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1 Introduction

We describe our contribution to the Generating
from Knowledge Bases (KBgen) challenge. Our
system is learned in a bottom-up fashion, by in-
ducing a probabilistic grammar that represents
alignments between strings and parts of a knowl-
edge graph. From these alignments, we extract
information about the linearization and lexical
choices associated with the target knowledge base,
and build a simple generate-and-rank system in the
style of (Langkilde and Knight, 1998).1

2 Semantic Parsing and Alignments

A first step in building our generator involves find-
ing alignments between phrases and their ground-
ings in the target knowledge base. Figure 1 shows
an example sentence from training paired with the
corresponding triple relations. A partial lexicon is
provided, indicating the relation between a subset
of words and their concepts.

Using the triples, we automatically construct
a probabilistic context-free grammar (PCFG) by
converting these triples to rewrite rules, using
ideas from (Börschinger et al., 2011). The right
hand side of the rules represent the constituents
of the triples in all orders (initially with a uni-
form probability) since the linear realization of a
triple relation in the language might vary. This
is rewritten back to each of its constituents to al-
low for interaction with other concepts that sat-
isfy further domain relations. Individual concepts,
represented in the grammar as preterminals, are
assigned to the associated words in the lexicon,
while unknown words are mapped to all concepts
with equal probability.

Following (Börschinger et al., 2011), sentences
in the training are restricted to analyses corre-
sponding to their gold triple relations, and the
inside-outside algorithm, a variant of EM, is ap-
plied to learn the corresponding PCFG parame-
ters. In intuitive terms, the learning algorithm iter-
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atively maximizes the probability of rules that de-
rive the correct triple relations in training, looking
over several examples. For example, the unknown
word are in Figure 1 is learned to indicate the re-
lation object since it often occurs in training con-
texts where this relation occurs between entities
surrounding it. The syntax of how triples are com-
posed and ordered in the language is also learned
in an analogous way.

We annotate the development data with the most
probable trees predicted by the PCFG. Figure 1
shows the viterbi parse for the given sentence af-
ter training. Bascially, it defines a spanning tree
for the knowledge graph given in the input. Each
ternary subtree indicates a triple relation detected
in the sentence, and the root node of this subtree
specifies the head (or first argument) of the triple
relation. Note that some triple relations are not
found (e.g. the base relation), since they are im-
plicit in the language.

3 Grammar and Lexicon Extraction

The viterbi trees learned in the previous step for
the development set are used for constructing a
generation grammar that specifies the mapping be-
tween triples and surface realizations. The tree in
Figure 1 indicates, for example, that the second ar-
gument of an object relation can be realized to the
left of the relation and its first argument. We also
learn that the site relation can be lexicalized as the
phrase in the.

Grammar A non-lexical production in a tree
corresponds to a surface realization of an input
triple. We iterate over all productions of the trees
in the development data and aggregate counts of
concept orderings over all instances of a relation.
We distinguish preterminal concepts (preterm)
that map to a lexical entry and nonterminal con-
cepts (nonterm) that embed another subtree. Ex-
ample (1) and (2) illustrate rules that apply to the
tree in Figure 1 for ordering the site and object re-
lation. The rule for object introduces ambiguity.
Note that (2-a) deletes the object phrase.

(1) Input: (Anonterm,r-site,Bnonterm)
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:TRIPLES ( (|Intracellular-Digestion36204| |object| |Polymer36220|)
(|Intracellular-Digestion36204| |base| |Eukaryotic-Cell36203|)
(|Intracellular-Digestion36204| |site| |Lysosome36202|)
(|Eukaryotic-Cell36203| |has-part| |Lysosome36202|))

Figure 1: A semantic parse (top) learned from the the triples (bottom) provided during training. Words/concepts in bold are
known from the lexicon, while the rest is learned along with the syntax of triple combination. Triple instances in the tree are
marked with square brackets.

a. rhs: Anonterm r-site Bnonterm; 1.0

(2) Input: (Apreterm,r-object,Bpreterm)
a. rhs: Apreterm Bpreterm; 0.33
b. rhs: Bpreterm r-object Apreterm; 0.3
c. ...

Lexicon For each preterminal in the trees, we
extract its lexical span in the surface sentence. For
instance, we extract 15 phrases as possible real-
izations for the base relation (e.g. “for the”, “in
the”, “of a”, “from a”). This is merged with the
provided lexicon, to create an expanded lexicon.

4 Generation Pipeline

The main idea of the generator is to produce a
(possibly large) set of output candidates licensed
by the grammar and the lexicon. In a final step,
these candidates are ranked with the help of a
language model, a common approach in statisti-
cal generation (Langkilde and Knight, 1998). We
train our language model on the GENIA corpus
(Ohta et al., 2002). Below is our overall pipeline.

1. compute all spanning trees licensed by the input triples

2. for each spanning tree from step 1, compute all surface
linearizations licensed by the generation grammar

3. for each linearized tree from step 2, compute all surface
sentences licensed by the expanded lexicon

4. rank surface candidates with a language model

The set of spanning trees produced in step 1 is
typically small. We prune the set of possible lin-
earizations based on the counts in the generation
grammar, and consider only the two most likely
orderings for each input triple. We also prune the
set of possible lexicalizations and refine it with
some linguistic constraints described below.

Linguistic Constraints The viterbi trees
learned in the alignment step do not capture any
linguistic properties of the sentences in terms of
morpho-syntactic categories. As a consequence,
most of the output candidates coming from step 3
are ungrammatical. Ungrammatical sentences do
not necessarily get low scores from the language
model as it captures local relations between
neighbouring words. We introduce some simple
candidate filters to ensure some basic linguistic
constraints. With the help of the lexicon and some
heuristics, we tag all lexical entries containing a
finite verb. In step 3, we filter all candidates that
a) have no finite verb, b) have a finite verb as the
first or last word, c) realize two finite verbs next
to each other.

Conclusion We explore the use of Semantic
Parsing techniques, coupled with corpus-based
generation. We expect that our prototype would
benefit from further development of the linguistic
components, given that it is built with minimal re-
sources.
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