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Abstract

The area of temporal information extraction has recently focused on temporal relation classifica-
tion. This task is about classifying the temporal relation (precedence, overlap, etc.) holding between
two given entities (events, dates or times) mentioned in a text. This interest has largely been driven
by the two recent TempEval competitions.

Even though logical constraints on the structure of possible sets of temporal relations are obvious,
this sort of information deserves more exploration in the context of temporal relation classification.
In this paper, we show that logical inference can be used to improve—sometimes dramatically—
existing machine learned classifiers for the problem of temporal relation classification.

1 Introduction

Recent years have seen renewed interest in extracting temporal information from text. Evaluation cam-
paigns like the two TempEval challenges (Verhagen et al., 2010) have brought an increased interest to this
topic. The two TempEval challenges focused on ordering the events and the dates and times mentioned
in text. Since then, temporal processing has expanded beyond the problems presented in TempEval, like
for instance the work of Pan et al. (2011), which is about learning event durations.

Temporal information processing is important and related to a number of applications, including
event co-reference resolution (Bejan and Harabagiu, 2010), question answering (Ahn et al., 2006; Sa-
quete et al., 2004; Tao et al., 2010) and information extraction (Ling and Weld, 2010). Another ap-
plication is learning narrative event chains or scripts (Chambers and Jurafsky, 2008b; Regneri et al.,
2010), which are “sequences of events that describe some stereotypical human activity” (i.e. eating at a
restaurant involves looking at the menu, then ordering food, etc.).

This paper focuses on assessing the impact of temporal reasoning on the problem of temporal infor-
mation extraction. We will show that simple classifiers trained for the TempEval tasks can be improved
by extending their feature set with features that can be computed with automated reasoning.

2 Temporal Information Processing

The two TempEval challenges made available annotated data sets for the training and evaluation of
temporal information systems. Figure 1 shows a sample of these annotations, taken from the English
data used in the first TempEval. The annotation scheme is called TimeML (Pustejovsky et al., 2003).

Temporal expressions are enclosed inTIMEX3 tags. A normalized representation of the time point
or interval denoted by time expressions is encoded in thevalue attribute ofTIMEX3 elements.

Event terms are annotated withEVENT tags. The annotations in Figure 1 are simplified and do not
show all attributes of TimeML elements. For instance, the complete annotation for the termcreatedin
that figure is:<EVENT eid="e1" class="OCCURRENCE" stem="create" aspect=
"NONE" tense="PAST" polarity="POS" pos="VERB">created</EVENT>.

Several attributes describe lexical and morpho-syntacticfeatures of these terms, such asstem (its
dictionary form),pos (its part-of-speech),tense (its grammatical tense, if it is a verb),aspect (its
grammatical aspect),polarity (whether it occurs in a positive or negative context). Theclass
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<TIMEX3 tid="t190" type="TIME" value="1998-02-06T22:19:00"
functionInDocument="CREATION TIME">02/06/1998 22:19:00</TIMEX3>
<s>WASHINGTON The economy<EVENT eid="e1">created</EVENT> jobs at a surprisingly robust pace in
<TIMEX3 tid="t191" type="DATE" value="1998-01">January</TIMEX3>, the government<EVENT
eid="e4">reported</EVENT> on <TIMEX3 tid="t193" type="DATE"
value="1998-02-06">Friday</TIMEX3>, evidence that America’s economic stamina has<EVENT
eid="e6">withstood</EVENT> any <EVENT eid="e7">disruptions</EVENT> <EVENT
eid="e224">caused</EVENT> so far by the financial<EVENT eid="e228">tumult</EVENT> in Asia.</s>
<TLINK lid="l1" relType="OVERLAP" eventID="e4" relatedToTime="t193" task="A"/>
<TLINK lid="l2" relType="AFTER" eventID="e4" relatedToTime="t191" task="A"/>
<TLINK lid="l26" relType="BEFORE" eventID="e4" relatedToTime="t190" task="B"/>

Figure 1: Example of the TempEval annotations (simplified) for the fragment:WASHINGTON The
economy created jobs at a surprisingly robust pace in January, the government reported on Friday,
evidence that America’s economic stamina has withstood anydisruptions caused so far by the financial
tumult in Asia.

attribute includes some information about aspectual type,in the spirit of Vendler (1967)—it distin-
guishes states from non-stative situations—, and whether the term introduces an intensional context,
among other distinctions. One time expression is especially important. This is the one denoting the
document’s creation time (DCT) and it is annotated with the valueCREATION_TIME for the attribute
functionInDocument.

Temporal relations are represented withTLINK elements. In the TempEval data, the first argument
of the relation is always an event and is given by the attribute eventID. The second argument can be
another event or the denotation of a time expression, and it is annotated in arelatedToEvent or
relatedToTimeattribute inTLINK elements. The attributerelType describes the type of temporal
relation holding between these two ordered entities:BEFORE, AFTER or OVERLAP.1

The TempEval challenges consider three kinds of temporal relations.2 These correspond to the three
tasks of TempEval, whose goal was to correctly assign the relation type to already identified temporal
relations. Task A considers temporal relations holding between an event and a time mentioned in the
same sentence, regardless of whether they are syntactically related or not. Task B considers temporal
relations holding between the main event of sentences and the DCT. Finally, task C focuses on temporal
relations between the main events of two consecutive sentences.

The systems participating in TempEval had to guess the relation type of temporal relations (the value
of the featurerelType of TLINKs), but all other annotations were given and could be used as features
for classifiers. The second TempEval included additional tasks whose goal was to obtain also these
remaining annotations from raw text.

The best results for the two TempEval competitions are indicative of the state-of-the-art of temporal
information processing. For task A, the best participatingsystem correctly classified 62% of the held-out
test relations. For task B this was 80% and, for task C, 55%. The best results of the second TempEval
show some improvement (65%, 81% and 58% respectively), but the first task was slightly different and
arguably easier (only pairs of event terms of temporal expressions that are syntactically related were
considered).

In this paper, we will also be working with these three types of temporal relations and dealing with
similar data. Our purpose is to check whether existing solutions to the TempEval problems can be
improved with the help of a temporal reasoning component.

1There are also the disjunctive typesBEFORE-OR-OVERLAP, OVERLAP-OR-AFTER andVAGUE. Because they were
used only for those cases where the human annotators could not agree, they are quite rare, to the point where machine learned
classifiers are seldom or never able to learn to assign these values.

2The second TempEval considers a fourth type, which we ignorehere.
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2.1 Temporal Relation Classification and Reasoning

The problem of temporally ordering events and times is constrained by the logical properties of temporal
relations, e.g. temporal precedence is a strict partial order. Therefore, it is natural to incorporate logical
information in the solutions to the problem of ordering events and time intervals. Perhaps surprisingly,
little work has explored this idea.

Our working hypothesis is that classifier features that explore the logical properties of temporal
relations can be used effectively to improve machine learned classifiers for the temporal information
tasks of TempEval.

The motivation for using logical information as a means to help solving this problem can be illus-
trated with an example from Figure 1.

There, we can see that the date1998-02-06, denoted by the expressionFriday, includes the docu-
ment’s creation time, which is1998-02-06T22:19:00. We know this from comparing the normal-
ized value of these two expressions, annotated with thevalue attribute ofTIMEX3 elements. From
the annotated temporal relation with the idl26 (the last one in the figure) we also know that the event
identified withe4, denoted by the formreported, precedes the document’s creation time.

From these two facts one can conclude that this event either precedes the time denoted byFriday
or they overlap; this time cannot however precede this event. That is, the possible relation type for the
relation represented with theTLINK namedl1 is constrained—it cannot beAFTER.

What this means is that, in this example, solving task B can, at least partially, solve task A. The
information obtained by solving task B can be utilized in order to improve the solutions for task A.

3 Related Work

The literature on automated temporal reasoning includes important pieces of work such as Allen (1984);
Vilain et al. (1990); Freksa (1992). A lot of the work in this area has focused on finding efficient methods
to compute temporal inferences.

Katz and Arosio (2001) used a temporal reasoning system to compare the temporal annotations of
two annotators. In a similar spirit, Setzer and Gaizauskas (2001) first compute the deductive closure of
annotated temporal relations so that they can then assess annotator agreement with standard precision
and recall measures.

Verhagen (2005) uses temporal closure as a means to aid TimeML annotation, that is as part of a
mixed-initiativeapproach to annotation. He reports that closing a set of manually annotated temporal
relations more than quadruples the number of temporal relations in TimeBank (Pustejovsky et al., 2003),
a corpus that is the source of the data used for the TempEval challenges.

Mani et al. (2006) use temporal reasoning as an oversamplingmethod to increase the amount of
training data. Even though this is an interesting idea, the authors recognized in subsequent work that
there were methodological problems in this work which invalidate the results (Mani et al., 2007).

Since the advent of TimeBank and the TempEval challenges, machine learning methods have become
dominant to solve the problem of temporally ordering entities mentioned in text. One major limitation
of machine learning methods is that they are typically used to classify temporal relations in isolation,
and therefore it is not guaranteed that the resulting ordering is globally consistent. Yoshikawa et al.
(2009) and Ling and Weld (2010) overcome this limitation using Markov logic networks (Richardson and
Domingos, 2006), or MLNs, which learn probabilities attached to first-order formulas. One participant
of the second TempEval used a similar approach (Ha et al., 2010). Denis and Muller (2011) cast the
problem of learning temporal orderings from texts as a constraint optimization problem. They search for
a solution using Integer Linear Programming (ILP), similarly to Bramsen et al. (2006), and Chambers
and Jurafsky (2008a). Because ILP is costly (it is NP-hard),the latter two only considerbeforeandafter
relations.

Most of these approaches are similar to ours in that they can use knowledge about one TempEval
task to solve the other tasks. However, these studies do not report on the full set of logical constraints

3



<TIMEX3 tid="t190" type="TIME" value="1998-02-06T22:19:00"
functionInDocument="CREATION TIME">06/02/1998 22:19:00</TIMEX3>
<s>WASHINGTON - A economia<EVENT eid="e1">criou</EVENT> empregos a um ritmo surpreendentemente
robusto em<TIMEX3 tid="t191" type="DATE" value="1998-01">janeiro</TIMEX3>, <EVENT
eid="e4">informou</EVENT> o governo na<TIMEX3 tid="t193" type="DATE"
value="1998-02-06">sexta-feira</TIMEX3>, provas de que o vigor económico da América<EVENT
eid="e6">resistiu</EVENT> a todas as<EVENT eid="e7">perturbações</EVENT> <EVENT
eid="e224">causadas</EVENT> até agora pelo<EVENT eid="e228">tumulto</EVENT> financeiro na
Ásia.</s>
<TLINK lid="l1" relType="OVERLAP" eventID="e4" relatedToTime="t193" task="A"/>
<TLINK lid="l2" relType="AFTER" eventID="e4" relatedToTime="t191" task="A"/>
<TLINK lid="l26" relType="BEFORE" eventID="e4" relatedToTime="t190" task="B"/>

Figure 2: Example of the Portuguese data used (simplified). The fragment is:WASHINGTON - A econo-
mia criou empregos a um ritmo surpreendentemente robusto emjaneiro, informou o governo na sexta-
-feira, provas de que o vigor económico da Aḿerica resistiu a todas as perturbações causadas até agora
pelo tumulto financeiro náAsia.

used or explore little information (e.g. the transitivity of temporal precedence only). Our work does not
have these shortcomings: we employ a comprehensive set of reasoning rules (see Section 5.1).

Our approach of encoding in features information that is obtained from automated reasoning does
not guarantee that, at the end, the automatically classifiedtemporal relations are consistent. This is
a limitation of our approach that is not present in some of theabove mentioned work. However, our
approach is not sensitive to the size of the training data, since the reasoning rules are hand-coded. With
MLNs, even though the rules are also designed by humans, the weight of each rule still has to be learned
in training.

One participant of the first TempEval used “world-knowledgeaxioms” as part of a symbolic solution
to this challenge (Puşcaşu, 2007). This world-knowledgecomponent includes rules for reasoning about
time. Closest to our work is that of Tatu and Srikanth (2008).The authors employ information about
task B and temporal reasoning as a source of classifier features for task C only. This is more limited
than our approach: we also explore the other tasks as sourcesof knowledge, besides task B, and we also
experiment with solutions for the other tasks, not just taskC.

4 Annotation Scheme and Data

For the experiments reported in this paper we used TimeBankPT (Costa and Branco, 2012), which is an
adaptation to Portuguese of the English data used in the firstTempEval. These data were produced by
translating the English data used in the first TempEval and then adapting the annotations so that they
conform to the new language.

Figure 2 shows a sample of that corpus. As before, that figure is simplified. For instance, the full
annotation for the first event event term in that example is:<EVENT eid="e1" class=
"OCCURRENCE" stem="criar" aspect="NONE" tense="PPI" polarity="POS"
pos="VERB">criou</EVENT>.

TimeBankPT is similar in size to the English TempEval data. It contains 60K word tokens for train-
ing and close to 9K words for evaluation (the word counts are somewhat higher than those for its English
counterpart because of language differences). Overall (i.e. for all tasks combined), the number of tem-
poral relations (i.e. instances for classification) is 5,781 for training and 758 for evaluation. The two
corpora are quite similar to each other, as one is the translation of the other.
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5 Feature Design

The main rationale behind our approach is that, when a systemannotates raw text, it may split the
annotation process in several steps, corresponding to the different TempEval tasks. In this scenario,
the information annotated in previous steps can be used. That is, e.g. if one has already classified the
temporal relations between the events in a text and its creation time (task B, which is also the easiest),
this information can then be used to help classify the remaining temporal relations.

Our goal is then to evaluate new features for machine learnedclassifiers for these three tasks. These
new features are meant to help predict the class feature by computing the temporal closure of a set of
initial temporal relations. This initial set of temporal relations is composed of relations coming from two
sources:

• Temporal relations between pairs of dates or times corresponding to annotated temporal expres-
sions. Because the annotations for time expressions contain a normalized representation of them, it
is possible to order them symbolically. That is, they are ordered according to thevalue attribute
of the correspondingTIMEX3 element.3

• The temporal relations annotated for the other tasks.

The values for these features reflect the possible values of the class feature (i.e. the temporal relation
being classified), after applying temporal reasoning to these two sets of relations.

The possible values for these classifier features are the sixclass values (BEFORE,AFTER,OVERLAP,
BEFORE-OR-OVERLAP,OVERLAP-OR-AFTER andVAGUE).4

For the sake of experimentation, we try all combinations of tasks:

• Predict task A after temporally closing the relations annotated for tasks B and C (and the temporal
relations between the times mentioned in the document). These are the featuresAb (based on the
temporal relations annotated for task B only),Ac (based on the relations for task C only) andAbc
(based on the relations for both tasks).

• Similarly, predict task B, based on tasks A and C: the features Ba (based on the relations for task
A only), Bc (based on the relations for task C only) andBac (based on the relations for both tasks).

• Predict task C after temporally closing the relations annotated for tasks A and B: the featuresCa
(based on the relations for task A only),Cb (based on the relations for task B only) andCab (based
on the relations for both of them).

The usefulness of these classifier features is limited in that they have very good precision but low re-
call, as temporal reasoning is unable to restrict the possible type of temporal relation for many instances.
In fact, we did not test some of these features, because they produced theVAGUE value for all training
instances. This was the case of the featuresAc and Bc (and alsoAvc and Bvc, which are presented
below).

For this reason, we additionally experimented with anotherset of features that, instead of trying to
predict the class value directly, may provide useful heuristics to the classifiers. These are:

• For task B, from all annotated temporal expressions in the same sentence as the event being related
to the DCT, the majority temporal relation between those temporal expressions and the DCT, based
on their annotatedvalue attributes. This is the featureBm.

3Chambers and Jurafsky (2008a) also perform this step, but they consider far fewer possible formats of dates and times than
we do. The full set of rules used to order times and dates can befound in Costa (2013).

4It must be noted that the valuesBEFORE-OR-OVERLAP or OVERLAP-OR-AFTER are output when none of the three
more specific values (BEFORE, OVERLAP andAFTER) can be identified by the temporal reasoner but one of them canbe
excluded (i.e.OVERLAP-OR-AFTER is used whenBEFORE can be excluded). Similarly,VAGUE is output when no constraint
can be identified from the initial set of temporal relations.These underspecified values do not necessarily correspond to the
cases when the annotated data contain these values (those are the cases when the human annotators could not agree on a more
specific value). It often is the case that the human annotation is more specific, as humans have access to further information.
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• For task B, the temporal relation between the time expression closest to the event being ordered
with the DCT and the DCT. This is the featureBt.

• A vague temporal relation for task A based on the relations annotated for tasks B and C. These are
the classifier featuresAvb, Avc andAvbc.

• A vague temporal relation for task B based on the relations annotated for tasks A and C: classifier
featuresBva, Bvc andBvac.

• A vague temporal relation for task C based on the relations annotated for tasks A and B: features
Cva, Cvb andCvab.

These temporal relations that we call vague are useful when the reasoning component does not iden-
tify a precise temporal relation between the two relevant entities in the temporal relation (due to insuffi-
cient information). In these cases, it may be useful to knownthat e.g. both of them temporally overlap
a third one, as this may provide some evidence to the classifiers that they are likely to overlap. This is
what these vague features encode. Their possible values are: (i) a third entity precedes the two entities,
(ii) a third entity overlaps both entities, (iii) a third entity follows the two entities (iv) any combination
of any of the above, (v) the first entity in the relation to be guessed overlaps a third entity that temporally
follows the second entity in the relation to be guessed, (vi)the first entity in the relation to be guessed
overlaps a third entity that temporally precedes the secondentity in the relation to be guessed, (vii) the
two entities are not even connected in the temporal graph forthe document, whose edges correspond to
overlap and precedence relations, (viii) none of the above.

5.1 Temporal Reasoning Rules

The rules implemented in our reasoning component are: (i) temporal precedence is transitive, irreflexive
and antisymmetric; (ii) temporal overlap is reflexive and symmetric; (iii) if A overlaps B and B precedes
C, then C does not precede A.

Because we also consider temporal relations between times and dates, we also deal with temporal
inclusion, a type of temporal relation that is not part of theannotations used in the TempEval data, but
that is still useful for reasoning. We make use of the following additional rules, dealing with temporal
inclusion: (i) temporal inclusion is transitive, reflexiveand antisymmetric; (ii) if A includes B, then A
and B overlap; (iii) if A includes B and C overlaps B, then C overlaps A; (iv) if A includes B and C
precedes A, then C precedes B; (v) if A includes B and A precedes C, then B precedes C; (vi) if A
includes B and C precedes B, then either C precedes A or A and C overlap (A cannot precede C); (vii) if
A includes B and B precedes C, then either A precedes C or A and Coverlap (C cannot precede A).

As mentioned, temporal expressions are ordered according to their normalized value. For instance,
the date2000-01-03 is ordered as preceding the date2010-03-04. Since all temporal expressions
are normalized in the annotated data, we order temporal expressions before applying any temporal rea-
soning. This increases the number of temporal relations we start with, and the potential number of
relations we end up with after applying temporal reasoning.

To this end, we used Joda-Time 2.0 (http://joda-time.sourceforge.net). Each normal-
ized date or time is converted to an interval.

In many cases it is possible to specify the start and end points of this interval, e.g. the date of January
3, 2000 is represented internally by an interval with its start point at2000-01-03T00:00:00.000
and ending at2000-01-03T23:59:59.999. Many different kinds of normalized expressions re-
quire many rules. For instance, an expression likelast Wintercould be annotated in the data as2010-WI,
and dedicated rules are used to get its start and end points.

Some time expressions are normalized asPRESENT REF (e.g. now), PAST REF (the past) or
FUTURE REF (the future). These cases are not represented by any Joda-Time object. Instead we
need to account for them in a special way. They can be temporally ordered among themselves (e.g.
PRESENT REF precedesFUTURE REF), but not with other temporal expressions. We further stipulate
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Feature Task A Task B Task C

event-aspect d--kn ----n d--kn
event-polarity d--kn --r-n ----n
event-POS --r-n ---k- ----n
event-stem -jrk- --r-n -----
event-string --r-n -j--- -----
event-class djr-n -jrk- djrkn
event-tense --r-- djrkn djrkn

Feature Task A Task B Task C

o-event-first djrkn N/A N /A
o-event-between djrkn N/A N /A
o-timex3-between-jrk- N/A N /A
o-adjacent -j--n N/A N /A
timex3-mod ----n ---k- N/A
timex3-type d-rk- --rk- N/A

Table 1: Features used in the baseline classifiers. Key:d means the feature is used with
DecisionTable; j, with J48; r, with JRip; k, with KStar; n, with NaiveBayes.

thatPRESENT REF includes each document’s creation time (which therefore precedesFUTURE REF,
etc.). So, in additional to the representation of times and dates as time intervals, we employ a layer of
ad-hocrules.

The variety of temporal expressions makes it impossible to provide a full account of the implemented
rules in this paper, but they are listed in full in Costa (2013).

6 Experiment and Results

Our goal is to test the features introduced in Section 5. Our methodology is to extend existing clas-
sifiers for the problem of temporal relation classification with these features, and check whether their
performance improves.

For the first TempEval, Hepple et al. (2007) used simple classifiers that use the annotations present
in the annotated data as features. They trained Weka (Wittenand Frank, 1999) classifiers with these
features and obtained competitive results. 10-fold cross-validation on the training data was employed to
evaluate different combinations of features.

For our baselines, we use the same approach as Hepple et al. (2007), with the Portuguese data men-
tioned above in Section 4.

6.1 Experimental Setup

The classifier features used in the baselines are also similar to the ones used by Hepple et al. (2007).
The eventfeatures correspond to attributes ofEVENT elements according to the data annotations,

with the exception of theevent-string feature, which takes as value the character data inside the
corresponding TimeMLEVENT element. In a similar fashion, thetimex3features are taken from the
attributes ofTIMEX3 elements with the same name.

The o(rder) features are the attributes computed from the document’s textual content. The feature
order-event-first encodes whether the event terms precedes in the text the timeexpression it
is related to by the temporal relation to classify. The classifier featureorder-event-between
describes whether any other event is mentioned in the text between the two expressions for the en-
tities that are in the temporal relation, and similarlyorder-timex3-between is about whether
there is an intervening temporal expression. Finally,order-adjacent is true if and only if both
order-timex3-between andorder-event-between are false (even if other linguistic mate-
rial occurs between the expressions denoting the two entities in the temporal relation).

Just like Hepple et al. (2007), we experimented with severalmachine learning algorithms. Table 1
shows the classifier features that we selected for each algorithm. For each algorithm and task, we tried
all possible combinations of features and selected the one that performed best, according to 10-fold
cross-validation on the training data.
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Task A Task B Task C

Classifier bl. best bl. best bl. best

DecTable 52.1 58.6(Ab,Abc) 77.0 77.0 49.6 49.6 (Cva)
J48 55.6 58.0(Ab,Avb) 77.3 77.9(Ba,Bva) 52.7 52.7
JRip 59.2 68.0(Ab,Avbc) 72.8 76.7(Bt,Ba,Bva) 54.3 54.3 (Ca,Cva,Cb,Cab)
KStar 54.4 59.8(Ab,Avb,Abc) 73.4 72.8 (Ba,Bva) 53.1 53.9(Cva,Cb)
NBayes 53.3 56.2(Ab,Avb) 75.2 75.3(Ba) 53.9 53.5 (Ca,Cva)

Average 54.9 60.1 75.1 75.9 52.7 52.8

Table 2: Classifier accuracy on test data (bl.: baseline; best: baseline extended with best combination
of the new features, shown in parentheses, determined with cross-validation on train data). Boldface
highlights improvements on test data.

We essentially used the same algorithms as Hepple et al. (2007).5 We also experimented withJ48
(Weka’s implementation of the C4.5 algorithm). The classifiers obtained this way are used as baselines.
To compare them with solutions incorporating temporal reasoning, we retrained them with the entire
training data and evaluated them on the held-out test data. The results are shown in the columns of
Table 2 labeled withbl. (baselines). We chose these baselines because they are veryeasy to repro-
duce: the algorithms are open-source and the classifier features are straightforwardly extractable from
the annotated data and only require simple string manipulation.

For each task (A, B and C) and algorithm, we extended the best classifier previously found with
the features that were presented above in Section 5. We kept the basic features, listed in Table 1 (i.e.
the ones selected in the manner just reported), constant andtried all combinations of the new features,
based on temporal reasoning. We then selected the feature combination that produced the best results for
each algorithm and task, using 10-fold cross-validation onthe train data, and, once again, evaluated the
combination thus chosen on the held-out test data.

6.2 Results and Discussion

The results can be seen in Table 2. They vary by task. The tested classifier features are quite effective
for task A. The new features are, however, much less effective for the other tasks. This is perhaps more
surprising in the case of task C. It is mostly a problem with recall (the new reasoning-based features
are able to restrict the possible type of temporal relation only for a few instances, because the data are
not very densely annotated for temporal relations). That is, reasoning is very precise but leaves many
instances unaccounted for. For instance, out of 1735 train instances for task C, 1589 have the value
VAGUE for the featureCb. In the test data, this is 241 instances out of 258.

For task A, we inspected the final decision tree (obtained withJ48), the decision table (Decision-
Table) and the rules (JRip) induced by the learning algorithms from the entire training set. The tree
for task A checks the featureAb and outputs the same type of temporal relation as the one encoded in that
feature. When the value of this feature is one of the disjunctive values (VAGUE,BEFORE-OR-OVERLAP
andOVERLAP-OR-AFTER), it consults the remaining features. Because of the way that trees are built
by this algorithm (J48, an implementation of the C4.5 algorithm), this means that the featureAb is
the classifier feature with the highest information gain, among those used by this classifier. The same
featureAb appears frequently in the antecedent of the rules induced byJRip for task A (it occurs in
the antecedent of 5 of the 8 induced rules), another indication that it is quite useful. When learning a
table that associates combinations of feature values with class values, theDecisionTable algorithm

5These are: Weka’s implementation of decision tables,Dec(ision)Table; the RIPPER algorithm,JRip;
N(aive)Bayes, a Bayesian classifier; andKStar, a k-NN algorithm with an entropy-based distance function.We left
out support vector machines, which are too slow for exhaustive search to be practical, even with this limited set of features.
Hepple et al. (2007) tried this algorithm, but selected classifier features using a greedy search method.
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Task A Task B Task C

Classifier bl. best bl. best bl. best

DecTable 52.1 54.4(Ab,Abc,Avbc) 77.0 77.0 49.6 49.6 (Cvb,Cvab)
J48 55.6 54.4 (Ab,Avb) 77.3 79.5(Ba) 52.7 51.9 (Cvb)
JRip 59.2 64.5(Avb,Abc) 72.8 74.0(Bt,Ba,Bac,Bvac) 54.3 54.3
KStar 54.4 58.6(Ab,Avb) 73.4 71.9 (Bva) 53.1 52.7 (Cva)
NBayes 53.3 55.6(Ab,Avbc) 75.2 75.5(Bm,Bac) 53.9 54.3(Cb)

Average 54.9 57.5 75.1 75.6 52.7 52.6

Table 3: Classifier accuracy on test data, with the reasoning-based features computed from the temporal
relations classified by the baseline classifiers.

prunes some of the classifier features: the featureAbc is pruned, but the featureAb is kept, another
indication that task B relations are useful when classifying task A relations.

Inspection of the learned models thus suggests that information about task C is not as useful to solve
task A as the information coming from task B. This is easy to understand: task A relates entities in the
same sentence, whereas task C relates entities in differentsentences; they also relate different kinds of
entities (task C temporal relations are between two events whereas task A relations are between an event
and a time). As such, temporal relations with arguments in common are not found between these two
tasks, and only long chains of relations can support inferences,6 but they are infrequent in the data.

The results in Table 2 are obtained with reasoning based on the gold standard annotations. That is, a
feature such asAb tries to predict the class of task A relations on the basis of task B temporal relations,
and these task B relations are taken from the gold standard. In a real system, we do not have access to this
information. Instead, we have temporal relations classified with some amount of error. We would have
to look at the output of a classifier for task B in order to compute this featureAb. An interesting question
is thus how our approach performs when the initial temporal relations given to the reasoning component
are automatically obtained. Table 3 presents these results. In this table, the reasoning component acts
on the output of the baseline classifiers. For instance, the featureAb tries to predict task A temporal
relations using the reasoning rules on the output of the corresponding baseline classifier for task B (i.e.
task B temporal relations that have been automatically classified by the baseline classifier employing the
same learning algorithm).7

As can be seen from Table 2, the results are slightly worse, but there is still a noticeable and sys-
tematic improvement in task A. Under both conditions (Table2 and Table 3), the differences between
the baseline classifiers and the classifiers with the new features are statistically significant for task A
(p < 0.05, according to Weka’sPairedCorrectedTTester), but not for the other tasks. For this
task at least, reasoning is a useful means to improve the temporal relation classification. Comparing the
two tables, we can conclude that as temporal relation classification improves (and the error present in
the initial temporal relations on which reasoning is based goes down), so does the positive impact of
reasoning increase: the results in Table 2 are better than the ones in Table 3 because the initial tem-
poral relations on which temporal reasoning is based are better quality. Therefore, as the performance
of existing temporal relation classification technology improves, so should the potential impact of these
features based on reasoning. Another conclusion is that, even with the current technology, these features
are already useful, as Table 3 presents statistically significant improvements on task A.

In a real system for temporal processing, these new featurescannot be used for all tasks. When
temporally annotating text automatically, assuming one classifier for each task, one must choose an order

6For instance, according to task C, an evente1 precedes another evente2, which precedes the document creation time
according to task B, which precedes a timet3 according to their annotatedvalue, therefore evente1 must precedet3.

7In this case, the input relations may be inconsistent. We candetect sets of inconsistent temporal relations, but we cannot
know which temporal relations in such a set are misclassified. For this reason, we simply add temporal relations to the reasoning
component according to textual order, and a relation is skipped if it is inconsistent with the previously added ones.

9



of processing the three tasks, and this determines which features are available for each classifier. Since
task A benefits considerably from these features, a practical system incorporating our proposal would
classify the temporal relations for tasks B and C first (taking advantage of none of the new features, as
they do not improve these two tasks), and then a classifier fortask A, trained using these new features,
can be run, based on the output for the other tasks.

7 Concluding Remarks

In this paper we showed that features based on logical information improve existing classifiers for the
problem of temporal information processing in general and temporal relation classification in particular.
Even though temporal reasoning has been used in the context of temporal information processing to
oversample the data (Mani et al., 2006), to check inter-annotator agreement (Setzer and Gaizauskas,
2001), as part of an annotation platform (Verhagen, 2005), or as part of symbolic approaches to the
TempEval problems (Puşcaşu, 2007), to the best of our knowledge the present paper is the first to report
on the use temporal reasoning as a systematic source of features for machine learned classifiers.
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