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Abstract

In this paper we present a novel approach
(SDSM) that incorporates structure in dis-
tributional semantics. SDSM represents
meaning as relation specific distributions
over syntactic neighborhoods. We em-
pirically show that the model can effec-
tively represent the semantics of single
words and provides significant advantages
when dealing with phrasal units that in-
volve word composition. In particular, we
demonstrate that our model outperforms
both state-of-the-art window-based word
embeddings as well as simple approaches
for composing distributional semantic rep-
resentations on an artificial task of verb
sense disambiguation and a real-world ap-
plication of judging event coreference.

1 Introduction

With the advent of statistical methods for NLP,
Distributional Semantic Models (DSMs) have
emerged as powerful method for representing
word semantics. In particular, the distributional
vector formalism, which represents meaning by a
distribution over neighboring words, has gained
the most popularity.

DSMs are widely used in information re-
trieval (Manning et al., 2008), question answer-
ing (Tellex et al., 2003), semantic similarity com-
putation (Wong and Raghavan, 1984; McCarthy
and Carroll, 2003), automated dictionary building
(Curran, 2003), automated essay grading (Lan-
dauer and Dutnais, 1997), word-sense discrimina-
tion and disambiguation (McCarthy et al., 2004;
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Schiitze, 1998), selectional preference model-
ing (Erk, 2007) and identification of translation
equivalents (Hjelm, 2007).

Systems that use DSMs implicitly make a bag
of words assumption: that the meaning of a phrase
can be reasonably estimated from the meaning of
its constituents. However, semantics in natural
language is a compositional phenomenon, encom-
passing interactions between syntactic structures,
and the meaning of lexical constituents. It fol-
lows that the DSM formalism lends itself poorly
to composition since it implicitly disregards syn-
tactic structure. For instance, the distributions for
“Lincoln”, “Booth”, and “killed” when merged
produce the same result regardless of whether the
input is “Booth killed Lincoln” or “Lincoln killed
Booth”. As suggested by Pantel and Lin (2000)
and others, modeling the distribution over prefer-
ential attachments for each syntactic relation sep-
arately can yield greater expressive power.

Attempts have been made to model linguistic
composition of individual word vectors (Mitchell
and Lapata, 2009), as well as remedy the inher-
ent failings of the standard distributional approach
(Erk and Padd, 2008). The results show vary-
ing degrees of efficacy, but have largely failed to
model deeper lexical semantics or compositional
expectations of words and word combinations.

In this paper we propose an extension to the
traditional DSM model that explicitly preserves
structural information and permits the approxima-
tion of distributional expectation over dependency
relations. We extend the generic DSM model by
representing a word as distributions over relation-
specific syntactic neighborhoods. One can think
of the Structured DSM (SDSM) representation
of a word/phrase as several vectors defined over
the same vocabulary, each vector representing the

Proceedings of the Workshop on Continuous Vector Space Models and their Compositionality, pages 20-29,
Sofia, Bulgaria, August 9 2013. (©2013 Association for Computational Linguistics



word’s selectional preferences for a different syn-
tactic argument. We argue that this represen-
tation captures individual word semantics effec-
tively, and is better able to express the semantics
of composed units.

The overarching theme of our framework of
evaluation is to explore the semantic space of the
SDSM. We do this by measuring its ability to dis-
criminate between varying surface forms of the
same underlying concept. We perform the follow-
ing set of experiments to evaluate its expressive
power, and conclude the following:

1. Experiments with single words on similar-
ity scoring and substitute selection: SDSM
performs at par with window-based distribu-
tional vectors.

. Experiments with phrasal units on two-word
composition: state-of-the-art results are pro-
duced on the dataset from Mitchell and Lap-
ata (2008) in terms of correlation with human
judgment.

. Experiments with larger structures on the
task of judging event coreferentiality: SDSM
shows superior performance over state-of-
the-art window-based word embeddings, and
simple models for composing distributional
semantic representations.

2 Related Work

Distributional Semantic Models are based on the
intuition that “a word is characterized by the com-
pany it keeps” (Firth, 1957). While DSMs have
been very successful on a variety of NLP tasks,
they are generally considered inappropriate for
deeper semantics because they lack the ability to
model composition, modifiers or negation.

Recently, there has been a surge in studies to
model a stronger form of semantics by phrasing
the problem of DSM compositionality as one of
vector composition. These techniques derive the
meaning of the combination of two words a and
b by a single vector ¢ = f(a,b). Mitchell and
Lapata (2008) propose a framework to define the
composition ¢ = f(a,b,r, K) where r is the re-
lation between a and b, and K is the additional
knowledge used to define composition.

While the framework is quite general, most
models in the literature tend to disregard K and
r and are generally restricted to component-wise
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addition and multiplication on the vectors to be
composed, with slight variations. Dinu and Lap-
ata (2010) and Séaghdha and Korhonen (2011) in-
troduced a probabilistic model to represent word
meanings by a latent variable model. Subse-
quently, other high-dimensional extensions by
Rudolph and Giesbrecht (2010), Baroni and Zam-
parelli (2010) and Grefenstette et al. (2011), re-
gression models by Guevara (2010), and recursive
neural network based solutions by Socher et al.
(2012) and Collobert et al. (2011) have been pro-
posed.

Pantel and Lin (2000) and Erk and Padé (2008)
attempted to include syntactic context in distri-
butional models. However, their approaches do
not explicitly construct phrase-level meaning from
words which limits their applicability to real world
problems. A quasi-compositional approach was
also attempted in Thater et al. (2010) by a system-
atic combination of first and second order context
vectors. To the best of our knowledge the formu-
lation of composition we propose is the first to ac-
count for K and r within the general framework
of composition ¢ = f(a,b,r, K).

3 Structured Distributional Semantics

In this section, we describe our Structured Distri-
butional Semantic framework in detail. We first
build a large knowledge base from sample english
texts and use it to represent basic lexical units.
Next, we describe a technique to obtain the repre-
sentation for larger units by composing their con-
stituents.

3.1 The PropStore

To build a lexicon of SDSM representations for
a given vocabulary we construct a proposition
knowledge base (the PropStore) by processing the
text of Simple English Wikipedia through a de-
pendency parser. Dependency arcs are stored as
3-tuples of the form (wy, 7, w2), denoting occur-
rences of words w; and word wo related by the
syntactic dependency r. We also store sentence
identifiers for each triple for reasons described
later. In addition to the words’ surface-forms, the
PropStore also stores their POS tags, lemmas, and
Wordnet supersenses.

The PropStore can be used to query for pre-
ferred expectations of words, supersenses, re-
lations, etc., around a given word. In the
example in Figure 1, the query (SST(W7)



John eats pasta Mary eats Spaghetti with chopsticks Cows ruminate

1) {(John/NNP/john/Noun.person, nsubj, eats/VBG/eat/verb.consumption ),
(eats/VBG/eat/verb.consumption, dobj, pasta/NN/pasta/noun.food) }

2) {(Mary/NNP/mary/Noun.person), nsubj, (eats/VBG/eat/verb.consumption) ... }

3) {(Cows/NNP/cow/Noun.animal),nsubj,(ruminate/VBG/ruminate/verb.consumption) }

Figure 1: Sample sentences & triples

verb.consumption, ?, dobj) i.e., “what is
consumed”, might return expectations [pasta:l,
spaghetti:1, mice:1 ...]. In our implementation,
the relations and POS tags are obtained using the
Fanseparser (Tratz and Hovy, 2011), supersense
tags using sst-light (Ciaramita and Altun, 2006),
and lemmas are obtained from Wordnet (Miller,
1995).

3.2 Building the Representation

Next, we describe a method to represent lexical
entries as structured distributional matrices using
the PropStore.

The canonical form of a concept C' (word,
phrase etc.) in the SDSM framework is a matrix
MC, whose entry Mg is a list of sentence identi-
fiers obtained by querying the PropStore for con-
texts in which C' appears in the syntactic neigh-
borhood of the word j linked by the dependency
relation ¢. As with other distributional models in
the literature, the content of a cell is the frequency
of co-occurrence of its concept and word under the
given relational constraint.

This canonical matrix form can be interpreted
in several different ways. Each interpretation is
based on a different normalization scheme.

1. Row Norm: Each row of the matrix is inter-
preted as a distribution over words that attach
to the target concept with the given depen-
dency relation.

M;;

ME =

i Vi

Full Norm: The entire matrix is interpreted
as a distribution over the word-relation pairs
which can attach to the target concept.

Vi, j
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Figure 2: Mimicking composition of two words

. Collapsed Vector Norm: The columns of
the matrix are collapsed to form a standard
normalized distributional vector trained on
dependency relations rather than sliding win-
dows.

M€ = ZiMis
T X M

vj

3.3 Mimicking Compositionality

For representing intermediate multi-word phrases,
we extend the above word-relation matrix sym-
bolism in a bottom-up fashion. The combina-
tion hinges on the intuition that when lexical units
combine to form a larger syntactically connected
phrase, the representation of the phrase is given
by its own distributional neighborhood within the
embedded parse tree. The distributional neighbor-
hood of the net phrase can be computed using the
PropStore given syntactic relations anchored on its
parts. For the example in Figure 1, we can com-
pose SST(w;) = Noun.person and Lemma(W7)
= eat with relation ‘nsubj’ to obtain expectations
around “people eat” yielding [pasta:1, spaghetti:1
... ] for the object relation ([dining room:2, restau-
rant:1 .. .] for the location relation, etc.) (See Fig-
ure 2). Larger phrasal queries can be built to an-
swer questions like “What do people in China eat
with?”, “What do cows do?”, etc. All of this helps



us to account for both relation r and knowledge K
obtained from the PropStore within the composi-
tional framework ¢ = f(a, b, r, K).

The general outline to obtain a composition of
two words is given in Algorithm 1. Here, we
first determine the sentence indices where the two
words w; and wy occur with relation . Then,
we return the expectations around the two words
within these sentences. Note that the entire algo-
rithm can conveniently be written in the form of
database queries to our PropStore.

Algorithm 1 ComposePair(wy, r, ws)
My «— queryMatrix(w)
My «+— queryMatrix(ws)
SentIDs «— M (r) N Ma(r)
return ((M;N SentIDs) U (MM SentIDs))

Similar to the two-word composition process,
given a parse subtree 1" of a phrase, we obtain
its matrix representation of empirical counts over
word-relation contexts. This procedure is de-
scribed in Algorithm 2. Let the E = {e;...e}
be the set of edges in 7', e; = (wj1, i, wi2)Vi =
1...n.

Algorithm 2 ComposePhrase(1T")

SentIDs « All Sentences in corpus
fori=1—ndo

M;1 < queryMatrix(w;)

Mo «— queryMatrix(w;2)

SentIDs « SentIDs N(M (r;) N Ma(r;))
end for
return ((M71N SentIDs) U (Mi2N SentIDs)
-~ U (M,1N SentIDs) U (M,,0oN SentIDs))

3.4 Tackling Sparsity

The SDSM model reflects syntactic properties of
language through preferential filler constraints.
But by distributing counts over a set of relations
the resultant SDSM representation is compara-
tively much sparser than the DSM representation
for the same word. In this section we present some
ways to address this problem.

3.4.1 Sparse Back-off

The first technique to tackle sparsity is to back
off to progressively more general levels of lin-
guistic granularity when sparse matrix represen-
tations for words or compositional units are en-
countered or when the word or unit is not in the
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lexicon. For example, the composition “Balthazar
eats” cannot be directly computed if the named en-
tity “Balthazar” does not occur in the PropStore’s
knowledge base. In this case, a query for a su-
persense substitute — “Noun.person eat” — can be
issued instead. When supersenses themselves fail
to provide numerically significant distributions for
words or word combinations, a second back-off
step involves querying for POS tags. With coarser
levels of linguistic representation, the expressive
power of the distributions becomes diluted. But
this is often necessary to handle rare words. Note
that this is an issue with DSMs too.

3.4.2 Densification

In addition to the back-off method, we also pro-
pose a secondary method for “densifying” distri-
butions. A concept’s distribution is modified by
using words encountered in its syntactic neighbor-
hood to infer counts for other semantically similar
words. In other terms, given the matrix represen-
tation of a concept, densification seeks to popu-
late its null columns (which each represent a word-
dimension in the structured distributional context)
with values weighted by their scaled similarities to
words (or effectively word-dimensions) that actu-
ally occur in the syntactic neighborhood.

For example, suppose the word “play” had an
“nsubj” preferential vector that contained the fol-
lowing counts: [cat:4 ; Jane:2]. One might then
populate the column for “dog” in this vector with
a count proportional to its similarity to the word
cat (say 0.8), thus resulting in the vector [cat:4 ;
Jane:2 ; dog:3.2]. These counts could just as well
be probability values or PMI associations (suitably
normalized). In this manner, the k£ most similar
word-dimensions can be densified for each word
that actually occurs in a syntactic context. As with
sparse back-off, there is an inherent trade-off be-
tween the degree of densification k and the expres-
sive power of the resulting representation.

3.4.3 Dimensionality Reduction

The final method tackles the problem of sparsity
by reducing the representation to a dense low-
dimensional word embedding using singular value
decomposition (SVD). In a typical term-document
matrix, SVD finds a low-dimensional approxima-
tion of the original matrix where columns become
latent concepts while similarity structure between
rows are preserved. The PropStore, as described in
Section 3.1, is an order-3 tensor with w, wo and



rel as its three axes. We explore the following two
possibilities to perform dimensionality reduction
using SVD.

Word-word matrix SVD. In this experiment,
we preserve the axes w; and wy and ignore the re-
lational information. Following the SVD regime (
W = UXVT) where ¥ is a square diagonal ma-
trix of k largest singular values, and U and V are
m X k and n X k matrices respectively. We adopt
matrix U as the compacted concept representation.

Tensor SVD. To remedy the relation-agnostic
nature of the word-word SVD matrix represen-
tation, we use tensor SVD (Vasilescu and Ter-
zopoulos, 2002) to preserve the structural infor-
mation. The mode-n vectors of an order-N tensor
AcRItxIexXIN are the [, -dimensional vectors
obtained from A by varying index 7,, while keep-
ing other indices fixed. The matrix formed by all
the mode-n vectors is a mode-n flattening of the
tensor. To obtain the compact representations of
concepts we thus first apply mode w; flattening
and then perform SVD on the resulting tensor.

4 Single Word Evaluation

In this section we describe experiments and re-
sults for judging the expressive power of the struc-
tured distributional representation for individual
words. We use a similarity scoring task and a lexi-
cal substitute selection task for the purpose of this
evaluation. We compare the SDSM representa-
tion to standard window-based distributional vec-
tors trained on the same corpus (Simple English
Wikipedia). We also experiment with different
normalization techniques outlined in Section 3.2,
which effectively lead to structured distributional
representations with distinct interpretations.

We experimented with various similarity met-
rics and found that the normalized cityblock dis-
tance metric provides the most stable results.

ArcTan(d(X,Y))
d(X,Y)
1

m Z d(Xra Y;")

reER

CityBlock(X,Y)

d(X,Y) =

Results in the rest of this section are thus reported
using the normalized cityblock metric. We also
report experimental results for the two methods
of alleviating sparsity discussed in Section 3.4,
namely, densification and SVD.

4.1 Similarity Scoring

On this task, the different semantic representations
were used to compute similarity scores between
two (out of context) words. We used a dataset
from Finkelstein et al. (2002) for our experiments.
It consists of 353 pairs of words along with an av-
eraged similarity score on a scale of 1.0 to 10.0
obtained from 13-16 human judges.

4.2 Lexical Substitute Selection

In the second task, the same set of semantic repre-
sentations was used to produce a similarity rank-
ing on the Turney (2002) ESL dataset. This dataset
comprises 50 words that appear in a context (we
discarded the context in this experiment), along
with 4 candidate lexical substitutions. We eval-
uate the semantic representations on the basis of
their ability to discriminate the top-ranked candi-
date.!

4.3 Results and Discussion

Table 1 summarizes the results for the window-
based baseline and each of the structured distri-
butional representations on both tasks. It shows
that our representations for single words are com-
petitive with window based distributional vectors.
Densification in certain conditions improves our
results, but no consistent pattern is discernible.
This can be attributed to the trade-off between the
gain from generalization and the noise introduced
by semantic drift.

Hence we resort to dimensionality reduction as
an additional method of reducing sparsity. Table
2 gives correlation scores on the Finkelstein et al.
(2002) dataset when SVD is performed on the rep-
resentations, as described in Section 3.4.3. We
give results when 100 and 500 principal compo-
nents are preserved for both SVD techniques.

These experiments suggest that though afflicted
by sparsity, the proposed structured distributional
paradigm is competitive with window-based dis-
tributional vectors. In the following sections we
show that that the framework provides consid-
erably greater power for modeling composition
when dealing with units consisting of more than
one word.

'"While we are aware of the standard lexical substitution
corpus from McCarthy and Navigli (2007) we chose the one
mentioned above for its basic vocabulary, lower dependence
on context, and simpler evaluation framework.



[ Model

| Finklestein (Corr.) [ ESL (% Acc.) |

DSM 0.283 0.247
Collapsed 0.260 0.178
FullNorm 0.282 0.192
RowNorm 0.236 0.264

Densified RowNorm 0.259 0.267

Table 1: Single Word Evaluation

[ Model [ Correlation ]
matSVD100 0.207
matSVD500 0.221
tenSVD100 0.267
tenSVD500 0.315

Table 2: Finklestein: Correlation using SVD

5 Verb Sense Disambiguation using
Composition

In this section, we examine how well our model
performs composition on a pair of words. We
derive the compositional semantic representations
for word pairs from the M&L dataset (Mitchell
and Lapata, 2008) and compare our performance
with M&L’s additive and multiplicative models of
composition.

5.1 Dataset

The M&L dataset consists of polysemous intransi-
tive verb and subject pairs that co-occur at least 50
times in the BNC corpus. Additionally two land-
mark words are given for every polysemous verb,
each corresponding to one of its senses. The sub-
ject nouns provide contextual disambiguation for
the senses of the verb. For each [subject, verb,
landmark] tuple, a human assigned score on a 7-
point scale is provided, indicating the compatibil-
ity of the landmark with the reference verb-subj
pair. For example, for the pair “gun bomb”, land-
mark “thunder” is more similar to the verb than
landmark “prosper”. The corpus contains 120 tu-
ples and altogether 3600 human judgments. Re-
liability of the human ratings is examined by cal-
culating inter-annotator Spearman’s p correlation
coefficient.

5.2 Experiment procedure

For each tuple in the dataset, we derive the com-
posed word-pair matrix for the reference verb-subj
pair based on the algorithm described in Section
3.3 and query the single-word matrix for the land-
mark word. A few modifications are made to ad-
just the algorithm for the current task:
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1. In our formulation, the dependency relation
needs to be specified in order to compose
a pair of words. Hence, we determine the
five most frequent relations between w; and
wg by querying the PropStore. We then use
the algorithm in Section 3.3 to compose the
verb-subj word pair using these relations, re-
sulting in five composed representations.

. The word pairs in M&L corpus are ex-
tracted from a parsed version of the BNC cor-
pus, while our PropStore is built on Simple
Wikipedia texts, whose vocabulary is signif-
icantly different from that of the BNC cor-
pus. This causes null returns in our PropStore
queries, in which case we back-off to retriev-
ing results for super-sense tags of both the
words. Finally, the composed matrix and the
landmark matrix are compared against each
other by different matrix distance measures,
which results in a similarity score. For a [sub-
ject, verb, landmark] tuple, we average the
similarity scores yielded by the relations ob-
tained in 1.

The Spearman Correlation p between our sim-
ilarity ratings and the ones assigned by human
judges is computed over all the tuples. Follow-
ing M&L'’s experiments, the inter-annotator agree-
ment correlation coefficient serves an upper bound
on the task.

5.3 Results and Discussion

As in Section 4, we choose the cityblock mea-
sure as the similarity metric of choice. Table 3
shows the evaluation results for two word compo-
sition. Except for row normalization, both forms
of normalization in the structured distributional
paradigm show significant improvement over the
results reported by M&L. The results are statisti-
cally significant at p-value = 0.004 and 0.001 for
Full Norm and Collapsed Vector Norm, respec-
tively.

[ Model [ p ]
M&L combined 0.19
Row Norm 0.134
Full Norm 0.289
Collapsed Vector Norm | 0.259
UpperBound 0.40

Table 3: Two Word Composition Evaluation

These results validate our hypothesis that the in-
tegration of structure into distributional semantics



as well as our framing of word composition to-
gether outperform window-based representations
under simplistic models of composition such as
addition and multiplication. This finding is further
re-enforced in the following experiments on event
coreferentiality judgment.

6 Event Coreference Judgment

Given the SDSM formulation and assuming no
sparsity constraints, it is possible to calculate
SDSM matrices for composed concepts. However,
are these correct? Intuitively, if they truly capture
semantics, the two SDSM matrix representations
for “Booth assassinated Lincoln” and “Booth shot
Lincoln with a gun" should be (almost) the same.
To test this hypothesis we turn to the task of pre-
dicting whether two event mentions are coreferent
or not, even if their surface forms differ.

While automated resolution of entity coref-
erence has been an actively researched area
(Haghighi and Klein, 2009; Stoyanov et al., 2009;
Raghunathan et al., 2010), there has been rela-
tively little work on event coreference resolution.
Lee et al. (2012) perform joint cross-document
entity and event coreference resolution using the
two-way feedback between events and their argu-
ments.

In this paper, however, we only consider coref-
erentiality between pairs of events. Formally,
two event mentions generally refer to the same
event when their respective actions, agents, pa-
tients, locations, and times are (almost) the same.
Given the non-compositional nature of determin-
ing equality of locations and times, we represent
each event mention by a triple E = (e, a, p) for
the event, agent, and patient.

While linguistic theory of argument realiza-
tion is a debated research area (Levin and Rap-
paport Hovav, 2005; Goldberg, 2005), it is com-
monly believed that event structure (Moens and
Steedman, 1988) centralizes on the predicate,
which governs and selects its role arguments
(Jackendoff, 1987). In the corpora we use for
our experiments, most event mentions are verbs.
However, when nominalized events are encoun-
tered, we replace them by their verbal forms. We
use SRL Collobert et al. (2011) to determine the
agent and patient arguments of an event mention.
When SRL fails to determine either role, its empir-
ical substitutes are obtained by querying the Prop-
Store for the most likely word expectations for the
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role. The triple (e, a,p) is thus the composition
of the triples (a, relqgent, €) and (p, relpatient, €),
and hence a complex object. To determine equal-
ity of this complex composed representation we
generate three levels of progressively simplified
event constituents for comparison:

Level 1: Full Composition:

Mty = ComposePhrase(e, a,p).
Level 2: Partial Composition:

Mpart:p4 = ComposePair(e,r, a)

Mpari.5p = ComposePair(e,r,p).
Level 3: No Composition:

Mg = queryMatriz(e)

My = queryMatriz(a)

Mp = queryMatriz(p).

To judge coreference between
events E1 and E2, we compute pair-
wise similarities Sim(M 1 gy, M2gu1),
Sim(M1part:E4, M2pare:Ea), etc., for each

level of the composed triple representation. Fur-
thermore, we vary the computation of similarity
by considering different levels of granularity
(lemma, SST), various choices of distance metric
(Euclidean, Cityblock, Cosine), and score nor-
malization techniques (Row-wise, Full, Column
collapsed). This results in 159 similarity-based
features for every pair of events, which are used
to train a classifier to make a binary decision for
coreferentiality.

6.1 Datasets

We evaluate our method on two datasets and com-
pare it against four baselines, two of which use
window based distributional vectors and two that
employ weaker forms of composition.

IC Event Coreference Corpus: The dataset
(citation suppressed), drawn from 100 news arti-
cles about violent events, contains manually cre-
ated annotations for 2214 pairs of co-referent
and non-coreferent events each. Where available,
events’ semantic role-fillers for agent and patient
are annotated as well. When missing, empirical
substitutes were obtained by querying the Prop-
Store for the preferred word attachments.

EventCorefBank (ECB) corpus: This corpus
(Bejan and Harabagiu, 2010) of 482 documents
from Google News is clustered into 45 topics,
with event coreference chains annotated over each
topic. The event mentions are enriched with se-
mantic roles to obtain the canonical event struc-
ture described above. Positive instances are ob-



[ [ IC Corpus [ ECB Corpus ]
Prec Rec F-1 Acc Prec Rec F-1 Acc
SDSM | 0916 | 0.929 | 0.922 | 0.906 | 0.901 | 0.401 | 0.564 | 0.843
Senna | 0.850 | 0.881 | 0.865 | 0.835 | 0.616 | 0.408 | 0.505 | 0.791
DSM | 0.743 | 0.843 | 0.790 | 0.740 | 0.854 | 0.378 | 0.524 | 0.830
MVC | 0.756 | 0961 | 0.846 | 0.787 | 0.914 | 0.353 | 0.510 | 0.831
AVC 0.753 | 0.941 | 0.837 | 0.777 | 0.901 | 0.373 | 0.528 | 0.834

Table 4: Cross-validation Performance on IC and ECB dataset

tained by taking pairwise event mentions within
each chain, and negative instances are generated
from pairwise event mentions across chains, but
within the same topic. This results in 11039 posi-
tive instances and 33459 negative instances.

6.2 Baselines:

To establish the efficacy of our model, we com-
pare SDSM against a purely window-based base-
line (DSM) trained on the same corpus. In our ex-
periments we set a window size of three words to
either side of the target. We also compare SDSM
against the window-based embeddings trained us-
ing a recursive neural network (SENNA) (Col-
lobert et al., 2011) on both datsets. SENNA em-
beddings are state-of-the-art for many NLP tasks.
The second baseline uses SENNA to generate
level 3 similarity features for events’ individual
words (agent, patient and action). As our final
set of baselines, we extend two simple techniques
proposed by Mitchell and Lapata (2008) that use
element-wise addition and multiplication opera-
tors to perform composition. The two baselines
thus obtained are AVC (element-wise addition)
and MVC (element-wise multiplication).

6.3 Results and Discussion:

We experimented with a number of common clas-
sifiers, and selected decision-trees (J48) as they
give the best classification accuracy. Table 4 sum-
marizes our results on both datasets.

The results reveal that the SDSM model con-
sistently outperforms DSM, SENNA embeddings,
and the MVC and AVC models, both in terms
of F-1 score and accuracy. The IC corpus com-
prises of domain specific texts, resulting in high
lexical overlap between event mentions. Hence,
the scores on the IC corpus are consistently higher
than those on the ECB corpus.

The improvements over DSM and SENNA em-
beddings, support our hypothesis that syntax lends
greater expressive power to distributional seman-
tics in compositional configurations. Furthermore,
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the increase in predictive accuracy over MVC and
AVC shows that our formulation of composition
of two words based on the relation binding them
yields a stronger form of composition than simple
additive and multiplicative models.

Next, we perform an ablation study to deter-
mine the most predictive features for the task of
determining event coreferentiality. The forward
selection procedure reveals that the most informa-
tive attributes are the level 2 compositional fea-
tures involving the agent and the action, as well as
their individual level 3 features. This corresponds
to the intuition that the agent and the action are the
principal determiners for identifying events. Fea-
tures involving the patient and level 1 features are
least useful. The latter involves full composition,
resulting in sparse representations and hence have
low predictive power.

7 Conclusion and Future Work

In this paper we outlined an approach that intro-
duces structure into distributional semantics. We
presented a method to compose distributional rep-
resentations of individual units into larger com-
posed structures. We tested the efficacy of our
model on several evaluation tasks. Our model’s
performance is competitive for tasks dealing with
semantic similarity of individual words, even
though it suffers from the problem of sparsity.
Additionally, it outperforms window-based ap-
proaches on tasks involving semantic composi-
tion. In future work we hope to extend this for-
malism to other semantic tasks like paraphrase de-
tection and recognizing textual entailment.
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