
NAACL-HLT 2012

WLM 2012:
Will We Ever Really Replace the N-gram Model?

On the Future of Language Modeling for HLT

Workshop Notes

June 8, 2012
Montréal, Canada

Production and Manufacturing by
Omnipress, Inc.
2600 Anderson Street
Madison, WI 53707
USA

c©2012 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN13: 978-1-937284-20-6
ISBN10: 1-937284-20-4

ii

Introduction

Welcome to the NAACL-HLT workshop: Will We Ever Really Replace the N-gram Model? On the
Future of Language Modeling for HLT!

Language models are a critical component in many speech and natural language processing
technologies, such as speech recognition and understanding, voice search, conversational interaction
and machine translation. Over the last few decades, several advanced language modeling ideas have
been proposed. Some of these approaches have focused on incorporating linguistic information such as
syntax and semantics whereas others have focused on fundamental modeling and parameter estimation
techniques. Although tremendous progress has been made in language modeling, n-grams are still very
much the state-of-the-art due to the simplicity of the model and good performance they can achieve.

The aim of this workshop is to bring together researchers from natural language processing, linguistics
and spoken language processing and to provide a venue to explore and discuss new approaches to
language modeling for different applications. We have received an excellent set of papers focused on
neural network language models, discriminative language models and language models using explicit
syntactic information. Some of the papers investigated these models with different architectures, while
others used large scale and unsupervised set-ups.

Our workshop will feature two keynote talks. We begin with a keynote from Shankar Kumar
(Google Inc.) and will conclude with the second keynote from Brian Roark (Oregon Health and
Science University). We will close with an open discussion led by several prominent researchers that
will summarize the emerging areas of research in language modeling, the issues and challenges for
various tasks that we have learnt/highlighted over the course of this workshop, common resources and
evaluation challenges that can be posed to the research community.

With the advent of smart phone technologies and increased use of natural language interactions for
many day-to-day tasks, it is the correct time to bring together experts in the fields of linguistics, speech
and natural language processing and machine learning from industry and academia to share their ideas
and set the stage for the future of language modeling.

We are especially grateful to the program committee for their hard work and the presenters for their
excellent papers.

Organizing Committee

Bhuvana Ramabhadran, Sanjeev Khudanpur and Ebru Arisoy

iii

Organizers:

Bhuvana Ramabhadran, IBM T.J. Watson Research Center (USA)
Sanjeev Khudanpur, Johns Hopkins University (USA)
Ebru Arisoy, IBM T.J. Watson Research Center (USA)

Program Committee:

Ciprian Chelba, Google Inc. (USA)
Stanley F. Chen, IBM T.J. Watson Research Center (USA)
Ahmad Emami, IBM T.J. Watson Research Center (USA)
Tomas Mikolov, Brno University of Technology (USA)
Hermann Ney, RWTH Aachen University (Germany)
Patrick Nguyen, Google Inc. (USA)
Kemal Oflazer, Carnegie Mellon University (Qatar)
Brian Roark, Oregon Health and Science University (USA)
Murat Saraclar, Bogazici University (Turkey)
Holger Schwenk, University of LIUM (France)
Peng Xu, Google Inc. (USA)
Geoffrey Zweig, Microsoft (USA)

Invited Speakers:

Shankar Kumar, Google Inc. (USA)
Brian Roark, Oregon Health and Science University (USA)

v

Table of Contents

Measuring the Influence of Long Range Dependencies with Neural Network Language Models
Hai-Son Le, Alexandre Allauzen and François Yvon . 1

Large, Pruned or Continuous Space Language Models on a GPU for Statistical Machine Translation
Holger Schwenk, Anthony Rousseau and Mohammed Attik . 11

Deep Neural Network Language Models
Ebru Arisoy, Tara N. Sainath, Brian Kingsbury and Bhuvana Ramabhadran 20

A Challenge Set for Advancing Language Modeling
Geoffrey Zweig and Chris J.C. Burges . 29

Unsupervised Vocabulary Adaptation for Morph-based Language Models
André Mansikkaniemi and Mikko Kurimo . 37

Large-scale discriminative language model reranking for voice-search
Preethi Jyothi, Leif Johnson, Ciprian Chelba and Brian Strope . 41

Revisiting the Case for Explicit Syntactic Information in Language Models
Ariya Rastrow, Sanjeev Khudanpur and Mark Dredze . 50

vii

Workshop Program

Friday, June 8, 2012

9:15-9:30 Opening Remarks

9:30-10:30 Invited Talk

10:30-11:00 Coffee Break

+ Morning Session

11:00–11:25 Measuring the Influence of Long Range Dependencies with Neural Network Lan-
guage Models
Hai-Son Le, Alexandre Allauzen and François Yvon

11:25–11:50 Large, Pruned or Continuous Space Language Models on a GPU for Statistical
Machine Translation
Holger Schwenk, Anthony Rousseau and Mohammed Attik

11:50–12:15 Deep Neural Network Language Models
Ebru Arisoy, Tara N. Sainath, Brian Kingsbury and Bhuvana Ramabhadran

12:15-14:00 Lunch

+ Afternoon Session

14:00–14:25 A Challenge Set for Advancing Language Modeling
Geoffrey Zweig and Chris J.C. Burges

14:25–14:50 Unsupervised Vocabulary Adaptation for Morph-based Language Models
André Mansikkaniemi and Mikko Kurimo

14:50–15:15 Large-scale discriminative language model reranking for voice-search
Preethi Jyothi, Leif Johnson, Ciprian Chelba and Brian Strope

15:15–15:40 Revisiting the Case for Explicit Syntactic Information in Language Models
Ariya Rastrow, Sanjeev Khudanpur and Mark Dredze

15:40-16:00 Coffee Break

ix

Friday, June 8, 2012 (continued)

16:00-17:00 Invited Talk

17:00-18:00 Closing Remarks

x

NAACL-HLT 2012 Workshop: Will We Ever Really Replace the N-gram Model? On the Future of Language Modeling for HLT, pages 1–10,
Montréal, Canada, June 8, 2012. c©2012 Association for Computational Linguistics

Measuring the Influence of Long Range Dependencies with Neural Network
Language Models

Le Hai Son and Alexandre Allauzen and François Yvon
Univ. Paris-Sud and LIMSI/CNRS

rue John von Neumann, 91 403 Orsay cedex, France
Firstname.Lastname@limsi.fr

Abstract

In spite of their well known limitations,
most notably their use of very local con-
texts, n-gram language models remain an es-
sential component of many Natural Language
Processing applications, such as Automatic
Speech Recognition or Statistical Machine
Translation. This paper investigates the po-
tential of language models using larger con-
text windows comprising up to the 9 previ-
ous words. This study is made possible by
the development of several novel Neural Net-
work Language Model architectures, which
can easily fare with such large context win-
dows. We experimentally observed that ex-
tending the context size yields clear gains in
terms of perplexity and that the n-gram as-
sumption is statistically reasonable as long as
n is sufficiently high, and that efforts should
be focused on improving the estimation pro-
cedures for such large models.

1 Introduction

Conventional n-gram Language Models (LMs) are a
cornerstone of modern language modeling for Natu-
ral Language Processing (NLP) systems such as sta-
tistical machine translation (SMT) and Automatic
Speech Recognition (ASR). After more than two
decades of experimenting with these models in a
variety of languages, genres, datasets and appli-
cations, the vexing conclusion is that these mod-
els are very difficult to improve upon. Many vari-
ants of the simple n-gram model have been dis-
cussed in the literature; yet, very few of these vari-
ants have shown to deliver consistent performance

gains. Among these, smoothing techniques, such as
Good-Turing, Witten-Bell and Kneser-Ney smooth-
ing schemes (see (Chen and Goodman, 1996) for an
empirical overview and (Teh, 2006) for a Bayesian
interpretation) are used to compute estimates for the
probability of unseen events, which are needed to
achieve state-of-the-art performance in large-scale
settings. This is because, even when using the sim-
plifying n-gram assumption, maximum likelihood
estimates remain unreliable and tend to overeresti-
mate the probability of those rare n-grams that are
actually observed, while the remaining lots receive
a too small (null) probability.

One of the most successful alternative to date is
to use distributed word representations (Bengio et
al., 2003) to estimate the n-gram models. In this
approach, the discrete representation of the vocabu-
lary, where each word is associated with an arbitrary
index, is replaced with a continuous representation,
where words that are distributionally similar are rep-
resented as neighbors. This turns n-gram distribu-
tions into smooth functions of the word representa-
tion. These representations and the associated esti-
mates are jointly computed using a multi-layer neu-
ral network architecture. The use of neural-networks
language models was originally introduced in (Ben-
gio et al., 2003) and successfully applied to large-
scale speech recognition (Schwenk and Gauvain,
2002; Schwenk, 2007) and machine translation
tasks (Allauzen et al., 2011). Following these ini-
tial successes, the neural approach has recently been
extended in several promising ways (Mikolov et al.,
2011a; Kuo et al., 2010; Liu et al., 2011).

Another difference between conventional and

1

neural network language models (NNLMs) that has
often been overlooked is the ability of the latter to
fare with extended contexts (Schwenk and Koehn,
2008; Emami et al., 2008); in comparison, standard
n-gram LMs rarely use values of n above n = 4
or 5, mainly because of data sparsity issues and
the lack of generalization of the standard estimates,
notwithstanding the complexity of the computations
incurred by the smoothing procedures (see however
(Brants et al., 2007) for an attempt to build very
large models with a simple smoothing scheme).

The recent attempts of Mikolov et al. (2011b)
to resuscitate recurrent neural network architectures
goes one step further in that direction, as a recur-
rent network simulates an unbounded history size,
whereby the memory of all the previous words ac-
cumulates in the form of activation patterns on the
hidden layer. Significant improvements in ASR us-
ing these models were reported in (Mikolov et al.,
2011b; Mikolov et al., 2011a). It must however be
emphasized that the use of a recurrent structure im-
plies an increased complexity of the training and in-
ference procedures, as compared to a standard feed-
forward network. This means that this approach can-
not handle large training corpora as easily as n-gram
models, which makes it difficult to perform a fair
comparison between these two architectures and to
assess the real benefits of using very large contexts.

The contribution is this paper is two-fold. We
first analyze the results of various NNLMs to assess
whether long range dependencies are efficient in lan-
guage modeling, considering history sizes ranging
from 3 words to an unbounded number of words (re-
current architecture). A by-product of this study is a
slightly modified version of n-gram SOUL model
(Le et al., 2011a) that aims at quantitatively esti-
mating the influence of context words both in terms
of their position and their part-of-speech informa-
tion. The experimental set-up is based on a large
scale machine translation task. We then propose a
head to head comparison between the feed-forward
and recurrent NNLMs. To make this comparison
fair, we introduce an extension of the SOUL model
that approximates the recurrent architecture with a
limited history. While this extension achieves per-
formance that are similar to the recurrent model on
small datasets, the associated training procedure can
benefit from all the speed-ups and tricks of standard

feedforward NNLM (mini-batch and resampling),
which make it able to handle large training corpora.
Furthermore, we show that this approximation can
also be effectively used to bootstrap the training of a
“true” recurrent architecture.

The rest of this paper is organized as follows. We
first recollect, in Section 2, the basics of NNLMs ar-
chitectures. We then describe, in Section 3, a num-
ber of ways to speed up training for our “pseudo-
recurrent” model. We finally report, in Section 4,
various experimental results aimed at measuring the
impact of large contexts, first in terms of perplexity,
then on a realistic English to French translation task.

2 Language modeling in a continuous
space

Let V be a finite vocabulary, language models de-
fine distributions over sequences1 of tokens (typi-
cally words) wL

1 in V+ as follows:

P (wL
1) =

L∏
i=1

P (wi|wi−1
1) (1)

Modeling the joint distribution of several discrete
random variables (such as words in a sentence) is
difficult, especially in NLP applications where V
typically contains hundreds of thousands words. In
the n-gram model, the context is limited to the n−1
previous words, yielding the following factorization:

P (wL
1) =

L∏
i=1

P (wi|wi−1
i−n+1) (2)

Neural network language models (Bengio et al.,
2003) propose to represent words in a continuous
space and to estimate the probability distribution as
a smooth function of this representation. Figure 1
provides an overview of this approach. The context
words are first projected in a continuous space using
the shared matrix R. Denoting v the 1-of-V coding
vector of word v (all null except for the vth compo-
nent which is set to 1), its projection vector is the
vth line of R: RTv. The hidden layer h is then
computed as a non-linear function of these vectors.
Finally, the probability of all possible outcomes are
computed using one or several softmax layer(s).

1wj
i denotes a sequence of tokens wi . . . j when j ≥ i, or

the empty sequence otherwise.

2

0
...
0
1
0
0

1
0
...
0
0
0

0
...
0
0
1
0

v-3

v-2

v-1

R

R

R

shared input space

input layer

hidden layers

shortlist

sub-class
layers

word
layers

class
layer

input part output part

W

Figure 1: 4-gram model with SOUL at the output layer.

This architecture can be divided in two parts, with
the hidden layer in the middle: the input part (on the
left hand side of the graph) which aims at represent-
ing the context of the prediction; and the output part
(on the right hand side) which computes the proba-
bility of all possible successor words given the con-
text. In the remaining of this section, we describe
these two parts in more detail.

2.1 Input Layer Structure
The input part computes a continuous representation
of the context in the form of a context vector h to be
processed through the hidden layer.

2.1.1 N -gram Input Layer
Using the standard n-gram assumption of equa-

tion (2), the context is made up of the sole n−1 pre-
vious words. In a n-gram NNLM, these words are
projected in the shared continuous space and their
representations are then concatenated to form a sin-
gle vector i, as illustrated in the left part of Figure 1:

i = {RTv−(n−1);R
Tv−(n−2); . . . ;R

Tv−1}, (3)

where v−k is the kth previous word. A non-linear
transformation is then applied to compute the first
hidden layer h as follows:

h = sigm (Wi + b) , (4)

with sigm the sigmoid function. This kind of archi-
tecture will be referred to as a feed-forward NNLM.

Conventional n-gram LMs are usually limited to
small values of n, and using n greater that 4 or 5
does not seem to be of much use. Indeed, previ-
ous experiments using very large speech recognition
systems indicated that the gain obtained by increas-
ing the n-gram order from 4 to 5 is almost negli-
gible, whereas the model size increases drastically.
While using large context seems to be very imprac-
tical with back-off LMs, the situation is quite dif-
ferent for NNLMs due to their specific architecture.
In fact, increasing the context length for a NNLM
mainly implies to expend the projection layer with
one supplementary projection vector, which can fur-
thermore be computed very easily through a sim-
ple look-up operation. The overall complexity of
NNLMs thus only grows linearly with n in the worst
case (Schwenk, 2007).

In order to better investigate the impact of each
context position in the prediction, we introduce a
slight modification of this architecture in a man-
ner analog to the proposal of Collobert and Weston
(2008). In this variation, the computation of the hid-
den layer defined by equation (4) is replaced by:

h = sigm
(

max
k

[
WkRTv−k

]
+ b

)
, (5)

where Wk is the sub-matrix of W comprising the
columns related to the kth history word, and the max
is to be understood component-wise. The product
WkRT can then be considered as defining the pro-
jection matrix for the kth position. After the projec-
tion of all the context words, the max function se-
lects, for each dimension l, among the n − 1 values
([WkRTv−k]l) the most active one, which we also
assume to be the most relevant for the prediction.

2.1.2 Recurrent Layer
Recurrent networks are based on a more complex

architecture designed to recursively handle an arbi-
trary number of context words. Recurrent NNLMs
are described in (Mikolov et al., 2010; Mikolov et
al., 2011b) and are experimentally shown to outper-
form both standard back-off LMs and feed-forward
NNLMs in terms of perplexity on a small task. The
key aspect of this architecture is that the input layer
for predicting the ith word wi in a text contains both
a numeric representation vi−1 of the previous word
and the hidden layer for the previous prediction.

3

The hidden layer thus acts as a representation of the
context history that iteratively accumulates an un-
bounded number of previous words representations.

Our reimplementation of recurrent NNLMs
slightly differs from the feed-forward architecture
mainly by its input part.We use the same deep archi-
tecture to model the relation between the input word
presentations and the input layer as in the recurrent
model. However, we explicitly restrict the context to
the n−1 previous words. Note that this architecture
is just a convenient intermediate model that is used
to efficiently train a recurrent model, as described in
Section 3. In the recurrent model, the input layer is
estimated as a recursive function of both the current
input word and the past input layer.

i = sigm(Wi−1 + RTv−1) (6)

As in the standard model, RTv−k associates each
context word v−k to one feature vector (the corre-
sponding row in R). This vector plays the role of
a bias at subsequent input layers. The input part is
thus structured in a series of layers, the relation be-
tween the input layer and the first previous word be-
ing at level 1, the second previous word is at level 2
and so on. In (Mikolov et al., 2010; Mikolov et al.,
2011b), recurrent models make use of the entire con-
text, from the current word position all the way back
to the beginning of the document. This greatly in-
creases the complexity of training, as each document
must be considered as a whole and processed posi-
tion per position. By comparison, our reimplemen-
tation only considers a fixed context length, which
can be increased at will, thus simulating a true recur-
rent architecture; this enables us to take advantage
of several techniques during training that speed up
learning (see Section 3). Furthermore, as discussed
below, our preliminary results show that restricting
the context to the current sentence is sufficient to at-
tain optimal performance 2.

2.2 Structured Output Layer

A major difficulty with the neural network approach
is the complexity of inference and training, which
largely depends on the size of the output vocabu-

2The test sets used in MT experiments are made of various
News extracts. Their content is thus not homogeneous and us-
ing words from previous sentences doesn’t seem to be relevant.

lary ,i.e. of the number of words that have to be pre-
dicted. To overcome this problem, Le et al. (2011a)
have proposed the structured Output Layer (SOUL)
architecture. Following (Mnih and Hinton, 2008),
the SOUL model combines the neural network ap-
proach with a class-based LM (Brown et al., 1992).
Structuring the output layer and using word class in-
formation makes the estimation of distribution over
large output vocabulary computationally feasible.

In the SOUL LM, the output vocabulary is struc-
tured in a clustering tree, where every word is asso-
ciated to a unique path from the root node to a leaf
node. Denoting wi the ith word in a sentence, the se-
quence c1:D(wi) = c1, . . . , cD encodes the path for
word wi in this tree, with D the tree depth, cd(wi)
the class or sub-class assigned to wi, and cD(wi) the
leaf associated with wi, comprising just the word it-
self. The probability of wi given its history h can
then be computed as:

P (wi|h) =P (c1(wi)|h)

×
D∏

d=2

P (cd(wi)|h, c1:d−1).
(7)

There is a softmax function at each level of the
tree and each word ends up forming its own class
(a leaf). The SOUL architecture is represented in
the right part of Figure 1. The first (class layer)
estimates the class probability P (c1(wi)|h), while
sub-class layers estimate the sub-class probabili-
ties P (cd(wi)|h, c1:d−1), d = 2 . . . (D − 1). Fi-
nally, the word layer estimates the word probabili-
ties P (cD(wi)|h, c1:D−1). As in (Schwenk, 2007),
words in the short-list remain special, as each of
them represents a (final) class on its own right.

3 Efficiency issues

Training a SOUL model can be achieved by maxi-
mizing the log-likelihood of the parameters on some
training corpus. Following (Bengio et al., 2003),
this optimization is performed by Stochastic Back-
Propagation (SBP). Recurrent models are usually
trained using a variant of SBP called the Back-
Propagation Through Time (BPTT) (Rumelhart et
al., 1986; Mikolov et al., 2011a).

Following (Schwenk, 2007), it is possible to
greatly speed up the training of NNLMs using,

4

for instance, n-gram level resampling and bunch
mode training with parallelization (see below); these
methods can drastically reduce the overall training
time, from weeks to days. Adapting these meth-
ods to recurrent models are not straightforward. The
same goes with the SOUL extension: its training
scheme requires to first consider a restricted output
vocabulary (the shortlist), that is then extended to in-
clude the complete prediction vocabulary (Le et al.,
2011b). This technique is too time consuming, in
practice, to be used when training recurrent mod-
els. By bounding the recurrence to a dozen or so
previous words, we obtain a recurrent-like n-gram
model that can benefit from a variety of speed-up
techniques, as explained in the next sections.

Note that the bounded-memory approximation is
only used for training: once training is complete, we
derive a true recurrent network using the parameters
trained on its approximation. This recurrent archi-
tecture is then used for inference.

3.1 Reducing the training data

Our usual approach for training large scale models
is based on n-gram level resampling a subset of the
training data at each epoch. This is not directly com-
patible with the recurrent model, which requires to
iterate over the training data sentence-by-sentence in
the same order as they occur in the document. How-
ever, by restricting the context to sentences, data re-
sampling can be carried out at the sentence level.
This means that the input layer is reinitialized at
the beginning of each sentence so as to “forget”, as
it were, the memory of the previous sentences. A
similar proposal is made in (Mikolov et al., 2011b),
where the temporal dependencies are limited to the
level of paragraph. Another useful trick, which is
also adopted here, is to use different sampling rates
for the various subparts of the data, thus boosting the
use of in-domain versus out-of-domain data.

3.2 Bunch mode

Bunch mode training processes sentences by batches
of several examples, thus enabling matrix operation
that are performed very efficiently by the existing
BLAS library. After resampling, the training data is
divided into several sentence flows which are pro-
cessed simultaneously. While the number of exam-
ples per batch can be as high as 128 without any

visible loss of performance for n-gram NNLM, we
found, after some preliminary experiments, that the
value of 32 seems to yield a good tradeoff between
the computing time and the performance for recur-
rent models. Using such batches, the training time
can be speeded up by a factor of 8 at the price of a
slight loss (less than 2%) in perplexity.

3.3 SOUL training scheme

The SOUL training scheme integrates several steps
aimed at dealing with the fact that the output vocab-
ulary is split in two sub-parts: very frequent words
are in the so-called short-list and are treated differ-
ently from the less frequent ones. This setting can
not be easily reproduced with recurrent models. By
contrast, using the pseudo-recurrent n-gram NNLM,
the SOUL training scheme can be adopted; the re-
sulting parameter values are then plugged in into a
truly recurrent architecture. In the light of the results
reported below, we content ourselves with values of
n in the range 8-10.

4 Experimental Results

We now turn to the experimental part, starting with a
description of the experimental setup. We will then
present an attempt to quantify the relative impor-
tance of history words, followed by a head to head
comparison of the various NNLM architectures dis-
cussed in the previous sections.

4.1 Experimental setup

The tasks considered in our experiments are derived
from the shared translation track of WMT 2011
(translation from English to French). We only pro-
vide here a short overview of the task; all the neces-
sary details regarding this evaluation campaign are
available on the official Web site3 and our system
is described in (Allauzen et al., 2011). Simply note
that our parallel training data includes a large Web
corpus, referred to as the GigaWord parallel cor-
pus. After various preprocessing and filtering steps,
the total amount of training data is approximately
12 million sentence pairs for the bilingual part, and
about 2.5 billion of words for the monolingual part.

To built the target language models, the mono-
lingual corpus was first split into several sub-parts

3http://www.statmt.org/wmt11

5

based on date and genre information. For each of
these sub-corpora, a standard 4-gram LM was then
estimated with interpolated Kneser-Ney smoothing
(Chen and Goodman, 1996). All models were cre-
ated without any pruning nor cutoff. The baseline
back-off n-gram LM was finally built as a linear
combination of several these models, where the in-
terpolation coefficients are chosen so as to minimize
the perplexity of a development set.

All NNLMs are trained following the prescrip-
tions of Le et al. (2011b), and they all share the
same inner structure: the dimension of the projec-
tion word space is 500; the size of two hidden lay-
ers are respectively 1000 and 500; the short-list con-
tains 2000 words; and the non-linearity is introduced
with the sigmoid function. For the recurrent model,
the parameter that limits the back-propagation of er-
rors through time is set to 9 (see (Mikolov et al.,
2010) for details). This parameter can be considered
to play a role that is similar to the history size in
our pseudo-recurrent n-gram model: a value of 9 in
the recurrent setting is equivalent to n = 10. All
NNLMs are trained with the following resampling
strategy: 75% of in-domain data (monolingual News
data 2008-2011) and 25% of the other data. At each
epoch, the parameters are updated using approxi-
mately 50 millions words for the last training step
and about 140 millions words for the previous ones.

4.2 The usefulness of remote words

In this section, we analyze the influence of each con-
text word with respect to their distance from the pre-
dicted word and to their POS tag. The quantitative
analysis relies on the variant of the n-gram architec-
ture based on (5) (see Section 2.1), which enables
us to keep track of the most important context word
for each prediction. Throughout this study, we will
consider 10-gram NNLMs.

Figure 2 represents the selection rate with respect
to the word position and displays the percentage of
coordinates in the input layer that are selected for
each position. As expected, close words are the most
important, with the previous word accounting for
more than 35% of the components. Remote words
(at a distance between 7 and 9) have almost the
same, weak, influence, with a selection rate close to
2.5%. This is consistent with the perplexity results
of n-gram NNLMs as a function of n, reported in

Tag Meaning Example
ABR abreviation etc FC FMI
ABK other abreviation ONG BCE CE
ADJ adjective officielles alimentaire mondial
ADV adverb contrairement assez alors
DET article; une les la

possessive pronoun ma ta
INT interjection oui adieu tic-tac
KON conjunction que et comme
NAM proper name Javier Mercure Pauline
NOM noun surprise inflation crise
NUM numeral deux cent premier
PRO pronoun cette il je
PRP preposition; de en dans

preposition plus article au du aux des
PUN punctuation; : , -

punctuation citation ”
SENT sentence tag ? . !
SYM symbol %
VER verb ont fasse parlent
<s> start of sentence

Table 1: List of grouped tags from TreeTagger.

Table 2: the difference between all orders from 4-
gram to 8-gram are significant, while the difference
between 8-gram and 10-gram is negligible.

POS tags were computed using the TreeTag-
ger (Schmid, 1994); sub-types of a main tag are
pooled to reduce the total number of categories. For
example, all the tags for verbs are merged into the
same VER class. Adding the token <s> (sentence
start), our tagset contains 17 tags (see Table 1).

The average selection rates for each tag are shown
in Figure 3: for each category, we display (in bars)
the average number of components that correspond
to a word in that category when this word is in pre-
vious position. Rare tags (INT, ABK , ABR and
SENT) seem to provide a very useful information
and have very high selection rates. Conversely, DET,
PUN and PRP words occur relatively frequently and
belong to the less selective group. The two most
frequent tags (NOM and VER) have a medium se-
lection rate (approximately 0.5).

4.3 Translation experiments
The integration of NNLMs for large SMT tasks is
far from easy, given the computational cost of com-
puting n-gram probabilities, a task that is performed
repeatedly during the search of the best translation.
Our solution was to resort to a two-pass approach:
the first pass uses a conventional back-off n-gram
model to produce a list of the k most likely trans-
lations; in the second pass, the NNLMs probability

6

1 2 3 4 5 6 7 8 9
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Figure 2: Average selection rate per word position for the
max-based NNLM, computed on newstest2009-2011. On
x axis, the number k represents the kth previous word.

0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

PU
N

DET SY
M

PR
P

NUM
KO

N
ADV

SE
NT

PR
O

VER <
s> ADJ

NOM
ABR

NAM
ABK

IN
T

Figure 3: Average selection rate of max function of the
first previous word in terms of word POS-tag information,
computed on newstest2009-2011. The green line repre-
sents the distribution of occurrences of each tag.

of each hypothesis is computed and the k-best list is
accordingly reordered. The NNLM weights are op-
timized as the other feature weights using Minimum
Error Rate Training (MERT) (Och, 2003). For all
our experiments, we used the value k = 300.

To clarify the impact of the language model or-
der in translation performance, we considered three
different ways to use NNLMs. In the first setting,
the NNLM is used alone and all the scores provided
by the MT system are ignored. In the second set-
ting (replace), the NNLM score replaces the score
of the standard back-off LM. Finally, the score of
the NNLM can be added in the linear combination
(add). In the last two settings, the weights used for

Model Perplexity BLEU
alone replace add

Baseline 90 29.4 31.3 -
4-gram 92 29.8 31.1 31.5
6-gram 82 30.2 31.6 31.8
8-gram 78 30.6 31.6 31.8
10-gram 77 30.5 31.7 31.8
recurrent 81 30.4 31.6 31.8

Table 2: Results for the English to French task obtained
with the baseline system and with various NNLMs. Per-
plexity is computed on newstest2009-2011 while BLEU is
on the test set (newstest2010).

n-best reranking are re-tuned with MERT.
Table 2 summarizes the BLEU scores obtained on

the newstest2010 test set. BLEU improvements are
observed with feed-forward NNLMs using a value
of n = 8 with respect to the baseline (n = 4).
Further increase from 8 to 10 only provides a very
small BLEU improvement. These results strengthen
the assumption made in Section 3.3: there seem to
be very little information in remote words (above
n = 7-8). It is also interesting to see that the 4-gram
NNLM achieves a comparable perplexity to the con-
ventional 4-gram model, yet delivers a small BLEU
increase in the alone condition.

Surprisingly4, on this task, recurrent models seem
to be comparable with 8-gram NNLMs. The rea-
son may be the deep architecture of recurrent model
that makes it hard to be trained in a large scale task.
With the recurrent-like n-gram model described in
Section 2.1.2, it is feasible to train a recurrent model
on a large task. With 10% of perplexity reduction as
compared to a backoff model, its yields comparable
performances as reported in (Mikolov et al., 2011a).
To the best of our knowledge, it is the first recurrent
NNLM trained on a such large dataset (2.5 billion
words) in a reasonable time (about 11 days).

5 Related work

There have been many attempts to increase the
context beyond a couple of history words (see eg.
(Rosenfeld, 2000)), for example: by modeling syn-

4Pers. com. with T. Mikolov: on the ”small” WSJ data
set, the recurrent model described in (Mikolov et al., 2011b)
outperforms the 10-gram NNLM.

7

tactic information, that better reflects the “distance”
between words (Chelba and Jelinek, 2000; Collins
et al., 2005; Schwartz et al., 2011); with a unigram
model of the whole history (Kuhn and Mori, 1990);
by using trigger models (Lau et al., 1993); or by try-
ing to model document topics (Seymore and Rosen-
feld, 1997). One interesting proposal avoids the n-
gram assumption by estimating the probability of a
sentence (Rosenfeld et al., 2001). This approach
relies on a maximum entropy model which incor-
porates arbitrary features. No significant improve-
ments were however observed with this model, a fact
that can be attributed to two main causes: first, the
partition function can not be computed exactly as it
involves a sum over all the possible sentences; sec-
ond, it seems that data sparsity issues for this model
are also adversely affecting the performance.

The recurrent network architecture for LMs was
proposed in (Mikolov et al., 2010) and then ex-
tended in (Mikolov et al., 2011b). The authors pro-
pose a hierarchical architecture similar to the SOUL
model, based however on a simple unigram clus-
tering. For large scale tasks (≈ 400M training
words), advanced training strategies were investi-
gated in (Mikolov et al., 2011a). Instead of resam-
pling, the data was divided into paragraphs, filtered
and then sorted: the most in-domain data was thus
placed at the end of each epoch. On the other hand,
the hidden layer size was decreased by simulating a
maximum entropy model using a hash function on
n-grams. This part represents direct connections be-
tween input and output layers. By sharing the pre-
diction task, the work of the hidden layer is made
simpler, and can thus be handled with a smaller
number of hidden units. This approach reintroduces
into the model discrete features which are somehow
one main weakness of conventional backoff LMs as
compared to NNLMs. In fact, this strategy can be
viewed as an effort to directly combine the two ap-
proaches (backoff-model and neural network), in-
stead of using a traditional way, through interpola-
tion. Training simultaneously two different models
is computationally very demanding for large vocab-
ularies, even with help of hashing technique; in com-
parison, our approach keeps the model architecture
simple, making it possible to use the efficient tech-
niques developed for n-gram NNLMs.

The use the max, rather than a sum, on the hid-

den layer of neural network is not new. Within the
context of language modeling, it was first proposed
in (Collobert et al., 2011) with the goal to model a
variable number of input features. Our motivation
for using this variant was different, and was mostly
aimed at analyzing the influence of context words
based on the selection rates of this function.

6 Conclusion

In this paper, we have investigated several types
of NNLMs, along with conventional LMs, in or-
der to assess the influence of long range dependen-
cies within sentences in the language modeling task:
from recurrent models that can recursively handle
an arbitrary number of context words to n-gram
NNLMs with n varying between 4 and 10. Our con-
tribution is two-fold.

First, experimental results showed that the influ-
ence of word further than 9 can be neglected for the
statistical machine translation task 5. Therefore, the
n-gram assumption with n ≈ 10 appears to be well-
founded to handle most sentence internal dependen-
cies. Another interesting conclusion of this study
is that the main issue of the conventional n-gram
model is not its conditional independence assump-
tions, but the use of too small values for n.

Second, by restricting the context of recurrent net-
works, the model can benefit of the advanced train-
ing schemes and its training time can be divided by
a factor 8 without loss on the performances. To the
best of our knowledge, it is the first time that a re-
current NNLM is trained on a such large dataset in
a reasonable time. Finally, we compared these mod-
els within a large scale MT task, with monolingual
data that contains 2.5 billion words. Experimental
results showed that using long range dependencies
(n = 10) with a SOUL language model significantly
outperforms conventional LMs. In this setting, the
use of a recurrent architecture does not yield any im-
provements, both in terms of perplexity and BLEU.

Acknowledgments

This work was achieved as part of the Quaero Pro-
gramme, funded by OSEO, the French State agency
for innovation.

5The same trend is observed in speech recognition.

8

References
Alexandre Allauzen, Gilles Adda, Hélène Bonneau-

Maynard, Josep M. Crego, Hai-Son Le, Aurélien Max,
Adrien Lardilleux, Thomas Lavergne, Artem Sokolov,
Guillaume Wisniewski, and François Yvon. 2011.
LIMSI @ WMT11. In Proceedings of the Sixth Work-
shop on Statistical Machine Translation, pages 309–
315, Edinburgh, Scotland.

Y Bengio, R Ducharme, P Vincent, and C Jauvin. 2003.
A neural probabilistic language model. Journal of Ma-
chine Learning Research, 3(6):1137–1155.

Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och,
and Jeffrey Dean. 2007. Large language models in
machine translation. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL), pages 858–867.

Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vin-
cent J. Della Pietra, and Jenifer C. Lai. 1992. Class-
based n-gram models of natural language. Comput.
Linguist., 18(4):467–479.

Ciprian Chelba and Frederick Jelinek. 2000. Structured
language modeling. Computer Speech and Language,
14(4):283–332.

Stanley F. Chen and Joshua Goodman. 1996. An empiri-
cal study of smoothing techniques for language model-
ing. In Proc. ACL’96, pages 310–318, San Francisco.

Michael Collins, Brian Roark, and Murat Saraclar.
2005. Discriminative syntactic language modeling for
speech recognition. In Proceedings of the 43rd Annual
Meeting of the Association for Computational Linguis-
tics (ACL’05), pages 507–514, Ann Arbor, Michigan,
June. Association for Computational Linguistics.

Ronan Collobert and Jason Weston. 2008. A uni-
fied architecture for natural language processing: deep
neural networks with multitask learning. In Proc.
of ICML’08, pages 160–167, New York, NY, USA.
ACM.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
Journal of Machine Learning Research, 12:2493–
2537.

Ahmad Emami, Imed Zitouni, and Lidia Mangu. 2008.
Rich morphology based n-gram language models for
arabic. In INTERSPEECH, pages 829–832.

R. Kuhn and R. De Mori. 1990. A cache-based natural
language model for speech recognition. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
12(6):570–583, june.

Hong-Kwang Kuo, Lidia Mangu, Ahmad Emami, and
Imed Zitouni. 2010. Morphological and syntactic fea-
tures for arabic speech recognition. In Proc. ICASSP
2010.

Raymond Lau, Ronald Rosenfeld, and Salim Roukos.
1993. Adaptive language modeling using the maxi-
mum entropy principle. In Proc HLT’93, pages 108–
113, Princeton, New Jersey.

Hai-Son Le, Ilya Oparin, Alexandre Allauzen, Jean-Luc
Gauvain, and François Yvon. 2011a. Structured out-
put layer neural network language model. In Proceed-
ings of ICASSP’11, pages 5524–5527.

Hai-Son Le, Ilya Oparin, Abdel. Messaoudi, Alexan-
dre Allauzen, Jean-Luc Gauvain, and François Yvon.
2011b. Large vocabulary SOUL neural network lan-
guage models. In Proceedings of InterSpeech 2011.

Xunying Liu, Mark J. F. Gales, and Philip C. Woodland.
2011. Improving lvcsr system combination using neu-
ral network language model cross adaptation. In IN-
TERSPEECH, pages 2857–2860.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan
Černocký, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In Proceedings
of the 11th Annual Conference of the International
Speech Communication Association (INTERSPEECH
2010), volume 2010, pages 1045–1048. International
Speech Communication Association.

Tomáš Mikolov, Anoop Deoras, Daniel Povey, Lukáš
Burget, and Jan Černocký. 2011a. Strategies for train-
ing large scale neural network language models. In
Proceedings of ASRU 2011, pages 196–201. IEEE Sig-
nal Processing Society.

Tomáš Mikolov, Stefan Kombrink, Lukas Burget, Jan
Cernocký, and Sanjeev Khudanpur. 2011b. Exten-
sions of recurrent neural network language model. In
Proc. of ICASSP’11, pages 5528–5531.

Andriy Mnih and Geoffrey E Hinton. 2008. A scalable
hierarchical distributed language model. In D. Koller,
D. Schuurmans, Y. Bengio, and L. Bottou, editors, Ad-
vances in Neural Information Processing Systems 21,
volume 21, pages 1081–1088.

Franz Josef Och. 2003. Minimum error rate training
in statistical machine translation. In Proceedings of
the 41st Annual Meeting on Association for Compu-
tational Linguistics - Volume 1, ACL ’03, pages 160–
167, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Ronald Rosenfeld, Stanley F. Chen, and Xiaojin Zhu.
2001. Whole-sentence exponential language models:
A vehicle for linguistic-statistical integration. Com-
puters, Speech and Language, 15:2001.

R. Rosenfeld. 2000. Two decades of statistical language
modeling: Where do we go from here ? Proceedings
of the IEEE, 88(8).

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. 1986.
Parallel distributed processing: explorations in the mi-
crostructure of cognition, vol. 1. chapter Learning

9

internal representations by error propagation, pages
318–362. MIT Press, Cambridge, MA, USA.

Helmut Schmid. 1994. Probabilistic part-of-speech tag-
ging using decision trees. In Proceedings of Interna-
tional Conference on New Methods in Language Pro-
cessing.

Lane Schwartz, Chris Callison-Burch, William Schuler,
and Stephen Wu. 2011. Incremental syntactic lan-
guage models for phrase-based translation. In Pro-
ceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language
Technologies, pages 620–631, Portland, Oregon, USA,
June. Association for Computational Linguistics.

Holger Schwenk and Jean-Luc Gauvain. 2002. Connec-
tionist language modeling for large vocabulary contin-
uous speech recognition. In Proc. ICASSP, pages 765–
768, Orlando, FL.

H. Schwenk and P. Koehn. 2008. Large and diverse lan-
guage models for statistical machine translation. In
International Joint Conference on Natural Language
Processing, pages 661–666, Janv 2008.

Holger Schwenk. 2007. Continuous space language
models. Comput. Speech Lang., 21(3):492–518.

Kristie Seymore and Ronald Rosenfeld. 1997. Using
story topics for language model adaptation. In Proc. of
Eurospeech ’97, pages 1987–1990, Rhodes, Greece.

Yeh W. Teh. 2006. A hierarchical Bayesian language
model based on Pitman-Yor processes. In Proc. of
ACL’06, pages 985–992, Sidney, Australia.

10

NAACL-HLT 2012 Workshop: Will We Ever Really Replace the N-gram Model? On the Future of Language Modeling for HLT, pages 11–19,
Montréal, Canada, June 8, 2012. c©2012 Association for Computational Linguistics

Large, Pruned or Continuous Space Language Models on a GPU

for Statistical Machine Translation

Holger Schwenk, Anthony Rousseau and Mohammed Attik
LIUM, University of Le Mans

72085 Le Mans cedex 9, FRANCE
Holger.Schwenk@lium.univ-lemans.fr

Abstract

Language models play an important role in
large vocabulary speech recognition and sta-
tistical machine translation systems. The
dominant approach since several decades are
back-off language models. Some years ago,
there was a clear tendency to build huge lan-
guage models trained on hundreds of billions
of words. Lately, this tendency has changed
and recent works concentrate on data selec-
tion. Continuous space methods are a very
competitive approach, but they have a high
computational complexity and are not yet in
widespread use. This paper presents an ex-
perimental comparison of all these approaches
on a large statistical machine translation task.
We also describe an open-source implemen-
tation to train and use continuous space lan-
guage models (CSLM) for such large tasks.
We describe an efficient implementation of the
CSLM using graphical processing units from
Nvidia. By these means, we are able to train
an CSLM on more than 500 million words in
20 hours. This CSLM provides an improve-
ment of up to 1.8 BLEU points with respect to
the best back-off language model that we were
able to build.

1 Introduction

Language models are used to estimate the proba-
bility of a sequence of words. They are an impor-
tant module in many areas of natural language pro-
cessing, in particular large vocabulary speech recog-
nition (LVCSR) and statistical machine translation
(SMT). The goal of LVCSR is to convert a speech
signal x into a sequence of words w. This is usually

approached with the following fundamental equa-
tion:

w∗ = arg max
w

P (w|x)

= arg max
w

P (x|w)P (w) (1)

In SMT, we are faced with a sequence of words e
in the source language and we are looking for its
best translation f into the target language. Again,
we apply Bayes rule to introduce a language model:

f∗ = arg max
f

P (f |e)

= arg max
f

P (e|f)P (f) (2)

Although we use a language model to evaluate the
probability of the produced sequence of words, w
and f respectively, we argue that the task of the lan-
guage model is not exactly the same for both ap-
plications. In LVCSR, the LM must choose among
a large number of possible segmentations of the
phoneme sequence into words, given the pronuncia-
tion lexicon. It is also the only component that helps
to select among homonyms, i.e. words that are pro-
nounced in the same way, but that are written dif-
ferently and which have usually different meanings
(e.g. ate/eight or build/billed). In SMT, on the other
hand, the LM has the responsibility to chose the best
translation of a source word given the context. More
importantly, the LM is a key component which has
to sort out good and bad word reorderings. This
is known to be a very difficult issue when translat-
ing from or into languages like Chinese, Japanese or
German. In LVCSR, the word order is given by the
time-synchronous processing of the speech signal.
Finally, the LM helps to deal with gender, number,

11

etc accordance of morphologically rich languages,
when used in an LVCSR as well as an SMT system.
Overall, one can say that the semantic level seems
to be more important for language modeling in SMT
than LVCSR. In both applications, so called back-off
n-gram language models are the de facto standard
since several decades. They were first introduced
in the eighties, followed by intensive research on
smoothing methods. An extensive comparison can
be found in (Chen and Goodman, 1999). Modified-
Kneser Ney smoothing seems to be the best perform-
ing method and it is this approach that is almost ex-
clusively used today.

Some years ago, there was a clear tendency in
SMT to use huge LMs trained on hundreds on bil-
lions (1011) of words (Brants et al., 2007). The au-
thors report continuous improvement of the trans-
lation quality with increasing size of the LM train-
ing data, but these models require a large cluster to
train and to perform inference using distributed stor-
age. Therefore, several approaches were proposed
to limit the storage size of large LMs, for instance
(Federico and Cettolo, 2007; Talbot and Osborne,
2007; Heafield, 2011).

1.1 Continuous space language models
The main drawback of back-off n-gram language
models is the fact that the probabilities are estimated
in a discrete space. This prevents any kind of inter-
polation in order to estimate the LM probability of
an n-gram which was not observed in the training
data. In order to attack this problem, it was pro-
posed to project the words into a continuous space
and to perform the estimation task in this space. The
projection as well as the estimation can be jointly
performed by a multi-layer neural network (Bengio
and Ducharme, 2001; Bengio et al., 2003). The ba-
sic architecture of this approach is shown in figure 1.

A standard fully-connected multi-layer per-
ceptron is used. The inputs to the neural
network are the indices of the n−1 pre-
vious words in the vocabulary hj=wj−n+1,
. . . , wj−2, wj−1 and the outputs are the posterior
probabilities of all words of the vocabulary:

P (wj = i|hj) ∀i ∈ [1, N] (3)

where N is the size of the vocabulary. The input
uses the so-called 1-of-n coding, i.e., the ith word of

projection
layer hidden

layer

output
layerinput

projections
shared

continuous
representation: representation:

indices in wordlist

LM probabilitiesdiscrete
for all words

probability estimation

Neural Network

N

wj−1 P

H

N

P (wj =1|hj)
wj−n+1

wj−n+2

P (wj =i|hj)

P (wj =N|hj)

P dimensional vectors

ck

oiM

Vdj

p1 =

pN =

pi =

Figure 1: Architecture of the continuous space LM. hj

denotes the context wj−n+1, . . . , wj−1. P is the size of
one projection andH ,N is the size of the hidden and out-
put layer respectively. When short-lists are used the size
of the output layer is much smaller then the size of the
vocabulary.

the vocabulary is coded by setting the ith element of
the vector to 1 and all the other elements to 0. The
ith line of the N × P dimensional projection matrix
corresponds to the continuous representation of the
ith word. Let us denote cl these projections, dj the
hidden layer activities, oi the outputs, pi their soft-
max normalization, and mjl, bj , vij and ki the hid-
den and output layer weights and the corresponding
biases. Using these notations, the neural network
performs the following operations:

dj = tanh

(∑
l

mjl cl + bj

)
(4)

oi =
∑
j

vij dj + ki (5)

pi = eoi /
N∑

r=1

eor (6)

The value of the output neuron pi is used as the prob-
ability P (wj = i|hj). Training is performed with
the standard back-propagation algorithm minimiz-
ing the following error function:

E =
N∑

i=1

ti log pi + β

∑
jl

m2
jl +

∑
ij

v2
ij

 (7)

where ti denotes the desired output, i.e., the proba-

12

bility should be 1.0 for the next word in the training
sentence and 0.0 for all the other ones. The first part
of this equation is the cross-entropy between the out-
put and the target probability distributions, and the
second part is a regularization term that aims to pre-
vent the neural network from overfitting the training
data (weight decay). The parameter β has to be de-
termined experimentally.

The CSLM has a much higher complexity than a
back-off LM, in particular because of the high di-
mension of the output layer. Therefore, it was pro-
posed to limit the size of the output layer to the most
frequent words, the other ones being predicted by
a standard back-off LM (Schwenk, 2004). All the
words are still considered at the input layer.

It is important to note that the CSLM is still an
n-gram approach, but the notion of backing-off to
shorter contexts does not exist any more. The model
can provide probability estimates for any possible
n-gram. It also has the advantage that the complex-
ity only slightly increases for longer context win-
dows, while it is generally considered to be unfea-
sible to train back-off LMs on billions of words for
orders larger than 5.

The CSLM was very successfully applied to large
vocabulary speech recognition. It is usually used to
rescore lattices and improvements of the word er-
ror rate of about one point were consistently ob-
served for many languages and domains, for in-
stance (Schwenk and Gauvain, 2002; Schwenk,
2007; Park et al., 2010; Liu et al., 2011; Lamel et
al., 2011). More recently, the CSLM was also suc-
cessfully applied to statistical machine translation
(Schwenk et al., 2006; Schwenk and Estève, 2008;
Schwenk, 2010; Le et al., 2010)

During the last years, several extensions were pro-
posed in the literature, for instance:

• Mikolov and his colleagues are working on
the use of recurrent neural networks instead of
multi-layer feed-forward architecture (Mikolov
et al., 2010; Mikolov et al., 2011).

• A simplified calculation of the short-list prob-
ability mass and the addition of an adaptation
layer (Park et al., 2010; Liu et al., 2011)

• the so-called SOUL architecture which allows
to cover all the words at the output layer instead

of using a short-list (Le et al., 2011a; Le et al.,
2011b), based on work by (Morin and Bengio,
2005; Mnih and Hinton, 2008).

• alternative sampling in large corpora (Xu et al.,
2011)

Despite significant and consistent gains in
LVCSR and SMT, CSLMs are not yet in widespread
use. Possible reasons for this could be the large com-
putational complexity which requires flexible and
carefully tuned software so that the models can be
build and used in an efficient manner.

In this paper we provide a detailed comparison of
the current most promising language modeling tech-
niques for SMT: huge back-off LMs that integrate
all available data, LMs trained on data selected with
respect to its relevance to the task by a recently pro-
posed method (Moore and Lewis, 2010), and a new
very efficient implementation of the CSLM which
integrates data selection.

2 Continuous space LM toolkit

Free software to train and use CSLM was proposed
in (Schwenk, 2010). The first version of this toolkit
provided no support for short lists or other means to
train CSLMs with large output vocabularies. There-
fore, it was not possible to use it for LVCSR and
large SMT tasks. We extended our tool with full
support for short lists during training and inference.
Short lists are implemented as proposed in (Park et
al., 2010), i.e. we add one extra output neuron for
all words that are not in the short list. This prob-
ability mass is learned by the neural network from
the training data. However, we do not use this prob-
ability mass to renormalize the output distribution,
we simply assume that it is sufficiently close to the
probability mass reserved by the back-off LM for
words that are not in the short list. In summary, dur-
ing inference words in the short-list are predicted by
the neural network and all the other ones by a stan-
dard back-off LM. No renormalization is performed.
We have performed some comparative experiments
with renormalization during inference and we could
not observe significant differences. The toolkit sup-
ports LMs in the SRILM format, an interface to the
popular KENLM is planed.

13

2.1 Parallel processing

The computational power of general purpose pro-
cessors like those build by Intel or AMD has con-
stantly increased during the last decades and opti-
mized libraries are available to take advantage of the
multi-core capabilities of modern CPUs. Our CSLM
toolkit fully supports parallel processing based on
Intel’s MKL library.1 Figure 2 shows the time used
to train a large neural network on 1M examples. We
trained a 7-gram CSLM with a projection layer of
size 320, two hidden layers of size 1024 and 512 re-
spectively, and an output layer of dimension 16384
(short-list). We compared two hardware architec-
tures:

• a top-end PC with one Intel Core i7 3930K pro-
cessor (3.2 GHz, 6 cores).

• a typical server with two Intel Xeon X5675 pro-
cessors (2× 3.06 GHz, 6 cores each).

We did not expect a linear increase of the speed
with the number of threads run in parallel, but nev-
ertheless, there is a clear benefit of using multiple
cores: processing is about 6 times faster when run-
ning on 12 cores instead of a single one. The Core i7
3930K processor is actually slightly faster than the
Xeon X5675, but we are limited to 6 cores since it
can not interact with a second processor.

2.2 Running on a GPU

In parallel to the development efforts for fast general
purpose CPUs, dedicated hardware has been devel-
oped in order to satisfy the computational needs of
realistic 3D graphics in high resolutions, so called
graphical processing units (GPU). Recently, it was
realized that this computational power can be in
fact used for scientific computing, e.g. in chem-
istry, molecular physics, earth quake simulations,
weather forecasts, etc. A key factor was the avail-
ability of libraries and toolkits to simplify the pro-
gramming of GPU cards, for instance the CUDA
toolkit of Nvidia.2 The machine learning commu-
nity has started to use GPU computing and several
toolkits are available to train generic networks. We
have also added support for Nvidia GPU cards to the

1http://software.intel.com/en-us/articles/intel-mkl
2http://developer.nvidia.com/cuda-downloads

 100

 200

 400

 800

 1600

 3200

 0 2 4 6 8 10 12

tim
e

in
 s

ec

number of CPU cores

Intel Xeon X5675
Intel Core7 3690K

Nvidia Tesla M2090
Nvidia GTX 580

Figure 2: Time to train on 1M examples on various hard-
ware architectures (the speed is shown in log scale).

CSLM toolkit. Timing experiments were performed
with two types of GPU cards:

• a Nvidia GTX 580 GPU card with 3 GB of
memory. It has 512 cores running at 1.54 GHz.

• a Nvidia Tesla M2090 card with 6 GB of mem-
ory. It has 512 cores running at 1.3 GHz.

As can be seen from figure 2, for these network
sizes the GTX 580 is about 3 times faster than two
Intel X5675 processors (12 cores). This speed-up
is smaller than the ones observed in other studies to
run machine learning tasks on a GPU, probably be-
cause of the large number of parameters which re-
quire many accesses to the GPU memory. For syn-
thetic benchmarks, all the code and data often fits
into the fast shared memory of the GPU card. We
are continuing our work to improve the speed of our
toolkit on GPU cards. The Tesla M2090 is a little bit
slower than the GTX 580 due to the lower core fre-
quency. However, it has a much better support for
double precision floating point calculations which
could be quite useful when training large neural net-
works.

3 Experimental Results

In this work, we present comparative results for var-
ious LMs when integrated into a large-scale SMT
system to translate from Arabic into English. We use
the popular Moses toolkit to build the SMT system
(Koehn et al., 2007). As in our previous works, the
CSLM is used to rescore 1000-best lists. The sen-
tence probability calculated by the CSLM is added

14

AFP APW NYT XIN LTW WPB CNA
old avrg recent old avrg recent old avrg recent old avrg recent all all all

Using all the data:
Words 151M 547M 371M 385M 547M 444M 786M 543M 364M 105M 147M 144M 313M 20M 39M

Perplex 167.7 141.0 138.6 192.7 170.3 163.4 234.1 203.5 197.1 162.9 126.4 121.8 170.3 269.3 266.5

After data selection:

Words 36M 77M 96M 62M 77M 89M 110M 54M 44M 23M 35M 38M 69M 6M 7M
23% 26% 26% 16% 14% 20% 14% 10% 12% 22% 24% 26% 22% 30% 18%

Perplex 160.9 135.0 131.6 185.3 153.2 151.1 201.2 173.6 169.5 159.6 123.4 117.7 153.1 263.9 253.2

Table 1: Perplexities on the development data (news wire genre) of the individual sub-corpora in the LDC Gigaword
corpus, before and after data selection by the method of (Moore and Lewis, 2010).

as 15th feature function and the coefficients of all
the feature functions are optimized by MERT. The
CSLM toolkit includes scripts to perform this task.

3.1 Baseline systems

The Arabic/English SMT system was trained on par-
allel and monolingual data similar to those avail-
able in the well known NIST OpenMT evaluations.
About 151M words of bitexts are available from
LDC out of which we selected 41M words to build
the translation model. The English side of all the
bitexts was used to train the target language model.

In addition, we used the LDC Gigaword corpus
version 5 (LDC2011T07). It contains about 4.9 bil-
lion words coming from various news sources (AFP
and XIN news agencies, New York Times, etc) for
the period 1994 until 2010. All corpus sizes are
given after tokenization.

For development and tuning, we used the
OpenMT 2009 data set which contains 1313 sen-
tences. The corresponding data from 2008 was used
as internal test set. We report separate results for the
news wire part (586 sentence, 24k words) and the
web part (727 sentences, 24k words) since we want
to compare the performance of the various LMs for
formal and more informal language. Four reference
translations were available. Case and punctuation
were preserved for scoring.

It is well known that it is better to build LMs on
the individual sources and to interpolate them, in-
stead of building one LM on all the concatenated
data. The interpolation coefficients are tuned by op-
timizing the perplexity on the development corpus
using an EM procedure. We split the huge Giga-

word corpora AFP, APW, NYT and XIN into three
parts according to the time period (old, average and
recent). This gives in total 15 sub-corpora. The sizes
and the perplexities are given in Table 1. The inter-
polated 4-gram LM of these 15 corpora has a per-
plexity of 87 on the news part.

If we add the English side of all the bitexts, the
perplexity can be lowered to 71.1. All the observed
n-grams were preserved, e.g. the cut-off for n-gram
counts was set to 1 for all orders. This gives us an
huge LM with 1.4 billion 4-grams, 548M 3-grams
and 83M bigrams which requires more 26 GBytes
to be stored on disk. This LM is loaded into mem-
ory by the Moses decoder. This takes more than 10
minutes and requires about 70 GB of memory.

Moses supports memory mapped LMs, like
IRSTLM or KENLM, but this was not explored in
this study. We call this LM “big LM”. We believe
that it could be considered as a very strong base-
line for a back-off LM. We did not attempt to build
higher order back-off LM given the size require-
ments. For comparison, we also build a small LM
which was trained on the English part of the bitexts
and the recent XIN corpus only. It has a perplexity
of 78.9 and occupies 2 GB on disk (see table 2).

3.2 Data selection

We have reimplemented the method of Moore and
Lewis (2010) to select the most appropriate LM data
based on the difference between the sentence-wise
entropy of an in-domain and out-of domain LM.

In our experiments, we have observed exactly the
same behavior than reported by the authors: the per-
plexity decreases when less, but more appropriate

15

 170

 180

 190

 200

 210

 220

 230

 240

 0 10 20 30 40 50 60 70 80 90 100

P
er

pl
ex

ity

Percentage of corpus

AFP
APW
NYT
XIN

Figure 3: Decrease in perplexity when selecting data with
the method proposed in (Moore and Lewis, 2010).

data is used, reaching a minimum using about 20%
of the data only. The improvement in the perplexity
can reach 20% relative. Figure3 shows the perplex-
ity for some corpora in function of the size of the
selected data. Detailed statistics for all corpora are
given in Table 1 for the news genre.

Unfortunately, these improvements in perplexity
almost vanish when we interpolate the individual
language models: the perplexity is 86.6 instead of
87.0 when all the data from the Gigaword corpus is
used. This LM achieves the same BLEU score on
the development data, and there is a small improve-
ment of 0.24 BLEU on the test set (Table 2). Never-
theless, the last LM has the advantage of being much
smaller: 7.2 instead of 25 GBytes. We have also per-
formed the data selection on the concatenated texts
of 4.9 billion words. In this case, we do observe an
decrease of the perplexity with respect to a model
trained on all the concatenated data, but overall, the
perplexity is higher than with an interpolated LM (as
expected).

Px BLEU
LM Dev Size Dev Test

Small 78.9 2.0 GB 56.89 49.66
Big 71.1 26 GB 58.66 50.75

Giga 87.0 25.0 GB 57.08 50.08
GigaSel 86.6 7.2 GB 57.03 50.32

Table 2: Comparison of several 4-gram back-off lan-
guage models. See text for explanation of the models.

3.3 Continuous space language models
The CSLM was trained on all the available
data using the resampling algorithm described in
(Schwenk, 2007). At each epoch we randomly re-
sampled about 15M examples. We build only one
CSLM resampling simultaneously in all the corpora.
The short list was set to 16k – this covers about 92%
of the n-gram requests. Since it is very easy to use
large context windows with an CSLM, we trained
right away 7-grams. We provide a comparison of
different context lengths later in this section. The
networks were trained for 20 epochs. This can be
done in about 64 hours on a server with two Intel
X5675 processors and in 20 hours on a GPU card.

This CSLM achieves a perplexity of 62.9, to be
compared to 71.1 for the big back-off LM. This is a
relative improvement of more than 11%, but actually
we can do better. If we train the CSLM on the small
corpus only, i.e. the English side of the bitexts and
the recent part of the XIN corpus, we achieve a per-
plexity of 61.9 (see table 3). This clearly indicates
that it is better to focus the CSLM on relevant data.

Random resampling is a possibility to train a neu-
ral network on very large corpora, but it does not
guarantee that all the examples are used. Even if
we resampled different examples at each epoch, we
would process at most 300M different examples (20
epochs times 15M examples). There is no reason to
believe that we randomly select examples which are
appropriate to the task (note, however, that the re-
sampling coefficients are different for the individual

LM Corpus Sent. Perplex
size select. on Dev

Back-off 4-gram LM:
Small 196M no 78.9

Big 5057M no 71.1
CSLM 7-gram:

big 5057M no 62.9

Small 196M no 61.9
Small 92M yes 60.9

6x Giga 425M yes. 57.9
10x Giga 553M yes. 56.9

Table 3: Perplexity on the development data (news genre)
for back-off and continuous space language models.

16

Small LM Huge LM CSLM
Genre 4-gram back-off 7-gram
News 49.66 50.75 52.28
Web / 35.17 36.53

Table 4: BLEU scores on the test set for the translation
from Arabic into English for various language models.

corpora similar to the coefficients of an interpolated
back-off LM). Therefore, we propose to use the data
selection method of Moore and Lewis (2010) to con-
centrate the training of the CSLM on the most in-
formative examples. Instead of sampling randomly
n-grams in all the corpora, we do this in the selected
data by the method of (Moore and Lewis, 2010). By
these means, it is more likely that we train the CSLM
on relevant data. Note that this has no impact on the
training speed since the amount of resampled data is
not changed.

The results for this method are summarized in Ta-
ble 3. In a first experiment, we used the selected part
of the recent XIN corpus only. This reduces the per-
plexity to 60.9. In addition, if we use the six or ten
most important Gigaword corpora, we achieve a per-
plexity of 57.9 and 56.9 respectively. This is 10%
better than resampling blindly in all the data (62.9
→ 56.9). Overall, the 7-gram CSLM improves the
perplexity by 20% relative with respect to the huge
4-gram back-off LM (71.1→ 56.9).

Finally, we used our best CSLM to rescore the
n-best lists of the Arabic/English SMT system. The
baseline BLEU score on the test set, news genre, is
49.66 with the small LM. This increases to 50.75
with the big LM. It was actually necessary to open
the beam of the Moses decoder in order to observe
such an improvement. The large beam had no effect
when the small LM was used. This is a very strong
baseline to improve upon. Nevertheless, this result
is further improved by the CSLM to 52.28, i.e. a
significant gain of 1.8 BLEU. We observe similar
behavior for the WEB genre.

All our networks have two hidden layers since
we have observed that this slightly improves perfor-
mance with respect to the standard architecture with
only one hidden layer. This is a first step towards
so-called deep neural networks (Bengio, 2007), but
we have not yet explored this systematically.

Order: 4-gram 5-gram 6-gram 7-gram
Px Dev: 63.9 59.5 57.6 56.9

BLEU Dev: 59.76 60.11 60.29 60.26
BLEU Test: 51.91 51.85 52.23 52.28

Table 5: Perplexity on the development data (news genre)
and BLEU scores of the continuous space language mod-
els in function of the context size.

In an 1000-best list for 586 sentences, we have a
total of 14M requests for 7-grams out of which more
than 13.5M were processed by the CSLM, e.g. the
short list hit rate is almost 95%. This resulted in only
2670 forward passes through the network. At each
pass, we collected in average 5350 probabilities at
the output layer. The processing takes only a couple
of minutes on a server with two Xeon X5675 CPUs.

One can of course argue that it is not correct
to compare 4-gram and 7-gram language models.
However, building 5-gram or higher order back-off
LMs on 5 billion words is computationally very ex-
pensive, in particular with respect to memory usage.
For comparison, we also trained lower order CSLM
models. It can be clearly seen from Table 5 that the
CSLM can take advantage of longer contexts, but
it already achieves a significant improvement in the
BLEU score at the same LM order (BLEU on the
test data: 50.75→ 51.91).

The CSLM is very space efficient: a saved net-
work occupies about 600M on disk in function of
the network architecture, in particular in function of
the size of the continuous projection. Loading takes
only a couple of seconds. During training, 1 GByte
of main memory is sufficient. The memory require-
ment during n-best rescoring essentially depends on
the back-off LM that is eventually charged to deal
with out-off short-list words. Figure 4 shows some
example translations.

4 Conclusion

This paper presented a comparison of several pop-
ular techniques to build language models for sta-
tistical machine translation systems: huge back-off
models trained on billions of words, data selection
of most relevant examples and a highly efficient im-
plementation of continuous space methods.

Huge LMs perform well, but their storage may
require important computational resources – in our

17

كما تفقد الوزير اAركز الفرعي اAتكامل Aكافحة التلوث البحري بالزيت الذي يشتمل علي أحدث معدات مواجهة
التلوث البحري وتفقد اAعمل الكيميائي باAيناء اAتخصص في مراقبة الجودة للزيت الخام واAزود بأحدث

اVجهزة التكنولوجية الحديثة.

Back-off LM:The minister inspected the sub-committee integrated combat marine
pollution with oil, which includes the latest equipment lose face marine pollution and
chemical plant in the port specializing in monitoring the quality of the crude oil supplier
and with the most modern technological devices.

CSLM: The minister inspected the integrated sub-committee to combat marine pollution
with oil, which includes the latest equipment deal with marine pollution and inspect the
chemical plant in the port specializing in monitoring the quality of the crude oil supplier,
with the most modern technological devices.

Google: The minister also inspected the sub-center for integrated control of marine
pollution with oil, which includes the latest equipment on the face of marine pollution and
chemical plant loses port specialist in quality control of crude oil and supplied

بيونغيانغ تعد باحترام التزاماتها Yنهاء البرنامج النووي

Back-off LM:Pyongyang is to respect its commitments to end nuclear program.

CSLM: Pyongyang promised to respect its commitments to end the nuclear program.

Google: Pyongyang is to respect its obligations to end nuclear program.

قام مسلحو طالبان بعمليات اYختطاف فى الب_د بشكل متكرر خ_ل العام\ اAاضي\ .

Back-off LM: The Taliban militants in kidnappings in the country over the past two years.

CSLM: Taliban militants have carried out kidnappings in the country repeatedly during
the past two years.

Google:The Taliban kidnappings in the country frequently over the past two years.

Figure 4: Example translations when using the huge back-off and the continuous space LM. For comparison we also
provide the output of Google Translate.

case, 26 GB on disk and 70 GB of main memory for
a model trained on 5 billions words. The data selec-
tion method proposed in (Moore and Lewis, 2010)
is very effective at the corpus level, but the observed
gains almost vanish after interpolation. However,
the storage requirement can be divided by four.

The main contributions of this paper are sev-
eral improvements of the continuous space language
model. We have shown that data selection is very
useful to improve the resampling of training data
in large corpora. Our best model achieves a per-
plexity reduction of 20% relative with respect to
the best back-off LM we were able to build. This
gives an improvement of up to 1.8 BLEU points in a

very competitive Arabic/English statistical machine
translation system.

We have also presented a very efficient imple-
mentation of the CSLM. The tool can take advan-
tage of modern multi-core or multi-processor com-
puters. We also support graphical extension cards
like the Nvidia 3D graphic cards. By these means,
we are able to train a CSLM on 500M words in
about 20 hours. This tool is freely available.3 By
these means we hope to make large-scale continu-
ous space language modeling available to a larger
community.

3http://www-lium.univ-lemans.fr/ ˜cslm

18

Acknowledgments

This work has been partially funded by the French
Government under the project COSMAT (ANR-09-
CORD-004) and the European Commission under
the project FP7 EuromatrixPlus.

References

Yoshua Bengio and Rejean Ducharme. 2001. A neu-
ral probabilistic language model. In NIPS, volume 13,
pages 932–938.

Yoshua Bengio, Rejean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. JMLR, 3(2):1137–1155.

Yoshua Bengio. 2007. learning deep architectures for
AI. Technical report, University of Montréal.

Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och,
and Jeffrey Dean. 2007. Large language models in
machine translation. In EMNLP, pages 858–867.

Stanley F. Chen and Joshua T. Goodman. 1999. An
empirical study of smoothing techniques for language
modeling. Computer Speech & Language, 13(4):359–
394.

Marcello Federico and Maura Cettolo. 2007. Efficient
handling of n-gram language models for statistical ma-
chine translation. In Second Workshop on SMT, pages
88–95.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. In Sixth Workshop on SMT,
pages 187–197.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondrej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open source
toolkit for statistical machine translation. In ACL,
demonstration session.

L. Lamel, J.-L. Gauvain, V.-B. Le, I. Oparin, , and
S. Meng. 2011. Improved models for mandarin
speech-to-text transcription. In ICASSP, pages 4660–
4663.

H.S. Le, A. Allauzen, G. Wisniewski, and F. Yvon. 2010.
Training continuous space language models: Some
practical issues. In EMNLP, pages 778–788.

H.S. Le, I. Oparin, A. Allauzen, J-L. Gauvain, and
F. Yvon. 2011a. Structured output layer neural net-
work language model. In ICASSP, pages 5524–5527.

H.S. Le, I. Oparin, A. Messaoudi, A. Allauzen, J-L. Gau-
vain, and F. Yvon. 2011b. Large vocabulary SOUL
neural network language models. In Interspeech.

X. Liu, M. J. F. Gales, and P. C. Woodland. 2011. Im-
proving LVCSR system combination using neural net-
work language model cross adaptation. In Interspeech,
pages 2857–2860.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan
Černocký, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In Interspeech,
pages 1045–1048.

T. Mikolov, S. Kombrink, L. Burget, J.H. Cernocky, and
S. Khudanpur. 2011. Extensions of recurrent neural
network language model. In ICASSP, pages 5528–
5531.

Andriy Mnih and Geoffrey Hinton. 2008. A scalable
hierarchical distributed language model. In NIPS.

Robert C. Moore and William Lewis. 2010. Intelligent
selection of language model training data. In ACL,
pages 220–224.

Frederic Morin and Yoshua Bengio. 2005. Hierarchi-
cal probabilistic neural network language model. In
Proceedings of the Tenth International Workshop on
Artificial Intelligence and Statistics.

Junho Park, Xunying Liu, Mark J. F. Gales, and Phil C.
Woodland. 2010. Improved neural network based lan-
guage modelling and adaptation. In Interspeech, pages
1041–1044.

Holger Schwenk and Yannick Estève. 2008. Data selec-
tion and smoothing in an open-source system for the
2008 NIST machine translation evaluation. In Inter-
speech, pages 2727–2730.

Holger Schwenk and Jean-Luc Gauvain. 2002. Connec-
tionist language modeling for large vocabulary contin-
uous speech recognition. In ICASSP, pages I: 765–
768.

Holger Schwenk, Daniel Déchelotte, and Jean-Luc Gau-
vain. 2006. Continuous space language models for
statistical machine translation. In Proceedings of the
COLING/ACL 2006 Main Conference Poster Sessions,
pages 723–730.

Holger Schwenk. 2004. Efficient training of large neu-
ral networks for language modeling. In IJCNN, pages
3059–3062.

Holger Schwenk. 2007. Continuous space language
models. Computer Speech and Language, 21:492–
518.

Holger Schwenk. 2010. Continuous space language
models for statistical machine translation. The Prague
Bulletin of Mathematical Linguistics, (93):137–146.

David Talbot and Miles Osborne. 2007. Smoothed
bloom filter language models: Tera-scale lms on the
cheap. In EMNLP, pages 468–476.

Puyang Xu, Asela Gunawardana, and Sanjeev Khudan-
pur. 2011. Efficient subsampling for training complex
language models. In EMNLP, pages 1128–1136.

19

NAACL-HLT 2012 Workshop: Will We Ever Really Replace the N-gram Model? On the Future of Language Modeling for HLT, pages 20–28,
Montréal, Canada, June 8, 2012. c©2012 Association for Computational Linguistics

Deep Neural Network Language Models

Ebru Arısoy, Tara N. Sainath, Brian Kingsbury, Bhuvana Ramabhadran
IBM T.J. Watson Research Center

Yorktown Heights, NY, 10598, USA
{earisoy, tsainath, bedk, bhuvana}@us.ibm.com

Abstract

In recent years, neural network language mod-
els (NNLMs) have shown success in both
peplexity and word error rate (WER) com-
pared to conventional n-gram language mod-
els. Most NNLMs are trained with one hid-
den layer. Deep neural networks (DNNs) with
more hidden layers have been shown to cap-
ture higher-level discriminative information
about input features, and thus produce better
networks. Motivated by the success of DNNs
in acoustic modeling, we explore deep neural
network language models (DNN LMs) in this
paper. Results on a Wall Street Journal (WSJ)
task demonstrate that DNN LMs offer im-
provements over a single hidden layer NNLM.
Furthermore, our preliminary results are com-
petitive with a model M language model, con-
sidered to be one of the current state-of-the-art
techniques for language modeling.

1 Introduction

Statistical language models are used in many natural
language technologies, including automatic speech
recognition (ASR), machine translation, handwrit-
ing recognition, and spelling correction, as a crucial
component for improving system performance. A
statistical language model represents a probability
distribution over all possible word strings in a lan-
guage. In state-of-the-art ASR systems, n-grams are
the conventional language modeling approach due
to their simplicity and good modeling performance.
One of the problems in n-gram language modeling
is data sparseness. Even with large training cor-
pora, extremely small or zero probabilities can be

assigned to many valid word sequences. Therefore,
smoothing techniques (Chen and Goodman, 1999)
are applied to n-grams to reallocate probability mass
from observed n-grams to unobserved n-grams, pro-
ducing better estimates for unseen data.

Even with smoothing, the discrete nature of n-
gram language models make generalization a chal-
lenge. What is lacking is a notion of word sim-
ilarity, because words are treated as discrete enti-
ties. In contrast, the neural network language model
(NNLM) (Bengio et al., 2003; Schwenk, 2007) em-
beds words in a continuous space in which proba-
bility estimation is performed using single hidden
layer neural networks (feed-forward or recurrent).
The expectation is that, with proper training of the
word embedding, words that are semantically or gra-
matically related will be mapped to similar loca-
tions in the continuous space. Because the prob-
ability estimates are smooth functions of the con-
tinuous word representations, a small change in the
features results in a small change in the probabil-
ity estimation. Therefore, the NNLM can achieve
better generalization for unseen n-grams. Feed-
forward NNLMs (Bengio et al., 2003; Schwenk
and Gauvain, 2005; Schwenk, 2007) and recur-
rent NNLMs (Mikolov et al., 2010; Mikolov et al.,
2011b) have been shown to yield both perplexity and
word error rate (WER) improvements compared to
conventional n-gram language models. An alternate
method of embedding words in a continuous space
is through tied mixture language models (Sarikaya
et al., 2009), where n-grams frequencies are mod-
eled similar to acoustic features.

To date, NNLMs have been trained with one hid-

20

den layer. Adeep neural network (DNN) with mul-
tiple hidden layers can learn more higher-level, ab-
stract representations of the input. For example,
when using neural networks to process a raw pixel
representation of an image, lower layers might de-
tect different edges, middle layers detect more com-
plex but local shapes, and higher layers identify ab-
stract categories associated with sub-objects and ob-
jects which are parts of the image (Bengio, 2007).
Recently, with the improvement of computational
resources (i.e. GPUs, mutli-core CPUs) and better
training strategies (Hinton et al., 2006), DNNs have
demonstrated improved performance compared to
shallower networks across a variety of pattern recog-
nition tasks in machine learning (Bengio, 2007;
Dahl et al., 2010).

In the acoustic modeling community, DNNs
have proven to be competitive with the well-
established Gaussian mixture model (GMM) acous-
tic model. (Mohamed et al., 2009; Seide et al., 2011;
Sainath et al., 2012). The depth of the network (the
number of layers of nonlinearities that are composed
to make the model) and the modeling a large number
of context-dependent states (Seide et al., 2011) are
crucial ingredients in making neural networks com-
petitive with GMMs.

The success of DNNs in acoustic modeling leads
us to explore DNNs for language modeling. In this
paper we follow the feed-forward NNLM architec-
ture given in (Bengio et al., 2003) and make the neu-
ral network deeper by adding additional hidden lay-
ers. We call such models deep neural network lan-
guage models (DNN LMs). Our preliminary experi-
ments suggest that deeper architectures have the po-
tential to improve over single hidden layer NNLMs.

This paper is organized as follows: The next sec-
tion explains the architecture of the feed-forward
NNLM. Section 3 explains the details of the baseline
acoustic and language models and the set-up used
for training DNN LMs. Our preliminary results are
given in Section 4. Section 5 summarizes the related
work to our paper. Finally, Section 6 concludes the
paper.

2 Neural Network Language Models

This section describes a general framework for feed-
forward NNLMs. We will follow the notations given

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

� � �

� �

	
�
�
�����

	
�
�
�����

	
�
�
�����

	
�
�
�����

	����������
�����

�������
�����

�
�����

�
�����

�
���

�

!"�#"��
�����

�����$�	

�

Figure 1: Neural network language model architecture.

in (Schwenk, 2007).

Figure 1 shows the architecture of a neural net-
work language model. Each word in the vocabu-
lary is represented by aN dimensional sparse vector
where only the index of that word is 1 and the rest
of the entries are 0. The input to the network is the
concatenated discrete feature representations ofn-1
previous words (history), in other words the indices
of the history words. Each word is mapped to its
continuous space representation using linear projec-
tions. Basically discrete to continuous space map-
ping is a look-up table withN x P entries whereN
is the vocabulary size andP is the feature dimen-
sion. i’th row of the table corresponds to the contin-
uous space feature representation ofi’th word in the
vocabulary. The continuous feature vectors of the
history words are concatenated and the projection
layer is performed. The hidden layer hasH hidden
units and it is followed by hyperbolic tangent non-
linearity. The output layer hasN targets followed
by the softmax function. The output layer posterior
probabilities,P (wj = i|hj), are the language model
probabilities of each word in the output vocabulary
for a specific history,hj .

Let’s c represents the linear activations in the pro-
jection layer,M represents the weight matrix be-
tween the projection and hidden layers andV rep-
resents the weight matrix between the hidden and
output layers, the operations in the neural network

21

are as follows:

dj = tanh

(n−1)×P
∑

l=1

Mjlcl + bj

 ∀j = 1, · · · ,H

oi =
H

∑

j=1

Vijdj + ki ∀i = 1, · · · , N

pi =
exp(oi)

∑N
r=1 exp(or)

= P (wj = i|hj)

wherebj andki are the hidden and output layer bi-
ases respectively.

The computational complexity of this model is
dominated byHxN multiplications at the output
layer. Therefore, a shortlist containing only the most
frequent words in the vocabulary is used as the out-
put targets to reduce output layer complexity. Since
NNLM distribute the probability mass to only the
target words, a background language model is used
for smoothing. Smoothing is performed as described
in (Schwenk, 2007). Standard back-propagation al-
gorithm is used to train the model.

Note that NNLM architecture can also be con-
sidered as a neural network with two hidden layers.
The first one is a hidden layer with linear activations
and the second one is a hidden layer with nonlin-
ear activations. Through out the paper we refer the
first layer the projection layer and the second layer
the hidden layer. So the neural network architec-
ture with a single hidden layer corresponds to the
NNLM, and is also referred to as a single hidden
layer NNLM to distinguish it from DNN LMs.

Deep neural network architecture has several lay-
ers of nonlinearities. In DNN LM, we use the same
architecture given in Figure 1 and make the network
deeper by adding hidden layers followed by hyper-
bolic tangent nonlinearities.

3 Experimental Set-up

3.1 Baseline ASR system

While investigating DNN LMs, we worked on the
WSJ task used also in (Chen 2008) for model M lan-
guage model. This set-up is suitable for our initial
experiments since having a moderate size vocabu-
lary minimizes the effect of using a shortlist at the
output layer. It also allows us to compare our pre-
liminary results with the state-of-the-art performing
model M language model.

The language model training data consists of
900K sentences (23.5M words) from 1993 WSJ
text with verbalized punctuation from the CSR-III
Text corpus, and the vocabulary is the union of the
training vocabulary and 20K-word closed test vo-
cabulary from the first WSJ CSR corpus (Paul and
Baker, 1992). For speech recognition experiments,
a 3-gram modified Kneser-Ney smoothed language
model is built from 900K sentences. This model
is pruned to contain a total of 350K n-grams using
entropy-based pruning (Stolcke, 1998) .

Acoustic models are trained on 50 hours
of Broadcast news data using IBM Attila
toolkit (Soltau et al., 2010). We trained a
cross-word quinphone system containing 2,176
context-dependent states and a total of 50,336
Gaussians.

From the verbalized punctuation data from the
training and test portions of the WSJ CSR corpus,
we randomly select 2,439 unique utterances (46,888
words) as our evaluation set. From the remaining
verbalized punctuation data, we select 977 utter-
ances (18,279 words) as our development set.

We generate lattices by decoding the develop-
ment and test set utterances with the baseline acous-
tic models and the pruned 3-gram language model.
These lattices are rescored with an unpruned 4-gram
language model trained on the same data. After
rescoring, the baseline WER is obtained as 20.7%
on the held-out set and 22.3% on the test set.

3.2 DNN language model set-up

DNN language models are trained on the baseline
language model training text (900K sentences). We
chose the 10K most frequent words in the vocabu-
lary as the output vocabulary. 10K words yields 96%
coverage of the test set. The event probabilities for
words outside the output vocabulary were smoothed
as described in (Schwenk, 2007). We used the un-
pruned 4-gram language model as the background
language model for smoothing. The input vocabu-
lary contains the 20K words used in baseline n-gram
model. All DNN language models are 4-gram mod-
els. We experimented with different projection layer
sizes and numbers of hidden units, using the same
number of units for each hidden layer. We trained
DNN LMs up to 4 hidden layers. Unless otherwise
noted, the DNN LMs are not pre-trained, i.e. the

22

weights are initialized randomly, as previous work
has shown deeper networks have more impact on im-
proved performance compared to pre-training (Seide
et al., 2011).

The cross-entropy loss function is used during
training, also referred to as fine-tuning or backprop-
agation. For each epoch, all training data is random-
ized. A set of 128 training instances, referred to as
a mini-batch, is selected randomly without replace-
ment and weight updates are made on this mini-
batch. After one pass through the training data, loss
is measured on a held-out set of 66.4K words and
the learning rate is annealed (i.e. reduced) by a fac-
tor of 2 if the held-out loss has not improved suf-
ficiently over the previous iteration. Training stops
after we have annealed the weights 5 times. This
training recipe is similar to the recipe used in acous-
tic modeling experiments (Sainath et al., 2012).

To evaluate our language models in speech recog-
nition, we use lattice rescoring. The lattices gener-
ated by the baseline acoustic and language models
are rescored using 4-gram DNN language models.
The acoustic weight for each model is chosen to op-
timize word error rate on the development set.

4 Experimental Results

Our initial experiments are on a single hidden layer
NNLM with 100 hidden units and 30 dimensional
features. We chose this configuration for our ini-
tial experiments because this models trains in one
day of training on an 8-core CPU machine. How-
ever, the performance of this model on both the
held-out and test sets was worse than the baseline.
We therefore increased the number of hidden units
to 500, while keeping the 30-dimensional features.
Training a single hidden layer NNLM with this con-
figuration required approximately 3 days on an 8-
core CPU machine. Adding additional hidden lay-
ers does not have as much an impact in the train-
ing time as increased units in the output layer. This
is because the computational complexity of a DNN
LM is dominated by the computation in the output
layer. However, increasing the number of hidden
units does impact the training time. We also experi-
mented with different number of dimensions for the
features, namely 30, 60 and 120. Note that these
may not be the optimal model configurations for our

1 2 3 4
19

19.5

20

20.7

Number of hidden layers

H
el

d−
ou

t s
et

 W
E

R
(%

)

4−gram LM
DNN LM: h=500, d=30
DNN LM: h=500, d=60
DNN LM: h=500, d=120

Figure 2: Held-out set WERs after rescoring ASR lattices
with 4-gram baseline language model and 4-gram DNN
language models containing up to 4 hidden layers.

set-up. Exploring several model configurations can
be very expensive for DNN LMs, we chose these
parameters arbitrarily based on our previous experi-
ence with NNLMs.

Figure 2 shows held-out WER as a function of the
number of hidden layers for 4-gram DNN LMs with
different feature dimensions. The same number of
hidden units is used for each layer. WERs are ob-
tained after rescoring ASR lattices with the DNN
language models only. We did not interpolate DNN
LMs with the 4-gram baseline language model while
exploring the effect of additional layers on DNN
LMs. The performance of the 4-gram baseline lan-
guage model after rescoring (20.7%) is shown with
a dashed line.h denotes the number of hidden units
for each layer andd denotes the feature dimension
at the projection layer. DNN LMs containing only a
single hidden layer corresponds to the NNLM. Note
that increasing the dimension of the features im-
proves NNLM performance. The model with 30 di-
mensional features has 20.3% WER, while increas-
ing the feature dimension to 120 reduces the WER to
19.6%. Increasing the feature dimension also shifts
the WER curves down for each model. More im-
portantly, Figure 2 shows that using deeper networks
helps to improve the performance. The 4-layer DNN
LM with 500 hidden units and 30 dimensional fea-
tures (DNN LM: h = 500 and d = 30) reduces
the WER from 20.3% to 19.6%. For a DNN LM
with 500 hidden units and 60 dimensional features
(DNN LM: h = 500 andd = 60), the 3-layer model
yields the best performance and reduces the WER
from 19.9% to 19.4%. For DNN LM with 500 hid-

23

den units and 120 dimensional features (DNN LM:
h = 500 andd = 120), the WER curve plateaus
after the 3-layer model. For this model the WER
reduces from 19.6% to 19.2%.

We evaluated models that performed best on the
held-out set on the test set, measuring both perplex-
ity and WER. The results are given in Table 1. Note
that perplexity and WER for all the models were cal-
culated using the model by itself, without interpolat-
ing with a baselinen-gram language model. DNN
LMs have lower perplexities than their single hid-
den layer counterparts. The DNN language models
for each configuration yield 0.2-0.4% absolute im-
provements in WER over NNLMs. Our best result
on the test set is obtained with a 3-layer DNN LM
with 500 hidden units and 120 dimensional features.
This model yields 0.4% absolute improvement in
WER over the NNLM, and a total of 1.5% absolute
improvement in WER over the baseline 4-gram lan-
guage model.

Table 1: Test set perplexity and WER.
Models Perplexity WER(%)

4-gram LM 114.4 22.3

DNN LM: h=500,d=30
with 1 layer (NNLM) 115.8 22.0
with 4 layers 108.0 21.6

DNN LM: h=500,d=60
with 1 layer (NNLM) 109.3 21.5
with 3 layers 105.0 21.3

DNN LM: h=500,d=120
with 1 layer (NNLM) 104.0 21.2
with 3 layers 102.8 20.8

Model M (Chen, 2008) 99.1 20.8

RNN LM (h=200) 99.8 -
RNN LM (h=500) 83.5 -

Table 1 shows that DNN LMs yield gains on top
of NNLM. However, we need to compare deep net-
works with shallow networks (i.e. NNLM) with the
same number of parameters in order to conclude
that DNN LM is better than NNLM. Therefore, we
trained different NNLM architectures with varying
projection and hidden layer dimensions. All of these
models have roughly the same number of parameters
(8M) as our best DNN LM model, 3-layer DNN LM

with 500 hidden units and 120 dimensional features.
The comparison of these models is given in Table 2.
The best WER is obtained with DNN LM, showing
that deep architectures help in language modeling.

Table 2: Test set perplexity and WER. The models have
8M parameters.

Models Perplexity WER(%)

NNLM: h=740,d=30 114.5 21.9
NNLM: h=680,d=60 108.3 21.3
NNLM: h=500,d=140 103.8 21.2

DNN LM: h=500,d=120
with 3 layers 102.8 20.8

We also compared our DNN LMs with a model M
LM and a recurrent neural network LM (RNNLM)
trained on the same data, considered to be cur-
rent state-of-the-art techniques for language model-
ing. Model M is a class-based exponential language
model which has been shown to yield significant im-
provements compared to conventional n-gram lan-
guage models (Chen, 2008; Chen et al., 2009). Be-
cause we used the same set-up as (Chen, 2008),
model M perplexity and WER are reported directly
in Table 1. Both the 3-layer DNN language model
and model M achieve the same WER on the test set;
however, the perplexity of model M is lower.

The RNNLM is the most similar model to DNN
LMs because the RNNLM can be considered to have
a deeper architecture thanks to its recurrent connec-
tions. However, the RNNLM proposed in (Mikolov
et al., 2010) has a different architecture at the in-
put and output layers than our DNN LMs. First,
RNNLM does not have a projection layer. DNN
LM hasN × P parameters in the look-up table and
a weight matrix containing(n − 1) × P × H pa-
rameters between the projection and the first hid-
den layers. RNNLM has a weight matrix containing
(N + H)×H parameters between the input and the
hidden layers. Second, RNNLM uses the full vo-
cabulary (20K words) at the output layer, whereas,
DNN LM uses a shortlist containing 10K words. Be-
cause of the number of output targets in RNNLM, it
results in more parameters even with the same num-
ber of hidden units with DNN LM. Note that the ad-
ditional hidden layers in DNN LM will introduce ex-
tra parameters. However, these parameters will have

24

a little effect compared to10, 000 × H additional
parameters introduced in RNNLM due to the use of
the full vocabulary at the output layer.

We only compared DNN and RNN language
models in terms of perplexity since we can not di-
rectly use RNNLM in our lattice rescoring frame-
work. We trained two models using the RNNLM
toolkit1, one with 200 hidden units and one with
500 hidden units. In order to speed up training,
we used 150 classes at the output layer as described
in (Mikolov et al., 2011b). These models have 8M
and 21M parameters respectively. RNNLM with
200 hidden units has the same number of parameters
with our best DNN LM model, 3-layer DNN LM
with 500 hidden units and 120 dimensional features.
The results are given in Table 1. This model results
in a lower perplexity than DNN LMs. RNNLM with
500 hidden units results in the best perplexity in Ta-
ble 1 but it has much more parameters than DNN
LMs. Note that, RNNLM uses the full history and
DNN LM uses only the 3-word context as the his-
tory. Therefore, increasing then-gram context can
help to improve the performance for DNN LMs.

We also tested the performance of NNLM
and DNN LM with 500 hidden units and 120-
dimensional features after linearly interpolating with
the 4-gram baseline language model. The interpola-
tion weights were chosen to minimize the perplexity
on the held-out set. The results are given Table 3.
After linear interpolation with the 4-gram baseline
language model, both the perplexity and WER im-
prove for NNLM and DNN LM. However, the gain
with 3-layer DNN LM on top of NNLM diminishes.

Table 3: Test set perplexity and WER with the interpo-
lated models.

Models PerplexityWER(%)

4-gram LM 114.4 22.3

4-gram + DNN LM:
(h=500,d=120)
with 1 layer (NNLM) 93.1 20.6
with 3 layers 92.6 20.5

One problem with deep neural networks, espe-
cially those with more than 2 or 3 hidden lay-
ers, is that training can easily get stuck in local

1http://www.fit.vutbr.cz/∼imikolov/rnnlm/

minima, resulting in poor solutions. Therefore,
it may be important to apply pre-training (Hinton
et al., 2006) instead of randomly initializing the
weights. In this paper we investigate discrimina-
tive pre-training for DNN LMs. Past work in acous-
tic modeling has shown that performing discrimina-
tive pre-training followed by fine-tuning allows for
fewer iterations of fine-tuning and better model per-
formance than generative pre-training followed by
fine-tuning (Seide et al., 2011).

In discriminative pre-training, a NNLM (one pro-
jection layer, one hidden layer and one output layer)
is trained using the cross-entropy criterion. Af-
ter one pass through the training data, the output
layer weights are discarded and replaced by another
randomly initialized hidden layer and output layer.
The initially trained projection and hidden layers
are held constant, and discriminative pre-training
is performed on the new hidden and output layers.
This discriminative training is performed greedy and
layer-wise like generative pre-training.

After pre-training the weights for each layer, we
explored two different training (fine-tuning) scenar-
ios. In the first one, we initialized all the lay-
ers, including the output layer, with the pre-trained
weights. In the second one, we initialized all the
layers, except the output layer, with the pre-trained
weights. The output layer weights are initialized
randomly. After initializing the weights for each
layer, we applied our standard training recipe.

Figure 3 and Figure 4 show the held-out WER as
a function of the number of hidden layers for the
case of no pre-training and the two discriminative
pre-training scenarios described above using models
with 60- and 120-dimensional features. In the fig-
ures, pre-training 1 refers to the first scenario and
pre-training 2 refers to the second scenario. As seen
in the figure, pre-training did not give consistent
gains for models with different number of hidden
layers. We need to investigate discriminative pre-
training and other pre-training strategies further for
DNN LMs.

5 Related Work

NNLM was first introduced in (Bengio et al., 2003)
to deal with the challenges ofn-gram language mod-
els by learning the distributed representations of

25

1 2 3 4
19

19.5

20

20.7

Number of hidden layers

H
el

d−
ou

t s
et

 W
E

R
(%

)

4−gram LM
DNN LM: h=500, d=60
DNN LM: h=500, d=60 (with disc. pre−training 1)
DNN LM: h=500, d=60 (with disc. pre−training 2)

Figure 3: Effect of discriminative pre-training for DNN
LM: h=500,d=60.

1 2 3 4
19

19.5

20

20.7

Number of hidden layers

H
el

d−
ou

t s
et

 W
E

R
(%

)

4−gram LM
DNN LM: h=500, d=120
DNN LM: h=500, d=120 (with disc. pre−training 1)
DNN LM: h=500, d=120 (with disc. pre−training 2)

Figure 4: Effect of discriminative pre-training for DNN
LM: h=500,d=120.

words together with the probability function of word
sequences. This NNLM approach is extended to
large vocabulary speech recognition in (Schwenk
and Gauvain, 2005; Schwenk, 2007) with some
speed-up techniques for training and rescoring.
Since the input structure of NNLM allows for using
larger contexts with a little complexity, NNLM was
also investigated in syntactic-based language mod-
eling to efficiently use long distance syntactic infor-
mation (Emami, 2006; Kuo et al., 2009). Significant
perplexity and WER improvements over smoothed
n-gram language models were reported with these
efforts.

Performance improvement of NNLMs comes at
the cost of model complexity. Determining the
output layer of NNLMs poses a challenge mainly
attributed to the computational complexity. Us-
ing a shortlist containing the most frequent several
thousands of words at the output layer was pro-
posed (Schwenk, 2007), however, the number of
hidden units is still a restriction. Hierarchical de-
composition of conditional probabilities has been
proposed to speed-up NNLM training. This decom-
position is performed by partitioning output vocab-
ulary words into classes or by structuring the output
layer to multiple levels (Morin and Bengio, 2005;
Mnih and Hinton, 2008; Son Le et al., 2011). These
approaches provided significant speed-ups in train-
ing and make the training of NNLM with full vo-
cabularies computationally feasible.

In the NNLM architecture proposed in (Bengio
et al., 2003), a feed-forward neural network with a
single hidden layer was used to calculate the lan-
guage model probabilities. Recently, a recurrent

neural network architecture was proposed for lan-
guage modelling (Mikolov et al., 2010). In con-
trast to the fixed content in feed-forward NNLM, re-
current connections allow the model to use arbitrar-
ily long histories. Using classes at the output layer
was also investigated for RNNLM to speed-up the
training (Mikolov et al., 2011b). It has been shown
that significant gains can be obtained on top of a
very good state-of-the-art system after scaling up
RNNLMs in terms of data and model sizes (Mikolov
et al., 2011a).

There has been increasing interest in using neu-
ral networks also for acoustic modeling. Hidden
Markov Models (HMMs), with state output distri-
butions given by Gaussian Mixture Models (GMMs)
have been the most popular methodology for acous-
tic modeling in speech recognition for the past 30
years. Recently, deep neural networks (DNNs) (Hin-
ton et al., 2006) have been explored as an alternative
to GMMs to model state output distributions. DNNs
were first explored on a small vocabulary phonetic
recognition task, showing a5% relative improve-
ment over a state-of-the-art GMM/HMM baseline
system (Dahl et al., 2010). Recently, DNNs have
been extended to large vocabulary tasks, showing a
10% relative improvement over a GMM/HMM sys-
tem on an English Broadcast News task (Sainath et
al., 2012), and a 25% relative improvement on a con-
versational telephony task (Seide et al., 2011).

As summarized, recent NNLM research has fo-
cused on making NNLMs more efficient. Inspired
by the success of acoustic modeling with DNNs,
we applied deep neural network architectures to lan-
guage modeling. To our knowledge, DNNs have

26

not been investigated before for language modeling.
RNNLMs are the closest to our work since recurrent
connections can be considered as a deep architecture
where weights are shared across hidden layers.

6 Conclusion and Future Work

In this paper we investigated training language mod-
els with deep neural networks. We followed the
feed-forward neural network architecture and made
the network deeper with the addition of several lay-
ers of nonlinearities. Our preliminary experiments
on WSJ data showed that deeper networks can also
be useful for language modeling. We also com-
pared shallow networks with deep networks with the
same number of parameters. The best WER was
obtained with DNN LM, showing that deep archi-
tectures help in language modeling. One impor-
tant observation in our experiments is that perplex-
ity and WER improvements are more pronounced
with the increased projection layer dimension in
NNLM than the increased number of hidden layers
in DNN LM. Therefore, it is important to investigate
deep architectures with larger projection layer di-
mensions to see if deep architectures are still useful.
We also investigated discriminative pre-training for
DNN LMs, however, we do not see consistent gains.
Different pre-training strategies, including genera-
tive methods, need to be investigated for language
modeling.

Since language modeling with DNNs has not been
investigated before, there is no recipe for building
DNN LMs. Future work will focus on elaborating
training strategies for DNN LMs, including investi-
gating deep architectures with different number of
hidden units and pre-training strategies specific for
language modeling. Our results are preliminary but
they are encouraging for using DNNs in language
modeling.

Since RNNLM is the most similar in architecture
to our DNN LMs, it is important to compare these
two models also in terms of WER. For a fair com-
parison, the models should have similar n-gram con-
texts, suggesting a longer context for DNN LMs.
The increased depth of the neural network typi-
cally allows learning more patterns from the input
data. Therefore, deeper networks can allow for bet-
ter modeling of longer contexts.

The goal of this study was to analyze the behav-
ior of DNN LMs. After finding the right training
recipe for DNN LMs in WSJ task, we are going to
compare DNN LMs with other language modeling
approaches in a state-of-the-art ASR system where
the language models are trained with larger amounts
of data. Training DNN LMs with larger amounts
of data can be computationally expensive, however,
classing the output layer as described in (Mikolov et
al., 2011b; Son Le et al., 2011) may help to speed
up training.

References

Yoshua Bengio, Rejean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model.Journal of Machine Learning Research,
3:1137–1155.

Yoshua Bengio. 2007. Learning Deep Architectures for
AI. Technical report, Universit e de Montreal.

S. F. Chen and J. Goodman. 1999. An empirical study of
smoothing techniques for language modeling.Com-
puter Speech and Language, 13(4).

Stanley F. Chen, Lidia Mangu, Bhuvana Ramabhadran,
Ruhi Sarikaya, and Abhinav Sethy. 2009. Scaling
shrinkage-based language models. InProc. ASRU
2009, pages 299–304, Merano, Italy, December.

Stanley F. Chen. 2008. Performance prediction for expo-
nential language models. Technical Report RC 24671,
IBM Research Division.

George E. Dahl, Marc’Aurelio Ranzato, Abdel rah-
man Mohamed, and Geoffrey E. Hinton. 2010.
Phone Recognition with the Mean-Covariance Re-
stricted Boltzmann Machine. InProc. NIPS.

Ahmad Emami. 2006. A neural syntactic language
model. Ph.D. thesis, Johns Hopkins University, Bal-
timore, MD, USA.

Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh.
2006. A Fast Learning Algorithm for Deep Belief
Nets.Neural Computation, 18:1527–1554.

H-K. J. Kuo, L. Mangu, A. Emami, I. Zitouni, and Y-
S. Lee. 2009. Syntactic features for Arabic speech
recognition. InProc. ASRU 2009, pages 327 – 332,
Merano, Italy.

Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan Cer-
nocky, and Sanjeev Khudanpur. 2010. Recurrent neu-
ral network based language model. InProc. INTER-
SPEECH 2010, pages 1045–1048.

Tomas Mikolov, Anoop Deoras, Daniel Povey, Lukas
Burget, and Jan Cernocky. 2011a. Strategies for train-
ing large scale neural network language models. In
Proc. ASRU 2011, pages 196–201.

27

Tomas Mikolov, Stefan Kombrink, Lukas Burget, Jan
Cernocky, and Sanjeev Khudanpur. 2011b. Exten-
sions of recurrent neural network language model. In
Proc. ICASSP 2011, pages 5528–5531.

Andriy Mnih and Geoffrey Hinton. 2008. A scalable hi-
erarchical distributed language model. InProc. NIPS.

Abdel-rahman Mohamed, George E. Dahl, and Geoffrey
Hinton. 2009. Deep belief networks for phone recog-
nition. In Proc. NIPS Workshop on Deep Learning for
Speech Recognition and Related Applications.

Frederic Morin and Yoshua Bengio. 2005. Hierarchical
probabilistic neural network language model. InProc.
AISTATS05, pages 246–252.

Douglas B. Paul and Janet M. Baker. 1992. The de-
sign for the wall street journal-based csr corpus. In
Proc. DARPA Speech and Natural Language Work-
shop, page 357362.

Tara N. Sainath, Brian Kingsbury, and Bhuvana Ramab-
hadran. 2012. Improvements in Using Deep Belief
Networks for Large Vocabulary Continuous Speech
Recognition. Technical report, IBM, Speech and Lan-
guage Algorithms Group.

Ruhi Sarikaya, Mohamed Afify, and Brian Kingsbury.
2009. Tied-mixture language modeling in continuous
space. InHLT-NAACL, pages 459–467.

Holger Schwenk and Jean-Luc Gauvain. 2005. Training
neural network language models on very large corpora.
In Proc. HLT-EMNLP 2005, pages 201–208.

Holger Schwenk. 2007. Continuous space language
models.Comput. Speech Lang., 21(3):492–518, July.

Frank Seide, Gang Li, Xie Chen, and Dong Yu. 2011.
Feature Engineering in Context-Dependent Deep Neu-
ral Networks for Conversational Speech Transcription.
In Proc. ASRU.

Hagen Soltau, George. Saon, and Brian Kingsbury. 2010.
The IBM Attila speech recognition toolkit. InProc.
IEEE Workshop on Spoken Language Technology,
pages 97–102.

Hai Son Le, Ilya Oparin, Alexandre Allauzen, Jean-Luc
Gauvain, and Francois Yvon. 2011. Structured out-
put layer neural network language model. InPro-
ceedings of IEEE International Conference on Acous-
tic, Speech and Signal Processing, pages 5524–5527,
Prague, Czech Republic.

Andreas Stolcke. 1998. Entropy-based pruning of
backoff language models. InProceedings of DARPA
Broadcast News Transcription and Understanding
Workshop, pages 270 – 274, Lansdowne, VA, USA.

28

NAACL-HLT 2012 Workshop: Will We Ever Really Replace the N-gram Model? On the Future of Language Modeling for HLT, pages 29–36,
Montréal, Canada, June 8, 2012. c©2012 Association for Computational Linguistics

A Challenge Set for Advancing Language Modeling

Geoffrey Zweig and Chris J.C. Burges
Microsoft Research

Redmond, WA 98052

Abstract

In this paper, we describe a new, publicly
available corpus intended to stimulate re-
search into language modeling techniques
which are sensitive to overall sentence coher-
ence. The task uses the Scholastic Aptitude
Test’s sentence completion format. The test
set consists of 1040 sentences, each of which
is missing a content word. The goal is to select
the correct replacement from amongst five al-
ternates. In general, all of the options are syn-
tactically valid, and reasonable with respect to
local N-gram statistics. The set was gener-
ated by using an N-gram language model to
generate a long list of likely words, given the
immediate context. These options were then
hand-groomed, to identify four decoys which
are globally incoherent, yet syntactically cor-
rect. To ensure the right to public distribution,
all the data is derived from out-of-copyright
materials from Project Gutenberg. The test
sentences were derived from five of Conan
Doyle’s Sherlock Holmes novels, and we pro-
vide a large set of Nineteenth and early Twen-
tieth Century texts as training material.

1 Introduction
Perhaps beginning with Claude Shannon’s use of
N-gram statistics to compute the perplexity of let-
ter sequences (Shannon and Weaver, 1949), N-gram
models have grown to be the most commonly used
type of language model in human language tech-
nologies. At the word level, N-gram modeling tech-
niques have been extensively refined, with state-
of-the-art techniques based on smoothed N-gram

counts (Kneser and Ney, 1995; Chen and Good-
man, 1999), multi-layer perceptrons (Schwenk and
Gauvain, 2002; Schwenk, 2007) and maximum-
entropy models (Rosenfeld, 1997; Chen, 2009a;
Chen, 2009b). Trained on large amounts of data,
these methods have proven very effective in both
speech recognition and machine translation applica-
tions.

Concurrent with the refinement of N-gram model-
ing techniques, there has been an important stream
of research focused on the incorporation of syntac-
tic and semantic information (Chelba and Jelinek,
1998; Chelba and Jelinek, 2000; Rosenfeld et al.,
2001; Yamada and Knight, 2001; Khudanpur and
Wu, 2000; Wu and Khudanpur, 1999). Since in-
tuitively, language is about expressing meaning in
a highly structured syntactic form, it has come as
something of a surprise that the improvements from
these methods have been modest, and the methods
have yet to be widely adopted in non-research sys-
tems.

One explanation for this is that the tasks to which
language modeling has been most extensively ap-
plied are largely soluble with local information. In
the speech recognition application, there is a fun-
damental confluence of acoustic and linguistic in-
formation, and the language model can be thought
of as resolving ambiguity only between acoustically
confusable words (Printz and Olsen, 2002). Since
words which are acoustically similar, e.g. “bill” and
“spill” usually appear in very different textual con-
texts, the local information of an N-gram language
model may be adequate to distinguish them. To a
lesser degree, in a machine translation application,

29

1. One of the characters in Milton Murayama’s
novel is considered because he deliber-
ately defies an oppressive hierarchical society.
(A) rebellious (B) impulsive (C) artistic (D)
industrious (E) tyrannical

2. Whether substances are medicines or poisons
often depends on dosage, for substances that are

in small doses can be in large.
(A) useless .. effective
(B) mild .. benign
(C) curative .. toxic
(D) harmful .. fatal
(E) beneficial .. miraculous

Figure 1: Sample sentence completion questions
(Educational-Testing-Service, 2011).

the potential phrase translations may be similar in
meaning and local information may again suffice to
make a good selection.

In this paper, we present a language processing
corpus which has been explicitly designed to be non-
solvable using purely N-gram based methods, and
which instead requires some level of semantic pro-
cessing. To do this, we draw inspiration from the
standardized testing paradigm, and propose a sen-
tence completion task along the lines of that found
in the widely used Scholastic Aptitude Test. In this
type of question, one is given a sentence with one or
two words removed, and asked to select from among
a set of five possible insertions. Two examples of
SAT test questions are shown in Figure 1.

As can be seen, the options available all make
sense from the local N-gram point of view, and are
all syntactically valid; only semantic considerations
allow the correct answer to be distinguished. We
believe this sort of question is useful for two key
reasons: first, its full solution will require language
modeling techniques which are qualitatively differ-
ent than N-grams; and secondly, the basic task for-
mulation has been externally determined and is a
widely used method for assessing human abilities.
Unfortunately, to date no publicly available corpus
of such questions has been released.

The contribution of this work is to release a public

corpus of sentence completion questions designed to
stimulate research in language modeling technology
which moves beyond N-grams to explicitly address
global sentence coherence. The corpus is based
purely on out-of-copyright data from Project Guten-
berg, thus allowing us to distribute it. The test ques-
tions consist of sentences taken from five Sherlock
Holmes novels. In each, a word has been removed,
and the task is to choose from among five alterna-
tives. One of the options is the original word, and the
other four “decoys” have been generated from an N-
gram language model using local context. Sampling
from an N-gram model is done to generate alternates
which make sense locally, but for which there is no
other reason to expect them to make sense globally.
To ensure that synonyms of the correct answer are
not present, and that the options are syntactically
reasonable, the decoys have been hand selected from
among a large number of possibilities suggested by
the N-gram model. The training data consists of
approximately 500 out-of-copyright Nineteenth and
early Twentieth century novels, also from Project
Gutenberg.

We expect that the successful development of
models of global coherence will be useful in a va-
riety of tasks, including:

• the interactive generation of sentence comple-
tion questions for vocabulary tutoring applica-
tions;

• proof-reading;

• automated grading of essays and other student
work; and

• sentence generation in free-form dialog appli-
cations.

The remainder of this paper is organized as fol-
lows. In Section 2, we describe the process by which
we made the corpus. Section 3 provides guidance
as to the proper use of the data. In Section 4, we
present baseline results using several simple auto-
mated methods for answering the questions. Finally,
in Section 5, we discuss related work.

2 The Question Generation Process

Question generation was done in two steps. First,
a candidate sentence containing an infrequent word

30

was selected, and alternates for that word were auto-
matically determined by sampling with an N-gram
language model. The N-gram model used the im-
mediate history as context, thus resulting in words
that may “look good” locally, but for which there
is no a-priori reason to expect them to make sense
globally. In the second step, we eliminated choices
which are obviously incorrect because they consti-
tute grammatical errors. Choices requiring semantic
knowledge and logical inference were preferred, as
described in the guidelines, which we give in Sec-
tion 3. Note that an important desideratum guid-
ing the data generation process was requiring that
a researcher who knows exactly how the data was
created, including knowing which data was used to
train the language model, should nevertheless not be
able to use that information to solve the problem.
We now describe the data that was used, and then
describe the two steps in more detail.

2.1 Data Used

Seed sentences were selected from five of Co-
nan Doyle’s Sherlock Holmes novels: The Sign of
Four (1890), The Hound of the Baskervilles (1892),
The Adventures of Sherlock Holmes (1892), The
Memoirs of Sherlock Holmes (1894), and The Val-
ley of Fear (1915). Once a focus word within
the sentence was selected, alternates to that word
were generated using an N-gram language model.
This model was trained on approximately 540 texts
from the Project Gutenberg collection, consisting
mainly of 19th century novels. Of these 522 had
adequate headers attesting to lack of copyright,
and they are now available at the Sentence Com-
pletion Challenge website http://research.
microsoft.com/en-us/projects/scc/.

2.2 Automatically Generating Alternates

Alternates were generated for every sentence con-
taining an infrequent word. A state-of-the-art class-
based maximum entropy N-gram model (Chen,
2009b) was used to generate the alternates. Ide-
ally, these alternates would be generated according
to P (alternate|remainder of sentence). This can
be done by computing the probability of the com-
pleted sentence once for every possible vocabulary
word, and then normalizing and sampling. However,
the normalization over all words is computationally

expensive, and we have used a procedure based on
sampling based on the preceding two word history
only, and then re-ordering based on a larger context.
The following procedure was used:

1. Select a focus word with overall frequency less
than 10−4. For example, we might select “ex-
traordinary” in “It is really the most extraordi-
nary and inexplicable business.”

2. Use the two-word history immediately preced-
ing the selected focus word to predict alter-
nates. We sampled 150 unique alternates at this
stage, requiring that they all have frequency
less than 10−4. For example, “the most” pre-
dicts “handsome” and “luminous.”

3. If the original (correct) sentence has a better
score than any of these alternates, reject the
sentence.

4. Else, score each option according to how well it
and its immediate predecessor predict the next
word. For example, the probability of “and”
following “most handsome” might be 0.012.

5. Sort the predicted words according to this
score, and retain the top 30 options.

In step 3, omitting questions for which the correct
sentence is the best makes the set of options more
difficult to solve with a language model alone. How-
ever, by allowing the correct sentence to potentially
fall below the set of alternates retained, an opposite
bias is created: the language model will tend to as-
sign a lower score to the correct option than to the
alternates (which were chosen by virtue of scoring
well). We measured the bias by performing a test on
the 1,040 test sentences using the language model,
and choosing the lowest scoring candidate as the an-
swer. This gave an accuracy of 26% (as opposed to
31%, found by taking the highest scoring candidate:
recall that a random choice would give 20% in ex-
pectation). Thus although there is some remaining
bias for the answer to be low scoring, it is small.
When a language model other than the precise one
used to generate the data is used, the score reversal
test yielded 17% correct. The correct polarity gave
39%. If, however, just the single score used to do
the sort in the last step is used (i.e. the probability

31

of the immediate successor alone), then the lowest
scoring alternate is correct about 38% of the time -
almost as much as the language model itself. The
use of the word score occurring two positions af-
ter the focus also achieves 38%, though a positive
polarity is beneficial here. Combined, these scores
achieve about 43%. Neither is anywhere close to
human performance. We are currently evaluating
a second round of test questions, in which we still
sample options based on the preceding history, but
re-order them according the the total sentence prob-
ability P (w1 . . . wN).

The overall procedure has the effect of providing
options which are both well-predicted by the imme-
diate history, and predictive of the immediate future.
Since in total the procedure uses just four consec-
utive words, it cannot be expected to provide glob-
ally coherent alternates. However, sometimes it does
produce synonyms to the correct word, as well as
syntactically invalid options, which must be weeded
out. For this, we examine the alternates by hand.

2.3 Human Grooming
The human judges picked the best four choices of
impostor sentences from the automatically gener-
ated list of thirty, and were given the following in-
structions:

1. All chosen sentences should be grammatically
correct. For example: He dances while he ate
his pipe would be illegal.

2. Each correct answer should be unambiguous.
In other words, the correct answer should al-
ways be a significantly better fit for that sen-
tence than each of the four impostors; it should
be possible to write down an explanation as to
why the correct answer is the correct answer,
that would persuade most reasonable people.

3. Sentences that might cause offense or contro-
versy should be avoided.

4. Ideally the alternatives will require some
thought in order to determine the correct an-
swer. For example:

• Was she his [client | musings | discomfi-
ture | choice | opportunity] , his friend ,
or his mistress?

would constitute a good test sentence. In order
to arrive at the correct answer, the student must
notice that, while ”musings” and ”discomfi-
ture” are both clearly wrong, the terms friend
and mistress both describe people, which there-
fore makes client a more likely choice than
choice or opportunity.

5. Alternatives that require understanding proper-
ties of entities that are mentioned in the sen-
tence are desirable. For example:

• All red-headed men who are above the age
of [800 | seven | twenty-one | 1,200 |
60,000] years , are eligible.

requires that the student realize that a man can-
not be seven years old, or 800 or more. How-
ever, such examples are rare: most often, arriv-
ing at the answer will require thought, but not
detailed entity knowledge, such as:

• That is his [generous | mother’s | suc-
cessful | favorite | main] fault , but on
the whole he’s a good worker.

6. Dictionary use is encouraged, if necessary.

7. A given sentence from the set of five novels
should only be used once. If more than one
focus word has been identified for a sentence
(i.e. different focuses have been identified, in
different positions), choose the set of sentences
that generates the best challenge, according to
the above guidelines.

Note that the impostors sometimes constitute a
perfectly fine completion, but that in those cases, the
correct completion is still clearly identifiable as the
most likely completion.

2.4 Sample Questions
Figure 2 shows ten examples of the Holmes
derived questions. The full set is available
at http://research.microsoft.com/
en-us/projects/scc/.

3 Guidelines for Use

It is important for users of this data to realize the fol-
lowing: since the test data was taken from five 19th
century novels, the test data itself is likely to occur in

32

1) I have seen it on him , and could to it.
a) write b) migrate c) climb d) swear e) contribute

2) They seize him and use violence towards him in order to make him sign some papers to make
over the girl’s of which he may be trustee to them.
a) appreciation b) activity c) suspicions d) administration e) fortune

3) My morning’s work has not been , since it has proved that he has the very strongest
motives for standing in the way of anything of the sort.
a) invisible b) neglected c) overlooked d) wasted e) deliberate

4) It was furred outside by a thick layer of dust , and damp and worms had eaten through the wood
, so that a crop of livid fungi was on the inside of it.
a) sleeping b) running c) resounding d) beheaded e) growing

5) Presently he emerged , looking even more than before.
a) instructive b) reassuring c) unprofitable d) flurried e) numerous

6) We took no to hide it.
a) fault b) instructions c) permission d) pains e) fidelity

7) I stared at it , not knowing what was about to issue from it.
a) afterwards b) rapidly c) forever d) horror-stricken e) lightly

8) The probability was , therefore , that she was the truth , or , at least , a part of the truth.
a) addressing b) telling c) selling d) surveying e) undergoing

9) The furniture was scattered about in every direction , with dismantled shelves and open drawers
, as if the lady had hurriedly them before her flight.
a) warned b) rebuked c) assigned d) ransacked e) taught

10) The sun had set and was settling over the moor.
a) dusk b) mischief c) success d) disappointment e) laughter

Figure 2: The first ten questions from the Holmes Corpus.

the index of most Web search engines, and in other
large scale data-sets that were constructed from web
data (for example, the Google N-gram project). For
example, entering the string That is his fault , but on
the whole he’s a good worker (one of the sentence
examples given above, but with the focus word re-
moved) into the Bing search engine results in the
correct (full) sentence at the top position. It is im-
portant to realize that researchers may inadvertently
get better results than truly warranted because they
have used data that is thus tainted by the test set.
To help prevent any such criticism from being lev-
eled at a particular publication, we recommend than

in any set of published results, the exact data used
for training and validation be specified. The train-
ing data provided on our website may also be con-
sidered “safe” and useful for making comparisons
across sites.

4 Baseline Results

4.1 A Simple 4-gram model

As a sanity check we constructed a very simple N-
gram model as follows: given a test sentence (with
the position of the focus word known), the score for
that sentence was initialized to zero, and then incre-

33

mented by one for each bigram match, by two for
each trigram match, and by three for each 4-gram
match, where a match means that the N-gram in
the test sentence containing the focus word occurs
at least once in the background data. This simple
method achieved 34% correct (compared to 20% by
random choice) on the test set.

4.2 Smoothed N-gram model
As a somewhat more sophisticated baseline, we use
the CMU language modeling toolkit 1 to build a 4-
gram language model using Good-Turing smooth-
ing. We kept all bigrams and trigrams occurring
in the data, as well as four-grams occurring at least
twice. We used a vocabulary of the 126k words that
occurred five or more times, resulting in a total of
26M N-grams. Sentences were ordered according to
their probability according to the language model:
P (w1 . . . wN). This improved by 5% absolute on
the simple baseline to achieve 39% correct.

4.3 Latent Semantic Analysis Similarity
As a final benchmark, we present scores for a novel
method based on latent semantic analysis. In this
approach, we treated each sentence in the training
data as a “document” and performed latent semantic
analysis (Deerwester et al., 1990) to obtain a 300
dimensional vector representation of each word in
the vocabulary. Denoting two words by their vectors
x,y, their similarity is defined as the cosine of the
angle between them:

sim(x,y) =
x · y

‖ x ‖‖ y ‖
.

To decide which option to select, we computed the
average similarity to every other word in the sen-
tence, and then output the word with the greatest
overall similarity. This results in our best baseline
performance, at 49% correct.

4.4 Benchmark Summary
Table 1 summarizes our benchmark study. First, for
reference, we had an unaffiliated human answer a
random subset of 100 questions. Ninety-one per-
cent were answered correctly, showing that scores
in the range of 90% are reasonable to expect. Sec-
ondly, we tested the performance of the same model

1http://www.speech.cs.cmu.edu/SLM/toolkit.html

Method % Correct (N=1040)
Human 91
Generating Model 31
Smoothed 3-gram 36
Smoothed 4-gram 39
Positional combination 43
Simple 4-gram 34
Average LSA Similarity 49

Table 1: Summary of Benchmarks

(Model M) that was used to generate the data. Be-
cause this model output alternates that it assigns
high-probability, there is a bias against it, and it
scored 31%. Smoothed 3 and 4-gram models built
with the CMU toolkit achieved 36 to 39 percent. Re-
call that the sampling process introduced some bias
into the word scores at specific positions relative to
the focus word. Exploiting the negative bias induced
on the immediately following word, and combin-
ing it with the score of the word two positions in
the future, we were able to obtain 43%. The sim-
ple 4-gram model described earlier did somewhat
worse than the other N-gram language models, and
the LSA similarity model did best with 49%. As
a further check on this data, we have run the same
tests on 108 sentence completion questions from a
practice SAT exam (Princeton Review, 11 Practice
Tests for the SAT & PSAT, 2011 Edition). To train
language models for the SAT question task, we used
1.2 billion words of Los Angeles Times data taken
from the years 1985 through 2002. Results for the
SAT data are similar, with N-gram language models
scoring 42-44% depending on vocabulary size and
smoothing, and LSA similarity attaining 46%.

These results indicate that the “Holmes” sentence
completion set is indeed a challenging problem, and
has a level of difficulty roughly comparable to that
of SAT questions. Simple models based on N-gram
statistics do quite poorly, and even a relatively so-
phisticated semantic-coherence model struggles to
beat the 50% mark.

5 Related Work

The past work which is most similar to ours is de-
rived from the lexical substitution track of SemEval-
2007 (McCarthy and Navigli, 2007). In this task,
the challenge is to find a replacement for a word or

34

phrase removed from a sentence. In contrast to our
SAT-inspired task, the original answer is indicated.
For example, one might be asked to find replace-
ments for match in “After the match, replace any re-
maining fluid deficit to prevent problems of chronic
dehydration throughout the tournament.” Scoring
is done by comparing a system’s results with those
produced by a group of human annotators (not un-
like the use of multiple translations in machine trans-
lation). Several forms of scoring are defined us-
ing formulae which make the results impossible to
compare with correct/incorrect multiple choice scor-
ing. Under the provided scoring metrics, two con-
sistently high-performing systems in the SemEval
2007 evaluations are the KU (Yuret, 2007) and UNT
(Hassan et al., 2007) systems. These operate in two
phases: first they find a set of potential replacement
words, and then they rank them. The KU system
uses just an N-gram language model to do this rank-
ing. The UNT system uses a large variety of infor-
mation sources, each with a different weight. A lan-
guage model is used, and this receives the highest
weight. N-gram statistics were also very effective -
according to one of the scoring paradigms - in (Giu-
liano et al., 2007); as a separate entry, this paper fur-
ther explored the use of Latent Semantic Analysis
to measure the degree of similarity between a poten-
tial replacement and its context, but the results were
poorer than others. Since the original word provides
a strong hint as to the possible meanings of the re-
placements, we hypothesize that N-gram statistics
are largely able to resolve the remaining ambigui-
ties, thus accounting for the good performance of
these methods on this task. The Holmes data does
not have this property and thus may be more chal-
lenging.

ESL synonym questions were studied by Turney
(2001), and subsequently considered by numerous
research groups including Terra and Clarke (2003)
and Pado and Lapata (2007). These questions are
easier than the SemEval task because in addition to
the original word and the sentence context, the list
of options is provided. For example, one might be
asked to identify a replacement for “rusty” in ”A
[rusty] nail is not as strong as a clean, new one.
(corroded; black; dirty; painted).” Jarmasz and
Szpakowicz (2003) used a sophisticated thesaurus-
based method and achieved state-of-the art perfor-

mance on the ESL synonyms task, which is 82%.
Again the Holmes data does not have the property
that the intended meaning is signaled by providing
the original word, thus adding extra challenge.

Although it was not developed for this task, we
believe the recurrent language modeling work of
Mikolov (2010; 2011b; 2011a) is also quite rel-
evant. In this work, a recurrent neural net lan-
guage model is used to achieve state-of-the-art per-
formance in perplexity and speech recognition er-
ror rates. Critically, the recurrent neural net does
not maintain a fixed N-gram context, and its hid-
den layer has the potential to model overall sen-
tence meaning and long-span coherence. While the-
oretical results (Bengio et al., 1994) indicate that
extremely long-range phenomena are hard to learn
with a recurrent neural network, in practice the span
of usual sentences may be manageable. Recursive
neural networks (Socher et al., 2011) offer similar
advantages, without the theoretical limitations. Both
offer promising avenues of research.

6 Conclusion

In this paper we have described a new, publicly
available, corpus of sentence-completion questions.
Whereas for many traditional language modeling
tasks, N-gram models provide state-of-the-art per-
formance, and may even be fully adequate, this task
is designed to be insoluble with local models. Be-
cause the task now allows us to measure progress
in an area where N-gram models do poorly, we ex-
pect it to stimulate research in fundamentally new
and more powerful language modeling methods.

References

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gradi-
ent descent is difficult. IEEE Transactions on Neural
Networks, 5(2):157 –166.

Ciprian Chelba and Frederick Jelinek. 1998. Exploit-
ing syntactic structure for language modeling. In Pro-
ceedings of the 36th Annual Meeting of the Association
for Computational Linguistics and 17th International
Conference on Computational Linguistics - Volume 1,
ACL ’98, pages 225–231, Stroudsburg, PA, USA. As-
sociation for Computational Linguistics.

Ciprian Chelba and Frederick Jelinek. 2000. Structured

35

language modeling. Computer Speech and Language,
14(4):283 – 332.

Stanley F. Chen and Joshua Goodman. 1999. An empir-
ical study of smoothing techniques for language mod-
eling. Computer Speech and Language, 13(4):359 –
393.

S. Chen. 2009a. Performance prediction for exponential
language models. In NAACL-HLT.

S. Chen. 2009b. Shrinking exponential language models.
In NAACL-HLT.

S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer,
and R. Harshman. 1990. Indexing by latent semantic
analysis. Journal of the American Society for Informa-
tion Science, 41(96).

Educational-Testing-Service. 2011.
https://satonlinecourse.collegeboard.com/sr/ digi-
tal assets/assessment/pdf/0833a611-0a43-10c2-0148-
cc8c0087fb06-f.pdf.

Claudio Giuliano, Alfio Gliozzo, and Carlo Strapparava.
2007. Fbk-irst: Lexical substitution task exploiting
domain and syntagmatic coherence. In Proceedings
of the 4th International Workshop on Semantic Evalu-
ations, SemEval ’07, pages 145–148, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Samer Hassan, Andras Csomai, Carmen Banea, Ravi
Sinha, and Rada Mihalcea. 2007. Unt: Subfinder:
Combining knowledge sources for automatic lexical
substitution. In Proceedings of the 4th International
Workshop on Semantic Evaluations, SemEval ’07,
pages 410–413, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Sanjeev Khudanpur and Jun Wu. 2000. Maximum
entropy techniques for exploiting syntactic, semantic
and collocational dependencies in language modeling.
Computer Speech and Language, 14(4):355 – 372.

R. Kneser and H. Ney. 1995. Improved backing-off
for m-gram language modeling. In Proceedings of
ICASSP.

Jarmasz M. and Szpakowicz S. 2003. Roget’s thesaurus
and semantic similarity. In Recent Advances in Natu-
ral Language Processing (RANLP).

Diana McCarthy and Roberto Navigli. 2007. Semeval-
2007 task 10: English lexical substitution task. In Pro-
ceedings of the 4th International Workshop on Seman-
tic Evaluations (SemEval-2007), pages 48–53.

Tomas Mikolov, Martin Karafiat, Jan Cernocky, and San-
jeev Khudanpur. 2010. Recurrent neural network
based language model. In Proceedings of Interspeech
2010.

Tomas Mikolov, Anoop Deoras, Stefan Kombrink, Lukas
Burget, and Jan Cernocky. 2011a. Empirical evalua-
tion and combination of advanced language modeling
techniques. In Proceedings of Interspeech 2011.

Tomas Mikolov, Stefan Kombrink, Lukas Burget, Jan
Cernocky, and Sanjeev Khudanpur. 2011b. Ex-
tensions of recurrent neural network based language
model. In Proceedings of ICASSP 2011.

Sebastian Pado and Mirella Lapata. 2007. Dependency-
based construction of semantic space models. Compu-
tational Linguistics, 33 (2), pages 161–199.

Harry Printz and Peder A. Olsen. 2002. Theory and prac-
tice of acoustic confusability. Computer Speech and
Language, 16(1):131 – 164.

Ronald Rosenfeld, Stanley F. Chen, and Xiaojin Zhu.
2001. Whole-sentence exponential language models:
a vehicle for linguistic-statistical integration. Com-
puter Speech and Language, 15(1):55 – 73.

R. Rosenfeld. 1997. A whole sentence maximum en-
tropy language model. In Proceedings ASRU.

Holger Schwenk and Jean-Luc Gauvain. 2002. Connec-
tionist language modeling for large vocabulary contin-
uous speech recognition. In Proceedings of ICASSP.

Holger Schwenk. 2007. Continuous space language
models. Computer Speech and Language, 21(3):492
– 518.

Claude E. Shannon and Warren Weaver. 1949. The
Mathematical Theory of Communication. University
of Illinois Press.

Richard Socher, Cliff Chiung-Yu Lin, Andrew Y. Ng,
and Christopher D. Manning. 2011. Parsing natural
scenes and natural language with recursive neural net-
works. In Proceedings of the 2011 International Con-
ference on Machine Learning (ICML-2011).

E. Terra and C. Clarke. 2003. Frequency estimates for
statistical word similarity measures. In Conference
of the North American Chapter of the Association for
Computational Linguistics (NAACL).

Peter D. Turney. 2001. Mining the web for synonyms:
PMI-IR versus LSA on TOEFL. In European Confer-
ence on Machine Learning (ECML).

Jun Wu and Sanjeev Khudanpur. 1999. Combining non-
local, syntactic and n-gram dependencies in language
modeling. In Proceedings of Eurospeech.

Kenji Yamada and Kevin Knight. 2001. A syntax-
based statistical translation model. In Proceedings of
the 39th Annual Meeting on Association for Computa-
tional Linguistics, ACL ’01, pages 523–530, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Deniz Yuret. 2007. Ku: word sense disambiguation
by substitution. In Proceedings of the 4th Interna-
tional Workshop on Semantic Evaluations, SemEval
’07, pages 207–213, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

36

NAACL-HLT 2012 Workshop: Will We Ever Really Replace the N-gram Model? On the Future of Language Modeling for HLT, pages 37–40,
Montréal, Canada, June 8, 2012. c©2012 Association for Computational Linguistics

Unsupervised Vocabulary Adaptation for Morph-based Language Models

Andr é Mansikkaniemi and Mikko Kurimo
Aalto University School of Science

Department of Information and Computer Science
PO BOX 15400, 00076 Aalto, Finland

{andre.mansikkaniemi,mikko.kurimo}@aalto.fi

Abstract

Modeling of foreign entity names is an im-
portant unsolved problem in morpheme-based
modeling that is common in morphologically
rich languages. In this paper we present an
unsupervised vocabulary adaptation method
for morph-based speech recognition. Foreign
word candidates are detected automatically
from in-domain text through the use of letter
n-gram perplexity. Over-segmented foreign
entity names are restored to their base forms in
the morph-segmented in-domain text for eas-
ier and more reliable modeling and recogni-
tion. The adapted pronunciation rules are fi-
nally generated with a trainable grapheme-to-
phoneme converter. In ASR performance the
unsupervised method almost matches the abil-
ity of supervised adaptation in correctly rec-
ognizing foreign entity names.

1 Introduction

Foreign entity names (FENs) are difficult to rec-
ognize correctly in automatic speech recognition
(ASR). Pronunciation rules that cover native words
usually give incorrect pronunciation for foreign
words. More often the foreign entity names encoun-
tered in speech are out-of-vocabulary words, previ-
ously unseen words not present in neither the lexicon
nor background language model (LM).

An in-domain LM trained on a smaller corpus re-
lated to the topic of the speech, can be used to adapt
the background LM to give more suitable probabil-
ities to rare or unseen foreign words. Proper pro-
nunciation rules for foreign entity names are needed

to increase the probability of their correct recogni-
tion. These can either be obtained from a hand-made
lexicon or by generating pronunciation rules auto-
matically using for example a trainable grapheme-
to-phoneme (G2P) converter.

In morph-based speech recognition words are
segmented into sub-word units called morphemes.
When using statistical morph-segmentation algo-
rithms such as Morfessor (Creutz and Lagus, 2005)
new foreign entity names encountered in in-domain
text corpora are often over-segmented (e.g. mcdow-
ell ⇒ mc do well). To guarantee reliable pronuncia-
tion modeling, it’s preferable to keep the lemma in-
tact. Restoring over-segmented foreign entity names
back in to their base forms is referred to as mor-
pheme adaptation in this paper.

This work describes an unsupervised approach to
language and pronunciation modeling of foreign en-
tity names in morph-based speech recognition. We
will study an adaptation framework illustrated below
in Figure 1.

In-domain text

Find FENs

Stemmer

Morpheme

adaptation

LM adaptation

Morph

segmentation

Background

corpus
Adapted LM

FEN lexicon

G2P converter

Adapted

lexicon

Figure 1: Adaptation framework.

37

The adaptation framework is centered around the
following automated steps: 1. Find foreign words in
adaptation texts, 2. Convert foreign word candidates
into their base forms, 3. Generate pronunciation
variants for the retrieved foreign entity name can-
didates using a G2P converter. Additionally, to fa-
cilitate easier and more reliable pronunciation adap-
tation, the foreign entity names are restored to their
base forms in the segmented in-domain text.

The adaptation framework will be compared to a
supervised method where the adaptation steps are
done manually. The evaluation will be done on
Finnish radio news segments.

2 Methods

2.1 Foreign Word Detection

Unsupervised detection of foreign words in text
has previously been implemented for English using
word n-ngram models (Ahmed, 2005).

Finnish has a rich morphology and using word n-
gram models or dictionaries for the detection of for-
eign words would not be practical. Many of the for-
eign words occurring in written Finnish texts could
be identified from unusual letter sequences that are
not common in native words. A letter n-gram model
trained on Finnish words could be used to identify
foreign words by calculating the average perplexity
of the letter sequence in a word normalized by its
length.

A two-step algorithm is implemented for the au-
tomatic detection of foreign words. First, all words
starting in uppercase letters in the unprocessed adap-
tation text are held out as potential foreign entity
names. The perplexity for each foreign word candi-
date is calculated using a letter-ngram model trained
on Finnish words. Words with the highest perplexity
values are the most probable foreign entity names. A
percentage thresholdT for the top perplexity words
can be determined from prior information.

The most likely foreign words are fi-
nally converted into their base forms using
a Finnish stemming algorithm (Snowball -
http://snowball.tartarus.org/).

2.2 Lexicon Adaptation

For Finnish ASR systems the pronunciation dictio-
nary can easily be constructed for arbitrary words

by mapping letters directly to phonemes. Foreign
names are often pronounced according to their orig-
inal languages, which can have more complicated
pronunciation rules. These pronunciation rules
can either be manually added to a lookup dictio-
nary or generated automatically with a grapheme-
to-phoneme converter. Constructing a foreign word
lexicon through manual input involves a lot of te-
dious work and it will require a continuous effort to
keep it updated.

In this work Sequitur G2P is used, a data-
driven grapheme-to-phoneme converter based on
joint-sequence models (Bisani and Ney, 2008). A
pronunciation model is trained on a manually con-
structed foreign word lexicon consisting of 2000 for-
eign entity names with a manually given pronuncia-
tion hand-picked from a Finnish newswire text col-
lection. The linguistic origins of the foreign words
are mixed but Germanic and Slavic languages are
the most common.

The pronunciation model is used to generate the
most probable pronunciation variants for the foreign
entity name candidates found in the adaptation text.

2.3 Morpheme Adaptation

In current state of the art Finnish language model-
ing words are segmented into sub-word units (mor-
phemes) (Hirsim̈aki et. al, 2009). This allows the
system to cover a large number of words which re-
sult from the highly agglutinative word morphology.

Over-segmentation usually occurs for previously
unseen words found in adaptation texts. To en-
sure reliable pronunciation modeling of foreign
entity names it’s preferable to keep the lemma
intact. Mapping a whole word pronunciation
rule onto separate morphemes is a non-trivial
task for non-phonetic languages such as English.
The morphemes in the in-domain corpus will be
adapted such that all foreign words are restored
into their base forms and the base forms are added
to the morpheme vocabulary. Below is an exam-
ple. Word boundaries are labeled with the<w>-tag.

<w> oilers <w> hävisi<w> edmonton in <w> com mon
we al th <w> sta dium illa <w>

⇒

<w> oilers <w> hävisi <w> edmonton in <w> com-

monwealth <w> stadium illa <w>

38

2.4 Language Model Adaptation

The in-domain adaptation text is segmented differ-
ently depending on the foreign entity name can-
didates that are included. A separate in-domain
LM Pi(w|h) is trained for each segmentation of the
text. Linear interpolation is used to the adapt the
background LMPB(w|h) with the in-domain LM
Pi(w|h).

Padapi(w|h) = λPi(w|h) + (1− λ)PB(w|h) (1)

3 Experiments

3.1 Speech Data

Evaluation data consisted of two sets of Finnish ra-
dio news segments in 16 kHz audio. All of the
recordings were collected in 2011-2012 from YLE
Radio Suomi news and sports programs.

The first data set consisted of 32 general news
segments. The total transcription length was 8271
words. 4.8% of the words were categorized as for-
eign entity names (FEN). The second data set con-
sisted of 43 sports news segments. The total tran-
scription length 6466 was words. 7.9% of the words
were categorized as foreign entity names.

3.2 System and Models

All speech recognition experiments were run on the
Aalto speech recognizer (Hirsim̈aki et. al, 2009).

The background LM was trained on the Kieli-
pankki corpus (70 million words). A lexicon of 30k
morphs and a model of morph segmentation was
learnt from the same corpus as the LM using Mor-
fessor (Creutz and Lagus, 2005). The baseline lex-
icon was adapted with a manually transcribed pro-
nunciation dictionary of 2000 foreign entity names
found in Finnish newswire texts. A Kneser-Ney
smoothed varigram LM (n=12) was trained on the
segmented corpus with the variKN language model-
ing toolkit (Siivola et al., 2007).

LM adaptation data was manually collected from
the Web. On average 2-3 articles were gathered per
topic featured in the evaluation data sets. 120 000
words of text were gathered for LM adaptation on
the general news set. 60 000 words were gathered
for LM adaptation on the sports news set.

The foreign word detection algorithm and a letter
trigram model trained on the Kielipankki word list

were used to automatically find foreign entity names
in the adaptation texts and convert them into their
base forms. Different values were used as percent-
age thresholdT (30, 60, and 100%).

The adaptation texts were segmented into morphs
with the segmentation model learnt from the back-
ground corpus. Morpheme adaptation was per-
formed by restoring the foreign entity name candi-
dates into their base forms. Separate in-domain vari-
gram LMs (n=6) were trained for adaptation data
segmented into morphs using each choice ofT in
the foreign name detection. The background LM
was adapted with each in-domain LM separately us-
ing linear interpolation with weightλ = 0.1 chosen
based on preliminary experiments.

A pronunciation model was trained withSequitur
G2Pon the manually constructed foreign word lexi-
con. The number of the most probable pronunciation
variantsm for one word to be used in lexicon adap-
tation, was tested with different values (1, 4, and 8).

4 Results

The word error rate (WER), letter error rate (LER),
and the foreign entity name error rate (FENER) are
reported in the results. All the results are presented
in Table 1.

The first experiment was run on the baseline sys-
tem. The average WER is 21.7% for general news
and 34.0% for sports. The average FENER is signif-
icantly higher for both (76.6% and 80.7%).

Supervised vocabulary adaptation was imple-
mented by manually retrieving the foreign entity
names from the adaptation text and adding their pro-
nunciation rules to the lexicon. Morpheme adapta-
tion was also applied. Compared to only using linear
interpolation (λ = 0.1) supervised vocabulary adap-
tation reduces WER by 4% (general news) and 6%
(sports news). Recognition of foreign entity names
is also improved with FENER reductions of 18%
and 24%.

Unsupervised vocabulary adaptation was imple-
mented through automatic retrieval and pronuncia-
tion generation of foreign entity names. The pa-
rameters of interest are the foreign name percentage
thresholdT, determining how many foreign word
candidates are included for lexicon and morpheme
adaptation andm, the number of pronunciation vari-

39

Adaptation method Results

LM
Lexicon General News Sports News

Adaptation T[%] m WER[%] LER[%] FENER[%] WER[%] LER[%] FENER[%]
Background Baseline 21.7 5.7 76.6 34.0 11.4 80.7

Background + Adaptation

Baseline 20.6 5.3 67.8 32.0 10.7 69.4
Supervised - 1 19.8 5.0 55.7 30.1 9.8 53.1

Unsupervised

30
1 20.4 5.2 64.0 31.5 10.4 64.1
4 20.2 5.2 58.7 31.6 10.4 60.4
8 20.4 5.3 56.9 31.5 10.4 56.8

60
1 20.7 5.3 63.7 32.3 10.4 63.7
4 20.7 5.3 59.4 31.1 9.9 59.8
8 21.1 5.5 58.2 31.0 9.9 55.6

100
1 21.1 5.4 62.7 33.2 10.7 66.1
4 21.2 5.5 58.2 32.6 10.4 60.7
8 22.1 5.9 59.2 33.2 10.6 57.0

Table 1: Results of adaptation experiments on the two test sets. Linear interpolation is tested with supervised and
unsupervised vocabulary adaptation.T is the top percentage of foreign entity name candidates usedin unsupervised
vocabulary adaptation, andm is the number of pronunciation variants for each word.

ants generated for each word. The best performance
is reached on the general news set withT = 30% and
m= 4 (WER = 20.2%, FENER = 58.7%), and on the
sports news set withT = 60% andm = 8 (WER =
31.0%, FENER = 55.6%).

5 Conclusion and Discussion

In this work we presented an unsupervised approach
to pronunciation and language modeling of foreign
entity names in morph-based speech recognition.

In the context of LM adaptation, foreign en-
tity name candidates were retrieved from in-domain
texts using a foreign word detection algorithm. Pro-
nunciation variants were generated for the foreign
word candidates using a grapheme-to-phoneme con-
verter. Morpheme adaptation was also applied by
restoring the foreign entity names into their base
forms in the morph-segmented adaptation texts.

The results indicate that unsupervised pronun-
ciation and language modeling of foreign entity
names is feasible. The unsupervised approach al-
most matches supervised adaptation in correctly rec-
ognizing foreign entity names. Average WER is also
very close to the supervised adaptation one despite
the increased acoustic confusability when introduc-
ing more pronunciation variants. The percentage of
foreign word candidates included for adaptation af-
fects performance of the algorithm. Including all
words starting in uppercase letters significantly de-
grades ASR results. The optimal threshold value
is dependent on the adaptation text and its foreign
word frequency and similarity to the evaluation data.

The composition of likely pronunciations of for-
eign names by Finnish speakers is not a straight-
forward task. While the native pronunciation of the
name is the favored one, the origin of the name is not
always clear, nor the definition of the pronunciation.
Additionally, the mapping of the native pronuncia-
tion to the phoneme set used by the Finnish ASR
system can only be an approximation, as well as the
pronunciations that the Finnish speakers are able to
produce. In future work we will study new methods
to model the pronunciation of the foreign names and
perform evaluations also in speech retrieval where
the recognition of names have particular importance.

References

B. Ahmed. 2005.Detection of Foreign Words and Names
in Written Text. Doctoral thesis, Pace University.

M. Bisani and H. Ney. 2008.Joint-Sequence Models for
Grapheme-to-Phoneme Conversion. Speech Commu-
nication, vol. 50, Issue 5, pp. 434-451.

M. Creutz and K. Lagus. 2005.Unsupervised Mor-
pheme Segmentation and Morphology Induction from
Text Corpora using Morfessor 1.0. Technical Report
A81, Publications in Computer and Information Sci-
ence, Helsinki University of Technology.

T. Hirsimäki, J. Pylkk̈onen, and M. Kurimo 2009.Im-
portance of High-order N-gram Models in Morph-
based Speech Recognition. IEEE Trans. Audio,
Speech and Lang., pp. 724-732, vol. 17.

V. Siivola, T. Hirsim̈aki and S. Virpioja. 2007.On Grow-
ing and Pruning Kneser-Ney Smoothed N-Gram Mod-
els. IEEE Trans. Audio, Speech and Lang., Vol. 15,
No. 5.

40

NAACL-HLT 2012 Workshop: Will We Ever Really Replace the N-gram Model? On the Future of Language Modeling for HLT, pages 41–49,
Montréal, Canada, June 8, 2012. c©2012 Association for Computational Linguistics

Large-scale discriminative language model reranking for voice-search

Preethi Jyothi
The Ohio State University

Columbus, OH
jyothi@cse.ohio-state.edu

Leif Johnson
UT Austin
Austin, TX

leif@cs.utexas.edu

Ciprian Chelba and Brian Strope
Google

Mountain View, CA
{ciprianchelba,bps}@google.com

Abstract

We present a distributed framework for large-
scale discriminative language models that can
be integrated within a large vocabulary con-
tinuous speech recognition (LVCSR) system
using lattice rescoring. We intentionally
use a weakened acoustic model in a base-
line LVCSR system to generate candidate hy-
potheses for voice-search data; this allows
us to utilize large amounts of unsupervised
data to train our models. We propose an ef-
ficient and scalable MapReduce framework
that uses a perceptron-style distributed train-
ing strategy to handle these large amounts of
data. We report small but significant improve-
ments in recognition accuracies on a standard
voice-search data set using our discriminative
reranking model. We also provide an analy-
sis of the various parameters of our models in-
cluding model size, types of features, size of
partitions in the MapReduce framework with
the help of supporting experiments.

1 Introduction

The language model is a critical component of an
automatic speech recognition (ASR) system that as-
signs probabilities or scores to word sequences. It
is typically derived from a large corpus of text via
maximum likelihood estimation in conjunction with
some smoothing constraints. N-gram models have
become the most dominant form of LMs in most
ASR systems. Although these models are robust,
scalable and easy to build, we illustrate a limita-
tion with the following example from voice-search.
We expect a low probability for an ungrammatical

or implausible word sequence. However, for a tri-
gram like “a navigate to”, a backoff trigram LM
gives a fairly large LM log probability of -0.266 be-
cause both “a” and “navigate to” are popular words
in voice-search! Discriminative language models
(DLMs) attempt to directly optimize error rate by
rewarding features that appear in low error hypothe-
ses and penalizing features in misrecognized hy-
potheses. The trigram “a navigate to” receives a
fairly large negative weight of -6.5 thus decreasing
its chances of appearing as an ASR output. There
have been numerous approaches towards estimat-
ing DLMs for large vocabulary continuous speech
recognition (LVCSR) (Roark et al., 2004; Gao et al.,
2005; Zhou et al., 2006).

There are two central issues that we discuss re-
garding DLMs. Firstly, DLM training requires large
amounts of parallel data (in the form of correct tran-
scripts and candidate hypotheses output by an ASR
system) to be able to effectively compete with n-
gram LMs trained on large amounts of text. This
data could be simulated using voice-search logs that
are confidence-filtered from a baseline ASR sys-
tem to obtain reference transcripts. However, this
data is perfectly discriminated by first pass features
and leaves little room for learning. We propose a
novel training strategy of using lattices generated
with a weaker acoustic model (henceforth referred
to as weakAM) than the one used to generate ref-
erence transcripts for the unsupervised parallel data
(referred to as the strongAM). This provides us with
enough errors to derive large numbers of potentially
useful word features; this is akin to using a weak LM
in discriminative acoustic modeling to give more

41

room for diversity in the word lattices resulting in
better generalization (Schlüter et al., 1999). We con-
duct experiments to verify whether these weakAM-
trained models will provide performance gains on
rescoring lattices from a standard test set generated
using strongAM (discussed in Section 3.3).

The second issue is that discriminative estima-
tion of LMs is computationally more intensive than
regular N-gram LM estimation. The advent of dis-
tributed learning algorithms (Mann et al., 2009; Mc-
Donald et al., 2010; Hall et al., 2010) and support-
ing parallel computing infrastructure like MapRe-
duce (Ghemawat and Dean, 2004) has made it in-
creasingly feasible to use large amounts of paral-
lel data to train DLMs. We implement a distributed
training strategy for the perceptron algorithm (intro-
duced by McDonald et al. (2010) using the MapRe-
duce framework. Our design choices for the MapRe-
duce implementation are specified in Section 2.2
along with its modular nature thus enabling us to
experiment with different variants of the distributed
structured perceptron algorithm. Some of the de-
scriptions in this paper have been adapted from pre-
vious work (Jyothi et al., 2012).

2 The distributed DLM framework:
Training and Implementation details

2.1 Learning algorithm

We aim to allow the estimation of large scale dis-
tributed models, similar in size to the ones in Brants
et al. (2007). To this end, we make use of a dis-
tributed training strategy for the structured percep-
tron to train our DLMs (McDonald et al., 2010). Our
model consists of a high-dimensional feature vector
function Φ that maps an (utterance, hypothesis) pair
(x, y) to a vector in Rd, and a vector of model pa-
rameters, w ∈ Rd. Our goal is to find model pa-
rameters such that given x, and a set of candidate
hypotheses Y (typically, as a word lattice or an N-
best list that is obtained from a first pass recognizer),
argmaxy∈Y w · Φ(x, y) would be the y ∈ Y that
minimizes the error rate between y and the correct
hypothesis for x. For our experiments, the feature
vector Φ(x, y) consists of AM and LM costs for y
from the lattice Y for x), as well as “word features”
which count the number of times different N-grams
(of order up to 5 in our experiments) occur in y.

In principle, such a model can be trained us-
ing the conventional structured perceptron algo-
rithm (Collins, 2002). This is an online learning
algorithm which continually updates w as it pro-
cesses the training instances one at a time, over
multiple training epochs. Given a training utter-
ance {xi, yi} (yi ∈ Yi has the lowest error rate
with respect to the reference transcription for xi,
among all hypotheses in the lattice Yi for xi), if
ỹ∗i := argmaxy∈Yi

w · Φ(xi, y) is not yi, w is up-
dated to increase the weights corresponding to fea-
tures in yi and decrease the weights of features in ỹ∗i .
During evaluation, we use parameters averaged over
all utterances and over all training epochs. This was
shown to give substantial improvements in previous
work (Collins, 2002; Roark et al., 2004).

Unfortunately, the conventional perceptron algo-
rithm takes impractically long for the amount of
training examples we have. We make use of a
distributed training strategy for the structured per-
ceptron that was first introduced in McDonald et
al. (2010). The iterative parameter mixing strategy
used in this paradigm can be explained as follows:
the training data T = {xi, yi}Ni=1 is suitably parti-
tioned into C disjoint sets T1, . . . , TC . Then, a struc-
tured perceptron model is trained on each data set in
parallel. After one training epoch, the parameters in
the C sets are mixed together (using a “mixture coef-
ficient” µi for each set Ti) and returned to each per-
ceptron model for the next training epoch where the
parameter vector is initialized with these new mixed
weights. This is formally described in Algorithm 1;
we call it “Distributed Perceptron”. We also exper-
iment with two other variants of distributed percep-
tron training, “Naive Distributed Perceptron” and
“Averaged Distributed Perceptron”. These models
easily lend themselves to be implemented using the
distributed infrastructure provided by the MapRe-
duce framework. The following section describes
this infrastructure in greater detail.

2.2 MapReduce implementation details

We propose a distributed infrastructure using
MapReduce (Ghemawat and Dean, 2004) to train
our large-scale DLMs on terabytes of data. The
MapReduce (Ghemawat and Dean, 2004) paradigm,
adapted from a specialized functional programming
construct, is specialized for use over clusters with

42

Algorithm 1 Distributed Perceptron (McDonald et
al., 2010)

Require: Training samples T = {xi, yi}Ni=1

1: w0 := [0, . . . , 0]
2: Partition T into C parts, T1, . . . , TC
3: [µ1, . . . , µC] := [1

C , . . . ,
1
C]

4: for t := 1 to T do
5: for c := 1 to C do
6: w := wt−1

7: for j := 1 to |Tc| do
8: ỹt

c,j := argmaxy w ·Φ(xc,j , y)
9: δ := Φ(xc,j , yc,j)−Φ(xc,j , ỹ

t
c,j)

10: w := w + δ
11: end for
12: wt

c := w
13: end for
14: wt :=

∑C
c=1 µcw

t
c

15: end for
16: return wT

a large number of nodes. Chu et al. (2007) have
demonstrated that many standard machine learning
algorithms can be phrased as MapReduce tasks, thus
illuminating the versatility of this framework. In
relation to language models, Brants et al. (2007)
recently proposed a distributed MapReduce infras-
tructure to build Ngram language models having up
to 300 billion n-grams. We take inspiration from
this evidence of being able to build very large mod-
els and use the MapReduce infrastructure for our
DLMs. Also, the MapReduce paradigm allows us to
easily fit different variants of our learning algorithm
in a modular fashion by only making small changes
to the MapReduce functions.

In the MapReduce framework, any computation
is expressed as two user-defined functions: Map and
Reduce. The Map function takes as input a key/value
pair and processes it using user-defined functions to
generate a set of intermediate key/value pairs. The
Reduce function receives all intermediate pairs that
are associated with the same key value. The dis-
tributed nature of this framework comes from the
ability to invoke the Map function on different parts
of the input data simultaneously. Since the frame-
work assures that all the values corresponding to a
given key will be accummulated at the end of all

SSTable
Feature-
Weights:

Epoch t+1

SSTable
Feature-
Weights:
Epoch t

SSTable
Utterances

SSTableService

Rerank-Mappers

Identity-Mappers

Reducers

Cache
(per Map chunk)

Figure 1: MapReduce implementation of reranking using
discriminative language models.

the Map invocations on the input data, different ma-
chines can simultaneously execute the Reduce to op-
erate on different parts of the intermediate data.

Any MapReduce application typically imple-
ments Mapper/Reducer interfaces to provide the de-
sired Map/Reduce functionalities. For our models,
we use two different Mappers (as illustrated in Fig-
ure 1) to compute feature weights for one training
epoch. The Rerank-Mapper receives as input a set
of training utterances and also requests for feature
weights computed in the previous training epoch.
Rerank-Mapper then computes feature updates for
the given training data (the subset of the training data
received by a single Rerank-Mapper instance will be
henceforth referred to as a “Map chunk”). We also
have a second Identity-Mapper that receives feature
weights from the previous training epoch and di-
rectly maps the inputs to outputs which are provided
to the Reducer. The Reducer combines the outputs
from both Rerank-Mapper and Identity-Mapper and
outputs the feature weights for the current training
epoch. These output feature weights are persisted
on disk in the form of SSTables that are an efficient
abstraction to store large numbers of key-value pairs.

The features corresponding to a Map chunk at the
end of training epoch need to be made available to
Rerank-Mapper in the subsequent training epoch.
Instead of accessing the features on demand from
the SSTables that store these feature weights, every
Rerank-Mapper stores the features needed for the
current Map chunk in a cache. Though the number

43

wt-1

Rerank-Mapper

Reducer

1 utt1
2 utt2

Nc uttNc

Feat1 wt1
Feat2 wt2

FeatM wtM

:

:

U

Cache of wt-1 maintained by the Mapper

wcurr := wt-1, Δ := 0
For each (key,utt) in U:

Map(key,utt) {
Rerank(utt.Nbest,wcurr)
δ := FeatureDiff(utt)
wcurr:= wcurr + δ
Δ := Update(Δ,δ)

}

wt

Reduce(Feat,V[0..n]) {
//V contains all pairs
//with primary key=Feat

//first key=Feat:0
wold := V[0]

//aggregate Δ from rest
//of V (key=Feat:1)
Δ* := Aggregate(V[1..n])

wt[Feat] :=
Combine(wold,Δ*)

}

For each Feat in 1 to M:

Map(Feat,wt-1[Feat]) {
Emit(Feat:0,wt-1[Feat])

}

Identity-Mapper

For each Feat in 1 to M:
Emit(Feat:1,Δ[Feat])

Figure 2: Details of the Mapper and Reducer.

Naive Distributed Perceptron:
- Update(∆, δ) returns ∆ + δ.
- Aggregate([∆t

1, . . . ,∆
t
C]) returns ∆∗ =

∑C
c=1 ∆t

c.
- Combine(wt−1

NP ,∆
∗) returns wt−1

NP + ∆∗.
Distributed Perceptron:

- Update and Combine are as for the Naive Distributed Perceptron.
- Aggregate([∆t

1, . . . ,∆
t
C]) returns ∆∗ =

∑C
c=1 µc∆

t
c.

Averaged Distributed Perceptron: Here, wt = (wt
AV , w

t
DP), and ∆ = (β,α) contain pairs of values; α

is used to maintain wt
DP and β, both of which in turn are used to maintain wt

AV (αt
c plays the role of ∆t

c in
Distributed Perceptron). Only wt

AV is used in the final evaluation and only wt
DP is used during training.

- Update((β,α), δ) returns (β + α + δ,α + δ).
- Aggregate([∆t

1, . . . ,∆
t
C]) where ∆t

c = (βt
c,α

t
c), returns ∆∗ = (β∗,α∗) where β∗ =

∑C
c=1 βt

c, and
α∗ =

∑C
c=1 µcα

t
c.

- Combine((wt−1
AV , w

t−1
DP), (β∗,α∗)) returns (t−1

t wt−1
AV + 1

tw
t−1
DP + 1

N tβ
∗, wt−1

DP + α∗).

Figure 3: Update, Aggregate and Combine procedures for the three variants of the Distributed Perceptron algorithm.

of features stored in the SSTables are determined by
the total number of training utterances, the number
of features that are accessed by a Rerank-Mapper
instance are only proportional to the chunk size and
can be cached locally. This is an important imple-
mentation choice because it allows us to estimate
very large distributed models: the bottleneck is no
longer the total model size but rather the cache size
that is in turn controlled by the Map chunk size.
Section 3.2 discusses in more detail about different
model sizes and the effects of varying Map chunk

size on recognition performance.

Figure 1 is a schematic diagram of our entire
framework; Figure 2 shows a more detailed repre-
sentation of a single Rerank-Mapper, an Identity-
Mapper and a Reducer, with the pseudocode of
these interfaces shown inside their respective boxes.
Identity-Mapper gets feature weights from the pre-
vious training epoch as input (wt) and passes them
to the output unchanged. Rerank-Mapper calls the
function Rerank that takes an N-best list of a training
utterance (utt.Nbest) and the current feature weights

44

(wcurr) as input and reranks the N-best list to ob-
tain the best scoring hypothesis. If this differs from
the correct transcript for utt, FeatureDiff computes
the difference in feature vectors corresponding to
the two hypotheses (we call it δ) and wcurr is in-
cremented with δ. Emit is the output function of
a Mapper that outputs a processed key/value pair.
For every feature Feat, both Identity-Mapper and
Rerank-Mapper also output a secondary key (0 or 1,
respectively); this is denoted as Feat:0 and Feat:1.
At the Reducer, its inputs arrive sorted according to
the secondary key; thus, the feature weight corre-
sponding to Feat from the previous training epoch
produced by Identity-Mapper will necessarily ar-
rive before Feat’s current updates from the Rerank-
Mapper. This ensures that wt+1 is updated correctly
starting with wt. The functions Update, Aggregate
and Combine are explained in the context of three
variants of the distributed perceptron algorithm in
Figure 3.

2.2.1 MapReduce variants of the distributed
perceptron algorithm

Our MapReduce setup described in the previ-
ous section allows for different variants of the dis-
tributed perceptron training algorithm to be imple-
mented easily. We experimented with three slightly
differing variants of a distributed training strategy
for the structured perceptron, Naive Distributed Per-
ceptron, Distributed Perceptron and Averaged Dis-
tributed Perceptron; these are defined in terms of
Update, Aggregate and Combine in Figure 3 where
each variant can be implemented by plugging in
these definitions from Figure 3 into the pseudocode
shown in Figure 2. We briefly describe the func-
tionalities of these three variants. The weights at
the end of a training epoch t for a single feature f
are (wt

NP , w
t
DP , w

t
AV) corresponding to Naive Dis-

tributed Perceptron, Distributed Perceptron and Av-
eraged Distributed Perceptron, respectively; φ(·, ·)
correspond to feature f ’s value in Φ from Algorithm
1. Below, δt

c,j = φ(xc,j , yc,j) − φ(xc,j , ỹ
t
c,j) and

Nc = number of utterances in Map chunk Tc.
Naive Distributed Perceptron: At the end of epoch
t, the weight increments in that epoch from all map
chunks are added together and added to wt−1

NP to ob-
tain wt

NP .
Distributed Perceptron: Here, instead of adding

increments from the map chunks, at the end of epoch
t, they are averaged together using weights µc, c = 1
to C, and used to increment wt−1

DP to wt
DP .

Averaged Distributed Perceptron: In this vari-
ant, firstly, all epochs are carried out as in the Dis-
tributed Perceptron algorithm above. But at the end
of t epochs, all the weights encountered during the
whole process, over all utterances and all chunks, are
averaged together to obtain the final weight wt

AV .
Formally,

wt
AV =

1

N · t

t∑
t′=1

C∑
c=1

Nc∑
j=1

wt′
c,j ,

where wt
c,j refers to the current weight for map

chunk c, in the tth epoch after processing j utter-
ances and N is the total number of utterances. In
our implementation, we maintain only the weight
wt−1

DP from the previous epoch, the cumulative incre-
ment γt

c,j =
∑j

k=1 δ
t
c,k so far in the current epoch,

and a running average wt−1
AV . Note that, for all c, j,

wt
c,j = wt−1

DP + γt
c,j , and hence

N t · wt
AV = N (t− 1)wt−1

AV +
C∑

c=1

Nc∑
j=1

wt
c,j

= N (t− 1)wt−1
AV +Nwt−1

DP +

C∑
c=1

βt
c

where βt
c =

∑Nc
j=1 γ

t
c,j . Writing β∗ =

∑C
c=1 βt

c, we
have wt

AV = t−1
t wt−1

AV + 1
tw

t−1
DP + 1

N tβ
∗.

3 Experiments and Results

Our DLMs are evaluated in two ways: 1) we ex-
tract a development set (weakAM-dev) and a test
set (weakAM-test) from the speech data that is re-
decoded with a weakAM to evaluate our learning
setup, and 2) we use a standard voice-search test
set (v-search-test) (Strope et al., 2011) to evaluate
actual ASR performance on voice-search. More de-
tails regarding our experimental setup along with a
discussion of our experiments and results are de-
scribed in the rest of the section.

3.1 Experimental setup
We generate training lattices using speech data that
is re-decoded with a weakAM acoustic model and

45

●

●

●

●

●

●

0 50 100 150 200

10
20

30
40

50

N

E
rr

or
 R

at
e

● weakAM−dev SER
weakAM−dev WER
v−search−test SER
v−search−test WER

Figure 4: Oracle error rates at word/sentence level for
weakAM-dev with the weak AM and v-search-test with
the baseline AM.

a baseline language model. We use maximum
likelihood trained single mixture Gaussians for our
weakAM. And, we use a sufficiently small base-
line LM (∼21 million n-grams) to allow for sub-
real time lattice generation on the training data
with a small memory footprint, without compromis-
ing on its strength. Chelba et al. (2010) demon-
strate that it takes much larger LMs to get a sig-
nificant relative gain in WER. Our largest models
are trained on 87,000 hours of speech, or ∼350
million words (weakAM-train) obtained by filtering
voice-search logs at 0.8 confidence, and re-decoding
the speech data with a weakAM to generate N-best
lists. We set aside a part of this weakAM-train
data to create weakAM-dev and weakAM-test: these
data sets consist of 328,460/316,992 utterances, or
1,182,756/1,129,065 words, respectively. We use
a manually-transcribed, standard voice-search test
set (v-search-test (Strope et al., 2011)) consisting
of 27,273 utterances, or 87,360 words to evaluate
actual ASR performance using our weakAM-trained
models. All voice-search data used in the experi-
ments is anonymized.

Figure 4 shows oracle error rates, both at the sen-
tence and word level, using N-best lists of utterances
in weakAM-dev and v-search-test. These error rates
are obtained by choosing the best of the top N hy-
potheses that is either an exact match (for sentence
error rate) or closest in edit distance (for word er-
ror rate) to the correct transcript. The N-best lists
for weakAM-dev are generated using a weak AM
and N-best lists for v-search-test are generated us-

ing the baseline (strong) AM. Figure 4 shows these
error rates plotted against a varying threshold N for
the N-best lists. Note there are sufficient word errors
in the weakAM data to train DLMs; also, we observe
that the plot flattens out after N=100, thus informing
us that N=100 is a reasonable threshold to use when
training our DLMs.

Experiments in Section 3.2 involve evaluating
our learning setup using weakAM-dev/test. We
then investigate whether improvements on weakAM-
dev/test translate to v-search-test where N-best are
generated using the strongAM, and scored against
manual transcripts using fully fledged text normal-
ization instead of the string edit distance used in
training the DLM. More details about the impli-
cations of this text normalization on WER can be
found in Section 3.3.

3.2 Evaluating our DLM rescoring framework
on weakAM-dev/test

Improvements on weakAM-dev using different
variants of training for the DLMs
We evaluate the performance of all the variants of
the distributed perceptron algorithm described in
Section 2.2 over ten training epochs using a DLM
trained on ∼20,000 hours of speech with trigram
word features. Figure 5 shows the drop in WER
for all the three variants. We observe that the Naive
Distributed Perceptron gives modest improvements
in WER compared to the baseline WER of 32.5%.
However, averaging over the number of Map chunks
as in the Distributed Perceptron or over the total
number of utterances and training epochs as in the
Averaged Distributed Perceptron significantly im-
proves recognition performance; this is in line with
the findings reported in Collins (2002) and McDon-
ald et al. (2010) of averaging being an effective way
of adding regularization to the perceptron algorithm.

Our best-performing Distributed Perceptron
model gives a 4.7% absolute (∼15% relative)
improvement over the baseline WER of 1-best
hypotheses in weakAM-dev. This, however, could
be attributed to a combination of factors: the use
of large amounts of additional training data for the
DLMs or the discriminative nature of the model.
In order to isolate the improvements brought upon
mainly by the second factor, we build an ML
trained backoff trigram LM (ML-3gram) using the

46

●

● ● ● ● ● ● ● ● ●

2 4 6 8 10

20
25

30
35

Training epochs

W
or

d
Er

ro
r R

at
e(

W
ER

)

● Perceptron
AveragedPerceptron
DistributedPerceptron

Naive Distributed-Perceptron
Distributed-Perceptron
Averaged Distributed-Perceptron

●

● ● ● ● ● ● ● ● ●

2 4 6 8 10

20
25

30
35

Training epochs

W
or

d
Er

ro
r R

at
e(

W
ER

)

● Perceptron
AveragedPerceptron
DistributedPerceptron

Figure 5: Word error rates on weakAM-dev using Per-
ceptron, Distributed Perceptron and AveragedPerceptron
models.

reference transcripts of all the utterances used to
train the DLMs. The N-best lists in weakAM-dev
are reranked using ML-3gram probabilities linearly
interpolated with the LM probabilities from the
lattices. We also experiment with a log-linear
interpolation of the models; this performs slightly
worse than rescoring with linear interpolation.

Table 1: WERs on weakAM-dev using the baseline 1-best
system, ML-3gram and DLM-1/2/3gram.

Data set Baseline
(%)

ML-
3gram
(%)

DLM-
1gram
(%)

DLM-
2gram
(%)

DLM-
3gram
(%)

weakAM-
dev

32.5 29.8 29.5 28.3 27.8

Impact of varying orders of N-gram features
Table 1 shows that our best performing model
(DLM-3gram) gives a significant ∼2% absolute
(∼6% relative) improvement over ML-3gram. We

Table 2: WERs on weakAM-dev using DLM-3gram,
DLM-4gram and DLM-5gram of six training epochs.

Iteration DLM-
3gram
(%)

DLM-
4gram
(%)

DLM-
5gram
(%)

1 32.53 32.53 32.53
2 29.52 29.47 29.46
3 29.26 29.23 29.22
4 29.11 29.08 29.06
5 29.01 28.98 28.96
6 28.95 28.90 28.87

also observe that most of the improvements come
from the unigram and bigram features. We do not
expect higher order N-gram features to significantly
help recognition performance; we further confirm
this by building DLM-4gram and DLM-5gram that
use up to 4-gram and 5-gram word features, re-
spectively. Table 2 gives the progression of WERs
for six epochs using DLM-3gram, DLM-4gram and
DLM-5gram showing minute improvements as we
increase the order of Ngram features from 3 to 5.

Impact of model size on WER
We experiment with varying amounts of train-

ing data to build our DLMs and assess the impact
of model size on WER. Table 3 shows each model
along with its size (measured in total number of
word features), coverage on weakAM-test in percent
of tokens (number of word features in weakAM-test
that are in the model) and WER on weakAM-test. As
expected, coverage increases with increasing model
size with a corresponding tiny drop in WER as the
model size increases. To give an estimate of the time
complexity of our MapReduce, we note that Model1
was trained in ≈1 hour on 200 mappers with a Map
chunk size of 2GB. “Larger models”, built by in-
creasing the number of training utterances used to
train the DLMs, do not yield significant gains in ac-
curacy. We need to find a good way of adjusting the
model capacity with increasing amounts of data.

Impact of varying Map chunk sizes
We also experiment with varying Map chunk sizes to
determine its effect on WER. Figure 6 shows WERs
on weakAM-dev using our best Distributed Percep-
tron model with different Map chunk sizes (64MB,
512MB, 2GB). For clarity, we examine two limit
cases: a) using a single Map chunk for the entire
training data is equivalent to the conventional struc-
tured perceptron and b) using a single training in-

Table 3: WERs on weakAM-test using DLMs of varying
sizes.

Model Size (in
millions)

Coverage
(%)

WER
(%)

Baseline 21M - 39.08
Model1 65M 74.8 34.18
Model2 135M 76.9 33.83
Model3 194M 77.8 33.74
Model4 253M 78.4 33.68

47

●

●
● ● ● ●

1 2 3 4 5 6

20
25

30
35

Training epochs

W
or

d
E

rr
or

 R
at

e(
W

E
R

)

● Map chunk size 64MB
Map chunk size 512MB
Map chunk size 2GB

Figure 6: Word error rates on weakAM-dev using varying
Map chunk sizes of 64MB, 512MB and 2GB.

stance per Map chunk is equivalent to batch training.
We observe that moving from 64MB to 512MB sig-
nificantly improves WER and the rate of improve-
ment in WER decreases when we increase the Map
chunk size further to 2GB. We attribute these reduc-
tions in WER with increasing Map chunk size to
on-line parameter updates being done on increasing
amounts of training samples in each Map chunk.

3.3 Evaluating ASR performance on
v-search-test using DLM rescoring

We evaluate our best Distributed Perceptron DLM
model on v-search-test lattices that are generated
using a strong AM. We hope that the large rel-
ative gains on weakAM-dev/test translate to simi-
lar gains on this standard voice-search data set as
well. Table 4 shows the WERs on both weakAM-
test and v-search-test using Model 1 (from Table
3)1. We observe a small but statistically significant
(p < 0.05) reduction (∼2% relative) in WER on
v-search-test over reranking with a linearly interpo-
lated ML-3gram. This is encouraging because we
attain this improvement using training lattices that
were generated using a considerably weaker AM.

Table 4: WERs on weakAM-test and v-search-test.

Data set Baseline
(%)

ML-3gram
(%)

DLM-3gram
(%)

weakAM-test 39.1 36.7 34.2
v-search-test 14.9 14.6 14.3

It is instructive to analyze why the relative gains in
1We also experimented with the larger Model 4 and saw sim-

ilar improvements on v-search-test as with Model 1.

performance on weakAM-dev/test do not translate to
v-search-test. Our DLMs are built using N-best out-
puts from the recognizer that live in the “spoken do-
main” (SD) and the manually transcribed v-search-
data transcripts live in the “written domain” (WD).
The normalization of training data from WD to SD
is as described in Chelba et al. (2010); inverse text
normalization (ITN) undoes most of that when mov-
ing text from SD to WD, and it is done in a heuris-
tic way. There is ∼2% absolute reduction in WER
when we move the N-best from SD to WD via ITN;
this is how WER on v-search-test is computed by
the voice-search evaluation code. Contrary to this,
in DLM training we compute WERs using string
edit distance between test data transcripts and the
N-best hypotheses and thus we ignore the mismatch
between domains WD and SD. It is quite likely that
part of what the DLM learns is to pick N-best hy-
potheses that come closer to WD, but may not truly
result in WER gains after ITN. This would explain
part of the mismatch between the large relative gains
on weakAM-dev/test compared to the smaller gains
on v-search-test. We could correct for this by apply-
ing ITN to the N-best lists from SD to move to WD
before computing the oracle best in the list. An even
more desirable solution is to build the LM directly
on WD text; text normalization would be employed
for pronunciation generation, but ITN is not needed
anymore (the LM picks the most likely WD word
string for homophone queries at recognition).

4 Conclusions

In this paper, we successfully build large-scale dis-
criminative N-gram language models with lattices
regenerated using a weak AM and derive small but
significant gains in recognition performance on a
voice-search task where the lattices are generated
using a stronger AM. We use a very simple weak
AM and this suggests that there is room for im-
provement if we use a slightly better “weak AM”.
Also, we have a scalable and efficient MapReduce
implementation that is amenable to adapting mi-
nor changes to the training algorithm easily and al-
lows for us to train large LMs. The latter function-
ality will be particularly useful if we generate the
contrastive set by sampling from text instead of re-
decoding logs (Jyothi and Fosler-Lussier, 2010).

48

References
Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och,

and Jeffrey Dean. 2007. Large language models in
machine translation. In Proc. of EMNLP, pages 858–
867.

C. Chelba, J. Schalkwyk, T. Brants, V. Ha, B. Harb,
W. Neveitt, C. Parada, and P. Xu. 2010. Query lan-
guage modeling for voice search. In Proc. of SLT.

C.T. Chu, S.K. Kim, Y.A. Lin, Y.Y. Yu, G. Bradski, A.Y.
Ng, and K. Olukotun. 2007. Map-reduce for machine
learning on multicore. Proc. NIPS, 19:281.

M. Collins. 2002. Discriminative training methods for
hidden markov models: Theory and experiments with
perceptron algorithms. In Proc. EMNLP.

J. Gao, H. Yu, W. Yuan, and P. Xu. 2005. Minimum
sample risk methods for language modeling. In Proc.
of EMNLP.

S. Ghemawat and J. Dean. 2004. Mapreduce: Simplified
data processing on large clusters. In Proc. OSDI.

K.B. Hall, S. Gilpin, and G. Mann. 2010. MapRe-
duce/Bigtable for distributed optimization. In NIPS
LCCC Workshop.

P. Jyothi and E. Fosler-Lussier. 2010. Discriminative
language modeling using simulated ASR errors. In
Proc. of Interspeech.

P. Jyothi, L. Johnson, C. Chelba, and B. Strope.
2012. Distributed discriminative language models for
Google voice-search. In Proc. of ICASSP.

G. Mann, R. McDonald, M. Mohri, N. Silberman, and
D. Walker. 2009. Efficient large-scale distributed
training of conditional maximum entropy models.
Proc. NIPS.

R. McDonald, K. Hall, and G. Mann. 2010. Distributed
training strategies for the structured perceptron. In
Proc. NAACL.

B. Roark, M. Saraçlar, M. Collins, and M. Johnson.
2004. Discriminative language modeling with condi-
tional random fields and the perceptron algorithm. In
Proc. ACL.

R. Schlüter, B. Müller, F. Wessel, and H. Ney. 1999. In-
terdependence of language models and discriminative
training. In Proc. ASRU.

B. Strope, D. Beeferman, A. Gruenstein, and X. Lei.
2011. Unsupervised testing strategies for ASR. In
Proc. of Interspeech.

Z. Zhou, J. Gao, F.K. Soong, and H. Meng. 2006.
A comparative study of discriminative methods for
reranking LVCSR N-best hypotheses in domain adap-
tation and generalization. In Proc. ICASSP.

49

NAACL-HLT 2012 Workshop: Will We Ever Really Replace the N-gram Model? On the Future of Language Modeling for HLT, pages 50–58,
Montréal, Canada, June 8, 2012. c©2012 Association for Computational Linguistics

Revisiting the Case for Explicit Syntactic Information in Language Models

Ariya Rastrow, Sanjeev Khudanpur, Mark Dredze
Human Language Technology Center of Excellence,

Center for Language and Speech Processing, Johns Hopkins University
Baltimore, MD USA

{ariya,khudanpur,mdredze}@jhu.edu

Abstract

Statistical language models used in deployed
systems for speech recognition, machine
translation and other human language tech-
nologies are almost exclusively n-gram mod-
els. They are regarded as linguistically naı̈ve,
but estimating them from any amount of text,
large or small, is straightforward. Further-
more, they have doggedly matched or out-
performed numerous competing proposals for
syntactically well-motivated models. This un-
usual resilience of n-grams, as well as their
weaknesses, are examined here. It is demon-
strated that n-grams are good word-predictors,
even linguistically speaking, in a large major-
ity of word-positions, and it is suggested that
to improve over n-grams, one must explore
syntax-aware (or other) language models that
focus on positions where n-grams are weak.

1 Introduction

Language models (LM) are crucial components in
tasks that require the generation of coherent natu-
ral language text, such as automatic speech recog-
nition (ASR) and machine translation (MT). Most
language models rely on simple n-gram statistics
and a wide range of smoothing and backoff tech-
niques (Chen and Goodman, 1998). State-of-the-art
ASR systems use (n − 1)-gram equivalence classi-
fication for the language model (which result in an
n-gram language model).

While simple and efficient, it is widely believed
that limiting the context to only the (n − 1) most
recent words ignores the structure of language, and
several statistical frameworks have been proposed

to incorporate the “syntactic structure of language
back into language modeling.” Yet despite consider-
able effort on including longer-dependency features,
such as syntax (Chelba and Jelinek, 2000; Khudan-
pur and Wu, 2000; Collins et al., 2005; Emami
and Jelinek, 2005; Kuo et al., 2009; Filimonov and
Harper, 2009), n-gram language models remain the
dominant technique in automatic speech recognition
and machine translation (MT) systems.

While intuition suggests syntax is important, the
continued dominance of n-gram models could in-
dicate otherwise. While no one would dispute that
syntax informs word choice, perhaps sufficient in-
formation aggregated across a large corpus is avail-
able in the local context for n-gram models to per-
form well even without syntax. To clearly demon-
strate the utility of syntactic information and the de-
ficiency of n-gram models, we empirically show that
n-gram LMs lose significant predictive power in po-
sitions where the syntactic relation spans beyond the
n-gram context. This clearly shows a performance
gap in n-gram LMs that could be bridged by syntax.

As a candidate syntactic LM we consider the
Structured Language Model (SLM) (Chelba and Je-
linek, 2000), one of the first successful attempts to
build a statistical language model based on syntac-
tic information. The SLM assigns a joint probabil-
ity P (W,T) to every word sequence W and every
possible binary parse tree T , where T ’s terminals
are words W with part-of-speech (POS) tags, and
its internal nodes comprise non-terminal labels and
lexical “heads” of phrases. Other approaches in-
clude using the exposed headwords in a maximum-
entropy based LM (Khudanpur and Wu, 2000), us-

50

ing exposed headwords from full-sentence parse tree
in a neural network based LM (Kuo et al., 2009),
and the use of syntactic features in discriminative
training (Rastrow et al., 2011). We show that the
long-dependencies modeled by SLM, significantly
improves the predictive power of the LM, specially
in positions where the syntactic relation is beyond
the reach of regular n-gram models.

2 Weaknesses of n-gram LMs

Consider the following sentence, which demon-
strates why the (n− 1)-gram equivalence classifica-
tion of history in n-gram language models may be
insufficient:
<s> i asked the vice president for
his endorsement </s>
In an n-gram LM, the word for would be modeled
based on a 3-gram or 4-gram history, such as <vice
president> or <the vice president>.
Given the syntactic relation between the preposition
for and the verb asked (which together make a
compound verb), the strongest evidence in the his-
tory (and hence the best classification of the history)
for word for should be <asked president>,
which is beyond the 4-gram LM. Clearly, the
syntactic relation between a word position and the
corresponding words in the history spans beyond
the limited (n − 1)-gram equivalence classification
of the history.

This is but one of many examples used for moti-
vating syntactic features (Chelba and Jelinek, 2000;
Kuo et al., 2009) in language modeling. How-
ever, it is legitimate to ask if this deficiency could
be overcome through sufficient data, that is, accu-
rate statistics could somehow be gathered for the n-
grams even without including syntactic information.
We empirically show that (n− 1)-gram equivalence
classification of history is not adequate to predict
these cases. Specifically, n-gram LMs lose predic-
tive power in the positions where the headword rela-
tion, exposed by the syntactic structure, goes beyond
(n− 1) previous words (in the history.)

We postulate the following three hypotheses:

Hypothesis 1 There is a substantial difference in
the predictive power of n-gram LMs at positions
within a sentence where syntactic dependencies
reach further back than the n-gram context versus

positions where syntactic dependencies are local.

Hypothesis 2 This difference does not diminish by
increasing training data by an order of magnitude.

Hypothesis 3 LMs that specifically target positions
with syntactically distant dependencies will comple-
ment or improve over n-gram LMs for these posi-
tions.

In the following section (Section 3), we present a set
of experiments to support the hypotheses 1 and 2.
Section 4 introduces a SLM which uses dependency
structures followed by experiments in Section 5.

3 Experimental Evidence

In this section, we explain our experimental evi-
dence for supporting the hypotheses stated above.
First, Section 3.1 presents our experimental design
where we use a statistical constituent parser to iden-
tify two types of word positions in a test data,
namely positions where the headword syntactic re-
lation spans beyond recent words in the history and
positions where the headword syntactic relation is
within the n-gram window. The performance of
an n-gram LM is measured on both types of posi-
tions to show substantial difference in the predictive
power of the LM in those positions. Section 3.3 de-
scribes the results and analysis of our experiments
which supports our hypotheses.

Throughout the rest of the paper, we refer to
a position where the headword syntactic relation
reaches further back than the n-gram context as a
syntactically-distant position and other type of posi-
tions is referred to as a syntactically-local position.

3.1 Design

Our experimental design is based on the idea of
comparing the performance of n-gram LMs for
syntactically-distant vs. syntactically-local . To this
end, we first parse each sentence in the test set us-
ing a constituent parser, as illustrated by the exam-
ple in Figure 1. For each word wi in each sentence,
we then check if the “syntactic heads” of the preced-
ing constituents in the parse ofw1, w2, · · · , wi−1 are
within an (n− 1) window of wi. In this manner, we
split the test data into two disjoint sets, M and N ,

51

!"!#$%&'!!!!!()&!*"+&!,-&$"'&.(!!!!!!/0-!!!!!!!)"$!&.'0-$&1&.(!

232!

42!

5!

67!

62!

89! 442! 442!

42!

:4! 232;! 44!

442!

22!

#$%&'!

#$%&'!

/0-!

&.'0-$&1&.(!,-&$"'&.(!
"!

Figure 1: Example of a syntactically distant position in
a sentence: the exposed headwords preceding for are
h.w−2 =asked and h.w−1 = president, while the
two preceding words are wi−2 = vice and wi−1 =
president.

as follows,

M = {j|positions s.t h.w−1, h.w−2 = wj−1, wj−2}
N = {j|positions s.t h.w−1, h.w−2 6= wj−1, wj−2}

Here, h−1 and h−2 correspond, respectively, to the
two previous exposed headwords at position i, based
on the syntactic structure. Therefore, M corre-
sponds to the positions in the test data for which two
previous exposed heads match exactly the two previ-
ous words. Whereas, N corresponds to the position
where at least on of the exposed heads is further back
in the history than the two previous words, possibly
both.

To extract the exposed headwords at each posi-
tion, we use a constituent parser to obtain the syn-
tactic structure of a sentence followed by headword
percolation procedure to get the headwords of cor-
responding syntactic phrases in the parse tree. The
following method, described in (Kuo et al., 2009),
is then used to extract exposed headwords from the
history of position i from the full-sentence parse
trees:

1. Start at the leaf corresponding to the word posi-
tion (wi) and the leaf corresponding to the pre-
vious context word (wi−1).

2. From each leaf, go up the tree until the two
paths meet at the lowest common ancestor
(LCA).

3. Cut the link between the LCA and the child that
is along the path from the context word wi−1.

The head word of the the LCA child, the one
that is cut, is chosen as previous exposed head-
word h.w−1.

These steps may be illustrated using the parse tree
shown in Figure 1. Let us show the procedure for
our example from Section 2. Figure 1 shows the cor-
responding parse tree of our example. Considering
word position wi=for and wi−1=president and
applying the above procedure, the LCA is the node
VPasked. Now, by cutting the link from VPasked to
NPpresident the word president is obtained as
the first exposed headword (h.w−1).

After the first previous exposed headword has
been extracted, the second exposed headword also
can be obtained using the same procedure, with
the constraint that the node corresponding the sec-
ond headword is different from the first (Kuo et al.,
2009). More precisely,

1. set k = 2

2. Apply the above headword extraction method
between wi and wi−k.

3. if the extracted headword has previously been
chosen, set k = k + 1 and go to step (2).

4. Otherwise, return the headword as h.w−2.

Continuing with the example of Figure 1, after
president is chosen as h.w−1, asked is cho-
sen as h.w−2 of position for by applying the pro-
cedure above. Therefore, in this example the po-
sition corresponding to word for belongs to the
set N as the two extracted exposed headwords
(asked,president) are different from the two
previous context words (vice,president).

After identifying sets N andM in our test data,
we measure perplexity of n-gram LMs on N , M
and N ∪M separately. That is,

PPLN∪M = exp

[
−
∑

i∈N∪M log p(wi|W i−1
i−n+1)

|N ∪M|

]

PPLN = exp

[
−
∑
i∈N

log p(wi|W i−1
i−n+1)

|N |

]

PPLM = exp

[
−
∑
i∈M

log p(wi|W i−1
i−n+1)

|M|

]
,

52

where p(wi|wi−1wi−2 · · ·wi−n+1) is the condi-
tional probability calculated by an n-gram LM at
position i and |.| is the size (in number of words)
of the corresponding portion of the test.

In addition, to show the performance of n-gram
LMs as a function of training data size, we train
different n-gram LMs on 10%,20%,· · · ,100% of a
large corpus of text and report the PPL numbers us-
ing each trained LM with different training data size.
For all sizes less than 100%, we select 10 random
subset of the training corpus of the required size, and
report the average perplexity of 10 n-gram models.
This will enable us to observe the improvement of
the n-gram LMs on as we increase the training data
size. The idea is to test the hypothesis that not only
is there significant gap between predictive power of
the n-gram LMs on setsN andM, but also that this
difference does not diminish by adding more train-
ing data. In other words, we want to show that the
problem is not due to lack of robust estimation of
the model parameters but due to the fact that the in-
cluded features in the model (n-grams) are not in-
formative enough for the positions N .

3.2 Setup

The n-gram LMs are built on 400M words from
various Broadcast News (BN) data sources includ-
ing (Chen et al., 2006): 1996 CSR Hub4 Language
Model data, EARS BN03 closed captions, GALE
Phase 2 Distillation GNG Evaluation Supplemen-
tal Multilingual data, Hub4 acoustic model training
scripts (corresponding to the 300 Hrs), TDT4 closed
captions, TDT4 newswire, GALE Broadcast Con-
versations, and GALE Broadcast News. All the LMs
are trained using modified Kneser-Ney smoothing.
To build the LMs, we sample from each source and
build a source specific LM on the sampled data. The
final LMs are then built by interpolating those LMs.
Also, we do not apply any pruning to the trained
LMs, a step that is often necessary for speech recog-
nition but not so for perplexity measurement. The
test set consists of the NIST rt04 evaluation data set,
dev04f evaluation set, and rt03 evaluation set. The
test data includes about 70K words.

We use the parser of (Huang and Harper, 2009),
which achieves state-of-the-art performance on
broadcast news data, to identify the word poisons
that belong to N and M, as was described in Sec-

tion 3.1. The parser is trained on the Broadcast News
treebank from Ontonotes (Weischedel et al., 2008)
and the WSJ Penn Treebank (Marcus et al., 1993)
along with self-training on 1996 Hub4 CSR (Garo-
folo et al., 1996) utterances.

3.3 Analysis

We found that |N |
|N∪M| ≈ 0.25 in our test data. In

other words, two previous exposed headwords go
beyond 2-gram history for about 25% of the test
data.

!"#

$%#

$"#

&%#

&"#

'%%#

'%# (%#)%# *%# "%# +%# !%# $%# &%# '%%#
,-

./
01
-#
22

3#
45

6#
78/9:9:;#</=/#>9?-#456#

@AB# @# B#

(a)

!"#

$%#

$"#

&%#

&"#

'%#

'"#

(%%#

(%#)%# *%# +%# "%# !%# $%# &%# '%# (%%#

,-
./
01
-#
22

3#
45

6#

78/9:9:;#</=/#>9?-#456#

@AB# @# B#

(b)

Figure 2: Reduction in perplexity with increasing training
data size on the entire test setN +M, on its syntactically
local subset M, and the syntactically distant subset N .
The figure shows relative perplexity instead of absolute
perplexity — 100% being the perplexity for the smallest
training set size — so that (a) 3-gram and (b) 4-gram LMs
may be directly compared.

We train 3-gram and 4-gram LMs on
10%,20%,· · · ,100% of the BN training data,
where each 10% increase corresponds to about
40M words of training text data. Figure 2 shows
reduction in perplexity with increasing training data
size on the entire test setN+M, on its syntactically
local subsetM, and the syntactically distant subset
N . The figure basically shows relative perplexity
instead of absolute perplexity — 100% being the

53

Position Training Data Size
in 40M words 400M words

Test Set 3-gram 4-gram 3-gram 4-gram
M 166 153 126 107
N 228 217 191 171

N +M 183 170 143 123
PPLN
PPLM

138% 142% 151% 161%

Table 1: Perplexity of 3-gram and 4-gram LMs on syntac-
tically local (M) and syntactically distant (N) positions
in the test set for different training data sizes, showing the
sustained higher perplexity in distant v/s local positions.

perplexity for the smallest training set size — so the
rate of improvement for 3-grams and 4-gram LMs
can be compared. As can be seen from Figure 2,
there is a substantial gap between the improvement
rate of perplexity in syntactically distant positions
compared to that in syntactically local positions
(with 400M woods of training data, this gap is about
10% for both 3-gram and 4-gram LMs). In other
words, increasing the training data size has much
more effect on improving the predictive power of
the model for the positions included inM. Also, by
comparing Figure 2(a) to 2(b) one can observe that
the gap is not overcome by increasing the context
length (using 4-gram features).

Also, to better illustrate the performance of the n-
gram LMs for different portions of our test data, we
report the absolute values of PPL results in Table 1.
It can be seen that there exits a significant difference
between perplexity of sets N and M and that the
difference gets larger as we increase the training data
size.

4 Dependency Language Models

To overcome the lack of predictive power of n-gram
LMs in syntactically-distant positions, we use the
SLM framework to build a long-span LM. Our hope
is to show not only that long range syntactic depen-
dencies improve over n-gram features, but also that
the improvement is largely due to better predictive
power in the syntactically distant positions N .

Syntactic information may be encoded in terms
of headwords and headtags of phrases, which may
be extracted from a syntactic analysis of a sen-
tence (Chelba and Jelinek, 2000; Kuo et al., 2009),

such as a dependency structure. A dependency in
a sentence holds between a dependent (or modifier)
word and a head (or governor) word: the dependent
depends on the head. These relations are encoded in
a dependency tree (Figure 3), a directed graph where
each edge (arc) encodes a head-dependent relation.

The specific parser used to obtain the syntactic
structure is not important to our investigation. What
is crucial, however, is that the parser proceeds left-
to-right, and only hypothesized structures based on
w1, . . . , wi−1 are used by the SLM to predict wi.

Similarly, the specific features used by the parser
are also not important: more noteworthy is that the
SLM uses (h.w−3, h.w−2, h.w−1) and their POS
tags to predict wi. The question is whether this
yields lower perplexity than predicting wi from
(wi−3, wi−2, wi−1).

For the sake of completeness, we next describe
the parser and SLM in some detail, but either may
be skipped without loss of continuity.

The Parser: We use the shift-reduce incremen-
tal dependency parser of (Sagae and Tsujii, 2007),
which constructs a tree from a transition sequence
governed by a maximum-entropy classifier. Shift-
reduce parsing places input words into a queue Q
and partially built structures are organized by a stack
S. Shift and reduce actions consume the queue and
build the output parse on the stack. The classi-
fier g assigns probabilities to each action, and the
probability of a state pg(π) can be computed as the
product of the probabilities of a sequence of ac-
tions that resulted in the state. The parser therefore
provides (multiple) syntactic analyses of the history
w1, . . . , wi−1 at each word position wi.

The Dependency Language Model: Parser states
at position wi, called history-states, are denoted
Π−i = {π0

−i, π
1
−i · · · , π

Ki
−i }, where Ki is the total

number of such states. Given Π−i, the probability
assignment for wi is given by

p(wi|W−i) =

|Π−i|∑
j=1

p
(
wi|f(πj−i)

)
pg(π

j
−i|W−i) (1)

where, W−i is the word history w1, . . . , wi−1 for
wi, πj−i is the jth history-state of position i,
pg(π

j
−i|W−i) is the probability assigned to πj−i by

54

step action stack queue
i asked the vice president ...-0

asked the vice president ...shift1 i
the vice president for ...shift2 i asked
the vice president for ...left-reduce3 asked

i

for his endorsement ...shift6 asked the vice president

i

for his endorsement ...left-reduce7 asked the president

i vice

<s> i asked the vice president for his endorsement

Thursday, March 29, 12

for his endorsement ...left-reduce8 asked president

i vicethe

for his endorsement ...right-reduce9 asked

i

vicethe

president

Thursday, March 29, 12

step action stack queue
i asked the vice president ...-0

asked the vice president ...shift1 i
the vice president for ...shift2 i asked
the vice president for ...left-reduce3 asked

i

for his endorsement ...shift6 asked the vice president

i

for his endorsement ...left-reduce7 asked the president

i vice

<s> i asked the vice president for his endorsement

Thursday, March 29, 12

Tuesday, April 3, 12

Figure 3: Actions of a shift-reduce parser to produce
the dependency structure (up to the word president)
shown above.

the parser, and f(πj−i) denotes an equivalence clas-
sification of the parser history-state, capturing fea-
tures from πj−i that are useful for predicting wi.

We restrict f(π) to be based on only the heads of
the partial trees {s0 s1 · · · } in the stack. For exam-
ple, in Figure 3, one possible parser state for pre-
dicting the word for is the entire stack shown after
step 8, but we restrict f(·) to depend only on the
headwords asked/VB and president/NNP.

Given a choice of f(·), the parameters of the
model p(wi|f(πj−i)) are estimated to maximize the
log-likelihood of the training data T using the
Baum-Welch algorithm (Baum, 1972), and the re-
sulting estimate is denoted pML(wi|f(πj−i)).

The estimate pML(w|f(·)) must be smoothed to
handle unseen events, which we do using the method
of Jelinek and Mercer (1980). We use a fine-to-
coarse hierarchy of features of the history-state as
illustrated in Figure 4. With

fM (π−i) → fM−1(π−i) → . . . → f1(π−i)

denoting the set of M increasingly coarser equiv-
alence classifications of the history-state π−i,
we linearly interpolate the higher order esti-
mates pML

(
w|fm(π−i)

)
with lower order estimates

pML

(
w|fm−1(π−i)

)
as

pJM(wi|fm(π−i))

= λfmpML(wi|fm(π−i))

+(1− λfm)pJM(wi|fm−1(π−i)),

for 1 ≤ m ≤ M , where the 0-th order model
pJM(wi|f0(π−i)) is a uniform distribution.

HW+HT :

(h.w0h.t0, h.w�1h.t�1, h.w�2h.t�2)

(h.w0h.t0)

()

(h.w0, h.t0, h.w�1, h.t�1, h.t�2)

(h.w0, h.t0, h.t�1)

(h.t0)

Saturday, April 14, 12

Figure 4: The hierarchal scheme of fine-to-coarse con-
texts used for Jelinek-Mercer smoothing in the SLM.

The coefficients λfm(π−i)
are estimated on a held-

out set using the bucketing algorithm suggested by
Bahl (1983), which ties λfm(π−i)

’s based on the
count of fm(π−i)’s in the training data. We use the
expected count of the features from the last iteration
of EM training, since the π−i are latent states.

We perform the bucketing algorithm for each level
f1, f2, · · · , fM of equivalence classification sepa-
rately, and estimate the bucketed λc(fm) using the
Baum-Welch algorithm (Baum, 1972) to maximize
the likelihood of held out data, where the word prob-
ability assignment in Eq. 1 is replaced with:

p(wi|W−i) =

|Πi|∑
j=1

pJM

(
wi|fM (πj−i)

)
pg(π

j
−i|W−i).

The hierarchy shown in Figure 4 is used1 for obtain-
ing a smooth estimate pJM(·|·) at each level.

5 SLM Experiments

We train a dependency SLM for two different tasks,
namely Broadcast News (BN) and Wall Street Jour-
nal (WSJ). Unlike Section 3.2, where we swept
through multiple training sets of multiple sizes,

1The original SLM hierarchical interpolation scheme is ag-
gressive in that it drops both the tag and headword from the
history. However, in many cases the headword’s tag alone is
sufficient, suggesting a more gradual interpolation. Keeping the
headtag adds more specific information and at the same time
is less sparse. A similar idea is found, e.g., in the back-off hi-
erarchical class n-gram language model (Zitouni, 2007) where
instead of backing off from the n-gram right to the (n − 1)-
gram a more gradual backoff — by considering a hierarchy of
fine-to-coarse classes for the last word in the history— is used.

55

training the SLM is computationally intensive. Yet,
useful insights may be gained from the 40M word
case. So we choose the source of text most suitable
for each task, and proceed as follows.

5.1 Setup

The following summarizes the setup for each
task:

• BN setup : EARS BN03 corpus, which has
about 42M words serves as our training text.
We also use rt04 (45K words) as our evaluation
data. Finally, to interpolate our structured lan-
guage models with the baseline 4-gram model,
we use rt03+dev04f (about 40K words) data sets
to serve as our development set. The vocabulary
we use in BN experiments has about 84K words.

• WSJ setup : The training text consists of about
37M words. We use eval92+eval93 (10K
words) as our evaluation set and dev93 (9K
words) serves as our development set for inter-
polating SLMs with the baseline 4-gram model.

In both cases, we sample about 20K sentences from
the training text (we exclude them from training
data) to serve as our heldout data for applying the
bucketing algorithm and estimating λ’s. To apply
the dependency parser, all the data sets are first
converted to Treebank-style tokenization and POS-
tagged using the tagger of (Tsuruoka et al., 2011)2.
Both the POS-tagger and the shift-reduce depen-
dency parser are trained on the Broadcast News tree-
bank from Ontonotes (Weischedel et al., 2008) and
the WSJ Penn Treebank (after converting them to
dependency trees) which consists of about 1.2M to-
kens. Finally, we train a modified kneser-ney 4-gram
LM on the tokenized training text to serve as our
baseline LM, for both experiments.

5.2 Results and Analysis

Table 2 shows the perplexity results for BN and WSJ
experiments, respectively. It is evident that the 4-
gram baseline for BN is stronger than the 40M case
of Table 1. Yet, the interpolated SLM significantly
improves over the 4-gram LM, as it does for WSJ.

2To make sure we have a proper LM, the POS-tagger and
dependency parser only use features from history to tag a word
position and produce the dependency structure. All lookahead
features used in (Tsuruoka et al., 2011) and (Sagae and Tsujii,

Language Model Dev Eval
BN

Kneser-Ney 4-gram 165 158
SLM 168 159

KN+SLM Interpolation 147 142
WSJ

Kneser-Ney 4-gram 144 121
SLM 149 125

KN+SLM Interpolation 132 110

Table 2: Test set perplexities for different LMs on the BN
and WSJ tasks.

Also, to show that, in fact, the syntactic depen-
dencies modeled through the SLM parameterization
is enhancing predictive power of the LM in the prob-
lematic regions, i.e. syntactically-distant positions,
we calculate the following (log) probability ratio for
each position in the test data,

log
pKN+SLM(wi|W−i)
pKN(wi|W−i)

, (2)

where pKN+SLM is the word probability assign-
ment of the interpolated SLM at each position, and
pKN(wi) is the probability assigned by the baseline
4-gram model. The quantity above measures the im-
provement (or degradation) gained as a result of us-
ing the SLM parameterization3.

Figures 5(a) and 5(b) illustrate the histogram of
the above probability ratio for all the word positions
in evaluation data of BN and WSJ tasks, respectively.
In these figures the histograms for syntactically-
distant and syntactically-local are shown separately
to measure the effect of the SLM for either of the
position types. It can be observed in the figures
that for both tasks the percentage of positions with
log

pKN+SLM(wi|W−i)
pKN(wi|W−i)

around zero is much higher for
syntactically-local (blue bars) than the syntactically-
distant (red bars). To confirm this, we calculate
the average log

pKN+SLM(wi|W−i)
pKN(wi|W−i)

—this is the aver-
age log-likelihood improvement, which is directly

2007) are excluded.
3If log

pKN+SLM(wi|W−i)

pKN(wi|W−i)
is greater than zero, then the SLM

has a better predictive power for word position wi. This is a
meaningful comparison due to the fact that the probability as-
signment using both SLM and n-gram is a proper probability
(which sums to one over all words at each position).

56

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

14

16

Probability Ratio (Log)

P
e

rc
e

n
ta

g
e

 P
o

s
it
io

n
s
 (

%
)

Syntactically−local positions (mean=0.1372)
Syntactically−distant postions (mean=0.2351)

(a) BN

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

14

16

18

20

22

Probability Ratio (Log)

P
e

rc
e

n
ta

g
e

 P
o

s
it
io

n
s
 (

%
)

Syntactically−local positions (mean=0.0984)
Syntactically−distant postions (mean=0.2124)

(b) WSJ

Figure 5: Probability ratio histogram of SLM to 4-gram
model for (a) BN task (b) WSJ task.

related to perplexity improvement— for each posi-
tion type in the figures.

Table 3, reports the perplexity performance of
each LM (baseline 4-gram, SLM and interpolated
SLM) on different positions of the evaluation data
for BN and WSJ tasks. As it can be observed from
this table, the use of long-span dependencies in the
SLM partially fills the gap between the performance
of the baseline 4-gram LM on syntactically-distant
positionsN versus syntactically-local positionsM.
In addition, it can be seen that the SLM by itself
fills the gap substantially, however, due to its under-
lying parameterization which is based on Jelinek-
Mercer smoothing it has a worse performance on
regular syntactically-local positions (which account
for the majority of the positions) compared to the
Kneser-Ney smoothed LM4. Therefore, to improve
the overall performance, the interpolated SLM takes
advantage of both the better modeling performance
of Kneser-Ney for syntactically-local positions and

4This is merely due to the superior modeling power and
better smoothing of the Kneser-Ney LM (Chen and Goodman,
1998).

Test Set 4-gram SLM 4-gram + SLM
Position BN
M 146 152 132
N 201 182 171

N +M 158 159 142
PPLN
PPLM

138% 120% 129%

WSJ
M 114 120 105
N 152 141 131

N +M 121 125 110
PPLN
PPLM

133% 117% 125%

Table 3: Perplexity on the BN and WSJ evaluation sets for
the 4-gram LM, SLM and their interpolation. The SLM
has lower perplexity than the 4-gram in syntactically dis-
tant positions N , and has a smaller discrepancy PPLN

PPLM
between preplexity on the distant and local predictions,
complementing the 4-gram model.

the better features included in the SLM for improv-
ing predictive power on syntactically-distant posi-
tions.

6 Conclusion

The results of Table 1 and Figure 2 suggest that
predicting the next word is about 50% more diffi-
cult when its syntactic dependence on the history
reaches beyond n-gram range. They also suggest
that this difficulty does not diminish with increas-
ing training data size. If anything, the relative diffi-
culty of word positions with nonlocal dependencies
relative to those with local dependencies appears to
increase with increasing training data and n-gram
order. Finally, it appears that language models that
exploit long-distance syntactic dependencies explic-
itly at positions where the n-gram is least effective
are beneficial as complementary models.

Tables 2 and 3 demonstrates that a particular,
recently-proposed SLM with such properties im-
proves a 4-gram LM trained on a large corpus.

Acknowledgments

Thanks to Kenji Sagae for sharing his shift-reduce
dependency parser and the anonymous reviewers for
helpful comments.

57

References
LR Bahl. 1983. A maximum likelihood approach to

continuous speech recognition. IEEE Transactions
on Pattern Analysis and Machine Inteligence (PAMI),
5(2):179–190.

L. E. Baum. 1972. An equality and associated maxi-
mization technique in statistical estimation for proba-
bilistic functions of Markov processes. Inequalities,
3:1–8.

C. Chelba and F. Jelinek. 2000. Structured lan-
guage modeling. Computer Speech and Language,
14(4):283–332.

SF Chen and J Goodman. 1998. An empirical study of
smoothing techniques for language modeling. Techni-
cal report, Computer Science Group, Harvard Univer-
sity.

S. Chen, B. Kingsbury, L. Mangu, D. Povey, G. Saon,
H. Soltau, and G. Zweig. 2006. Advances in speech
transcription at IBM under the DARPA EARS pro-
gram. IEEE Transactions on Audio, Speech and Lan-
guage Processing, pages 1596–1608.

M Collins, B Roark, and M Saraclar. 2005. Discrimina-
tive syntactic language modeling for speech recogni-
tion. In ACL.

Ahmad Emami and Frederick Jelinek. 2005. A Neu-
ral Syntactic Language Model. Machine learning,
60:195–227.

Denis Filimonov and Mary Harper. 2009. A joint
language model with fine-grain syntactic tags. In
EMNLP.

John Garofolo, Jonathan Fiscus, William Fisher, and
David Pallett, 1996. CSR-IV HUB4. Linguistic Data
Consortium, Philadelphia.

Zhongqiang Huang and Mary Harper. 2009. Self-
Training PCFG grammars with latent annotations
across languages. In EMNLP.

Frederick Jelinek and Robert L. Mercer. 1980. Inter-
polated estimation of Markov source parameters from
sparse data. In Proceedings of the Workshop on Pat-
tern Recognition in Practice, pages 381–397.

S. Khudanpur and J. Wu. 2000. Maximum entropy tech-
niques for exploiting syntactic, semantic and colloca-
tional dependencies in language modeling. Computer
Speech and Language, pages 355–372.

H. K. J. Kuo, L. Mangu, A. Emami, I. Zitouni, and
L. Young-Suk. 2009. Syntactic features for Arabic
speech recognition. In Proc. ASRU.

M.P. Marcus, M.A. Marcinkiewicz, and B. Santorini.
1993. Building a large annotated corpus of En-
glish: The Penn Treebank. Computational Linguistics,
19(2):330.

Ariya Rastrow, Mark Dredze, and Sanjeev Khudanpur.
2011. Efficient discrimnative training of long-span

language models. In IEEE Workshop on Automatic
Speech Recognition and Understanding (ASRU).

K. Sagae and J. Tsujii. 2007. Dependency parsing
and domain adaptation with LR models and parser en-
sembles. In Proc. EMNLP-CoNLL, volume 7, pages
1044–1050.

Yoshimasa Tsuruoka, Yusuke Miyao, and Jun’ichi
Kazama. 2011. Learning with Lookahead :
Can History-Based Models Rival Globally Optimized
Models ? In Proc. CoNLL, number June, pages 238–
246.

Ralph Weischedel, Sameer Pradhan, Lance Ramshaw,
Martha Palmer, Nianwen Xue, Mitchell Marcus, Ann
Taylor, Craig Greenberg, Eduard Hovy, Robert Belvin,
and Ann Houston, 2008. OntoNotes Release 2.0. Lin-
guistic Data Consortium, Philadelphia.

Imed Zitouni. 2007. Backoff hierarchical class n-
gram language models: effectiveness to model unseen
events in speech recognition. Computer Speech &
Language, 21(1):88–104.

58

Author Index

Allauzen, Alexandre, 1
Arisoy, Ebru, 20
Attik, Mohammed, 11

Burges, Chris J.C., 29

Chelba, Ciprian, 41

Dredze, Mark, 50

Johnson, Leif, 41
Jyothi, Preethi, 41

Khudanpur, Sanjeev, 50
Kingsbury, Brian, 20
Kurimo, Mikko, 37

Le, Hai-Son, 1

Mansikkaniemi, André, 37

Ramabhadran, Bhuvana, 20
Rastrow, Ariya, 50
Rousseau, Anthony, 11

Sainath, Tara N., 20
Schwenk, Holger, 11
Strope, Brian, 41

Yvon, François, 1

Zweig, Geoffrey, 29

59

	Program
	Measuring the Influence of Long Range Dependencies with Neural Network Language Models
	Large, Pruned or Continuous Space Language Models on a GPU for Statistical Machine Translation
	Deep Neural Network Language Models
	A Challenge Set for Advancing Language Modeling
	Unsupervised Vocabulary Adaptation for Morph-based Language Models
	Large-scale discriminative language model reranking for voice-search
	Revisiting the Case for Explicit Syntactic Information in Language Models

