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Abstract

The area of temporal information extraction has recentty$ed on temporal relation classifica-
tion. This task is about classifying the temporal relatipre€edence, overlap, etc.) holding between
two given entities (events, dates or times) mentioned irxia fhis interest has largely been driven
by the two recent TempEval competitions.

Even though logical constraints on the structure of possibts of temporal relations are obvious,
this sort of information deserves more exploration in thetegt of temporal relation classification.
In this paper, we show that logical inference can be used praue—sometimes dramatically—
existing machine learned classifiers for the problem of @malrelation classification.

1 Introduction

Recent years have seen renewed interest in extracting tahipformation from text. Evaluation cam-
paigns like the two TempEval challenges (Verhagen et al.0RBave brought an increased interest to this
topic. The two TempEval challenges focused on ordering ¥eeats and the dates and times mentioned
in text. Since then, temporal processing has expanded Hejierproblems presented in TempEval, like
for instance the work of Pan et al. (2011), which is aboutrliggy event durations.

Temporal information processing is important and relateé number of applications, including
event co-reference resolution (Bejan and Harabagiu, 2@@®stion answering (Ahn et al., 2006; Sa-
quete et al., 2004; Tao et al., 2010) and information extractLing and Weld, 2010). Another ap-
plication is learning narrative event chains or scriptsgf@bers and Jurafsky, 2008b; Regneri et al.,
2010), which are “sequences of events that describe someitgical human activity” (i.e. eating at a
restaurant involves looking at the menu, then ordering fetd).

This paper focuses on assessing the impact of temporalrmiegson the problem of temporal infor-
mation extraction. We will show that simple classifiersreal for the TempEval tasks can be improved
by extending their feature set with features that can be ctedpwith automated reasoning.

2 Temporal Information Processing

The two TempEval challenges made available annotated é#dafa the training and evaluation of
temporal information systems. Figure 1 shows a sample cktlamnotations, taken from the English
data used in the first TempEval. The annotation scheme idc@lmeML (Pustejovsky et al., 2003).

Temporal expressions are enclosed InVEX3 tags. A normalized representation of the time point
or interval denoted by time expressions is encoded ivtleue attribute of TI MEX3 elements.

Event terms are annotated wWHYENT tags. The annotations in Figure 1 are simplified and do not
show all attributes of TimeML elements. For instance, thegiete annotation for the terareatedin
that figure is:<EVENT ei d="el" cl ass="OCCURRENCE" stenr"create" aspect=
"NONE" tense="PAST" pol arity="P0S" pos="VERB">createc/ EVENT>.

Several attributes describe lexical and morpho-syntdetitures of these terms, suchstsem(its
dictionary form),pos (its part-of-speech)}, ense (its grammatical tense, if it is a verbgspect (its
grammatical aspectpol arity (whether it occurs in a positive or negative context). Thess



<TI MEX3 tid="t190" type="TIME" val ue="1998-02-06T22: 19: 00"

functi onl nDocument =" CREATI ONLTI ME" >02/06/1998 22:19:06/ T MEX3>

<s>WASHINGTON The economy<EVENT ei d="el" >created/ EVENT> jobs at a surprisingly robust pace in
<TIMEX3 tid="t191" type="DATE" val ue="1998- 01" >Januaryx/ TI MEX3>, the government<EVENT
ei d="e4" >reporteck/ EVENT> on <TI MEX3 tid="t 193" type="DATE"

val ue="1998- 02- 06" >Friday</ TI MEX3>, evidence that America’s economic stamina heSVENT

ei d="e6" >withstoock/ EVENT> any <EVENT ei d="e7" >disruptions/ EVENT> <EVENT

ei d="e224" >caused/ EVENT> so far by the financial<EVENT ei d="€228" >tumulk/ EVENT> in Asia</ s>
<TLINK I'id="11" rel Type="OVERLAP" event|D="e4" rel atedToTi me="t 193" task="A"/>
<TLINK I'id="12" rel Type="AFTER"' event| D="e4" rel atedToTi ne="t191" task="A"/>
<TLINK I'id="126" rel Type="BEFORE" event| D="e4" rel atedToTi me="t 190" task="B"/>

Figure 1: Example of the TempEval annotations (simplifieat)the fragment:WASHINGTON. The
economy created jobs at a surprisingly robust pace in Japutite government reported on Friday,
evidence that America’s economic stamina has withstooddamyiptions caused so far by the financial
tumult in Asia.

attribute includes some information about aspectual typehe spirit of Vendler (1967)—it distin-
guishes states from non-stative situations—, and whetleterm introduces an intensional context,
among other distinctions. One time expression is espgdialportant. This is the one denoting the
document’s creation time (DCT) and it is annotated with thi@ CREATI ON_TI ME for the attribute
functi onl nDocunent .

Temporal relations are represented withl NK elements. In the TempEval data, the first argument
of the relation is always an event and is given by the attelewtent | D. The second argument can be
another event or the denotation of a time expression, argdahnotated in ael at edToEvent or
rel at edToTi ne attribute inTLI NK elements. The attributeel Type describes the type of temporal
relation holding between these two ordered entitRSFORE, AFTER or OVERLAP.!

The TempEval challenges consider three kinds of tempolatioas? These correspond to the three
tasks of TempEval, whose goal was to correctly assign tlaioal type to already identified temporal
relations. Task A considers temporal relations holdingveen an event and a time mentioned in the
same sentence, regardless of whether they are syntactieldted or not. Task B considers temporal
relations holding between the main event of sentences anB@T. Finally, task C focuses on temporal
relations between the main events of two consecutive seggen

The systems participating in TempEval had to guess thdarlgtpe of temporal relations (the value
of the feature el Type of TLI NKs), but all other annotations were given and could be useessres
for classifiers. The second TempEval included additionsikdavhose goal was to obtain also these
remaining annotations from raw text.

The best results for the two TempEval competitions are atilie of the state-of-the-art of temporal
information processing. For task A, the best participatipgtem correctly classified 62% of the held-out
test relations. For task B this was 80% and, for task C, 55% Bést results of the second TempEval
show some improvement (65%, 81% and 58% respectively) haufitst task was slightly different and
arguably easier (only pairs of event terms of temporal esgioms that are syntactically related were
considered).

In this paper, we will also be working with these three typetemporal relations and dealing with
similar data. Our purpose is to check whether existing smigtto the TempEval problems can be
improved with the help of a temporal reasoning component.

There are also the disjunctive typBEFORE- OR- OVERLAP, OVERLAP- OR- AFTER and VAGUE. Because they were
used only for those cases where the human annotators couddjree, they are quite rare, to the point where machinedearn
classifiers are seldom or never able to learn to assign tlasesy

2The second TempEval considers a fourth type, which we ighere.



2.1 Temporal Relation Classification and Reasoning

The problem of temporally ordering events and times is caitatd by the logical properties of temporal
relations, e.g. temporal precedence is a strict partiarortherefore, it is natural to incorporate logical
information in the solutions to the problem of ordering egesnd time intervals. Perhaps surprisingly,
little work has explored this idea.

Our working hypothesis is that classifier features that @aepthe logical properties of temporal
relations can be used effectively to improve machine lahiciassifiers for the temporal information
tasks of TempEval.

The motivation for using logical information as a means tipsmlving this problem can be illus-
trated with an example from Figure 1.

There, we can see that the da®@98- 02- 06, denoted by the expressiéiniday, includes the docu-
ment’s creation time, which i$998- 02- 06T22: 19: 00. We know this from comparing the normal-
ized value of these two expressions, annotated withvddeue attribute of TI MEX3 elements. From
the annotated temporal relation with thel id6 (the last one in the figure) we also know that the event
identified withe4, denoted by the formeported precedes the document’s creation time.

From these two facts one can conclude that this event eitieeeges the time denoted Byiday
or they overlap; this time cannot however precede this evEmat is, the possible relation type for the
relation represented with tHeLl NK named 1 is constrained—it cannot b&TER.

What this means is that, in this example, solving task B cafeast partially, solve task A. The
information obtained by solving task B can be utilized inertb improve the solutions for task A.

3 Related Work

The literature on automated temporal reasoning includesitant pieces of work such as Allen (1984);
Vilain et al. (1990); Freksa (1992). A lot of the work in thi®a has focused on finding efficient methods
to compute temporal inferences.

Katz and Arosio (2001) used a temporal reasoning systemrtparce the temporal annotations of
two annotators. In a similar spirit, Setzer and GaizausR@8Y) first compute the deductive closure of
annotated temporal relations so that they can then asseetator agreement with standard precision
and recall measures.

Verhagen (2005) uses temporal closure as a means to aid Tinaekbtation, that is as part of a
mixed-initiativeapproach to annotation. He reports that closing a set of algnannotated temporal
relations more than quadruples the number of temporaioakain TimeBank (Pustejovsky et al., 2003),
a corpus that is the source of the data used for the TempEakénbes.

Mani et al. (2006) use temporal reasoning as an oversampiettpod to increase the amount of
training data. Even though this is an interesting idea, titbas recognized in subsequent work that
there were methodological problems in this work which imeate the results (Mani et al., 2007).

Since the advent of TimeBank and the TempEval challengeshimalearning methods have become
dominant to solve the problem of temporally ordering eggitinentioned in text. One major limitation
of machine learning methods is that they are typically useddssify temporal relations in isolation,
and therefore it is not guaranteed that the resulting andeis globally consistent. Yoshikawa et al.
(2009) and Ling and Weld (2010) overcome this limitationgdilarkov logic networks (Richardson and
Domingos, 2006), or MLNs, which learn probabilities attagtio first-order formulas. One participant
of the second TempEval used a similar approach (Ha et alQ)2@enis and Muller (2011) cast the
problem of learning temporal orderings from texts as a cairgtoptimization problem. They search for
a solution using Integer Linear Programming (ILP), sintjldo Bramsen et al. (2006), and Chambers
and Jurafsky (2008a). Because ILP is costly (it is NP-hdhd) Jatter two only considdreforeandafter
relations.

Most of these approaches are similar to ours in that they sarknowledge about one TempEval
task to solve the other tasks. However, these studies daepottron the full set of logical constraints



<TI MEX3 tid="t190" type="TIME" val ue="1998-02-06T22: 19: 00"
functi onl nDocunment =" CREATI ONLTI ME" >06/ 02/ 1998 22: 19: 00</ Tl MEX3>
<s>WASHINGTON - A economigEVENT ei d="el" >criou</ EVENT> empregos a um ritmo surpreendentemente
robusto em<TI MEX3 tid="t 191" type="DATE" val ue="1998- 01" >janeiro</ TI MEX3>, <EVENT
ei d="e4" >informow/ EVENT> o0 governo na<T| MEX3 ti d="1t 193" type="DATE"

val ue="1998- 02- 06" >sexta-feira/ TI MEX3>, provas de que o0 vigor econdmico da Américs&VENT

ei d="e6" >resistic/ EVENT> atodas as<EVENT ei d="e7" >perturbacdes/ EVENT> <EVENT

ei d="e224" >causadas/ EVENT> até agora pelo<EVENT ei d="228" >tumulto</ EVENT> financeiro na
Asia</ s>

<TLINK I'id="11" rel Type="OVERLAP" event|D="e4" rel atedToTi me="t 193" task="A"/>
<TLINK I'id="12" rel Type="AFTER' event| D="e4" rel atedToTi ne="t 191" task="A"/>
<TLINK I'i d="126" rel Type="BEFORE" event|D="e4" rel atedToTi me="t 190" task="B"/>

Figure 2: Example of the Portuguese data used (simplifit.flagment isSWASHINGTON - A econo-
mia criou empregos a um ritmo surpreendentemente robustiamgiro, informou o governo na sexta-
-feira, provas de que o vigor ecomico da Arérica resistiu a todas as perturbées causadas atagora
pelo tumulto financeiro nAsia.

used or explore little information (e.g. the transitivitiitemporal precedence only). Our work does not
have these shortcomings: we employ a comprehensive sedsiinming rules (see Section 5.1).

Our approach of encoding in features information that isioled from automated reasoning does
not guarantee that, at the end, the automatically clasdifiegoral relations are consistent. This is
a limitation of our approach that is not present in some ofgheve mentioned work. However, our
approach is not sensitive to the size of the training dateesihe reasoning rules are hand-coded. With
MLNSs, even though the rules are also designed by humans,atghtwof each rule still has to be learned
in training.

One patrticipant of the first TempEval used “world-knowledg@ms” as part of a symbolic solution
to this challenge (Puscasu, 2007). This world-knowledgmponent includes rules for reasoning about
time. Closest to our work is that of Tatu and Srikanth (200B)e authors employ information about
task B and temporal reasoning as a source of classifier é&safar task C only. This is more limited
than our approach: we also explore the other tasks as safrkaewledge, besides task B, and we also
experiment with solutions for the other tasks, not just @sk

4 Annotation Scheme and Data

For the experiments reported in this paper we used TimeBa(&Bsta and Branco, 2012), which is an
adaptation to Portuguese of the English data used in theTérapEval. These data were produced by
translating the English data used in the first TempEval aed tidapting the annotations so that they
conform to the new language.

Figure 2 shows a sample of that corpus. As before, that figusémplified. For instance, the full
annotation for the first event event term in that example B/ENT ei d="el" cl ass=
"OCCURRENCE" steme"criar" aspect="NONE" tense="PPI" polarity="P0S"
pos="VERB" >criou</ EVENT>.

TimeBankPT is similar in size to the English TempEval dataohtains 60K word tokens for train-
ing and close to 9K words for evaluation (the word counts aneesvhat higher than those for its English
counterpart because of language differences). Overllf@r all tasks combined), the number of tem-
poral relations (i.e. instances for classification) is ,7& training and 758 for evaluation. The two
corpora are quite similar to each other, as one is the trémislaf the other.



5 Feature Design

The main rationale behind our approach is that, when a systmotates raw text, it may split the
annotation process in several steps, corresponding toitfeeedt TempEval tasks. In this scenario,
the information annotated in previous steps can be usedt iFhag. if one has already classified the
temporal relations between the events in a text and itsioretime (task B, which is also the easiest),
this information can then be used to help classify the reingitemporal relations.

Our goal is then to evaluate new features for machine learlaadifiers for these three tasks. These
new features are meant to help predict the class feature fopwting the temporal closure of a set of
initial temporal relations. This initial set of temporalations is composed of relations coming from two
sources:

e Temporal relations between pairs of dates or times correipg to annotated temporal expres-
sions. Because the annotations for time expressions camtairmalized representation of them, it
is possible to order them symbolically. That is, they areeced according to theal ue attribute
of the correspondind@| MEX3 element3

e The temporal relations annotated for the other tasks.

The values for these features reflect the possible valudeaflass feature (i.e. the temporal relation
being classified), after applying temporal reasoning teehe/o sets of relations.

The possible values for these classifier features are tlidesis valuesREFORE, AFTER, OVERLAP,
BEFORE- OR- OVERLAP, OVERLAP- OR- AFTERandVAGUE).*

For the sake of experimentation, we try all combinationsaeks:

e Predict task A after temporally closing the relations aated for tasks B and C (and the temporal
relations between the times mentioned in the document)sd hee the featuresb (based on the
temporal relations annotated for task B onk;, (based on the relations for task C only) akiolc
(based on the relations for both tasks).

e Similarly, predict task B, based on tasks A and C: the featBee(based on the relations for task
A only), Bc (based on the relations for task C only) @k (based on the relations for both tasks).

e Predict task C after temporally closing the relations aatsat for tasks A and B: the featur€a
(based on the relations for task A onl@b (based on the relations for task B only) abdb (based
on the relations for both of them).

The usefulness of these classifier features is limited inttiey have very good precision but low re-
call, as temporal reasoning is unable to restrict the plessibe of temporal relation for many instances.
In fact, we did not test some of these features, because theyqed the/AGUE value for all training
instances. This was the case of the featukesand Bc (and alsoAvc and Bvc, which are presented
below).

For this reason, we additionally experimented with anofetrof features that, instead of trying to
predict the class value directly, may provide useful h¢iggdo the classifiers. These are:

e Fortask B, from all annotated temporal expressions in theessentence as the event being related
to the DCT, the majority temporal relation between thosegomal expressions and the DCT, based
on their annotatedtal ue attributes. This is the featuigm.

3Chambers and Jurafsky (2008a) also perform this step, byicitmsider far fewer possible formats of dates and times tha
we do. The full set of rules used to order times and dates céoupel in Costa (2013).

“It must be noted that the valuBEFORE- OR- OVERLAP or OVERLAP- OR- AFTER are output when none of the three
more specific valuesBEFORE, OVERLAP and AFTER) can be identified by the temporal reasoner but one of thenbean
excluded (i.e OVERLAP- OR- AFTERIs used whefBEFORE can be excluded). Similarly/AGUE is output when no constraint
can be identified from the initial set of temporal relatioif$iese underspecified values do not necessarily correspatie t
cases when the annotated data contain these values (tleobe @ases when the human annotators could not agree on a more
specific value). It often is the case that the human annat&imore specific, as humans have access to further infamati



e For task B, the temporal relation between the time exprasdiosest to the event being ordered
with the DCT and the DCT. This is the featuse.

e A vague temporal relation for task A based on the relatiom®tated for tasks B and C. These are
the classifier feature&vb, Avc andAvbc.

e Avague temporal relation for task B based on the relatiomptated for tasks A and C: classifier
featuresBva, Bvc andBvac.

e A vague temporal relation for task C based on the relationstated for tasks A and B: features
Cva, Cvb andCvab.

These temporal relations that we call vague are useful wieretasoning component does not iden-
tify a precise temporal relation between the two relevatities in the temporal relation (due to insuffi-
cient information). In these cases, it may be useful to kntivah e.g. both of them temporally overlap
a third one, as this may provide some evidence to the classtfiat they are likely to overlap. This is
what these vague features encode. Their possible value§)aaehird entity precedes the two entities,
(i) a third entity overlaps both entities, (iii) a third étytfollows the two entities (iv) any combination
of any of the above, (v) the first entity in the relation to begged overlaps a third entity that temporally
follows the second entity in the relation to be guessed,thg)first entity in the relation to be guessed
overlaps a third entity that temporally precedes the seemtitly in the relation to be guessed, (vii) the
two entities are not even connected in the temporal grapthéodocument, whose edges correspond to
overlap and precedence relations, (viii) none of the above.

5.1 Temporal Reasoning Rules

The rules implemented in our reasoning component are:ripteal precedence is transitive, irreflexive
and antisymmetric; (ii) temporal overlap is reflexive anthayetric; (iii) if A overlaps B and B precedes
C, then C does not precede A.

Because we also consider temporal relations between tinteslates, we also deal with temporal
inclusion, a type of temporal relation that is not part of #mmotations used in the TempEval data, but
that is still useful for reasoning. We make use of the follogvadditional rules, dealing with temporal
inclusion: (i) temporal inclusion is transitive, refleximad antisymmetric; (i) if A includes B, then A
and B overlap; (iii) if A includes B and C overlaps B, then C daps A; (iv) if A includes B and C
precedes A, then C precedes B; (v) if A includes B and A presdtiethen B precedes C; (vi) if A
includes B and C precedes B, then either C precedes A or A anéi@ap (A cannot precede C); (vii) if
Aincludes B and B precedes C, then either A precedes C or A angeflap (C cannot precede A).

As mentioned, temporal expressions are ordered accorditigeir normalized value. For instance,
the date2000- 01- 03 is ordered as preceding the d2@10- 03- 04. Since all temporal expressions
are normalized in the annotated data, we order temporakssions before applying any temporal rea-
soning. This increases the number of temporal relations tew¢ with, and the potential number of
relations we end up with after applying temporal reasoning.

To this end, we used Joda-Time 2Hd ¢ p: / / j oda-t i ne. sour cef or ge. net ). Each normal-
ized date or time is converted to an interval.

In many cases it is possible to specify the start and endgofihis interval, e.g. the date of January
3, 2000 is represented internally by an interval with itstgtaint at2000- 01- 03T00: 00: 00. 000
and ending a2000- 01- 03T23: 59: 59. 999. Many different kinds of normalized expressions re-
quire many rules. For instance, an expressionléikeWintercould be annotated in the data&10- W ,
and dedicated rules are used to get its start and end points.

Some time expressions are normalizedPRESENT_REF (e.g. now), PAST_REF (the pas} or
FUTURE_REF (the futurg. These cases are not represented by any Joda-Time objestead we
need to account for them in a special way. They can be tempaalered among themselves (e.qg.
PRESENT_REF precedes$-UTURE_REF), but not with other temporal expressions. We further ifgu



Feature Task A Task B Task C Feature Task A Task B Task C

event-aspect d--kn ----n d--kn o-event-first djrkn N/A N/A
event-polarity d--kn --r-n ----n o-event-between dj rkn  N/A N/A
event-POS --r-n ---k- ----n o-timex3-between-j rk-  N/A N/A
event-stem -jrk- --r-n ----- o-adjacent -j--n  N/A N/A
event-string --r-n -j--- ----- timex3-mod ----n ---k- N/A
event-class djr-n -jrk- djrkn timex3-type d-rk- --rk- N/A
event-tense --r-- djrkn djrkn

Table 1: Features used in the baseline classifiers. Kdy:means the feature is used with
Deci si onTabl e;j , with J48;r, with JRi p; k, with KSt ar ; n, with Nai veBayes.

that PRESENT _REF includes each document’s creation time (which therefoeeguiedUT URE_REF,
etc.). So, in additional to the representation of times aateglas time intervals, we employ a layer of
ad-hocrules.

The variety of temporal expressions makes it impossibledwige a full account of the implemented
rules in this paper, but they are listed in full in Costa (2013

6 Experiment and Results

Our goal is to test the features introduced in Section 5. Oethodology is to extend existing clas-
sifiers for the problem of temporal relation classificatioithvthese features, and check whether their
performance improves.

For the first TempEval, Hepple et al. (2007) used simple iflass that use the annotations present
in the annotated data as features. They trained Weka (WartenFrank, 1999) classifiers with these
features and obtained competitive results. 10-fold cuadiglation on the training data was employed to
evaluate different combinations of features.

For our baselines, we use the same approach as Hepple €1G¥)(®ith the Portuguese data men-
tioned above in Section 4.

6.1 Experimental Setup

The classifier features used in the baselines are also similae ones used by Hepple et al. (2007).

The eventfeatures correspond to attributes BYENT elements according to the data annotations,
with the exception of thevent - st ri ng feature, which takes as value the character data inside the
corresponding TimeMLEVENT element. In a similar fashion, thenex3features are taken from the
attributes ofTl MEX3 elements with the same name.

The o(rder) features are the attributes computed from the documenttsaecontent. The feature
order-event - first encodes whether the event terms precedes in the text theekipression it
is related to by the temporal relation to classify. The dfassfeatureor der - event - bet ween
describes whether any other event is mentioned in the tewtele® the two expressions for the en-
tities that are in the temporal relation, and similadyder - t i nex3- bet ween is about whether
there is an intervening temporal expression. Finallyder - adj acent is true if and only if both
order-tinmex3- between andor der - event - bet ween are false (even if other linguistic mate-
rial occurs between the expressions denoting the two enfitithe temporal relation).

Just like Hepple et al. (2007), we experimented with seuwai@thine learning algorithms. Table 1
shows the classifier features that we selected for eachithligorFor each algorithm and task, we tried
all possible combinations of features and selected the loateperformed best, according to 10-fold
cross-validation on the training data.



Task A Task B Task C

Classifier bl. best bl. best bl. best
DecTabl e 52.1 58.6(Ab,Abc) 77.0 77.0 49.6 49.6 (Cva)

J48 55.6 58.0(Ab,Avb) 77.3 77.9(Ba,Bva) 527 527

JRip 59.2 68.0(Ab,Avbc) 72.8 76.7(Bt,Ba,Bva) 54.3 54.3(Ca,Cva,Cbh,Cab)
KSt ar 54.4 59.8(Ab,Avb,Abc) 73.4 72.8 (Ba,Bva) 53.153.9(Cva,Cb)

NBayes 53.3 56.2(Ab,Avb) 75.2 75.3(Ba) 53.9 53.5(Ca,Cva)
Average 549 60.1 75.1 75.9 52.7 52.8

Table 2: Classifier accuracy on test data (bl.: baseling; leseline extended with best combination
of the new features, shown in parentheses, determined wis-walidation on train data). Boldface
highlights improvements on test data.

We essentially used the same algorithms as Hepple et al7\200/e also experimented with48
(Weka’s implementation of the C4.5 algorithm). The class#fiobtained this way are used as baselines.
To compare them with solutions incorporating temporal saasy, we retrained them with the entire
training data and evaluated them on the held-out test date r@sults are shown in the columns of
Table 2 labeled wittbl. (baselines). We chose these baselines because they areasryo repro-
duce: the algorithms are open-source and the classifiarrésatre straightforwardly extractable from
the annotated data and only require simple string manipulat

For each task (A, B and C) and algorithm, we extended the Wassifier previously found with
the features that were presented above in Section 5. We hetatsic features, listed in Table 1 (i.e.
the ones selected in the manner just reported), constartriadcall combinations of the new features,
based on temporal reasoning. We then selected the featmfgirtation that produced the best results for
each algorithm and task, using 10-fold cross-validatiorthentrain data, and, once again, evaluated the
combination thus chosen on the held-out test data.

6.2 Results and Discussion

The results can be seen in Table 2. They vary by task. Thedtekdssifier features are quite effective
for task A. The new features are, however, much less effeftivthe other tasks. This is perhaps more
surprising in the case of task C. It is mostly a problem witbafle(the new reasoning-based features
are able to restrict the possible type of temporal relatioly or a few instances, because the data are
not very densely annotated for temporal relations). Thateiasoning is very precise but leaves many
instances unaccounted for. For instance, out of 1735 traitamces for task C, 1589 have the value
VAGUE for the featureCb. In the test data, this is 241 instances out of 258.

For task A, we inspected the final decision tree (obtained 34t8), the decision tabledeci si on-
Tabl e) and the rulesJRi p) induced by the learning algorithms from the entire trainget. The tree
for task A checks the featusb and outputs the same type of temporal relation as the oneleddn that
feature. When the value of this feature is one of the disjuasilues YAGUE, BEFORE- OR- OVERLAP
andOVERLAP- OR- AFTER), it consults the remaining features. Because of the wayttees are built
by this algorithm 48, an implementation of the C4.5 algorithm), this means thatfeatureAb is
the classifier feature with the highest information gainpamthose used by this classifier. The same
featureAb appears frequently in the antecedent of the rules inducediRby for task A (it occurs in
the antecedent of 5 of the 8 induced rules), another indicatiat it is quite useful. When learning a
table that associates combinations of feature values Was walues, thBeci si onTabl e algorithm

5These are: Weka’'s implementation of decision tabl@ec(i si on) Tabl e; the RIPPER algorithm,JRi p;
N( ai ve) Bayes, a Bayesian classifier; andSt ar, a k-NN algorithm with an entropy-based distance functiate left
out support vector machines, which are too slow for exheeistearch to be practical, even with this limited set of fesdu
Hepple et al. (2007) tried this algorithm, but selectedgifas features using a greedy search method.



Task A Task B Task C

Classifier bl. best bl. best bl. best
DecTabl e 52.1 54.4(Ab,Abc,Avbc) 77.0 77.0 49.6 49.6 (Cvb,Cvab)
J48 55.6 54.4 (Ab,Avb) 77.3 79.5(Ba) 52.7 51.9 (Cvb)

JRip 59.2 64.5(Avb,Abc) 72.8 74.0(Bt,Ba,Bac,Bvac) 54.3 54.3

KSt ar 54.4 58.6(Ab,Avb) 73.4 71.9 (Bva) 53.1 52.7 (Cva)
NBayes 53.3 55.6(Ab,Avbc) 75.2 75.5(Bm,Bac) 53.9 54.3(Cbh)
Average 54.9 57.5 75.1 75.6 52.7 52.6

Table 3: Classifier accuracy on test data, with the reasedpéisgd features computed from the temporal
relations classified by the baseline classifiers.

prunes some of the classifier features: the feaf\ble is pruned, but the featur&b is kept, another
indication that task B relations are useful when classifjtask A relations.

Inspection of the learned models thus suggests that intf@mabout task C is not as useful to solve
task A as the information coming from task B. This is easy tdaratand: task A relates entities in the
same sentence, whereas task C relates entities in diffee@teénces; they also relate different kinds of
entities (task C temporal relations are between two eveh&seas task A relations are between an event
and a time). As such, temporal relations with arguments mroon are not found between these two
tasks, and only long chains of relations can support infarshbut they are infrequent in the data.

The results in Table 2 are obtained with reasoning basedeogdlil standard annotations. That is, a
feature such aAb tries to predict the class of task A relations on the basiasi B temporal relations,
and these task B relations are taken from the gold standaedrdal system, we do not have access to this
information. Instead, we have temporal relations claskifigh some amount of error. We would have
to look at the output of a classifier for task B in order to cobephis featurédb. An interesting question
is thus how our approach performs when the initial tempaialtions given to the reasoning component
are automatically obtained. Table 3 presents these redalthis table, the reasoning component acts
on the output of the baseline classifiers. For instance, éatifeAb tries to predict task A temporal
relations using the reasoning rules on the output of theesponding baseline classifier for task B (i.e.
task B temporal relations that have been automaticallysiflad by the baseline classifier employing the
same learning algorithn).

As can be seen from Table 2, the results are slightly worsethiene is still a noticeable and sys-
tematic improvement in task A. Under both conditions (Tablend Table 3), the differences between
the baseline classifiers and the classifiers with the newriestare statistically significant for task A
(p < 0.05, according to Weka'®ai r edCor r ect edTTest er), but not for the other tasks. For this
task at least, reasoning is a useful means to improve theotamelation classification. Comparing the
two tables, we can conclude that as temporal relation €ieeton improves (and the error present in
the initial temporal relations on which reasoning is basedsgdown), so does the positive impact of
reasoning increase: the results in Table 2 are better the@orbs in Table 3 because the initial tem-
poral relations on which temporal reasoning is based aterbghality. Therefore, as the performance
of existing temporal relation classification technologypnoves, so should the potential impact of these
features based on reasoning. Another conclusion is then, with the current technology, these features
are already useful, as Table 3 presents statisticallyfgigni improvements on task A.

In a real system for temporal processing, these new feataasot be used for all tasks. When
temporally annotating text automatically, assuming oassifier for each task, one must choose an order

SFor instance, according to task C, an eventprecedes another eveat, which precedes the document creation time
according to task B, which precedes a titgaccording to their annotatadal ue, therefore event; must precedes.

’In this case, the input relations may be inconsistent. Wedesiect sets of inconsistent temporal relations, but weatann
know which temporal relations in such a set are misclassifedthis reason, we simply add temporal relations to theaeiag
component according to textual order, and a relation iga&dpf it is inconsistent with the previously added ones.



of processing the three tasks, and this determines whithrésaare available for each classifier. Since
task A benefits considerably from these features, a pradystem incorporating our proposal would
classify the temporal relations for tasks B and C first (tgkaglvantage of none of the new features, as
they do not improve these two tasks), and then a classifigafr A, trained using these new features,
can be run, based on the output for the other tasks.

7 Concluding Remarks

In this paper we showed that features based on logical irdthom improve existing classifiers for the
problem of temporal information processing in general @mdgoral relation classification in particular.
Even though temporal reasoning has been used in the corftésinporal information processing to
oversample the data (Mani et al., 2006), to check inter-&too agreement (Setzer and Gaizauskas,
2001), as part of an annotation platform (Verhagen, 2006xsopart of symbolic approaches to the
TempEval problems (Puscasu, 2007), to the best of our letime the present paper is the first to report
on the use temporal reasoning as a systematic source ofdgdtn machine learned classifiers.
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