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Abstract

Agent-based models of language evolution
have received a lot of attention in the last
two decades. Researchers wish to under-
stand the origin of language, and aim to
compensate for the lacking empirical evi-
dence by utilizing methods from computer
science and artificial life. The paper looks
at the main theories of language evolution:
biological evolution, learning, and cultural
evolution. In particular, the Baldwin effect
in a naming game model is elaborated on
by describing a set of experimental simu-
lations. This is on-going work and ideas
for further investigating the social aspects
of language evolution are also discussed.

1 Introduction

What is language? It is interesting how we can
take a train of thought and transfer this into an-
other person’s mind by pushing the air around us.
Human language, this complex medium that dis-
tinctly separates humans from animals, has baf-
fled scientists for centuries. While animals also
use language, even with a degree of syntax (Kako,
1999), spoken human language exhibits a vastly
more complex structure and spacious variation.

To understand how language works — how it
is used, its origin and fundamentals — our best
information sources are the languages alive (and
some extinct but documented ones). Depending on
definition, there are 6,000–8,000 languages world-
wide today, showing extensive diversity of syntax,
semantics, phonetics and morphology (Evans and
Levinson, 2009). Still, these represent perhaps
only 2% of all languages that have ever existed
(Pagel, 2000). As this is a rather small window, we
want to look back in time. But there is a problem
in linguistic history: our reconstruction techniques
can only take us back some 6,000 to 7,000 years.

Beyond this point, researchers can only speculate
on when and how human language evolved: either
as a slowly proceeding process starting millions
of years (Ma) ago, e.g., 7 Ma ago with the first
appearance of cognitive capacity or 2.5 Ma ago
with the first manufacture of stone implements; or
through some radical change taking place about
100 ka ago with the appearance of the modern hu-
mans or 50–60 ka ago when they started leaving
Africa (Klein, 2008; Tattersall, 2010).

The rest of this introduction covers some key
aspects of language evolution. Section 2 then fo-
cuses on computational models within the field,
while Section 3 describes a specific naming game
model. Finally, Section 4 discusses the results and
some ideas for future work.

1.1 Theories of origin: the biological aspect

There are two main ideas in biological evolution
as to why humans developed the capacity to com-
municate through speech. The first states that lan-
guage (or more precisely the ability to bear the full
structure of language) came as an epiphenomenon,
a by-product (spandrel) of an unrelated mutation.
This theory assumes that a mental language fac-
ulty could not by itself evolve by natural selection;
there would simply be too many costly adaptations
for it to be possible. Thus there should exist an in-
nate capacity in the form of a universal grammar
(Chomsky, 1986), which can hold a finite number
of rules enabling us to carry any kind of language.

According to the second idea, language
emerged in a strictly adaptational process (Pinker
and Bloom, 1990). That is, that language evolu-
tion can be explained by natural selection, in the
same way as the evolution of other complex traits
like echolocation in bats or stereopsis in monkeys.
Both ideas — innate capacity vs natural selection
— have supporters, as well as standpoints that
hold both aspects as important, but at different lev-
els (Deacon, 2010; Christiansen and Kirby, 2003).
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1.2 Theories of origin: the cultural aspect

Biology aside, the forces behind the emergence of
human language are not strictly genetic (and do
not operate only on a phylogenetic time scale).
Kirby (2002) argues that, in addition to biological
evolution, there are two more complex adaptive
(dynamical) systems influencing natural language;
namely cultural evolution (on the glossogenetic
time scale) and learning (which operates on a in-
dividual level, on the ontogenetic time scale).

In addition, there is the interesting Darwinian
idea that cultural learning can guide biological
evolution, a process known as the Baldwin effect
(Baldwin, 1896; Simpson, 1953). This theory ar-
gues that culturally learned traits (e.g., a univer-
sal understanding of grammar or a defense mech-
anism against a predator) can assimilate into the
genetic makeup of a species. Teaching each mem-
ber in a population the same thing over and over
again comes with great cost (time, faulty learn-
ing, genetic complexity), and the overall popula-
tion saves a lot of energy if a learned trait would
become innate. On the other hand, there is a cost
of genetic assimilation as it can prohibit plastic-
ity in future generations and make individuals less
adaptive to unstable environments.

There has been much debate recently whether
language is a result of the Baldwin effect or not
(Evans and Levinson, 2009; Chater et al., 2009;
Baronchelli et al., 2012, e.g.), but questions, hypo-
theses, and simulations fly in both directions.

2 Language evolution and computation

Since the 90s, there has been much work on sim-
ulation of language evolution in bottom-up sys-
tems with populations of autonomous agents. The
field is highly influenced by the work of Steels and
Kirby, respectively, and has been summarized and
reviewed both by themselves and others (Steels,
2011; Kirby, 2002; Gong and Shuai, 2013, e.g.).

Computational research in this field is limited
to modeling very simplified features of human
language in isolation, such as strategies for nam-
ing colors (Bleys and Steels, 2011; Puglisi et al.,
2008), different aspects of morphology (Dale and
Lupyan, 2012), and similar. This simplicity is im-
portant to keep in mind, since it is conceivable that
certain features of language can be highly influ-
enced by other features in real life.

A language game simulation (Steels, 1995) is
a model where artificial agents interact with each

other in turn in order to reach a cooperative goal;
to make up a shared language of some sort, all
while minimizing their cognitive effort. All agents
are to some degree given the cognitive ability to
bear language, but not given any prior knowledge
of how language should look like or how consen-
sus should unfold. No centralized anchors are in-
volved: a simulation is all self-organized.

Agents are chosen (mostly at random) as hearer
and speaker, and made to exchange an utterance
about a certain arbitrary concept or meaning in
their environment. If the agents use the same lan-
guage (i.e., the utterance is understood by both
parties), the conversation is a success. If the
speaker utters something unfamiliar to the hearer,
the conversation is termed a failure. If an agent
wants to express some concept without having any
utterances for it, the agent is assumed to have the
ability to make one up and add this to its memory.
While interpretation in real life is a complex af-
fair, it is mostly assumed that there is a fairly direct
connection between utterance and actual meaning
in language game models (emotions and social sit-
uations do not bias how language is interpreted).

A simple language game normally is charac-
terized by many synonyms spawning among the
agents. As agents commence spreading their own
utterances around, high-weighted words start to be
preferred. Consensus is reached when all agents
know the highest weighted word for each concept.
Commonly, the agents aim to reach a single co-
herent language, but the emergence of multilin-
gualism has also been simulated (Lipowska, 2011;
Roberts, 2012). Cultural evolution can be captured
by horizontal communication between individuals
in the same generation or vertical communication
from adults to children. The latter typically lets the
agents breed, age and die, with the iterated learn-
ing model (Smith et al., 2003) being popular.

A variety of language games exist, from sim-
ple naming games, where the agents’ only topic
concerns one specific object (Lipowska, 2011), to
more cognitive grounding games (Steels and Loet-
zsch, 2012). There have also been studies on some
more complex types of interaction, such as spa-
tial games (Spranger, 2013), factual description
games (van Trijp, 2012) and action games (Steels
and Spranger, 2009), where the agent communi-
cation is about objects in a physical environment,
about real-world events, and about motoric behav-
iors, respectively.
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3 The Baldwin effect in a naming game

Several researchers have created simulations to in-
vestigate the Baldwin effect, starting with Hinton
and Nowlan (1987). Cangelosi and Parisi (2002)
simulate agents who evolve a simple grammatical
language in order to survive in a world filled with
edible and poisonous mushrooms. Munroe and
Cangelosi (2002) used this model to pursue the
Baldwin effect, with partially blind agents initially
having to learn features of edible mushrooms, but
with the learned abilities getting more and more
assimilated into the genome over the generations.
Chater et al. (2009) argue that only stable parts of
language may assimilate into the genetic makeup,
while variation within the linguistic environment
is too unstable to be a target of natural selection.
Watanabe et al. (2008) use a similar model, but in
contrast state that genetic assimilation not neces-
sarily requires a stable linguistic environment.

Lipowska (2011) has pursued the Baldwin ef-
fect in a simple naming game model with the in-
tention of mixing up a language game in a simu-
lation that incorporates both learning, cultural and
biological evolution. The model places a set of
agents in a square lattice of a linear size L, where
every agent is allowed — by a given probability p
— to communicate with a random neighbor.

At each time step, a random agent is chosen and
p initially decides whether the agent is allowed to
communicate or will face a “population update”.
Every agent has an internal lexicon of N words
with associated weights (wj : 1 ≤ j ≤ N ). When-
ever a chosen speaker is to utter a word, the agent
selects a word i from its lexicon with the probabil-
ity wi/

∑N
j=1 wj . If the lexicon is empty (N = 0),

a word is made up. A random neighbor in the lat-
tice is then chosen as the hearer. If both agents
know the uttered word, the dialog is deemed a
success, and if not, a failure. Upon success, both
agents increase the uttered word’s weight in their
lexica by a learning ability variable. Each agent k
is equipped with such a variable l (0 < lk < 1).
This learning ability is meant to, in its simplicity,
reflect the genetic assimilation.

Instead of engaging in communication, the cho-
sen agent is occasionally updated, by a probability
1− p. Agents die or survive with a probability ps

which is given by an equation that takes into ac-
count age, knowledge (lexicon weights in respect
to the population’s average weights), and simula-
tion arguments. If the agent has a high-weighted

lexicon and is young of age, and therefore survives
at a given time step, the agent is allowed to breed
if there are empty spaces in its neighborhood.

All in all, each time step can terminate with
eight different scenarios: in addition to the two
communication scenarios (success or failure), the
scenario where the agent dies, as well as the one
where the agents lives but only has non-empty
neighbors (so that no change is possible), there are
four possibilities for breeding. If the agent breeds,
the off-spring either inherit the parent’s learning
ability or gain a new learning ability, with a proba-
bility pm. With the same mutation probability, the
off-spring also either gains a new word or inherits
the parent’s highest-weight word.

This model was implemented with the aim to
reproduce Lipowska’s results. She argues that her
model is fairly robust to both population size and
her given arguments; however, our experiments
do not support this: as the Baldwin effect unfold,
it does not follow the same abrupt course as in
Lipowska’s model. This could be due to some as-
sumptions that had to be made, since Lipowska
(2011), for instance, presents no details on how
age is calculated. We thus assume that every time
an agent is allowed to communicate, its age gets
incremented. Another possibility could be to in-
crement every agent’s age at every time step, so
that agents get older even if they do not commu-
nicate. Furthermore, the initial values for learn-
ability are not clearly stated. Lipowska uses sev-
eral different values in her analysis. We have used
0.5, which makes a decrease in learnability a part
of the evolutionary search space as well.

Simulations with parameters similar to those
used by Lipowska (2011) [iterations = 200, 000,
mutationchance = 0.01, L = 25, p = 0.4, l = 0.5],
produce results as in Figure 1, showing the highest
weighted word per agent after 50k and 150k time
steps, with each agent being a dot in a “heat map”;
black dots indicate dead agents (empty space).
The number of groups are reduced over time, and
their sizes grow, as more agents agree on a lex-
icon and as favorable mutations spread through
the population, (as indicated by agent learnability;
Figure 2). Even after 200k iterations, consensus is
not reached (which it was in Lipowska’s simula-
tion), but the agent population agrees on one word
if the simulation is allowed to run further. It is nat-
ural to assume that the difference lays in the details
of how age is calculated, as noted above.
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Figure 1: Ca 16 different words dominate the pop-
ulation at iteration 50k and nine at iteration 150k.

Figure 2: Mutations favoring learnability at itera-
tion 50k spread substantially by iteration 150k.

Diverting from Lipowska’s parameters and
skewing towards faster turnover (higher mutation
rate, higher possibility of survival with richer lex-
icon/higher age, etc.), gives behavior similar to
hers, with faster and more abrupt genetic assim-
ilation, as shown Figure 3. The upper line in the
figure represents the fraction of agents alive in the
lattice. It is initially fully populated, but the popu-
lation decreases with time and balances at a point
where death and birth are equally tensioned.

Agents with higher learnability tend to live
longer, and the lower graph in Figure 3 shows the
average learnability in the population. It is roughly
sigmoid (S-shaped; cf. Lipowska’s experiment) as
a result of slow mutation rate in the first phase,
followed by a phase with rapid mutation rate (ca
100k–170k) as the learnability also gets inherited,
and decreasing rate towards the end when mu-
tations are more likely to ruin agent learnability
(when the learning ability l is at its upper limit).
As can be seen in Figure 4, the agents rapidly get
to a stable weighted lexicon before the Baldwin
effect shows itself around time step 100k.

As mentioned, Lipowska’s model did not reflect
the robustness argued in her paper: for other val-
ues of p, the number of empty spots in the popu-
lation lattice starts to diverge substantially, and for
some values all agents simply die. As population
sizes vary, the number of iterations must also be
adjusted to get similar results. If not, the agents
will not reach the same population turn-over as

Figure 3: Fraction of agents alive in the lattice and
average learnability in the population (s-shaped).

Figure 4: Average sum of weights in agent lexica.

for smaller population sizes since only one agent
may be updated per iteration. Lipowska (2011)
compensated with higher mutation rate on simu-
lations with different population sizes; however,
these could be two variables somewhat more inde-
pendent of each other. The model would have been
much more stable if it contained aspects of a typi-
cal genetic algorithm, where agents are allowed to
interact freely within generations. This way, the
model could be acting more upon natural selec-
tion (and in search of the Baldwin effect), instead
of relying on well-chosen parameters to work.

4 Discussion and future work

Language is a complex adaptive system with nu-
merous variables to consider. Thus we must make
a number of assumptions when studying language
and its evolution, and can only investigate certain
aspects at a time through simplifications and ab-
stractions. As this paper has concentrated on the
agent-based models of the field, many studies re-
flecting such other aspects had to be left out.

In addition, there has lately been a lot of work
studying small adjustments to the agent-based
models, in order to make them more realistic by,
for example, having multiple hearers in a lan-
guage game conversations (Li et al., 2013), dif-
ferent topologies (Lei et al., 2010; Lipowska and
Lipowski, 2012), and more heterogeneous popula-
tions (Gong et al., 2006).
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In general, though, simulations on language
evolution tend to have relatively small and fixed
sizes (Baronchelli et al., 2006; Vogt, 2007) — and
few studies seem to take social dynamics (Gong et
al., 2008; Kalampokis et al., 2007) or geography
into account (Patriarca and Heinsalu, 2009).

Further work is still needed to make existing
models more realistic and to analyze relations be-
tween different models (e.g., by combining them).
Biological evolution could be studied with more
flexible (or plastic) neural networks. Cultural evo-
lution could be investigated under more realistic
geographical and demographical influence, while
learning could be analyzed even further in light of
social dynamics, as different linguistic phenom-
ena unfold. Quillinan (2006) presented a model
concerning how a network of social relationships
could evolve with language traits. This model
could be taken further in combination with exist-
ing language games or it could be used to show
how language responds to an exposure of continu-
ous change in a complex social network.

Notably, many present models have a rather
naı̈ve way of selecting cultural parents, and a
genetic algorithm for giving fitness to agents in
terms of having (assimilated) the best strategies
for learning (e.g., memory efficiency), social con-
ventions (e.g., emotions, popularity), and/or sim-
ple or more advanced grammar could be explored.

A particular path we aim to pursue is to study a
language game with a simple grammar under so-
cial influence (e.g., with populations in different
fixed and non-fixed graphs, with multiple hearers),
contained within a genetic algorithm. In such a
setting, the agents must come up with strategies
for spreading and learning new languages, and
need to develop fault-tolerant models for speaking
with close and distant neighbors. This could be a
robust model where a typical language game could
be examined, in respect to both biological and cul-
tural evolution, with a more realistic perspective.
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