left panel shows the word entropy change in the three different learning conditions
(normal, temporarily interrupted, permanently interrupted), while the right panel shows lemma entropy
change (words neutralized for inflections).

4Note that there are two non-Romance languages in the UDHR sample: Irish Gaelic (gle) and Scottish Gaelic (gla).
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Figure 3: Differences in entropies before and after lemmatization (words and lemmas) in Latin, Italian,
French and Spanish.

Focusing on the left panel first: in the normal condition (black), the entropy slightly decreases (from
7.23 to 7.15, i.e. ca. −1.1%) over 10 generations. For the temporarily interrupted condition (light
grey), the word entropy decreases more sharply by 7.23 to 6.93 (−4.1%). In the permanently interrupted
condition (dark grey), it also continuously drops from 7.23 to 6.95, i.e. by−3.9%. The right panel further
illustrates – as we would expect – that entropy drops for lemmas compared to words, namely from 7.23
to 6.23, i.e. by 1 bit or−14% (in generation 0). However, for lemmas there is less of a systematic pattern
in entropy change over 10 generations. In fact, for the normal and permanently interrupted conditions
there is almost no change at all. Only for the temporarily interrupted condition does the lemma entropy
drop somewhat from 6.23 to 6.09 (−2.2%).

In other words, the entropy drop in word forms over 10 generations of learning is mainly due to loss
of morphological markers (e.g. losing plural marking -l, or agreement marking -o and -i), rather than a
change in the base vocabulary (e.g. replacing vocabulary or using the noun seg where fuv should actually
be used).
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Figure 4: Entropy changes in the artificial language epsilon over 10 generations for both the original
words produced by participants (left panel), and the lemmatized version (right panel). The languages
were either transmitted via normal exposure (black), with temporary interruption (light grey), or with
permanent interruption (dark grey). The vertical dashed lines indicate the generations of interruption in
the “temporarily” interrupted condition.
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4 Discussion

The word entropy/complexity of all Modern Romance languages represented in the PBC and UDHR
parallel texts is lower than that of Classical Latin, which represents an earlier stage of the Romance
genus. Namely, across 10 different descendants the word entropy is reduced by ca. 10-15%. Since this
is a trend found in two independent parallel corpora, it is very unlikely due to effects of register or style
of translation.

Instead, this pattern derives to a large extent from the loss of morphological marking witnessed in the
ca. 2000 years since Romance languages evolved from Vulgar Latin. This is most clearly illustrated by
means of lemmatization. Systematically neutralizing inflectional variants reduces the word entropy in
Latin by around 2.5 bits, but in Spanish, French and Italian only by around 1.5 bits. Put differently, there
is 1 bit less information stored in word forms of these three Modern Romance languages compared to
Latin. Note that this information is not necessarily entirely lost, but potentially traded off for other means
of information encoding beyond the word, e.g. word order (Ehret and Szmrecsanyi, 2016; Koplenig et
al., 2016; Moscoso del Prado, 2011).

A potential caveat of our approach is that we infer grammatical structures used in spoken language
production from analysing written texts. Classical Latin, as represented in the PBC and UDHR texts, is
generally not considered the spoken proto-language of Modern Romance languages. Hence, a careful
interpretation is that our analyses hold for written Latin and written Modern Romance. Written records
are probably more conservative than spoken varieties, and reflect the spoken languages used at an earlier
stage. Having said that, a mechanism for morphological loss in (written) language usage is starting to
emerge from artificial language learning experiments. The data examined here illustrate that morpho-
logical marking can be learned and successfully transmitted under sufficient exposure. That is, the word
type entropy of the artificial language epsilon was largely maintained in the “normal” condition of learn-
ing and transmission. However, when learning pressure is increased by reducing the exposure, imperfect
learning effects kick in, and morphological distinctions are lost, which causes the word entropy to drop
by around 4%, depending on the number of generations of imperfect learners.

These numbers seem relatively small, but over several centuries and millennia they can accumulate
to considerable changes in the morphological structure of languages. Remarkably, the percentages of
reduction from artificial languages also make sense – as an approximation – in the natural language con-
text. If we assume generations of 30 years for a timespan of 2000 years, we arrive at ca. 66 generations.
The word entropy reduction in epsilon (for the temporarily and permanently interrupted conditions) is
approximately 0.3

10 = 0.03 bits per generation. If we multiply this by 66 we predict a reduction of ∼ 2
bits, which is around−18%. This is close to – but somewhat higher than – the 10% to 15% word entropy
reduction we actually find across 10 Modern Romance languages.

5 Conclusion

We have reported three lines of evidence – based on natural language corpora, NLP tools, and experimen-
tal data – to support the hypothesis that changes in morphological complexity from Latin to Romance
languages were driven by imperfect learning scenarios. This suggests more generally that integrating
corpora, computational tools, and experiments is a worthwhile strategy to model and explain complex
scenarios of language change.

First, corpus data of historical and synchronic varieties are a source to help us observe general trends,
rather than cherry-picking examples fitting our hypotheses. This was here illustrated by measuring the
exact word entropy reduction between Latin and Modern Romance languages. Second, computational
tools, such as entropy estimators and lemmatizers, allow us to quantify and further tease apart the ef-
fects in question. In our case study, we established that morphological loss is the main driver for entropy
reduction. Third, psycholinguistic experiments elicit the potential learning pressures at play under differ-
ent scenarios of language transmission. The systematic loss of morphological distinctions in the artificial
language epsilon, driven by “non-natives”, i.e. learners with less exposure, helps to understand the exact
mechanisms of change. They might be subtle when looked at in isolation, but can have considerable
effects when accumulated over time.
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Thus, it is conceivable that elaborate corpus analyses in conjunction with iterated learning experiments
(with several, separate points of interruption, and with artificial languages closely modelled after specific
natural languages) could – for the first time – give us a model of language change “in real time”.
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6 Appendices

6.1 Appendix A. Meaning space used in iterated learning experiment.

Figure 5: The meaning space of one of the initial input languages with the corresponding signals. Sub-
script N denotes noun stems, V - verb stems, PL - plural marker, AGR - agreement marker. Morphemes
are hyphenated for illustration purposes. Reproduced with permission from Berdicevskis and Semenuks
(under revision).
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