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Abstract

This paper describes the submission of the Na-
tional University of Singapore (NUS) to the
HOO 2012 shared task. Our system uses a
pipeline of confidence-weighted linear classi-
fiers to correct determiner and preposition er-
rors. Our system achieves the highest correc-
tion F1 score on the official test set among all
14 participating teams, based on gold-standard
edits both before and after revision.

1 Introduction

Grammatical error correction is the task of automati-
cally detecting and correcting erroneous word usage
and ill-formed grammatical constructions in text.
Determiner and preposition errors are the two most
prominent types of errors made by non-native speak-
ers of English. Although there has been much work
on automatic correction of determiner and preposi-
tion errors over the last few years, it has so far been
impossible to directly compare results because dif-
ferent teams have evaluated on different data sets.

The HOO 2012 shared task evaluates grammatical
error correction systems for determiner and prepo-
sition errors. Participants are provided with a set
of documents written by non-native speakers of En-
glish. The task is to automatically detect and cor-
rect determiner and preposition errors and produce a
set of corrections (called edits). Evaluation is done
by computing precision, recall, and F1 score be-
tween the system edits and a manually created set
of gold-standard edits. The details of the HOO 2012
shared task are described in the official overview pa-
per (Dale et al., 2012).

In this paper, we describe the system submission
from the National University of Singapore (NUS).
Our system treats determiner and preposition correc-
tion as classification problems. We use confidence-
weighted linear classifiers to predict the correct
word from a confusion set of possible correction op-
tions. Separate classifiers are built for determiner
errors, preposition replacement errors, and preposi-
tion insertion and deletion errors. The classifiers are
combined into a pipeline of correction steps to form
an end-to-end error correction system. Our system
achieves the highest correction F1 score on the offi-
cial test set among all 14 participating teams, based
on gold-standard edits both before and after revision.

The remainder of this paper is organized as fol-
lows. The next section presents our error correction
system. Section 3 describes the features. Section 4
presents experimental results. Section 5 contains
further discussion. Section 6 concludes the paper.

2 System Architecture

Our system consists of a pipeline of sequential steps
where the output of one step serves as the input to
the next step. The steps in sequence are:

1. Pre-processing

2. Determiner correction (Det)

3. Replacement preposition correction (RT)

4. Missing and unwanted preposition correction
(MT, UT)

The final output after the last step forms our submis-
sion to the shared task. Each correction step (i.e.,
steps 2, 3, 4) involves three internal steps:

1. Feature extraction

216



2. Classification
3. Language model filter

Feature extraction first analyzes the syntactic struc-
ture of the input sentences (part-of-speech (POS)
tagging, chunking, and parsing) and identifies
relevant instances for correction (e.g., all noun
phrases (NP) for determiner correction). Each in-
stance is mapped to a real-valued feature vector.
Next, a classifier predicts the most likely correction
for each feature vector. Finally, the proposed correc-
tions are filtered using a language model and only
corrections that strictly increase the language model
score are kept.

2.1 Confidence-Weighted Learning
As the learning algorithm for all classifiers, we
choose confidence-weighted (CW) learning (Dredze
et al., 2008; Crammer et al., 2009), which has been
shown to perform well for natural language pro-
cessing (NLP) problems with high dimensional and
sparse feature spaces. Instead of keeping a single
weight vector, CW learning maintains a distribu-
tion over weight vectors, parametrized by a multi-
variate normal distribution N (µ,Σ) with mean µ
and covariance matrix Σ. In practice, Σ is of-
ten approximated by a diagonal matrix (Dredze et
al., 2008). CW is an online learning algorithm
that proceeds in rounds over a labeled training set
((y1,x1), (y2,x2), . . . , (yn,xn)), one example at a
time. After the i-th round, CW learning updates the
distribution over weight vectors such that the i-th ex-
ample is predicted correctly with probability at least
0 < η < 1 while choosing the update step that min-
imizes the Kullback-Leibler (KL) distance from the
current distribution. The CW update rule is:

(µi+1,Σi+1) = (1)

arg min
µ,Σ

DKL (N (µ,Σ)||N (µi,Σi))

s.t. Pr[yi|xi,µ,Σ] ≥ η.

Dredze et al. (2008) show that in the binary case, the
CW update rule has a closed-form solution. In the
multi-class case, there exists no closed-form solu-
tion but the solution can be efficiently approximated.

2.2 Pre-processing
Pre-processing involves sentence splitting, tokeniza-
tion, re-casing, and spelling correction. We noticed

that the HOO 2012 training data contained a large
number of spelling mistakes and that some docu-
ments are written in all upper case. Both have a neg-
ative effect on tagging and classification accuracy.
We automatically identify and re-case upper-case
documents using a standard re-casing model from
statistical machine translation (SMT). Re-casing is
modeled as monotone decoding (without reorder-
ing) involving translation of an un-cased sentence
to a mixed-case sentence. Next, we automatically
correct spelling mistakes using an open-source spell
checker. Words are excluded from spelling correc-
tion if they are shorter than a threshold (set to 4 char-
acters in our work), or if they include hyphens or up-
per case characters inside the word. We apply a lan-
guage model filter (described in the next subsection)
to filter the proposed spelling corrections. Note that
spelling correction is only performed to improve the
accuracy of subsequent correction steps. Spelling
corrections themselves are not part of the edits sub-
mitted for evaluation.

2.3 Determiner Correction

Determiner errors include three error types: replace-
ment determiner (RD), missing determiner (MD),
and unwanted determiner (UD). Although determin-
ers are not limited to articles (a, an, the, empty arti-
cle ε), article errors account for the majority of de-
terminer errors. We therefore focus our efforts on
errors involving only articles.

2.3.1 Correction as Classification
We treat determiner error correction as a multi-

class classification problem. A classifier is trained
to predict the correct article from a confusion set of
possible article choices {a, the, ε}, given the sen-
tence context. The article an is normalized as a and
restored later using a rule-based heuristic. During
training, every NP in the training data generates one
training example. The class y ∈{a, the, ε} is the
correct article as annotated by the gold standard or
the observed article used by the writer if the arti-
cle is not annotated (i.e., the article is correct). The
surrounding context is represented as a real-valued
feature vector x ∈ X . The features of our classifiers
are described in Section 3.

One challenge in training classifiers for grammat-
ical error correction is that the data is highly skewed.
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Training examples without any error (i.e., the ob-
served article equals the correct article) greatly out-
number those examples with an error (i.e., the ob-
served article is different from the correct article).
As the observed article is highly correlated with the
correct article, the observed article is a valuable fea-
ture (Rozovskaya and Roth, 2010; Dahlmeier and
Ng, 2011). However, the high correlation can have
the undesirable effect that the classifier always pre-
dicts the observed article and never proposes any
corrections. To mitigate this problem, we re-sample
the training data, either by oversampling examples
with an error or undersampling examples without an
error. The sampling parameter is chosen through a
grid search so as to maximize the F1 score on the de-
velopment data. After training, the classifier can be
used to predict the correct article for NPs from new
unseen sentences.

During testing, every NP in the test data generates
one test example. If the article predicted by the clas-
sifier differs from the observed article and the differ-
ence between the classifier’s confidence score for its
first choice and the classifier’s confidence score for
the observed article is higher than some threshold
parameter t, the observed article is replaced by the
proposed correction. The threshold parameter t is
tuned through a grid search so as to maximize the F1

score on the development data. We found that using
a separate threshold parameter value for each class
worked better than using a single threshold value.

2.3.2 Language Model Filter
All corrections are filtered using a large language

model. Only corrections that strictly increase the
normalized language model score of a sentence are
kept. The normalized language model score is de-
fined as

scorelm =
1
|s|

logPr(s), (2)

where s is the corrected sentence and |s| is the sen-
tence length in tokens. The final set of article correc-
tions is applied to an input sentence (i.e., replacing
the observed article with the predicted article).

2.4 Replacement Preposition Correction

Replacement preposition correction follows the
same strategy as determiner correction, but with a
different confusion set and different features. The

confusion set consists of 36 frequent prepositions
which we adopt from our previous work (Dahlmeier
and Ng, 2011).1 These prepositions account for
the majority of preposition replacement errors in the
HOO 2012 training data. During training, every
prepositional phrase (PP) in the training data which
is headed by a preposition from the confusion set
generates one training example. The class y is the
correct preposition. During testing, every PP in the
test data which is headed by a preposition from the
confusion set generates one test example.

2.5 Missing Preposition Correction

Our system corrects missing and unwanted prepo-
sition errors for the seven most frequently missed
or wrongly inserted prepositions in the HOO 2012
training data. These preposition are about, at, for,
in, of, on, and to. While developing our system, we
found that adding more prepositions did not increase
performance in our experiments.

We treat missing preposition (MT) correction as a
binary classification problem.2 For each preposition
p, we train a binary classifier that predicts the pres-
ence or absence of that preposition. Thus, the con-
fusion set consists only of the preposition p and the
“empty preposition”. During training, we require
examples of contexts where p should be used and
where it should be omitted. As prepositions typi-
cally appear before NPs, we take every NP in the
training data as one training example. If the prepo-
sition p appears right in front of the NP (i.e., the
preposition p and the NP form a PP), the example
is a positive example, otherwise (i.e., another prepo-
sition or no preposition appears before the NP) it
is a negative example. During testing, every NP
which does not directly follow a preposition gener-
ates one test example. If the classifier predicts that
the preposition p should have been used in this con-
text with sufficiently high confidence and inserting
p increases the normalized language model score, p
is inserted before the NP.

1about, along, among, around, as, at, beside, besides, be-
tween, by, down, during, except, for, from, in, inside, into, of,
off, on, onto, outside, over, through, to, toward, towards, under,
underneath, until, up, upon, with, within, without

2Alternatively, missing preposition error correction could be
treated as a multi-class problem, but we found that binary clas-
sifiers gave better performance in initial experiments.

218



2.6 Unwanted Preposition Correction

Unwanted preposition correction is treated as a bi-
nary classification problem similar to missing prepo-
sition correction but with different training and test
examples. When training the classifier for preposi-
tion p, every PP where the writer used the preposi-
tion p is one training example. If the gold-standard
annotation labels p as unwanted, the example is a
positive example for deleting p, otherwise it is a
negative example. During testing, every PP with
the preposition p generates one test example. If the
classifier predicts that p should be deleted with suffi-
ciently high confidence and deleting p increases the
normalized language model score, p is deleted.

We found that separate classifiers for missing and
unwanted preposition correction gave slightly bet-
ter results compared to using a single classifier for
both tasks. As the test examples for missing and
unwanted preposition correction of a preposition p
are disjoint, both steps can be performed in paral-
lel. This also prevents the case of the system “con-
tradicting” itself by first inserting a preposition and
later deleting it. We perform missing preposition
correction and unwanted preposition correction for
each preposition in turn, before moving to the next
preposition.

3 Features

In this section, we describe the features used in our
system. The choice of features can have an impor-
tant effect on classification performance. The exact
features used for determiner, replacement preposi-
tion, and missing and unwanted preposition correc-
tion are listed in Tables 1, 2, 3, and 4, respectively.
The features were chosen empirically through exper-
iments on the development data.

The most commonly used features for grammat-
ical error correction are lexical and POS N-grams,
and chunk features. We adopt the features from
previous work by Han et al. (2006), Tetreault and
Chodorow (2008), and Rozovskaya et al. (2011) for
our system. Tetreault et al. (2010) show that parse
features can further increase performance, and we
use the dependency parse features based on their
work. For all the above features, the observed ar-
ticle or preposition used by the writer is “blanked
out” when computing the features. However, we add

the observed article or preposition as an additional
feature for determiner and replacement preposition
correction.

The features described so far are all binary-
valued, i.e., they indicate whether some feature is
present in the input or not. Additionally, we can
construct real-valued features by counting the log
frequency of surface N-grams on the web or in a
web-scale corpus (Bergsma et al., 2009). Web-scale
N-gram count features can harness the power of the
web in connection with supervised classification and
have successfully been used for a number of NLP
generation and disambiguation problems (Bergsma
et al., 2009; Bergsma et al., 2010), although we
are not aware of any previous application in gram-
matical error correction. Web-scale N-gram count
features usually use N-grams of consecutive tokens.
The release of web-scale parsed corpora like the
WaCky project (Baroni et al., 2009) makes it pos-
sible to extend the idea to dependency N-grams of
child-parent tuples over the dependency arcs in the
dependency parse tree, e.g., {(child, node), (node,
parent)} for bigrams, {(child’s child, child, node),
(child, node, parent), (node, parent, parent’s par-
ent)} for trigrams. We collect log frequency counts
for dependency N-grams from a large dependency-
parsed web corpus and use the log frequency count
as a feature. We normalize all real-valued feature
values to a unit interval [0, 1] to avoid features with
larger values dominating features with smaller val-
ues.

4 Experiments

In this section, we report experimental results of our
system on two different data sets: a held-out test
split of the HOO 2012 training data, and the official
HOO 2012 test set.

4.1 Data Sets

The HOO 2012 training data consists of 1,000 doc-
uments together with gold-standard annotation. The
documents are a subset of the 1,244 documents
in the Cambridge Learner Corpus FCE (First Cer-
tificate in English) data set (Yannakoudakis et al.,
2011). The HOO 2012 gold-standard annotation
only contains edits for six determiner and prepo-
sition error types and discards all other gold edits
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Feature Example
Lexical features
Observed article† the
First word in NP† black
Word i before (i = 1, 2, 3)† {on, sat, ..}
Word i before NP (i = 1, 2) {on, sat, ..}
Word + POS i before (i = 1, 2, 3)† {on+IN, sat+VBD, ..}
Word i after (i = 1, 2, 3)† {black, door, ..}
Word after NP period
Word + POS i after (N = 1, 2)† {period+period, .. }
Bag of words in NP† {black, door, mat}
N-grams (N = 2, .., 5)‡ {on X, X black, .. }
Word before + NP† on+black door mat
NP + N-gram after NP { black door mat+period, ..}

(N = 1, 2, 3)†
Noun compound (NC)† door mat
Adj + NC† black+door mat
Adj POS + NC† JJ+door mat
NP POS + NC† JJ NN NN+door mat
POS features
First POS in NP JJ
POS i before (i = 1, 2, 3) {IN, VBD, ..}
POS i before NP (i = 1, 2) {IN, VBD, ..}
POS i after (i = 1, 2, 3) {JJ, NN, ..}
POS after NP period
Bag of POS in NP {JJ, NN, NN}
POS N-grams (N = 2, .., 4) {IN X, X JJ, .. }
Head word features
Head of NP† mat
Head POS NN
Head word + POS† mat+NN
Head number singular
Head countable yes
NP POS + head† JJ NN NN+mat
Word before + head† on+mat
Head + N-gram after NP † mat+period, ..

(N = 1, 2, 3)
Adjective + head† black+mat
Adjective POS + head† JJ+mat
Word before + adj + head† on+black+mat
Word before + adj POS + head† on+JJ+mat
Word before + NP POS + head† on+JJ NN NN+mat
Web N-gram count features
Web N-gram log counts {log freq(on a black),
N = 3, .., 5 log freq(on the black),

log freq(on black),..}
Dependency features
Dep NP head-child† {mat-black-amod, ..}
Dep NP head-parent† mat-on-pobj
Dep child-NP head-parent† {black-mat-on-amod-pobj, ..}
Preposition features
Prep before + head on+mat
Prep before + NC on+door mat
Prep before + NP on+black door mat
Prep before + adj + head on+black+mat
Prep before + adj POS + head on+JJ+mat
Prep before + adj + NC on+black+door mat
Prep before + adj POS + NC on+JJ+door mat
Prep before + NP POS + head on+JJ NN NN+mat
Prep before + NP POS + NC on+JJ NN NN+door mat

Table 1: Features for determiner correction. Exam-
ple: “The cat sat on the black door mat.” † : lexical
tokens in lower case, ‡: lexical tokens in both origi-
nal and lower case

Feature Example
Verb object features
Verb obj† sat on
Verb obj + head† sat on+mat
Verb obj + NC† sat on+door mat
Verb obj + NP† sat on+black door mat
Verb obj + adj + head† sat on+black+mat
Verb obj + adj POS + head† sat on+JJ+mat
Verb obj + adj + NC† sat on+black+door mat
Verb obj + adj POS + NC† sat on+JJ+door mat
Verb obj + NP POS + head† sat on+JJ NN NN+mat
Verb obj + NP POS + NC† sat on+JJ NN NN+door mat

Table 1: (continued)

from the original FCE data set. This can lead to
“wrong” gold edits that produce ungrammatical sen-
tences, like the following sentence

There are a lot of possibilities (ε → of) to
earn some money ...

where the preposition of is inserted before to earn.
The FCE data set contains another edit (to earn →
earning) but this edit is not included in the HOO
2012 gold annotation. This necessarily introduces
noise into the training data as a classifier trained on
this data will learn that inserting of before to earn
is correct. We sidestep this problem by directly us-
ing the FCE data set for training, and applying all
gold edits except the six determiner and preposition
error types. This gives us training data that only
contains those types of grammatical errors that we
are interested in. Note that this only applies to the
training data. For our development and develop-
ment test data, we use the HOO 2012 released data
where the texts contain all types of errors and do
not make use of the annotations in the FCE data
set. For system development, we randomly select
100 documents from the HOO 2012 training data
as our development set (HOO-DEV) and another
100 disjoint documents as our held-out development
test set (HOO-DEVTEST). We train classifiers on
the remaining 1,044 documents of the FCE data set
(FCE(1044)), tune parameters on HOO-DEV, and
test on HOO-DEVTEST. For our final submission,
we train classifiers on all FCE documents, except
those 100 documents in HOO-DEV which are used
for parameter tuning. Finally, we fix all parameters
and re-train the classifiers on the complete FCE cor-
pus (FCE(1244)). This allows us to make maxi-
mum use of the FCE corpus as training data. The
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Features Example
Lexical and POS features
Observed preposition† on
Word i before (i = 1, 2, 3)† {sitting, cat, ..}
Word i after (i = 1, 2, 3)† {the, mat, ..}
N-grams (N = 2, .., 5)‡ {sitting X, X the, .. }
POS N-grams (N = 2, 3) {VBG X, X DT, .. }
Head word features
Head of prev VP† sitting
POS head of prev VP VBG
Head of prev NP† cat
POS head of prev NP NN
Head of next NP† mat
POS head of next NP NN
Head prev NP + head next NP† cat+mat
POS head prev NP NN+NN

+POS head next NP
Head prev VP + head prev NP sitting+cat+mat

+ head next NP†
POS head prev VP VBG+NN+NN

+ POS head prev NP
+ POS head next NP

N-gram before + {sitting+mat}
head of next NP (N = 1, 2)†

Web N-gram count features
Web N-gram log counts {log freq(sitting at),
N = 2, .., 5 log freq(sitting in),

.., log freq(sitting on),
.., log freq(sitting with), ..}

Web dep N-gram log counts {log freq(sitting-at),
N = 2, 3 log freq(sitting-in),

.., log freq(sitting-on),
.., log freq(sitting-with),

.., log freq(at-mat),
.., log freq(on-mat),

.., log freq(with-mat),
.., log freq(sitting-at-mat), ..

.., log freq(sitting-on-mat), ..}
Dependency features
Dep parent† sitting
Dep parent POS VBG
Dep parent relation prep
Dep child† {mat}
Dep child POS {NN}
Dep child relation {pobj}
Dep parent+child† sitting+mat
Dep parent POS+child POS† VBG+NN
Dep parent+child POS† sitting+NN
Dep parent POS+child† VBG+mat
Dep parent+relation† sitting+prep
Dep child+relation† mat+pobj
Dep parent+child+relation† sitting+mat+prep+pobj

Table 2: Features for replacement preposition cor-
rection. Example: “He saw a cat sitting on the mat.”
†: lexical tokens in lower case, ‡: lexical tokens in
both original and lower case

Features Example
Lexical and POS features
Word i before (i = 1, 2, 3)† {sitting, cat, ..}
Word i after (i = 1, 2, 3)† {the, mat, ..}
N-grams (N = 2, .., 5)‡ {sitting X, X the, .. }
POS N-grams (N = 2, 3) {VBG X, X DT, .. }
Head word features
Head of prev VP† sitting
POS head of prev VP VBG
Head of prev NP† cat
POS head of prev NP NN
Head of next NP† mat
POS head of next NP NN
Head prev NP + head next NP† cat+mat
POS head prev NP NN+NN

+ POS head next NP
Head prev VP + head prev NP sitting+cat+mat

+ head next NP†
POS head prev VP VBG+NN+NN

+ POS head prev NP
+ POS head next NP

N-gram before + {sitting+mat, ..}
head of next NP (N = 1, 2)†

Web N-gram count features
Web N-gram log counts {log freq(sitting on the),
N = 3, .., 5 log freq(sitting the),

.. ,log freq(sitting on the mat),

.., log freq(sitting the mat), ..}

Table 3: Features for missing preposition correction.
Example: “He saw a cat sitting the mat.”† : lexical
tokens in lower case, ‡: lexical tokens in both origi-
nal and lower case

Features Example
Web N-gram count features
Web N-gram log counts {log freq(went to home),
N = 3, .., 5 log freq(went home),

.. ,log freq(cat went to home),
.., log freq(cat went home), ..}

Table 4: Features for unwanted preposition correc-
tion. Example: “The cat went to home.”

Data set # Documents # Sentences # Tokens
FCE(1044) 1,044 22,434 339,902
FCE(1244) 1,244 28,033 423,850
HOO-DEV 100 2,798 42,347
HOO-DEVTEST 100 2,674 41,518
HOO-TEST 100 1,393 20,563

Table 5: Overview of the data sets.
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official HOO 2012 test data (HOO-TEST), which
is not part of the FCE corpus, is completely unob-
served during system development. Table 5 gives an
overview of the data. Besides the FCE and HOO
2012 data sets, we use the following corpora. The
Google Web 1T 5-gram corpus (Brants and Franz,
2006) is used for language modeling and collect-
ing N-gram counts, the PukWaC corpus from the
WaCky project (Baroni et al., 2009) is used for col-
lecting web-scale dependency N-gram counts, and
the New York Times section of the Gigaword cor-
pus3 is used for training the re-casing model. All
data sets used in our system are publicly available.

4.2 Resources

We use the following NLP resources in our sys-
tem. Sentence splitting is performed with the NLTK
toolkit.4 For spelling correction, we use the free
software Aspell.5 All words that appear at least ten
times in the HOO 2012 training data are added to the
spelling dictionary. We use the OpenNLP tools (ver-
sion 1.5.2)6 for POS tagging, YamCha (version
0.33) (Kudo and Matsumoto, 2003) for chunk-
ing, and the MaltParser (version 1.6.1) (Nivre et
al., 2007) for dependency parsing. We use Ran-
dLM (Talbot and Osborne, 2007) for language mod-
eling. The re-casing model is built with the Moses
SMT system (Koehn et al., 2007) from the Gigaword
New York Times section and all normal-cased docu-
ments in the HOO 2012 training data. The CuVPlus
English dictionary (Mitton, 1992) is used to deter-
mine the countability of nouns. The CW learning
algorithm is implemented by our group. The source
code is available from our website.7 All resources
used in our system are publicly available.

4.3 Evaluation

Evaluation is performed by computing detection,
recognition, and correction F1 score between the set
of system edits and the set of gold-standard edits
as defined in the HOO 2012 overview paper (Dale
et al., 2012). Detection scores are very similar to
recognition scores (about 1–2% higher). We omit

3LDC2009T13
4http://www.nltk.org
5http://aspell.net
6http://opennlp.apache.org
7http://nlp.comp.nus.edu.sg/software

Step Recognition Correction
P R F1 P R F1

Det 62.26 12.68 21.06 54.09 11.01 18.30
+ RT 64.34 22.41 33.24 57.35 19.97 29.63
+ MT/UT 60.75 28.94 39.20 54.84 26.12 35.39

Table 6: Overall precision, recall, and F1 score on
the HOO-DEVTEST data after determiner correc-
tion (Det), replacement preposition correction (RT),
and missing and unwanted preposition correction
(MT/UT).

detection scores due to space limitations. Evaluation
on the official test set is performed with respect to
two different gold standards: the original gold stan-
dard from Cambridge University Press and a revised
version which was created in the HOO 2012 shared
task in response to change requests from participat-
ing teams. All scores are computed with the official
scorer. The official gold-standard edits are given in
character offsets, while our system internally works
with token offsets. Therefore, all token offsets are
automatically mapped back to character offsets be-
fore we submit our system edits. We only submitted
one run of our system.

Type Recognition Correction
P R F1 P R F1

RD 30.00 5.66 9.52 30.00 5.66 9.52
MD 69.67 41.67 52.15 59.02 35.29 44.17
UD 40.74 11.00 17.32 40.74 11.00 17.32
Det 62.26 27.73 38.37 54.09 24.09 33.33

RT 69.09 33.63 45.24 63.64 30.97 41.67
MT 53.25 35.34 42.49 49.35 32.76 39.38
UT 38.46 12.20 18.52 38.46 12.20 18.52
Prep 59.62 29.95 39.87 55.40 27.83 37.05

Table 7: Individual scores for each error type on the
HOO-DEVTEST data.

4.4 Results

Tables 6 and 8 show the overall precision, recall and
F1 score of our system after each processing step on
the held-out HOO-DEVTEST set and the official test
set, respectively. All numbers are shown in percent-
ages. We note that each processing step improves
the overall performance. The final F1 correction
score on the official test set is 28.70% before revi-
sion and 37.83% after revision, which are the highest
scores achieved by any participating team. Tables 7
and 9 show individual precision, recall, and F1 score
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Step Recognition Correction
P R F1 P R F1

Det 57.76 14.79 23.55 48.28 12.36 19.68
+ RT 58.93 21.85 31.88 47.02 17.44 25.44
+ MT/UT 55.98 25.83 35.35 45.45 20.97 28.70

(a) Before revisions

Step Recognition Correction
P R F1 P R F1

Det 68.10 16.70 26.83 62.93 15.43 24.79
+ RT 71.43 25.37 37.44 63.10 22.41 33.07
+ MT/UT 69.38 30.66 42.52 61.72 27.27 37.83

(b) After revisions

Table 8: Overall precision, recall, and F1 score on the HOO-TEST data after determiner correction (Det),
replacement preposition correction (RT), and missing and unwanted preposition correction (MT/UT).

Type Recognition Correction
P R F1 P R F1

RD 33.33 2.56 4.76 33.33 2.56 4.76
MD 62.24 48.80 54.71 51.02 40.00 44.84
UD 33.33 9.43 14.71 33.33 9.43 14.71
Det 57.76 30.88 40.24 48.28 25.81 33.63

RT 61.54 23.53 34.04 44.23 16.91 24.47
MT 46.15 21.05 28.92 38.46 17.54 24.10
UT 40.00 13.95 20.69 40.00 13.95 20.69
Prep 53.76 21.19 30.40 41.94 16.53 23.71

(a) Before revisions

Type Recognition Correction
P R F1 P R F1

RD 100.00 8.33 15.38 66.67 5.56 10.26
MD 70.41 52.67 60.26 65.31 48.85 55.90
UD 46.67 11.29 18.18 46.67 11.29 18.18
Det 68.10 34.50 45.80 62.93 31.88 42.32

RT 78.85 27.52 40.80 63.46 22.15 32.84
MT 61.54 28.57 39.02 53.85 25.00 34.15
UT 60.00 23.08 33.33 60.00 23.08 33.33
Prep 70.97 27.05 39.17 60.22 22.95 33.23

(b) After revisions

Table 9: Individual scores for each error type on the HOO-TEST data.

for each of the six error types, and for determiners
(Det: aggregate of RD, MD, UD) and prepositions
(Prep: aggregate of RT, MT, UT) on the held-out
HOO-DEVTEST set and the official test set HOO-
TEST, respectively.

5 Discussion

The main differences between our submission to the
HOO 2011 shared task (Dahlmeier et al., 2011) and
to this year’s shared task are the use of the CW learn-
ing algorithm, the use of web-scale N-gram count
features, and the use of the observed article or prepo-
sition as a feature. The CW learning algorithm per-
formed slightly better than the empirical risk mini-
mization batch learning algorithm that we have used
previously while being significantly faster during
training. Adding the web-scale N-gram count fea-
tures showed significant improvements in initial ex-
periments. Using the observed article or preposition
feature allows the classifier to learn a bias against
unnecessary corrections. We believe that our good
precision scores are a result of using this feature.

In our experiments, we tried adding additional
training data from other text corpora: the NUS Cor-
pus of Learner English (NUCLE) (Dahlmeier and
Ng, 2011) and the Gigaword corpus. Unfortunately,
we did not see any consistent improvements over

simply using the FCE corpus. The general rule of
thumb that “more data is better data” did not seem to
hold true in this case. After the evaluation had com-
pleted, we also tried training on additional training
data and tested the resulting system on the official
test set but did not see improvements either. We be-
lieve that no improvements were obtained due to the
similarity between the training and test data, since
all of them are student essays written in response to
question prompts from the Cambridge FCE exam.

6 Conclusion

We have presented the system from the National
University of Singapore that participated in the HOO
2012 shared task. Our system achieves the highest
correction F1 score on the official test set among all
14 participating teams, based on gold-standard edits
both before and after revision.
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