
NAACL-HLT 2007

Bridging the Gap:
Academic and Industrial

Research in Dialog
Technologies

Proceedings of the Workshop

April 26, 2007
Rochester, New York

Production and Manufacturing by
Omnipress Inc.
Post Office Box 7214
Madison, WI 53707-7214

c
2007 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
75 Paterson Street, Suite 9
New Brunswick, NJ 08901
USA
Tel: +1-732-342-9100
Fax: +1-732-342-9339
acl@aclweb.org

ii

Preface

In the recent years, we have seen rapid adoption of dialog systems in commercial
applications. They range from telephone-based services, in-car interactive systems, to
online conversational service agents and talking characters in computer games. Open-
standard platforms such as VoiceXML have been adopted by the industry, and become
the driving force for the faster adoption of dialog applications.

The widespread dialog applications in industry setting pose challenge for researchers in
both industrial and academic worlds. Progress from academic world has not benefited the
real world applications to a satisfactory extent. The purpose of this one-day workshop is
to provide a forum to bring industrial and academic researchers together to share their
experiences and visions in the dialog technology development, and to identify topics that
are of interest to both camps.

There are total 13 papers accepted for presentation at this workshop, with 8 papers for
long presentation and 5 for short presentation. These papers are almost evenly divided
between the industry and academic communities. In addition, two panels on the related
dialog topics have been arranged during the workshop, with distinguished panelists of
various backgrounds from academic, industrial, and standardization communities.

We are pleased to the see some real convergence from both industry and academic side.
While academic researchers are proposing and building practical dialog systems,
industrial researchers are starting to implement sophisticated learning and uncertainty
modeling into their system. The scope of this workshop papers ranges from advanced
dialog systems for technical support, multi-modal methods, to POMDP modeling,
reinforcement learning and adaptable dialog architecture.

Finally, we would like to thank our program committee members for their work, and
thank the NAACL-HLT conference organizers for their timely support. Together, we
hope to foster and advance the state of art of dialog technologies.

Fuliang Weng -- Bosch Research
Ye-Yi Wang -- Microsoft Research
Gokan Tur -- SRI International
Junling Hu -- Bosch Research
Program Co-Chairs

iii

iv

ORGANIZERS

Fuliang Weng, Bosch Research
Ye-Yi Wang, Microsoft Research
Gokhan Tur, SRI International
Junling Hu, Bosch Research

PROGRAM COMMITTEE

James Allen, University of Rochester
Mark Fanty, Nuance Communications
Sadaoki Furui, Tokyo Institute of Technology
Dilek Hakkani-Tür, ICSI
Juan Huerta, IBM T.J. Watson Research Center
Michael Johnston, AT&T Labs
Yun-Cheng Ju, Microsoft Research, Microsoft
Dekang Lin, Google Labs, Google
Helen Meng, CUHK
Tim Paek, Microsoft Research
Stanley Peters, Stanford University
Roberto Pieracini, SpeechCycle
Alex Rudnicky, CMU
Stephanie Seneff, MIT
Lenhart Schubert, University of Rochester
Steve Young, Cambridge University

v

Table of Contents

Applying POMDPs to Dialog Systems in the Troubleshooting Domain

Jason Williams . 1

Training a real-world POMDP-based Dialog System

Blaise Thomson, Jost Schatzmann, Karl Weilhammer, Hui Ye and Steve Young . 9

The Multimodal Presentation Dashboard

Michael Johnston, Patrick Ehlen, David Gibbon and Zhu Liu. .17

Technical Support Dialog Systems:Issues, Problems, and Solutions

Kate Acomb, Jonathan Bloom, Krishna Dayanidhi, Phillip Hunter, Peter Krogh, Esther Levin and Roberto Pieraccini . 25

Olympus: an open-source framework for conversational spoken language interface research

Dan Bohus, Antoine Raux, Thomas Harris, Maxine Eskenazi and Alexander Rudnicky . 32

Toward Evaluation that Leads to Best Practices: Reconciling Dialog Evaluation in Research and Industry

Tim Paek . 40

Experiments on the France Telecom 3000 Voice Agency corpus: academic research on an industrial spoken dialog system

Graldine Damnati, Frdric Bchet and Renato De Mori .48

Experiences of an In-Service Wizard-of-Oz Data Collection for the Deployment of a Call-Routing Application

Mats Wirn and Robert Eklund . 56

AdaRTE: An Extensible and Adaptable Architecture for Dialog Systems

Lina Rojas and Toni Giorgino . 64

Multi-slot semantics for natural-language call routing systems

Johan Boye and Mats Wiren . 68

Enhancing commercial grammar-based applications using robust approaches to speech understanding

Hebert Matthieu . 76

WIRE: A Wearable Spoken Language Understanding System for the Military

Helen Hastie, Patrick Craven and Michael Orr. .84

Different measurement metrics to evaluate a chatbot system

Bayan Abu Shawar and Eric Atwell . 89

Panel on Spoken Dialog Corpus Composition and Annotation for Research . 97

vii

Conference Program

April 26, 2007

8:30–8:40 Opening

8:40–9:00 Applying POMDPs to Dialog Systems in the Troubleshooting Domain

Jason Williams

9:00–9:20 Training a real-world POMDP-based Dialog System

Blaise Thomson, Jost Schatzmann, Karl Weilhammer, Hui Ye and Steve Young

9:20–9:40 The Multimodal Presentation Dashboard

Michael Johnston, Patrick Ehlen, David Gibbon and Zhu Liu

9:20–10:00 Technical Support Dialog Systems:Issues, Problems, and Solutions

Kate Acomb, Jonathan Bloom, Krishna Dayanidhi, Phillip Hunter, Peter Krogh, Esther Levin and Roberto Pieraccini

10:00–10:30 Break

10:30–10:50 Olympus: an open-source framework for conversational spoken language interface research

Dan Bohus, Antoine Raux, Thomas Harris, Maxine Eskenazi and Alexander Rudnicky

10:50–11:10 Toward Evaluation that Leads to Best Practices: Reconciling Dialog Evaluation in Research and Industry

Tim Paek

11:10–11:30 Experiments on the France Telecom 3000 Voice Agency corpus: academic research on an industrial spoken dialog system

Graldine Damnati, Frdric Bchet and Renato De Mori

11:30–11:50 Experiences of an In-Service Wizard-of-Oz Data Collection for the Deployment of a Call-Routing Application

Mats Wirn and Robert Eklund

11:50-1:00 Lunch

1:00–2:30 Panel Discussion

Bridging the Gap: Academic and Industrial Research in Dialog Technologies

Panelists Mazin Gilbert, AT&T Labs - Research

Michael McTear, University of Ulster

Stanley Peters, Stanford University, CSLI

Roberto Pieraccini, SpeechCycle

Alex Rudnicky, CMU

ix

April 26, 2007 (continued)

2:30–2:42 AdaRTE: An Extensible and Adaptable Architecture for Dialog Systems

Lina Rojas and Toni Giorgino

2:42–2:54 Multi-slot semantics for natural-language call routing systems

Johan Boye and Mats Wiren

2:54–3:06 Enhancing commercial grammar-based applications using robust approaches to speech understanding

Hebert Matthieu

3:06–3:18 WIRE: A Wearable Spoken Language Understanding System for the Military

Helen Hastie, Patrick Craven and Michael Orr

3:18–3:30 Different measurement metrics to evaluate a chatbot system

Bayan Abu Shawar and Eric Atwell

3:30–4:00 Break

4:00–6:00 Panel Discussion

Spoken Dialog Corpus Composition and Annotation for Research

Organizers Giuseppe DiFabbrizio, Dilek Hakkani-Tür, Oliver Lemon, Mazin Gilbert, Alex Rudnicky

x

Bridging the Gap: Academic and Industrial Research in Dialog Technologies Workshop Proceedings, pages 1–8,

NAACL-HLT, Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

Applying POMDPs to Dialog Systems in the Troubleshooting Domain

Jason D. Williams
AT&T Labs – Research

180 Park Ave, Building 103
Florham Park, NJ 07932

jdw@research.att.com

Abstract

This paper reports on progress applying
partially observable Markov decision pro-
cesses (POMDPs) to a commercial dia-
log domain: troubleshooting. In the trou-
bleshooting domain, a spoken dialog sys-
tem helps a user to fix a product such as
a failed DSL connection. Past work has
argued that a POMDP is a principled ap-
proach to building spoken dialog systems
in the simpler slot-filling domain; this pa-
per explains how the POMDPs formula-
tion can be extended to the more complex
troubleshooting domain. Results from di-
alog simulation verify that a POMDP out-
performs a handcrafted baseline.

1 Introduction

In the troubleshooting domain, a spoken dialog sys-
tem (SDS) helps a user to restore a malfunction-
ing product such as a DSL connection to a work-
ing state. Building dialog systems for this domain
presents several new challenges. First, the user may
make mistakes such as misinterpreting the meaning
of a status light or pressing the wrong button, so even
if no speech recognition errors are made, the user’s
response may be misleading. Next, in addition to the
speech recognizer, input is also received from run-
ning network tests such as pinging the user’s DSL
modem. Input from both sources may contain er-
rors, and a dialog system must cope with conflict-
ing information from two channels. In sum, the dia-
log system never knows the true state of the product
nor the user’s true actions, yet must still instruct the
user to successfully restore the product to a working
state.

Dialog models which explicitly model uncertainty
have been shown to significantly outperform base-
line models which do not, primarily because they
cope better with conflicting evidence introduced by
speech recognition errors (Roy et al., 2000; Zhang
et al., 2001; Williams and Young, 2007). However,
past work has been confined to slot-filling tasks and
has not tackled the troubleshooting domain. Con-
versely, dialog systems for troubleshooting in the
literature have not attempted to model uncertainty
directly (Grosz and Sidner, 1986; Lochbaum, 1998).

The contribution of this paper is to show how
to model a troubleshooting spoken dialog system
as a partially observable Markov decision process
(POMDP). We argue that past work in the gen-
eral troubleshooting literature represents simplifica-
tions or special cases of a POMDP, then we show
how a troubleshooting POMDP can be combined
with a dialog system POMDP to create a unified
framework that admits global optimization. Exper-
iments with simulated users show how the POMDP
formulation effectively balances diagnostic actions
(such as a network test) with communicative ac-
tions (such as giving the user instructions), and how
the POMDP formulation outperforms a hand-crafted
baseline both in terms of efficiency and task comple-
tion.

This paper is organized as follows. Section 2 re-
views POMDPs, the general troubleshooting prob-
lem, and POMDP-based spoken dialog systems;
section 3 explains how these two POMDPs can be
combined to model a troubleshooting spoken dialog
system; sections 4-5 present results from simulation;
and section 6 concludes.

2 Background

A POMDP is a model for control when there is un-
certainty in the effects of actions and in the state

1

of the environment. Formally, a POMDPP is de-
fined as a tupleP = (S, A, T, R, O, Z, γ, b0) where
S is a set of statess describing the environment with
s ∈ S; A is a set of actionsa ∈ A which operate
on the environment;T defines a transition proba-
bility P (s′|s, a); R defines the expected (immedi-
ate, real-valued) rewardr(s, a) ∈ <; O is a set
of observationso ∈ O which describe the state of
the environment;Z defines an observation proba-
bility P (o′|s′, a); γ is a geometric discount factor
0 ≤ γ ≤ 1; andb0 is an initial belief state, defined
below.

The POMDP operates as follows. At each time-
step, the environment is in some unobserved state
s. Sinces is not known exactly, adistribution over
possible states called abelief stateb is maintained
where b(s) indicates the probability of being in a
particular states, with b0 denoting the initial belief
state. Based onb, a control algorithm (also called a
policy) selects an actiona, receives a rewardr, and
the environment transitions to (unobserved) states′,
wheres′ depends only ons anda. The environment
then generates an observationo′ which is dependent
on s′ anda. At each time-step,b is updated as

b′(s′) = η · P (o′|s′, a)
∑

s

P (s′|s, a)b(s) (1)

whereη is a normalization constant (Kaelbling et
al., 1998). The process of maintainingb at each
time step is calledbelief monitoring. The cumula-
tive, infinite-horizon, discounted reward is called the
return and writtenV =

∑
∞

t=0
γtr(st, at), wherest

andat indicate the state of the environment and the
action taken at timet, respectively. The goal of the
control algorithm is to choose actions that maximize
the expected returnE[V] given b and the POMDP
parametersP, and the process of searching for such
a control algorithm is calledoptimization.

2.1 Troubleshooting as a POMDP

The goal of the general (non-dialog) problem of au-
tomated troubleshooting is for a control algorithm to
fix a product by taking a sequence of diagnosis and
repair actions. Different actions have different relia-
bilities and different costs, and the aim is to find the
sequence that minimizes the total cost. Since the ac-
tions are not completely reliable, the true state of the

Timestep n Timestep n+1

x'

amy'

r'

x

amy

r

'

Figure 1: Influence diagram depiction of automated
troubleshooting. Round nodes represent random
variables, shaded nodes are unobservable and clear
nodes are observable. Arcs show conditional depen-
dence. Squares indicate actions, selected by the pol-
icy. Diamonds indicate real-valued rewards.

product can’t be known with certainty: for example,
an instrument may provide a faulty reading.

Formalizing this, a product has some hidden state
x, which is usually decomposed into components
x = (x1, x2, . . . , xn). A control algorithm takes
actionam, which changes the state ofx according
to P (x′|x, am). The product then produces an ob-
servationy according toP (y′|x′, am). Replacing
cost with reward, the control algorithm receives re-
ward r(x, am) and the goal is to find the sequence
of actions which maximizes the cumulative sum of
reward. When viewed in this way, automated trou-
bleshooting can be readily viewed as a POMDP
(Shakeri et al., 1997). Figure 1 shows the automated
troubleshooting task as an influence diagram.

Although POMDPs are an elegant model for trou-
bleshooting, they are also notoriously difficult to
optimize and much of the troubleshooting litera-
ture seeks appropriate constraints which render the
optimization tractable, such as assuming that each
action affects at most one product state compo-
nent, that actions have deterministic effects, and that
there is only fault present (Heckerman et al., 1995).
More recently, advances in the POMDP literature
have radically increased the scalability of optimiza-
tion algorithms: for example, Poupart optimizes a
substantial network troubleshooting problem cast as
a generic POMDP (Poupart and Boutilier, 2004).
Viewing troubleshooting as a generic POMDP in-
creases the scope of admissible troubleshooting
tasks, and as will be discussed in section 3, this view
also allows the uncertainty in the product state to be
explicitly modelled in a spoken dialog system.

2

2.2 Spoken dialog as a POMDP

Past work has argued that POMDPs represent a prin-
cipled approach to modelling (non-troubleshooting)
spoken dialog systems (Roy et al., 2000; Zhang et
al., 2001; Williams and Young, 2007). The intu-
ition is that a user’s goals and actions form the un-
observed state and the (possibly erroneous) ASR
result forms the observation. The SDS-POMDP
model (Williams and Young, 2007) formalizes this
by decomposing the POMDP state variables into
three components,s = (su, au, d). The component
su gives theuser’s goal, such as a complete travel
itinerary in a travel reservation task. The component
au gives the most recentuser action(communicative
intent), such as stating a place the user would like to
travel to. Finally the componentd records relevant
dialog history, such as the grounding status of a slot.
None of these components is observable directly by
the dialog system and the SDS-POMDP belief state
is formed of a distribution over these components
b(su, au, d). The POMDP actiona corresponds to
the dialog system actionam, such as asking the user
where they want to go to. Finally, the POMDP ob-
servationo is set to(ãu, c), whereãu is the hypoth-
esis of the user’s action (communicative intent) pro-
vided by the speech recognition and understanding
process, andc is the confidence score. Figure 2
shows the SDS-POMDP model as an influence di-
agram, and also shows the conditional dependencies
assumed in the SDS-POMDP model.

3 Troubleshooting SDS-POMDP model

In this section, we develop a statistical model of a
troubleshooting dialog system. The formulation be-
gins by taking the union of the state spaces of the
dialog POMDP and the troubleshooting POMDP,
(su, au, d, x), and making two modifications. First,
it is assumed that the user’s goalsu is known and
constant (i.e., to fix the product), and as such does
not need to be included. Second, the user’s action
au is decomposed into two components:ats

u
denotes

troubleshootingactions that are directed toward the
product, such as turning a modem on or off, entering
a user name or just observing the status lights; and
acom

u
denotescommunicativeactions to the dialog

system such as saying “green” or “yes”. Reorder-

c, au

au

d

su

am

r

c, au

au

d'

su

am

r'

Timestep n Timestep n+1~ ~

'

''

' '

Figure 2: SDS-POMDP model shown as an influ-
ence diagram. The dotted box refers to all of the
(hidden) POMDP state components.

ing, the combined POMDP state has components:

s = (ats

u
, x, acom

u
, d). (2)

Next, the combined observation is formed of the
union of the observations from the dialog and trou-
bleshooting POMDPs:

o = (ãcom

u
, c, y). (3)

Finally, since the POMDP may choose only one ac-
tion at each time-step, the POMDP action is simply
am.

Substituting eq. 2 into the POMDP
transition function P (s′|s, a) yields
P (ats

u

′

, x′, acom

u

′, d′|ats

u
, x, acom

u
, d, am) and is

decomposed as follows. First, it is assumed that
the user’s troubleshooting actionats

u

′ depends only
on the system’s actionam, the previous product
statex and the dialog historyd. Next, it is as-
sumed that the product statex′ depends only on
the previous product statex, and the most recent
user’s and dialog system’s troubleshooting actions
ats

u

′ and am. Further, the user’s communicative
actionacom

u

′ depends only on the most recent user’s
troubleshooting actionats

u

′, product statex′, dialog
history d and system actionam. Finally, the dialog
history componentd′ is a function of the previous
dialog historyd and the most recent user and dialog
system actionsats

u

′, acom

u

′, and am. With these
assumptions, the combined transition function is:

P (ats

u

′
, x′, acom

u

′, d′|ats

u
, x, acom

u
, d, am) ≈

P (ats

u

′|x, d, am) · P (x′|x, am, ats

u

′)·
P (acom

u

′|d, am, ats

u

′, x′)·
P (d′|d, am, ats

u

′, x′, acom

u

′)

(4)

3

Timestep n Timestep n+1

x'

am

au

y'

au

r'

x

am

au

y

au

r

d'd

c,au
~com

com com'ts ts'

'

c,au
~com'

Figure 3: Influence diagram of a troubleshooting
spoken dialog system.

Substituting eq. 3 into the POMDP
observation function P (o′|s′, a) yields
P (ãcom

u

′, c′, y′|ats

u

′, x′, acom

u

′, d′, am). It is assumed
that the ASR hypothesis̃acom

u

′ and confidence score
c′ depend only on the user’s speech inacom

u

′ and
that the result of the troubleshooting test (conducted
by the dialog system)y′ depends only on the state
of the productx′ and the dialog system’s actionam:

P (ãcom

u

′, c′, y′|ats

u

′, x′, acom

u

′, d′, am) ≈
P (ãcom

u

′, c′|acom

u

′) · P (y|am, x′)
(5)

An influence diagram of the model is shown in Fig-
ure 3.

At runtime, a belief state (i.e., distribution)
is maintained over the POMDP state variables,
b(ats

u
, x, acom

u
, d). Based on this belief state the pol-

icy chooses an actionam and receives observation
(ãcom

u

′, c′, y′). The belief state is updated by apply-
ing Eq 1, and the cycle repeats.

The user action modelsP (ats

u

′|x, d, am) and
P (acom

u

′|d, am, ats

u

′, x′) indicate how users are
likely to respond in troubleshooting dialogs and can
be estimated from annotated dialog data. The prod-
uct modelsP (x′|x, am, ats

u

′) and P (y′|am, x′) in-
dicate how user and dialog system actions change
the state of the product and the reliability of tests,
and these can be estimated by interviewing domain
experts or by examining logs of product perfor-
mance. As in the SDS-POMDP model, the di-
alog history modelP (d′|d, am, acom

u

′, x′, ats

u

′) can
be handcrafted so as to incorporate features from
the dialog history which the dialog designer be-
lieves are important, such as appropriateness or no-
tions of grounding. The ASR confusion model

P (ãcom

u

′, c′|acom

u

′) can be estimated from speech
recognition data or derived analytically. The re-
ward function can include distinct costs for differ-
ent diagnostic tests, dialog actions, and for success-
ful/unsuccessful task completion. It is not specified
explicitly here since it depends on the application.

4 Illustration: DSL-1

To illustrate the general framework, we first created
a very simple troubleshooting spoken dialog system
called DSL-1. Table 1 shows the values for all of
the variables. In DSL-1, the are just 2 possible prob-
lems:no-powerandno-network.

The conditional probability tables composing the
model were handcrafted based on conversations
with troubleshooting experts and past experience
with spoken dialog systems. For example, the model
of user’s troubleshooting action assumes that the
user performs the correct action withp = 0.9,
doesn’t understand withp = 0.05, and performs an
incorrect action withp = 0.05. The model of the
user’s communicative action assumes that the user
provides correct (but possibly incomplete) informa-
tion with p = 0.9, and remains silent withp = 0.1.

The model of the product was designed such that
the user’scheck-powerand check-networkactions
are always effective, but if power is restored there
may still beno-networkwith p = 0.2.

The model of the speech recognition and under-
standing process uses a concept error rate of 30%,
where errors are uniformly distributed, and no con-
fidence scores are used. For example, when the
user expresses the conceptall-ok, it will be recog-
nized correctly 70% of the time, and will be mis-
recognized asno-power 5% of the time, asno-
network5% of the time, etc. The model fory in-
dicates how reliable theping action is, set with a
parameterperr: for example ifperr = 0.1, the result
of a ping test will be incorrect 10% of the time. In
the experiments below, the value ofperr is varied to
explore how the POMDP policy trades off between
theping action and communicative actions.

The reward function provides+100 for taking
theend-callaction when the connection is working,
−100 for taking thedoneaction when the connec-
tion isn’t working, and−1 for any communicative
or test action. The dialog continues until the dialog

4

Variable Values

ats

u
{check-power, check-network, observe, do-nothing, dont-understand}

State x {all-ok, no-power, no-network}
Components d {start, not-done, done}

acom

u
{no-power, no-network, power-ok, all-ok, silent, didnt-understand}

Observation ãcom

u
(same set asacom

u
)

Components y {ping-ok, no-response}
Action am {ping, ask-working-ok, req-check-power, req-check-network, end-call}

Table 1: Variable values in the DSL-1 simple troubleshooting example.

system takes thedoneaction, at which point the di-
alog is over.

4.1 Results

The POMDP was optimized using a standard algo-
rithm from the literature (Spaan and Vlassis, 2005).
This algorithm optimizes the policy at a discrete set
of belief points; as more points are added, the qual-
ity of the resulting policy improves at the expense
of more computation. We found that 300 belief
points achieved asymptotic performance. A model
was constructed for values ofperr ranging from0.0
to0.5; each model was optimized and then evaluated
using 5000 simulated dialogs.

Results are shown in Figures 4 and 5. In each
figure the x-axis is the accuracy of theping action:
perr = 0% indicates that theping action is entirely
reliable andperr = 50% indicates that theping ac-
tion returns useless noise. In Figure 4, the y-axis
shows average return, and in Figure 5, the solid line
shows the task completion rate and the dotted line
shows the average dialog length. The error bars in-
dicate the 95% confidence interval.

As the error rate for thepingaction increases from
0% to 20%, the average dialog length increases from
5.1 turns to 6.5 turns, and the successful task com-
pletion rate falls from 100.0% to 98.9%. These fig-
ures then remain broadly constant from 20% to 50%.
In other words, as errors in the ping action increase,
dialogs become longer and occasionally the system
fails to fix the connection. Inspecting the dialog
transcripts showed that atperr = 0%, the policy
relies on theping action to judge whether the con-
nection is working. Asperr increases, the policy
decreasingly employs theping diagnostic action in
favor of theask-working-okcommunicative action
until perr = 20%, at which point the ping action is

84

85

86

87

88

89

90

91

92

93

94

0% 5% 10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

p err (ping error rate)

A
ve

ra
ge

 r
et

ur
n

Figure 4: Error rate of theping action vs. reward
gained per dialog. As the error rate of theping ac-
tion is increased, performance declines until the er-
ror rate reaches 20%, at which point the system no
longer uses theping action.

not used at all. At this point the planning process has
determined that the ping action doesn’t help produce
better dialogs than just interacting with the caller,
and the performance from 20% to 50% is constant.1

These experiments confirm that, for a very sim-
ple troubleshooting dialog system in simulation, the
POMDP approach is able to synthesize noisy infor-
mation gained from communicative and test actions
into one unified belief while the underlying, hidden
product state is changing. This is an important re-
sult because past work that has applied POMDPs
to dialog systems has employed a single modality
(communicative actions), and have largely had fixed
persistent state. Even so, this illustration is much
too small to be of practical use, and relies entirely
on hand-crafted models of the dynamics. In the next
section a model of realistic scale is presented with
transition dynamics estimated from real conversa-

1The variations in performance between 20% and 50% are
due to sampling in the optimization algorithm.

5

98.3%

98.7%

99.1%

99.5%

99.9%

0% 5% 10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

p err (ping error rate)

T
as

k
co

pm
le

tio
n

ra
te

 (
%

)

5

5.4

5.8

6.2

6.6

7

A
ve

ra
ge

 d
ia

lo
g

le
ng

th

(t
ur

ns
)

Task completion rate Average dialog length

Figure 5: Error rate of theping action vs. success-
ful task completion rate and average dialog length.
The lefty axis and the solid line show the task com-
pletion rate, and the righty axis and the dotted line
show the average dialog length in number of turns.

tional data.

5 Illustration: DSL-2

In this section we present a second POMDP-based
troubleshooting dialog system called DSL-2 which
captures many of the properties of a real-world
DSL troubleshooting task. Approximately 100 tele-
phone calls between (human) DSL support agents
and customers were monitored, and the observations
of these conversations guided creation of the dia-
log system, including typical problems, agent in-
structions, and user responses. The product stateX

was decomposed into 19 components which track,
for example, whether there are any outages re-
ported, whether the DSL modem is switched on, and
whether the username has been entered correctly in
the DSL configuration. Seven of these components
can cause the connection to fail: (1) router pow-
ered off or crashed, (2) an upstream network crash,
(3) a service outage, (4-6) a wrong username, pass-
word, or connection type entered in the DSL modem
configuration, and (7) an unknown root cause which
can’t be fixed by the dialog system. Some of the
problems can only be identified or fixed by the dia-
log system (such as a service outage or an upstream
network crash), and the rest only by the user (such as
a router being off or wrong username entered). The
problems may occur in any combination: for exam-
ple, there may be a service outage while the user’s
password is entered incorrectly. The system action
set (Am) consisted of 18 actions such as asking the

user to turn the modem on, providing the correct
username, checking whether any outages have been
reported, and rebooting the upstream network inter-
face. The user’s troubleshooting action setAts

u
con-

sisted of 12 actions such as turning the modem on
or off, opening the DSL configuration screen, enter-
ing a password, and attempting to surf to a website.
The user’s communicative action setAcom

u
consisted

of 11 actions such as saying the color of a light (e.g.,
“red” or “green”), yes and no, back-channel, silence,
and an “out-of-grammar” action which accounts for
user speech which cannot be recognized.

The conditional probability tables for each of the
product components were handcrafted based on in-
terviews with DSL technicians and are almost all
deterministic. For example, if the DSL modem
is powered on, the power light will always be on.
Next a subset of the agent/user telephone calls were
transcribed and annotated with simple dialog acts,
and from these the two user models were estimated.
Smoothing was applied so that the models allow for
the user to take any action at any point in the dia-
log. Concept recognition errors were generated with
p = 0.30, and confidence scores were drawn from
an exponential distribution such that (at an equal er-
ror rate confidence threshold) about half of the con-
cept errors could be identified. The reward func-
tion provides+100 for ending the dialog having cor-
rectly identified (and if possible resolved) the root
causes,−100 for ending the dialog with unidenti-
fied or unresolved root causes, and−1 for any other
action. If a dialog ran for more than 100 turns, it was
considered a failure and terminated.

We created a state-based dialog manager by hand
(called HC) which broadly reflects the agents’ trou-
bleshooting practices and which serves as our base-
line. HC consisted of 19 dialog states, where each
state specified an actionam to take (for example to
ask the user to turn the modem on), and observations
from the speech recognizerãcom

u
or troubleshooting

testsy may cause transitions between dialog states.
HC first asks the user to power cycle the modem,
then checks for outages and “resets” the upstream
network interface, then verifies that the username,
password, and network type are configured correctly
on the router. After each step HC checks if the con-
nection is working by asking if the network light
is green, pinging the modem, then asking the user

6

POMDP HC HC(0)
CER 30% 30% 0%

N 500 500 500
TCR 96.1% 78.0% 88.6%

Length 19.9 76.5 48.5
Return 73.3 8.13 48.8

Table 2: Results for the POMDP and hand-crafted
dialog managers. CER is concept error rate; TCR is
task completion rate; Length is measured in turns.

to open a web browser; if any one of these tests
fails, troubleshooting resumes, and if they all suc-
ceed then HC ends the dialog. If an outage is de-
tected, HC says this and exits, and if the connection
still isn’t working at the end of the dialog then HC
escalates the call to a (human) technician. In general
when HC receives an unexpected answer or confi-
dence score below the equal-error rate threshold, it
treats this as a likely speech recognition error and
remains in the same dialog state.

Next, optimization was performed as described in
(Williams et al., 2005). This technique takes as in-
put a POMDP model and a state-based dialog con-
troller, and produces an improved dialog controller.
Space limitations prevent a full description here; the
intuition is that the algorithm uses the POMDP be-
lief state at runtime to “rewire” the dialog controller
to achieve an improvement in reward. Because this
optimization algorithm improves a standard state-
based dialog controller (in this case the HC base-
line), it provides an indication of the value of adding
the POMDP machinery.

5.1 Results and discussion

First, 500 simulated dialogs were run with the
POMDP, and then 500 simulated dialogs were run
with the HC baseline controller. Finally, as a fur-
ther comparison, the ASR simulation was changed
so that no ASR errors were made, and HC was
run for 500 dialogs in this configuration, which we
call HC(0). Results are shown in Table 2. All of
the observed differences are statistically significant
(p � 0.01).

In the presence of speech recognition errors, the
POMDP produces dialogs which are significantly
shorter and more successful than HC. Moreover, the
POMDP, which faced ASR errors, also outperforms
HC(0), which did not. Examination of the dialog

transcripts found that the main source of failure for
HC(0) was exceeding 100 turns. In other words,
quantitatively, the POMDP is both more robust to
ASR errors and (independent of ASR errors) more
efficient.

The dialog transcripts were inspected to deter-
mine qualitatively how the POMDP attained better
performance. An example is shown in Table 3. At
the start of the conversation, the belief (probability)
that the connection is workingp(allOk) is 56% and
the belief that the power to the DSL modem is on
p(pwrOn) is 98.0% (these are 2 of the 19 compo-
nents in the product statex). As the dialog pro-
gresses, belief monitoring updates these to account
for the evidence received. For example, the unsuc-
cessfulping in S1 causesp(allOk) to drop from 56%
to 14%. The belief monitoring process also natu-
rally makes use of indirect evidence – for example,
in U14 the user indicates the network light is “red”:
since the network light will only be on if the power
to the DSL modem is on, this causes an increase in
the belief that the power is on, from 99.1% to 99.8%.

The key benefit of the POMDP approach is that
the dialog manager can exploit the belief state to
make better progress in the face of low-confidence
or even nonsensical replies, without sacrificing over-
all task completion. For example, in S1 through S9
the POMDP policy differs from the baseline con-
troller: the baseline controller would have ignored
the lower-confidence recognitions in U4 and U8, but
the POMDP policy moves ahead. When the policy
receives a nonsensical reply, for example in U6, it
reverts back to an earlier stage of the troubleshoot-
ing procedure it had previously skipped. This latter
behavior ensures that omitting steps to move faster
through the procedure doesn’t ultimately sacrifice
task completion.

6 Conclusions

This paper has shown how a spoken dialog system
for troubleshooting can be cast as a POMDP. The
troubleshooting domain has important differences to
past applications of the POMDP approach and the
two illustrations provided in this paper support our
claim that, at least in dialog simulation, the advan-
tages of POMDPs apply to this domain.

After finishing simulation experiments, we in-
7

stalled DSL-2 into a real dialog system, and found
that belief monitoring runs slower than real-time.
We subsequently developed a method to address
this, which we will report on separately in the fu-
ture, and are now preparing for a pilot study with
real users.

References
BJ Grosz and CL Sidner. 1986. Attention, intentions,

and the structure of discourse.Computational Lin-
guistics, 12(3):175–204.

D Heckerman, JS Breese, and K Rommelse. 1995.
Decision-theoretic troubleshooting.Communications
of the ACM, 38(3):49–57.

L Kaelbling, ML Littman, and AR Cassandra. 1998.
Planning and acting in partially observable stochastic
domains.Artificial Intelligence, 101.

KE Lochbaum. 1998. A collaborative planning model
of intentional structure. Computational Linguistics,
24(4):525–572.

P Poupart and C Boutilier. 2004. VDCBPI: an ap-
proximate scalable algorithm for large scale POMDPs.
In Proc Advances in Neural Information Processing
Systems 17 (NIPS), Vancouver, Canada, pages 1081–
1088.

N Roy, J Pineau, and S Thrun. 2000. Spoken dialog
management for robots. InProc Association for Com-
putational Linguistics (ACL), Hong Kong.

M Shakeri, KR Pattipati, V Raghavan, A Patterson-Hine,
and DL Iverson. 1997. Multiple fault isolation in
redundant systems. Technical Report NCC2-5123,
NASA Ames.

MTJ Spaan and N Vlassis. 2005. Perseus: randomized
point-based value iteration for POMDPs.Journal of
Artificial Intelligence Research, 24:195–220.

JD Williams and SJ Young. 2007. Partially observable
markov decision processes for spoken dialog systems.
Computer Speech and Language, 21(2):393–422.

JD Williams, P Poupart, and SJ Young. 2005. Partially
observable Markov decision processes with continu-
ous observations for dialogue management. InProc
SIGdial Workshop on Discourse and Dialogue, Lis-
bon.

B Zhang, Q Cai, J Mao, and B Guo. 2001. Planning
and acting under uncertainty: A new model for spoken
dialogue system. InProc Conf on Uncertainty in Ar-
tificial Intelligence (UAI), Seattle, Washington, pages
572–579.

ID p(allOk) p(pwrOn) Transcript
*S1 56% 98.0% I’m going to try pinging your DSL modem from here.
S2 - - There was no response so it seems your connection isn’t working yet.

*S3 14% 96.1% Please turn the DSL modem on.
U4 - - ok [ok, 0.004]

*S5 30% 96.4% What color is the network light on the DSL modem?
U6 - - dontunderstand[no, 0.052]

*S7 30% 93.8% Please turn the DSL modem on.
U8 - - dontunderstand[ok, 0.454]

*S9 31% 99.1% I’m going to check if there are any outages reported, just a moment.
S10 - - There are no outages reported.
S11 39% 99.1% I’m going to try resetting your connection fromhere, just a moment.
S12 - - Ok, that has been done.
S13 48% 99.1% What color is the network light on the DSL modem?
U14 - - red [red, 0.678]
S15 3% 99.8% Please open the DSL configuration screen.

...

Table 3: Fragment of a conversation with the POMDP dialog manager. Asterisks (*) indicate transitions
not in the baseline dialog manager.p(allOk) shows the probability that DSL connectivity is working and
p(pwrOn) shows the probability that the power to the DSL modem is on, according to the POMDP belief

state. The simulated user’s communicative actions are shown in italics, followed by the [concept,
confidence score] produced by the ASR simulation.

8

Bridging the Gap: Academic and Industrial Research in Dialog Technologies Workshop Proceedings, pages 9–16,

NAACL-HLT, Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

9

10

11

12

13

14

15

16

Bridging the Gap: Academic and Industrial Research in Dialog Technologies Workshop Proceedings, pages 17–24,

NAACL-HLT, Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

The Multimodal Presentation Dashboard

Michael Johnston
AT&T Labs Research

180 Park Ave
Florham Park, NJ
johnston

@research.
att.com

Patrick Ehlen
CSLI

 Stanford University
Palo Alto, CA
ehlen@csli.
stanford.edu

David Gibbon
AT&T Labs Research

180 Park Ave
Florham Park, NJ
dcg@research.

att.com

Zhu Liu
AT&T Labs Research

180 Park Ave
Florham Park, NJ

zliu@research.
att.com

Abstract

The multimodal presentation dashboard al-
lows users to control and browse presenta-
tion content such as slides and diagrams
through a multimodal interface that sup-
ports speech and pen input. In addition to
control commands (e.g. “take me to slide
10”), the system allows multimodal search
over content collections. For example, if
the user says “get me a slide about internet
telephony,” the system will present a
ranked series of candidate slides that they
can then select among using voice, pen, or
a wireless remote. As presentations are
loaded, their content is analyzed and lan-
guage and understanding models are built
dynamically. This approach frees the user
from the constraints of linear order allow-
ing for a more dynamic and responsive
presentation style.

1 Introduction

Anthropologists have long informed us that the
way we work—whether reading, writing, or giving
a presentation—is tightly bound to the tools we
use. Web browsers and word processors changed
the way we read and write from linear to nonlinear
activities, though the linear approach to giving a
presentation to a roomful of people has evolved
little since the days of Mylar sheets and notecards,
thanks to presentation software that reinforces—or
even further entrenches—a linear bias in our no-
tion of what “giving a presentation” means to us.
While today’s presentations may be prettier and
flashier, the spontaneity once afforded by holding a
stack of easily re-arrangeable sheets has been lost.

Figure 1 Presentation dashboard in action

Instead, a question from the audience or a change
in plan at the podium results in a whizzing-by of
all the wrong slides as the presenter sweats through
an awkward silence while hammering an arrow
key to track down the right one. In theory there are
“search” functions that presenters could use to find
another slide in the same presentation, or even in
another presentation on the same machine, though
none of the authors of this paper has ever seen a
presenter do this. A likely reason is that these
search functions are designed for desktop ergo-

17

nomics rather than for standing at a podium or
walking around the room, making them even more
disruptive to the flow of a presentation than frantic
arrow key hammering.

In some utopian future, we envision presenters
who are unhindered by limitations imposed by
their presentation tools, and who again possess, as
Aristotle counseled, “all available means of per-
suasion” at the tips of their fingers—or their
tongues. They enjoy freeform interactions with
their audiences, and benefit from random access to
their own content with no arrow hammering and no
disruption in flow. Their tools help to expand their
possible actions rather than limiting them. We are
hardly alone in this vision.

In that spirit, many tools have been developed of
late—both within and outside of research labs—
with the aim of helping people work more effec-
tively when they are involved in those assemblies
of minds of mutual interest we often call “meet-
ings.” Tools that capture the content of meetings,
perform semantic understanding, and provide a
browsable summary promise to free meeting par-
ticipants from the cognitive constraints of worrying
about trying to record and recall what happened
when a meeting takes place (e.g., Ehlen, Purver &
Niekrasz, 2007; Tucker & Whittaker, 2005).

Presentations are a kind of meeting, and several
presentation tools have also sought to free present-
ers from similar constraints. For example, many
off-the-shelf products provide speech interfaces to
presentation software. These often replace the lin-
ear arrow key with the voice, offering command-
based navigation along a one-dimensional vector
of slides by allowing a presenter to say “next slide
please” or “go to the last slide.”

A notable exception is the Jabberwocky inter-
face to PowerPoint (Franklin, Bradshaw &
Hammond, 1999; 2000), which aims to follow
along with a presenter’s talk—like a human assis-
tant might do—and switch to the appropriate slide
when the presenter seems to be talking about it.
Using a method similar to topic modeling, words
spoken by the presenter are compared to a prob-
ability distribution of words across slides. Jabber-
wocky changes to a different slide when a
sufficient probability mass has been reached to
justify the assumption that the speaker is now talk-
ing about a different slide from the one that’s al-
ready showing.

A similar effort (Rogina & Schaaf, 2002) uses
words extracted from a presentation to augment a
class-based language model and attempt automatic
tracking of a presentation as it takes place. This
intelligent meeting room system then aligns the
presenter’s spoken words with parts of a presenta-
tion, hoping to determine when a presenter has
moved on to a new slide.

A major drawback of this “machine-initiative”
approach to presentation assistance is that a pre-
senter must speak enough words associated with a
new slide for a sufficient probability mass to be
reached before the slide is changed. The resulting
delay is likely to make an audience feel like the
presentation assistant is rather dim-witted. And any
errors that change slides before the presenter is
ready can be embarrassing and disruptive in front
of potentially important audiences.

So, in fashioning our own presentation control
interface, we chose to allow the presenter to retain
full initiative in changing slides, while offering a
smarter and more flexible way to navigate through
a presentation than the single degree of freedom
afforded by arrow keys that simply traverse a pre-
determined order. The result is the Multimodal
Presentation Dashboard, a presentation interface
that integrates command-based control with prob-
abilistic, content-based search. Our method starts
with a context-free grammar of speech commands,
but embeds a stochastic language model generated
from the presenter’s slide deck content so a pre-
senter can request any slide from the deck—or
even a large set of decks—just by asking for its
contents. Potentially ambiguous results are re-
solved multimodally, as we will explain.

2 Multimodal interface for interactive
presentations

The presentation dashboard provides presenters
with the ability to control and adapt their presenta-
tions on the fly in the meeting room. In addition to
the traditional next/previous approach to navigat-
ing a deck of slides, they can access slides by posi-
tion in the active deck (e.g., “show slide 10” or
“last slide please”) or they can multimodally com-
bine voice commands with pen or remote control
to browse for slides by content, saying, for in-
stance, “show the slide on internet telephony,” and
then using the pen to select among a ranked list of
alternatives.

18

2.1 Setup configuration

Though the dashboard offers many setup configu-
rations, the preferred arrangement uses a single PC
with two displays (Figure 1). Here, the dashboard
is running on a tablet PC with a large monitor as a
second external display. On the tablet, the
dashboard UI is visible only to the presenter. On
the external display, the audience sees the current
slide, as they would with a normal presentation.

The presenter can interact with the dashboard
using either the microphone onboard the tablet PC,
or, preferably, a wireless microphone. A wireless
remote functions as a presentation control, which
can be used to manually change slides in the tradi-
tional manner, and also provides a “push to talk”
button to tell the dashboard when to listen. A wire-
less microphone combined with the wireless pres-
entation control and voice selection mode (see
Section 2.3) allows a presenter to stroll around the
room or stage completely untethered.

2.2 Presenter UI

The presenter’s primary control of the system is
through the presenter UI, a graphical user interface
augmented with speech and pen input. The inter-
face has three main screens: a presentation panel
for controlling an ongoing presentation (Figure 2),
a loader panel for selecting a set of presentations to
load (Figure 4), and a control panel for adjusting
system settings and bundling shareable index and
grammar models. The user can select among the
panels using the tabs at the top left.

Figure 2 The presentation panel

The presentation panel has three distinct functional
areas from top to bottom. The first row shows the
current slide, along with thumbnails of the previ-
ous and next slides to provide context. The user
can navigate to the next or previous slide by click-
ing on these thumbnails. The next row shows a
scrolling list of search results from content-based
queries. The last row contains interaction informa-
tion. There is a click & speak button for activating
the speech recognizer and a feedback window that
displays recognized speech.

Some user commands are independent of the
content of slide decks, as with basic commands for
slide navigation:

- “next slide please”
- “go back”
- “last slide”

In practice, however, navigation to next and previ-
ous slides is much easier using buttons on the wire-
less control. The presenter can also ask for slides
by position number, allowing random access:

- “take me to slide 10”
- “slide 4 please”

But not many presenters can remember the posi-
tion numbers of some 40 or 50 slides, we’d guess,
so we added content-based search, a better method
of random access slide retrieval by simply saying
key words or phrases from the desired slide, e.g.:

- “slides about internet telephony”
- “get me the slide with the

 system architecture”
- “2006 highlights”
- “budget plan, please”

When the presenter gives this kind of request, the
system identifies any slides that match the query
and displays them in a rank ordered list in the mid-
dle row of the presenter’s panel. The presenter can
then scroll through the list of thumbnails and click
one to display it to the audience.

This method of ambiguity resolution offers the
presenter some discretion in selecting the correct
slide to display from multiple search results, since
search results appear first on the presenter’s private
interface rather than being displayed to the audi-
ence. However, it requires the presenter to return to
the podium (or wherever the tablet is located) to
select the correct slide.

19

2.3 Voice selection mode

Alternatively, the presenter may sacrifice discre-
tion for mobility and use a “voice selection mode,”
which lets the presenter roam freely throughout the
auditorium while making and resolving content-
based queries in plain view of the audience. In this
mode, if a presenter issues a content-based query
(e.g., “shows slides about multimodal access”),
thumbnails of the slides returned by the query ap-
pear as a dynamically-generated interactive
“chooser” slide (Figure 3) in the main presentation
viewed by the audience. The presenter can then
select the desired slide by voice (e.g., “slide three”)
or by using the previous, next, and select controls
on the wireless remote. If more than six slides are
returned by the query, multiple chooser slides are
generated with six thumbnails to each slide, which
can be navigated with the remote.

While voice selection mode allows the presenter
greater mobility, it has the drawback of allowing
the audience to see thumbnails of every slide re-
turned by a content-based query, regardless of
whether the presenter intended for them to be seen.
Hence this mode is more risky, but also more im-
pressive!

Figure 3 Chooser slide for voice selection mode

2.4 Compiling deck sets

Sometimes a presenter wishes to have access to
more than one presentation deck at a time, in order
to respond to unexpected questions or comments,
or to indulge in a whimsical tangent. We respond
to this wish by allowing the presenter to compile a
deck set, which is, quite simply, a user-defined
bundle of multiple presentations that can all be

searched at once, with their slides available for
display when the user issues a query. In fact, this
option makes it easy for a presenter to follow spon-
taneous tangents by switching from one presenta-
tion to another, navigating through the alternate
deck for a while, and then returning to the original
presentation, all without ever walking to the po-
dium or disrupting the flow of a presentation by
stopping and searching through files.

Deck sets are compiled in the loader panel (Fig-
ure 4), which provides a graphical browser for se-
lecting a set of active decks from the file system.
When a deck set is chosen, the system builds ASR
and language understanding models and a retrieval
index for all the slides in the deck set. A compiled
deck set is also portable, with all of the grammar
and understanding model files stored in a single
archive that can be transferred via e-mail or thumb
drive and speedily loaded on another machine.

A common use of deck sets is to combine a
main presentation with a series of other slide decks
that provide background information and detail for
answering questions and expanding points, so the
presenter can adapt to the interests of the audience.

Figure 4 The loader panel

3 Multimodal architecture

The Multimodal Presentation Dashboard uses an
underlying multimodal architecture that inherits
core components from the MATCH architecture
(Johnston et al 2002). The components communi-
cate through a central messaging facilitator and
include a speech recognition client, speech recog-
nition server (Goffin et al 2005), a natural lan-
guage understanding component (Johnston &
Bangalore 2005), an information retrieval engine,

20

and a graphical user interface client. The graphical
UI runs in a web browser and controls PowerPoint
via its COM interface.

We first describe the compilation architecture,
which builds models and performs indexing when
the user selects a series of decks to activate. We
then describe the runtime architecture that operates
when the user gives a presentation using the sys-
tem. In Section 3.3, we provide more detail on the
slide indexing mechanism and in Section 3.4 we
describe a mechanism used to determine key-
phrases from the slide deck that are used on a drop
down menu and for determining relevancy.

3.1 Compilation architecture

In a sense, the presentation dashboard uses neither
static nor dynamic grammars; the grammars com-
piled with each deck set lie somewhere in-between
those two concepts. Command-based speech inter-
faces often fare best when they rely on the predict-
ability of a fixed, context-free grammar, while
interfaces that require broader vocabulary coverage
and a wider range of syntax are better off leverag-
ing the flexibility of stochastic language models.
To get the best of both worlds for our ASR model,
we use a context-free command “wrapper” to a
stochastic language model (c.f. Wang & Acero
2003). This is coupled to the understanding
mechanism using a transducer with a loop over the
content words extracted from the slides.

This combined grammar is best thought of as a
fixed, context-free template which contains an em-
bedded SLM of dynamic slide contents. Our
method allows a static background grammar and
understanding model to happily co-exist with a
dynamic grammar component which is compiled
on the fly when presentations are loaded, enabling
custom, content-based queries.

When a user designates a presentation deck set
and compiles it, the slides in the set are processed
to create the combined grammar by composing an
SLM training corpus based on the slide content.

First, a slide preprocessor extracts sentences, ti-
tles, and captions from each slide of each deck, and
normalizes the text by converting numerals and
symbols to strings, Unicode to ASCII, etc. These
content phrases are then used to compose (1) a
combined corpus to use for training an SLM for
speech recognition, and (2) a finite-state transducer

to use for multimodal natural language understand-
ing (Johnston & Bangalore 2005).

Combined Corpus

Presentations

Slide
index

Keyphrases

Slide PreprocessorSlide Preprocessor

Sentences

Index
Server

Index
Server

SLM
for ASR

SLM
for ASR NLU

MODEL
NLU

MODEL
GUI

Menu
GUI

Menu

Grammar
Template

Class-tagged
Corpus

Grammar

Words

Figure 5 Compilation architecture

To create a combined corpus for the SLM, the con-
tent phrases extracted from slides are iterated over
and folded into a static template of corpus classes.
For instance, the template entry,

<POLITE> <SHOWCON> <CONTENT_PHRASE>

could generate the phrase “please show the slide
about <CONTENT_PHRASE>” for each content
phrase—as well as many others. These templates
are currently manually written but could poten-
tially be induced from data as it becomes available.

The content corpus is appended to a command
corpus of static command classes that generate
phrases like “next slide please” or “go back to the
last one.” Since the number of these command
phrases remains constant for every grammar while
the number of content phrases depends on how
many phrases are extracted from the deck set, a
weighting factor is needed to ensure the number of
examples of both content and command phrases is
balanced in the SLM training data. The resulting
combined corpus is used to build a stochastic lan-
guage model that can handle variations on com-
mands and slide content.

In parallel to the combined corpus, a stack of
slide content words is compiled for the finite state
understanding machine. Phrases extracted for the
combined corpus are represented as a terminal
_CWORD class. (Terminals for tapes in each gram-
mar class are separated by colons, in the format
speech:meaning, with empty transitions repre-

21

sented as ε) For example, the phrase “internet
telephony” on a slide would appear in the under-
standing grammar like so:

_CWORD internet:internet
_CWORD telephony:telephony

These content word classes are then “looped” in
the FSM (Figure 6) into a flexible understanding
model of potential slide content results using only
a few grammar rules, like:

_CONTENT _CWORD _CONTENT
_CONTENT _CWORD

The SLM and the finite-state understanding ma-
chine now work together to extract plausible mean-
ings from dynamic and inexact speech queries.

Figure 6 Understanding FSM

To provide an example of how this combined ap-
proach to understanding comes together in the run-
ning system, let’s say a presenter’s slide contains
the title “Report for Third Quarter” and she asks
for it by saying, “put up the third quarter report
slide.” Though she asks for the slide with language
that doesn’t match the phrase on the slide, our for-
giving stochastic model might return a speech re-
sult like, “put up third quarter report mine.” The
speech result is then mapped to the finite-state
grammar, which catches “third quarter report
mine” as a possible content phrase, and returns,
“third,quarter,report,mine” as a con-
tent-based meaning result. That result is then used
for information retrieval and ranking to determine
which slides best match the query (Section 3.3).

3.2 Runtime architecture

A primary goal of the presentation dashboard was
that it should run standalone on a single laptop. A
tablet PC works best for selecting slides with a
pen, though a mouse or touch screen can also be
used for input. We also developed a networked
version of the dashboard system where indexing,
compilation, speech recognition, and understand-
ing are all network services accessed over HTTP
and SIP, so any web browser-based client can log
in, upload a presentation, and present without in-

stalling software aside from PowerPoint and a SIP
plug-in. However, our focus in this paper is on the
tablet PC standalone version.

ASR SERVERASR SERVER

Multimodal Dashboard
UI (Browser)

Multimodal Dashboard
UI (Browser)

NLUNLU

Powerpoint
Application
Powerpoint
Application

Index Server (http)Index Server (http)

Language
Model

Slide index

HTTP

Commands

Images

FACILITATORFACILITATOR

SPEECH
CLIENT
SPEECH
CLIENT

Understanding
Model

Figure 7 Multimodal architecture

The multimodal user interface client is browser-
based, using dynamic HTML and Javascript. Inter-
net Explorer provides COM access to the Power-
Point object model, which reveals slide content and
controls the presentation. Speech recognition, un-
derstanding, and compilation components are ac-
cessed through a java-based facilitator via a socket
connection provided by an ActiveX control on the
client page (Figure 7). When the user presses or
taps the click & speak button, a message is sent to
the Speech client, which sends audio to the ASR
Server. The recognizer’s speech result is processed
by the NLU component using a finite-state trans-
ducer to translate from the input string to an XML
meaning representation. When the multimodal UI
receives XML for simple commands like “first
slide” or “take me to slide ten,” it calls the appro-
priate function through the PowerPoint API. For
content-based search commands, an SQL query is
constructed and issued to the index server as an
HTTP query. When the results are returned, mul-
timodal thumbnail images of each slide appear in
the middle row of the UI presenter panel. The user
can then review the choices and switch to the ap-
propriate slide by clicking on it—or, in voice se-
lection mode, by announcing or selecting a slide
shown in the dynamically-generated chooser slide.

The system uses a three stage strategy in search-
ing for slides. First it attempts an exact match by
looking for slides which have the words of the
query in the same order on the same slide in a sin-
gle phrase. If no exact matches are found, the sys-
tem backs off to an AND query and shows slides
which contain all of the words, in any order. If that

22

fails, the system resorts to an OR query and shows
slides which have any of the query terms.

3.3 Information retrieval

When the slide preprocessor extracts text from a
presentation, it retains the document structure as
much as possible and stores this in a set of hier-
archal XML documents. The structure includes
global document metadata such as creation date
and title, as well as more detailed data such as slide
titles. It also includes information about whether
the text was part of a bullet list or text box. With
this structure, queries can be executed against the
entire text or against specified textual attributes
(e.g. “show me the chart titled ‘project budget’”).

For small document collections, XPath queries
can search the entire collection with good response
time, providing a stateless search method. But as
the collection of presentation decks to be searched
grows, a traditional inverted index information re-
trieval system achieves better response times. We
use a full text retrieval system that employs stem-
ming, proximity search, and term weighting, and
supports either a simplified query syntax or SQL.
Global metadata can also constrain queries. Incre-
mental indexing ensures that new presentation
decks cause the index to update automatically
without being rebuilt from scratch.

3.4 Key phrase extraction

Key phrases and keywords are widely used for in-
dexing and retrieving documents in large data-
bases. For presentation slides, they can also help
rank a slide’s relevance to a query. We extract a
list of key phrases with importance scores for each
slide deck, and phrases from a set of decks are
merged and ranked based on their scores.

A popular approach to selecting keywords from
a document within a corpus is to find keywords
that frequently occur in one document but seldom
occur in others, based on term frequency-inverse
document frequency (TF-IDF). Our task is slightly
different, since we wish to choose key phrases for
a single document (the slide deck), independent of
other documents. So our approach uses term fre-
quency-inverse term probability (TF-ITP), which
expresses the probability of a term calculated over
a general language rather than a set of documents.

Assuming a term Tk occurs tfk times in a docu-
ment, and its term probability is tpk, the TF-ITP of
Tk is defined as, wTk = tfk / tpk. This method can be
extended to assign an importance score to each
phrase. For a phrase Fk = {T1 T2 T3 … TN}, which
contains a sequence of N terms, assuming it ap-
pears ffk times in a document, its importance score,
ISk, is defined as,

∑
=

=
N

i i

k
k T

ffIS
1

.

To extract a set of key phrases, we first segment
the document into sentences based on punctuation
and some heuristics. A Porter stemming algorithm
(Porter 1980) eliminates word variations, and
phrases up to N=4 terms long are extracted, remov-
ing any that start or end with noise words. An im-
portance score ranks each phrase, where term
probabilities are estimated from transcripts of 600
hours of broadcast news data. A term that is out of
the vocabulary with a term frequency of more than
2 is given a default term probability value, defined
as the minimum term probability in the vocabulary.
Phrases with high scores are chosen as key
phrases, eliminating any phrases that are contained
in other phrases with higher scores. For an overall
list of key phrases in a set of documents, we merge
individual key phrase lists and sum the importance
scores for key phrases that recur in different lists,
keeping the top 10 phrases.

4 Performance and future work

The dashboard is fully implemented, and has been
used by staff and management in our lab for inter-
nal presentations and talks. It can handle large
decks and collections (100s to 1000s of slides). A
tablet PC with a Pentium M 1.6Ghz processor and
1GB of RAM will compile a presentation of 50
slides—with ASR, understanding models, and
slide index—in under 30 seconds.

In ongoing work, we are conducting a usability
test of the system with users in the lab. Effective
evaluation of a tool of this kind is difficult without
fielding the system to a large number of users. An
ideal evaluation would measure how users fare
when giving their own presentations, responding to
natural changes in narrative flow and audience
questions. Such interaction is difficult to simulate
in a lab, and remains an active area of research.

23

We also hope to extend current retrieval meth-
ods to operate at the level of concepts, rather than
words and phrases, so a request to show “slides
about mortgages” might return a slide titled “home
loans.” Thesauri, gazetteers, and lexicons like
WordNet will help achieve this. Analyzing non-
textual elements like tables and charts could also
allow a user to say, “get the slide with the network
architecture diagram.” And, while we now use a
fixed lexicon of common abbreviations, an auto-
mated analysis based on web search and other
techniques could identify likely expansions.

5 Conclusion

Our goal with the multimodal presentation
dashboard was to create a meeting/presentation
assistance tool that would change how people be-
have, inspiring presenters to expand the methods
they use to interact with audiences and with their
own material. To this end, our dashboard runs on a
single laptop, leaves the initiative in the hands of
the presenter, and allows slides from multiple pres-
entations to be dynamically retrieved from any-
where in the room. Our assistant requires no
“intelligent room”; only an intelligent presenter,
who may now offer the audience a presentation
that is as dynamic or as dull as imagination allows.

As Tufte (2006) reminds us in his analysis of
how PowerPoint presentations may have precipi-
tated the Columbia shuttle tragedy, the way infor-
mation is presented can have a profound—even
life-threatening—impact on the decisions we
make. With the multimodal presentation
dashboard, we hope to free future presenters from
that single, arrow-key dimension, offering access
to presentation slides and diagrams in any order,
using a diverse combination of modes. Presenters
can now pay more attention to the needs of their
audiences than to the rigid determinism of a fixed
presentation. Whether they will break free of the
linear presentation style imposed by current tech-
nology if given a chance remains to be seen.

References
Patrick Ehlen, Matthew Purver, and John Niekrasz.

2007. A meeting browser that learns. In Proceedings
of the AAAI Spring Symposium on Interaction Chal-
lenges for Intelligent Assistants.

David Franklin, Shannon Bradshaw, and Kristian
Hammond. 1999. Beyond “Next slide, please”: The

use of content and speech in multi-modal control. In
Working Notes of the AAAI-99 Workshop on Intelli-
gent Information Systems.

David Franklin, Shannon Bradshaw, and Kristian
Hammond. 2000. Jabberwocky: You don't have to be
a rocket scientist to change slides for a hydrogen
combustion lecture. In Proceedings of Intelligent
User Interfaces 2000 (IUI-2000).

Vincent Goffin, Cyril Allauzen, Enrico Bocchieri, Dilek
Hakkani-Tür, Andrej Ljolje, Sarangarajan Partha-
sarathy, Mazin Rahim, Giuseppe Riccardi, and Murat
Saraclar. 2005. The AT&T WATSON speech recog-
nizer. In Proceedings of ICASSP.

Michael Johnston, Srinivas Bangalore, Guna Vasireddy,
Amanda Stent, Patrick Ehlen, Marilyn Walker, Steve
Whittaker, Preetam Maloor. 2002. MATCH: An Ar-
chitecture for Multimodal Dialogue Systems. In Pro-
ceedings of the 40th ACL. 376-383.

Michael Johnston and Srinivas Bangalore. 2005. Finite-
state multimodal integration and understanding.
Journal of Natural Language Engineering. 11.2, pp.
159-187, Cambridge University Press.

Martin F. Porter. 1980. An algorithm for suffix strip-
ping, Program, 14, 130-137.

Ivica Rogina and Thomas Schaaf. 2002. Lecture and
presentation tracking in an intelligent meeting room.
In Proceedings of the 4th IEEE International Confer-
ence on Multimodal Interfaces. 47-52.

Simon Tucker and Steve Whittaker. 2005. Accessing
multimodal meeting data: Systems, problems and
possibilities. In Samy Bengio and Hervé Bourlard
(Eds.) Lecture Notes in Computer Science, 3361, 1-
11

Edward Tufte. 2006. The Cognitive Style of PowerPoint.
Graphics Press, Cheshire, CT.

Ye-Yi Wang and Alex Acero. 2003. Combination of
CFG and N-gram Modeling in Semantic Grammar
Learning. Proceedings of Eurospeech conference,
Geneva, Switzerland.

Acknowledgements We would like to thank Srinivas Banga-
lore, Rich Cox, Mazin Gilbert, Vincent Goffin, and Behzad
Shahraray for their help and support.

24

Bridging the Gap: Academic and Industrial Research in Dialog Technologies Workshop Proceedings, pages 25–31,

NAACL-HLT, Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

Technical Support Dialog Systems:
Issues, Problems, and Solutions

Kate Acomb, Jonathan Bloom, Krishna Dayanidhi, Phillip
Hunter, Peter Krogh, Esther Levin, Roberto Pieraccini

SpeechCycle
535 W 34th Street

New York, NY 10001
{kate,jonathanb,krishna,phillip,peter,roberto}@speechcycle.com

esther@spacegate.com

Abstract

The goal of this paper is to give a description
of the state of the art, the issues, the problems,
and the solutions related to industrial dialog
systems for the automation of technical sup-
port. After a general description of the evolu-
tion of the spoken dialog industry, and the
challenges in the development of technical
support applications, we will discuss two spe-
cific problems through a series of experimental
results. The first problem is the identification
of the call reason, or symptom, from loosely
constrained user utterances. The second is the
use of data for the experimental optimization
of the Voice User Interface (VUI).

1 Introduction

Since the beginning of the telephony spoken dialog
industry, in the mid 1990, we have been witnessing
the evolution of at least three generations of sys-
tems. What differentiates each generation is not
only the increase of complexity, but also the dif-
ferent architectures used. Table 1 provides a sum-
mary of the features that distinguish each
generation. The early first generation systems were
mostly informational, in that they would require
some information from the user, and would pro-
vide information in return. Examples of those sys-
tems, mostly developed during the mid and late
1990s, are package tracking, simple financial ap-
plications, and flight status information. At the

time there were no standards for developing dialog
systems, (VoiceXML 1.0 was published as a rec-
ommendation in year 2000) and thus the first gen-
eration dialog applications were implemented on
proprietary platforms, typically evolutions of exist-
ing touch-tone IVR (Interactive Voice Response)
architectures.

Since the early developments, spoken dialog sys-
tems were implemented as a graph, called call-
flow. The nodes of the call-flow typically represent
actions performed by the system and the arcs rep-
resent an enumeration of the possible outcomes.
Playing a prompt and interpreting the user re-
sponse through a speech recognition grammar is a
typical action. Dialog modules (Barnard et al.,
1999) were introduced in order to reduce the com-
plexity and increase reusability of call-flows. A
Dialog Module (or DM) is defined as a call-flow
object that encapsulates many of the interactions
needed for getting one piece of information from
the user, including retries, timeout handling, dis-
ambiguation, etc. Modern commercial dialog sys-
tems use DMs as their active call-flow nodes.

The number of DMs in a call-flow is generally an
indication of the application complexity. First gen-
eration applications showed a range of complexity
of a few to tens of DMs, typically spanning a few
turns of interaction.

The dialog modality is another characterization of
applications. Early applications supported strict
directed dialog interaction, meaning that at each

25

turn the system would direct the user by proposing
a finite—and typically small—number of choices.
That would also result in a limited grammar or vo-
cabulary at each turn.

The applications of the second generation were
typically transactional, in the sense that they could
perform a transaction on behalf of the user, like
moving funds between bank accounts, trading
stocks, or buying tickets. Most of those applica-
tions were developed using the new standards,
typically as collections of VoiceXML documents.
The complexity moved to the range of dozens of
dialog modules, spanning a number of turns of in-
teractions of the order of ten or more. At the same
time, some of the applications started using a tech-
nology known as Statistical Spoken Language Un-
derstanding, or SSLU (Gorin et al., 1997, Chu-
Carroll et al., 1999, Goel et al, 2005), for mapping
loosely constrained user utterances to a finite num-
ber of pre-defined semantic categories. The natural
language modality—as opposed to directed dia-
log—was initially used mostly for call-routing, i.e.
to route calls to the appropriate call center based
on a more or less lengthy description of the reason
for the call by the user.

While the model behind the first and second gen-
erations of dialog applications can be described by
the form-filling paradigm, and the interaction fol-
lows a pre-determined simple script, the systems of
the third generation have raised to a qualitatively
different level of complexity. Problem solving ap-
plications, like customer care, help desk, and tech-
nical support, are characterized by a level of
complexity ranging in the thousands of DMs, for a
number of turns of dynamic interaction that can
reach into the dozens. As the sophistication of the
applications evolved, so did the system architec-
ture by moving the logic from the client
(VoiceXML browser, or voice-browser) to the
server (Pieraccini and Huerta, 2005). More and
more system are today based on generic dialog
application server which interprets a dialog speci-
fication described by a—typically proprietary—
markup language and serve the voice-browser with
dynamically generated VoiceXML documents.
Finally, the interaction modality of the third gen-
eration systems is moving from the strictly directed
dialog application, to directed dialog, with some
natural language (SSLU) turns, and some limited
mixed-initiative (i.e. the possibility for the user to
change the course of the dialog by making an un-
solicited request).

2 Technical Support Applications

Today, automated technical support systems are
among the most complex types of dialog applica-
tions. The advantage of automation is clear, espe-
cially for high-volume services like broadband-
internet, entertainment (cable or satellite TV), and
telephony. When something goes wrong with the
service, the only choice for subscribers is to call a
technical support center. Unfortunately, staffing a
call center with enough agents trained to help solve
even the most common problems results in pro-
hibitive costs for the provider, even when out-
sourcing to less costly locations End users often
experience long waiting times and poor service
from untrained agents. With the magnitude of the
daily increase in the number of subscribers of those
services, the situation with human agents is bound
to worsen. Automation and self-service can, and
does, help reduce the burden constituted by the
most frequent call reasons, and resort to human
agents only for the most difficult and less common
problems.

GENERATION

 FIRST SECOND THIRD

Time Period 1994-2001 2000-2005 2004-today

Type of Ap-
plication Informational

Transac-
tional

Problem
Solving

Examples

Package
Tracking,
Flight Status

Banking,
Stock
Trading,
Train Res-
ervation

Customer
Care,
Technical
Support,
Help Desk.

Architecture Proprietary
Static
VoiceXML

Dynamic
VoiceXML

Complexity
(Number of
DMs) 10 100 1000

Interaction
Turns few 10 10-100

Interaction
Modality directed

directed +
natural
language
(SSLU)

directed +
natural
language
(SSLU) +
limited
mixed initia-
tive

Table 1: Evolution of spoken dialog systems.

26

However, automating technical support is particu-
larly challenging for several reasons. Among them:

- Troubleshooting knowledge is not readily
available in a form that can be used for
automation. Most often it is based on the
idiosyncratic experience of the individual
agents.

- End users are typically in a somewhat
emotionally altered state—something for
which they paid and that is supposed to
work is broken. They want it repaired
quickly by an expert human agent; they
don’t trust a machine can help them.

- The description of the problem provided
by the user can be imprecise, vague, or
based on a model of the world that may be
incorrect (e.g. some users of internet can-
not tell their modem from their router).

- It may be difficult to instruct non-
technically savvy users on how to perform
a troubleshooting step (e.g. Now renew
your IP address.) or request technical in-
formation (e.g. Are you using a Voice over
IP phone service?)

- Certain events cannot be controlled. For
instance, the time it would take for a user
to complete a troubleshooting step, like re-
booting a PC, is often unpredictable.

- The acoustic environment may be chal-
lenging. Users may be asked to switch
their TV on, reboot their PC, or check the
cable connections. All these operations can
cause noise that can trigger the speech rec-
ognizer and affect the course of the inter-
action.

On the other hand, one can leverage the automated
diagnosis or troubleshooting tools that are cur-
rently used by human agent and improve the effi-
ciency of the interaction. For instance, if the IP
address of the digital devices at the user premises
is available, one can ping them, verify their con-
nectivity, download new firmware, and perform
automated troubleshooting steps in the background
without the intervention of the user. However, the
interplay between automated and interactive op-
erations can raise the complexity of the applica-
tions such as to require higher level development
abstractions and authoring tools.

3 High Resolution SSLU

The identification of the call reason—i.e. the prob-
lem or the symptoms of the problem experienced
by the caller—is one of the first phases of the in-
teraction in a technical support application. There
are two possible design choices with today’s spo-
ken language technology:

- Directed dialog. A specific prompt enu-
merates all the possible reasons for a call,
and the user would choose one of them.

- Natural Language: An open prompt asks
the user to describe the reason for the call.
The utterance will be automatically
mapped to one of a number of possible call
reasons using SSLU technology.

Directed dialog would be the preferred choice in
terms of accuracy and cost of development. Unfor-
tunately, in most technical support applications, the
number of call-reasons can be very large, and thus
prompting the caller through a directed dialog
menu would be impractical. Besides, even though
a long menu can be structured hierarchically as a
cascade of several shorter menus, the terms used
for indicating the different choices may be mis-
leading or meaningless for some of the users (e.g.
do you have a problem with hardware, software, or
networking?). Natural language with SSLU is
generally the best choice for problem identifica-
tion.

In practice, users mostly don’t know what the ac-
tual problem with their service is (e.g. modem is
wrongly configured), but typically they describe
their observations—or symptoms—which are ob-
servable manifestations of the problem. and not the
problem itself (e.g. symptom: I can’t connect to the
Web, problem: modem wrongly configured). Cor-
rectly identifying the symptom expressed in natural
language by users is the goal of the SSLU module.

SSLU provides a mapping between input utter-
ances and a set of pre-determined categories.
SSLU has been effectively used in the past to en-
able automatic call-routing. Typically call-routing
applications have a number of categories, of the
order of a dozen or so, which are designed based
on the different routes to which the IVR is sup-
posed to dispatch the callers. So, generally, in call-

27

routing applications, the categories are known and
determined prior to any data collection.

One could follow the same approach for the prob-
lem identification SSLU, i.e. determine a number
of a-priori problem categories and then map a col-
lection of training symptom utterances to each one
of them. There are several issues with this ap-
proach.

First, a complete set of categories—the prob-
lems—may not be known prior to the acquisition
and analysis of a significant number of utterances.
Often the introduction of new home devices or ser-
vices (such as DVR, or HDTV) creates new prob-
lems and new symptoms that can be discovered
only by analyzing large amounts of utterance data.

Then, as we noted above, the relationship between
the problems—or broad categories of problems—
and the manifestations (i.e. the symptoms) may not
be obvious to the caller. Thus, confirming a broad
category in response to a detailed symptom utter-
ance may induce the user to deny it or to give a
verbose response (e.g. Caller: I cannot get to the
Web. System: I understand you have a problem
with your modem configuration, is that right?
Caller: Hmm…no. I said I cannot get to the Web.).

Finally, caller descriptions have different degrees
of specificity (e.g. I have a problem with my cable
service vs. The picture on my TV is pixilated on all
channels). Thus, the categories should reflect a
hierarchy of symptoms, from vague to specific,
that need to be taken into proper account in the
design of the interaction.

As a result from the above considerations, SSLU
for symptom identification needs to be designed in
order to reflect the high-resolution multitude and
specificity hierarchy of symptoms that emerge
from the analysis of a large quantity of utterances.
Figure 1 shows an excerpt from the hierarchy of
symptoms for a cable TV troubleshooting applica-
tion derived from the analysis of almost 100,000
utterance transcriptions.

Each node of the tree partially represented by Fig-
ure 1 is associated with a number of training utter-
ances from users describing that particular
symptom in their own words. For instance the top-

most node of the hierarchy, “TV Problem”, corre-
sponds to vague utterances such as I have a
problem with my TV or My cable TV does not
work. The” Ordering” node represents requests of
the type I have a problem with ordering a show,
which is still a somewhat vague request, since one
can order “Pay-per-view” or “On-demand” events,
and they correspond to different processes and
troubleshooting steps. Finally, at the most detailed
level of the hierarchy, for instance for the node
“TV Problem-Ordering-On Demand-Error”, one
finds utterances such as I tried to order a movie on
demand, but all I get is an error code on the TV.

In the experimental results reported below, we
trained and tested a hierarchically structured SSLU
for a cable TV troubleshooting application. A cor-
pus of 97,236 utterances was collected from a de-
ployed application which used a simpler, non
hierarchical, version of the SSLU. The utterances
were transcribed and initially annotated based on
an initial set of symptoms. The annotation was car-
ried out by creating an annotation guide document
which includes, for each symptom, a detailed ver-
bal description, a few utterance examples, and
relevant keywords. Human annotators were in-
structed to label each utterance with the correct
category based on the annotation guide and their

TV Problem

On Demand

Pay-per-view

Ordering

No Picture

Error

PIN

Other

Error

Figure 1: Excerpt from the hierarchical symp-
tom description in a cable TV technical support
application

28

work was monitored systematically by the system
designer.

After a first initial annotation of the whole corpus,
the annotation consistency was measured by com-
puting a cluster similarity distance between the
utterances corresponding to all possible pairs of
symptoms. When the consistency between a pair of
symptoms was below a given threshold, the clus-
ters were analyzed, and actions taken by the de-
signer in order to improve the consistency,
including reassign utterances and, if necessary,
modifying the annotation guide. The whole process
was repeated a few times until a satisfactory global
inter-cluster distance was attained.

Eventually we trained the SSLU on 79 symptoms
arranged on a hierarchy with a maximum depth of
3. Table 2 summarizes the results on an independ-
ent test set of 10,332 utterances. The result shows
that at the end of the process, a satisfactory batch
accuracy of 81.43% correct label assignment what
attained for the utterances which were deemed to
be in-domain, which constituted 90.22% of the test
corpus. Also, the system was able to correctly re-
ject 24.56% of out-of-domain utterances. The
overall accuracy of the system was considered rea-
sonable for the state of the art of commercial
SSLUs based on current statistical classification
algorithms. Improvement in the classification per-
formance can result by better language models (i.e.
some of the errors are due to incorrect word recog-
nition by the ASR) and better classifiers, which
need to take into account more features of the in-
coming utterances, such as word order1 and con-
textual information.

1 Current commercial SSLU modules, as the one used in the
work described here, use statistical classifiers based only on
bags of words. Thus the order of the words in the incoming
utterance is not taken into consideration.

3.1 Confirmation Effectiveness

Accuracy is not the only measure to provide an
assessment of how the symptom described by the
caller is effectively captured. Since the user re-
sponse needs to be confirmed based on the inter-
pretation returned by the SSLU, the caller always
has the choice of accepting or denying the hy-
pothesis. If the confirmation prompts are not prop-
erly designed, the user can erroneously deny
correctly detected symptoms, or erroneously accept
wrong ones.

The analysis reported below was carried out for a
deployed system for technical support of Internet
service. The full symptom identification interac-
tions following the initial open prompt was tran-
scribed and annotated for 895 calls. The SSLU
used in this application consisted of 36 symptoms
structured in a hierarchy with a maximum depth of
3. For each interaction we tracked the following
events:

- the first user response to the open question
- successive responses in case of re-

prompting because of speech recognition
rejection or timeout

- response to the yes/no confirmation ques-
tion)

- successive responses to the confirmation
question in case the recognizer rejected it
or timed out.

- Successive responses to the confirmation
question in case the user denied, and a
second best hypothesis was offered.

Table 3 summarizes the results of this analysis.

The first row reports the number of calls for which
the identified symptom was correct (as compared
with human annotation) and confirmed by the
caller. The following rows are the number of calls
where the identified symptom was wrong and the
caller still accepted it during confirmation, the
symptom was correct and the caller denied it, and
the symptom was wrong and denied, respectively.
Finally there were 57 calls where the caller did not
provide any confirmation (e.g. hung up, timed out,
ASR rejected the confirmation utterance even after
re-prompting, etc.), and 100 calls in which it was
not possible to collect the symptom (e.g. rejections

Utterances 10332 100.00%
In domain 9322 90.22%
Correct in-domain 7591 81.43%
Out of domain 1010 9.78%
Correct rejection out-of-
domain 249 24.65%

Table 2: Accuracy results for Hierarchical
SSLU with 79 symptoms.

29

of first and second re-prompts, timeouts, etc.) In
both cases—i.e. no confirmation or no symptom
collection at all—the call continued with a differ-
ent strategy (e.g. moved to a directed dialog, or
escalated the call to a human agent). The interest-
ing result from this experiment is that the SSLU
returned a correct symptom 59.8 + 2.5 = 62.3% of
the times (considering both in-domain and out-of-
domain utterances), but the actual “perceived” ac-
curacy (i.e. when the user accepted the result) was
higher, and precisely 59.8 + 13.2 = 73%. A deeper
analysis shows that for most of the wrongly ac-
cepted utterances the wrong symptom identified by
the SSLU was still in the same hierarchical cate-
gory, but with different degree of specificity (e.g.
Internet-Slow vs. vague Internet)

The difference between the actual and perceived
accuracy of SSLU has implications for the overall
performance of the application. One could build a
high performance SSLU, but a wrongly confirmed
symptom may put the dialog off course and result
in reduced automation, even though the perceived
accuracy is higher. Confirmation of SSLU results
is definitely an area where new research can poten-
tially impact the performance of the whole system.

4 Experimental VUI

Voice User Interface (VUI) is typically considered
an art. VUI designers acquire their experience by
analyzing the effect of different prompts on the
behavior of users, and can often predict whether a
new prompt can help, confuse, or expedite the in-
teraction. Unfortunately, like all technologies rely-
ing on the anecdotal experience of the designer, in
VUI it is difficult to make fine adjustments to an
interface and predict the effect of competing simi-
lar designs before the application is actually de-
ployed. However, in large volume applications,

and when a global measure of performance is
available, one can test different non-disruptive de-
sign hypotheses on the field, while the application
is running. We call this process experimental VUI.

There have been, in the past, several studies aimed
at using machine learning for the design of dialog
systems (Levin et al., 2000, Young 2002, Pietquin
et al, 2006). Unfortunately, the problem of full de-
sign of a system based uniquely on machine learn-
ing is a very difficult one, and cannot be fully
utilized yet for commercial systems. A simpler and
less ambitious goal is that of finding the optimal
dialog strategy among a small number of compet-
ing designs, where all the initial designs are work-
ing reasonably well (Walker 2000, Paek et al 2004,
Lewis 2006). Comparing competing designs re-
quires carrying on an exploration based on random
selection of each design at crucial points of the
dialog. Once a reward schema is defined, one can
use it for changing the exploration probability so as
to maximize a function of the accumulated reward
using, for instance, one of the algorithms described
in (Sutton 1998).

Defining many different competing designs at sev-
eral points of the interaction is often impractical
and costly. Moreover, in a deployed commercial
application, one needs to be careful about main-
taining a reasonable user experience during explo-
ration. Thus, the competing designs have to be
chosen carefully and applied to portions of the dia-
log where the choice of the optimal design can
make a significant difference for the reward meas-
ure in use.

In the experiments described below we selected the
symptom identification as a point worth exploring.
in an internet technical support application We
then defined three prompting schemas

- Schema A: the system plays an open
prompt

- Schema B: the system plays an open
prompt, and then provides some examples
of requests

- Schema C: The system plays an open
prompt, and then suggests a command that
provides a list of choices.

Accepted correct 535 59.8%
Accepted wrong 118 13.2%
Denied correct 22 2.5%
Denied wrong 63 7.0%
Unconfirmed 57 6.4%
No result 100 11.2%
TOTAL 895 100.0%

Table 3: Result of the confirmation analy-
sis based on the results of 895 calls

30

The three schemas were implemented on a de-
ployed system for limited time. There was 1/3
probability for each individual call to go through
one of the above schemas. The target function cho-
sen for optimization was the average automation
rate.

Figure 2 shows the effect on the cumulated average
automation rate for each one of the competing de-
sign. The exploration was carried out until the dif-
ference in the automation rate among the three
designs reached statistical significance, which was
after 13 days with a total number of 21,491 calls.
At that point in time we established that design B
had superior performance, as compared to A and
C, with a difference of 0.68 percent points.
Event though the gain in total automation rate (i.e.
0.68 percent points) seems to be modest, one has to
consider that this increase is simply caused only by
the selection of the best wording of a single
prompt in an application with thousands of
prompts. One can expect to obtain more important
improvements by at looking to other areas of the
dialog where experimental VUI can be applied and
selecting the optimal prompt can have an impact
on the overall automation rate.

5 Conclusions

We started this paper by describing the advances
achieved in dialog system technology for commer-
cial applications during the past decade. The indus-
try moved from the first generation of systems able
to handle very structured and simple interactions,
to a current third generation where the interaction
is less structured and the goal is to automate com-

plex tasks such as problem solving and technical
support.We then discussed general issues regarding
the effective development of a technical support
application. In particular we focused on two areas:
the collection of the symptom from natural lan-
guage expressions, and the experimental optimiza-
tion of the VUI strategy. In both cases we
described how a detailed analysis of live data can
greatly help optimize the overall performance.

6 References

Barnard, E., Halberstadt, A., Kotelly, C., Phillips, M., 1999
“A Consistent Approach To Designing Spoken-dialog
Systems,” Proc. of ASRU99 – IEEE Workshop, Keystone,
Colorado, Dec. 1999.

Gorin, A. L., Riccardi, G.,Wright, J. H., 1997 Speech Com-
munication, vol. 23, pp. 113-127, 1997.

Chu-Carroll, J., Carpenter B., 1999. “Vector-based natural
language call routing,” Computational Linguistics,
v.25, n.3, p.361-388, September 1999

Goel, V., Kuo, H.-K., Deligne, S., Wu S., 2005 “Language
Model Estimation for Optimizing End-to-end Performance
of a Natural Language Call Routing System,” ICASSP
2005

Pieraccini, R., Huerta, J., Where do we go from here? Re-
search and Commercial Spoken Dialog Systems, Proc. of
6th SIGdial Workshop on Discourse and Dialog, Lisbon,
Portugal, 2-3 September, 2005. pp. 1-10

Levin, E., Pieraccini, R., Eckert, W., A Stochastic Model of
Human-Machine Interaction for Learning Dialog Strate-
gies, IEEE Trans. on Speech and Audio Processing, Vol.
8, No. 1, pp. 11-23, January 2000.

Pietquin, O., Dutoit, T., A Probabilistic Framework for Dialog
Simulation and Optimal Strategy Learning, In IEEE
Transactions on Audio, Speech and Language Processing,
14(2):589-599, 2006

Young, S., Talking to Machines (Statistically Speaking), Int
Conf Spoken Language Processing, Denver, Colorado.
(2002).

Walker, M., An Application of Reinforcement Learning to
Dialogue Strategy Selection in a Spoken Dialogue System
for Email . Journal of Artificial Intelligence Research,
JAIR, Vol 12., pp. 387-416, 2000

Paek T., Horvitz E.,. Optimizing automated call routing by
integrating spoken dialog models with queuing models.
Proceedings of HLT-NAACL, 2004, pp. 41-48.

Lewis, C., Di Fabbrizio, G., Prompt Selection with Rein-
forcement Learning in an AT&T Call Routing Applica-
tion, Proc. of Interspeech 2006, Pittsburgh, PA. pp. 1770-
1773, (2006)

Sutton, R.S., Barto, A.G. (1998). Reinforcement Learning: An
Introduction. MIT Press.

14.00%

15.00%

16.00%

17.00%

18.00%

19.00%

20.00%

21.00%

1 2 3 4 5 6 7 8 9 10 11 12 13

Time (days)

A
u

to
m

at
io

n
 r

at
e

A

B

C

Figure 2: Daily average automation rate for com-
peting designs.

31

Bridging the Gap: Academic and Industrial Research in Dialog Technologies Workshop Proceedings, pages 32–39,

NAACL-HLT, Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

Olympus: an open-source framework

for conversational spoken language interface research

Dan Bohus, Antoine Raux, Thomas K. Harris,

Maxine Eskenazi, Alexander I. Rudnicky
School of Computer Science

Carnegie Mellon University

{dbohus, antoine, tkharris, max, air}@cs.cmu.edu

Abstract

We introduce Olympus, a freely available

framework for research in conversational

interfaces. Olympus’ open, transparent,

flexible, modular and scalable nature fa-

cilitates the development of large-scale,

real-world systems, and enables research

leading to technological and scientific ad-

vances in conversational spoken language

interfaces. In this paper, we describe the

overall architecture, several systems

spanning different domains, and a number

of current research efforts supported by

Olympus.

1 Introduction

Spoken language interfaces developed in industrial

and academic settings differ in terms of goals, the

types of tasks and research questions addressed,

and the kinds of resources available.

In order to be economically viable, most indus-

try groups need to develop real-world applications

that serve large and varied customer populations.

As a result, they gain insight into the research

questions that are truly significant for current-

generation technologies. When needed, they are

able to focus large resources (typically unavailable

in academia) on addressing these questions. To

protect their investments, companies do not gener-

ally disseminate new technologies and results.

In contrast, academia pursues long-term scien-

tific research goals, which are not tied to immedi-

ate economic returns or customer populations. As a

result, academic groups are free to explore a larger

variety of research questions, even with a high risk

of failure or a lack of immediate payoff. Academic

groups also engage in a more open exchange of

ideas and results. However, building spoken lan-

guage interfaces requires significant investments

that are sometimes beyond the reach of academic

researchers. As a consequence, research in acade-

mia is oftentimes conducted with toy systems and

skewed user populations. In turn, this raises ques-

tions about the validity of the results and hinders

the research impact.

In an effort to address this problem and facilitate

research on relevant, real-world questions, we have

developed Olympus, a freely available framework

for building and studying conversational spoken

language interfaces. The Olympus architecture,

described in Section 3, has its roots in the CMU

Communicator project (Rudnicky et al., 1999).

Based on that experience and subsequent projects,

we have engineered Olympus into an open, trans-

parent, flexible, modular, and scalable architecture.

To date, Olympus has been used to develop and

deploy a number of spoken language interfaces

spanning different domains and interaction types;

these systems are presented in Section 4. They are

currently supporting research on diverse aspects of

spoken language interaction. Section 5 discusses

three such efforts: error handling, multi-participant

conversation, and turn-taking.

We believe that Olympus and other similar tool-

kits, discussed in Section 6, are essential in order

to bridge the gap between industry and academia.

Such frameworks lower the cost of entry for re-

32

search on practical conversational interfaces. They

also promote technology transfer through the reuse

of components, and support direct comparisons

between systems and technologies.

2 Desired characteristics

While developing Olympus, we identified a num-

ber of characteristics that in our opinion are neces-

sary to effectively support and foster research. The

framework should be open, transparent, flexible,

modular, and scalable.

Open. Complete source code should be avail-

able for all the components so that researchers and

engineers can inspect and modify it towards their

ends. Ideally, source code should be free for both

research and commercial purposes and grow

through contributions from the user community.

Transparent / Analytic. Open source code

promotes transparency, but beyond that researchers

must be able to analyze the system’s behavior. To

this end, every component should provide detailed

accounts of their internal state. Furthermore, tools

for data visualization and analysis should be an

integral part of the framework.

Flexible. The framework should be able to ac-

commodate a wide range of applications and re-

search interests, and allow easy integration of new

technologies.

Modular / Reusable. Specific functions (e.g.

speech recognition, parsing) should be encapsu-

lated in components with rich and well-defined

interfaces, and an application-independent design.

This will promote reusability, and will lessen the

system development effort.

Scalable. While frameworks that rely on sim-

ple, well established approaches (e.g. finite-state

dialogs in VoiceXML) allow the development of

large-scale systems, this is usually not the case for

frameworks that provide the flexibility and trans-

parency needed for research. However, some re-

search questions are not apparent until one moves

from toy systems into large-scale applications. The

framework should strive to not compromise scal-

ability for the sake of flexibility or transparency.

3 Architecture

At the high level, a typical Olympus application

consists of a series of components connected in a

classical, pipeline architecture, as illustrated by the

bold components in Figure 1. The audio signal for

the user utterance is captured and passed through a

speech recognition module that produces a recog-

nition hypothesis (e.g., two p.m.). The recognition

hypothesis is then forwarded to a language under-

standing component that extracts the relevant con-

cepts (e.g., [time=2p.m.]), and then through a

confidence annotation module that assigns a confi-

dence score. Next, a dialog manager integrates this

semantic input into the current context, and pro-

duces the next action to be taken by the system in

the form of the semantic output (e.g., {request

end_time}). A language generation module pro-

duces the corresponding surface form, which is

subsequently passed to a speech synthesis module

and rendered as audio.

Galaxy communication infrastructure. While

the pipeline shown in bold in Figure 1 captures the

logical flow of information in the system, in prac-

tice the system components communicate via a

centralized message-passing infrastructure – Gal-

axy (Seneff et al., 1998). Each component is im-

plemented as a separate process that connects to a

traffic router – the Galaxy hub. The messages are

sent through the hub, which forwards them to the

appropriate destination. The routing logic is de-

scribed via a configuration script.

Speech recognition. Olympus uses the Sphinx

decoding engine (Huang et al., 1992). A recogni-

tion server captures the audio stream, forwards it to

a set of parallel recognition engines, and collects

the corresponding recognition results. The set of

best hypotheses (one from each engine) is then

forwarded to the language understanding compo-

nent. The recognition engines can also generate n-

best lists, but that process significantly slows down

the systems and has not been used live. Interfaces

to connect Sphinx-II and Sphinx-III engines, as

well as a DTMF (touch-tone) decoder to the recog-

nition server are currently available. The individual

recognition engines can use either n-gram- or

grammar-based language models. Dialog-state

specific as well as class-based language models are

supported, and tools for constructing language and

acoustic models from data are readily available.

Most of the Olympus systems described in the next

section use two gender-specific Sphinx-II recog-

nizers in parallel. Other parallel decoder configura-

tions can also be created and used.

Language understanding is performed by

Phoenix, a robust semantic parser (Ward and Issar,

33

1994). Phoenix uses a semantic grammar to parse

the incoming set of recognition hypotheses. This

grammar is assembled by concatenating a set of

reusable grammar rules that capture domain-

independent constructs like [Yes], [No], [Help],

[Repeat], and [Number], with a set of domain-

specific grammar rules authored by the system de-

veloper. For each recognition hypothesis the output

of the parser consists of a sequence of slots con-

taining the concepts extracted from the utterance.

Confidence annotation. From Phoenix, the set

of parsed hypotheses is passed to Helios, the con-

fidence annotation component. Helios uses features

from different knowledge sources in the system

(e.g., recognition, understanding, dialog) to com-

pute a confidence score for each hypothesis. This

score reflects the probability of correct understand-

ing, i.e. how much the system trusts that the cur-

rent semantic interpretation corresponds to the

user’s intention. The hypothesis with the highest

score is forwarded to the dialog manager.

Dialog management. Olympus uses the Raven-

Claw dialog management framework (Bohus and

Rudnicky, 2003). In a RavenClaw-based dialog

manager, the domain-specific dialog task is repre-

sented as a tree whose internal nodes capture the

hierarchical structure of the dialog, and whose

leaves encapsulate atomic dialog actions (e.g., ask-

ing a question, providing an answer, accessing a

database). A domain-independent dialog engine

executes this dialog task, interprets the input in the

current dialog context and decides which action to

engage next. In the process, the dialog manager

may exchange information with other domain-

specific agents (e.g., application back-end, data-

base access, temporal reference resolution agent).

Language generation. The semantic output of

the dialog manager is sent to the Rosetta template-

based language generation component, which pro-

duces the corresponding surface form. Like the

Phoenix grammar, the language generation tem-

plates are assembled by concatenating a set of pre-

defined, domain-independent templates, with

manually authored task-specific templates.

Speech synthesis. The prompts are synthesized

by the Kalliope speech synthesis module. Kalliope

can be currently configured to use Festival (Black

and Lenzo, 2000), which is an open-source speech

synthesis system, or Cepstral Swift (Cepstral

2005), a commercial engine. Finally, Kalliope also

supports the SSML markup language.

Other components. The various components

briefly described above form the core of the Olym-

pus dialog system framework. Additional compo-

nents have been created throughout the

development of various systems, and, given the

modularity of the architecture, can be easily re-

used. These include a telephony component, a text

Parsing
PHOENIX

Recognition
Server

Lang. Gen
ROSETTA

Synthesis
KALLIOPE

☺

SPHINX
SPHINX

SPHINX

Confidence
HELIOS

HUB
Text I/O

TTYSERVER
Application
Back-end

Dialog. Mgr.
RAVENCLAW

Date-Time
resolution

Process
Monitor

Until what time

would you like
the room?

{request end_time}

Figure 1. The Olympus dialog system reference architecture (a typical system)

two p.m. [time=2pm] [time=2pm]/0.65

34

input-and-output interface, and a temporal refer-

ence resolution agent that translates complex date-

time expressions (including relative references,

holidays, etc.) into a canonical form. Recently, a

Jabber interface was implemented to support inter-

actions via the popular GoogleTalk internet mes-

saging system. A Skype speech client component

is also available.

Data Analysis. Last but not least, a variety of

tools for logging, data processing and data ana-

lytics are also available as part of the framework.

These tools have been used for a wide variety of

tasks ranging from system monitoring, to trends

analysis, to training of internal models.

A key characteristic shared by all the Olympus

components is the clear separation between do-

main-independent programs and domain-specific

resources. This decoupling promotes reuse and

lessens the system development effort. To build a

new system, one can focus simply on developing

resources (e.g., language model, grammar, dialog

task specification, generation templates) without

having to do any programming. On the other hand,

since all components are open-source, any part of

the system can be modified, for example to test

new algorithms or compare approaches.

4 Systems

To date, the Olympus framework has been used to

successfully build and deploy several spoken dia-

log systems spanning different domains and inter-

action types (see Table 1). Given the limited space,

we discuss only three of these systems in a bit

more detail: Let’s Go!, LARRI, and TeamTalk.

More information about the other systems can be

found in (RavenClaw-Olympus, 2007).

4.1 Let’s Go!

The Let’s Go! Bus Information System (Raux et al

2005; 2006) is a telephone-based spoken dialog

system that provides access to bus schedules. In-

teraction with the system starts with an open

prompt, followed by a system-directed phase

where the user is asked the missing information.

Each of the three or four pieces of information

provided (origin, destination, time of travel, and

optional bus route) is explicitly confirmed. The

system knows 12 bus routes, and about 1800 place

names.

Originally developed as an in-lab research sys-

tem, Let’s Go! has been open to the general public

since March, 2005. Outside of business hours, calls

to the bus company are transferred to Let’s Go!,

providing a constant flow of genuine dialogs

(about 40 calls per weeknight and 70 per weekend

night). As of March, 2007, a corpus of about

30,000 calls to the system has been collected and

partially transcribed and annotated. In itself, this

publicly available corpus constitutes a unique re-

source for the community. In addition, the system

itself has been modified for research experiments

(e.g., Raux et al., 2005, Bohus et al., 2006). Be-

tween-system studies have been conducted by run-

ning several versions of the system in parallel and

picking one at random for every call. We have re-

cently opened this system to researchers from other

groups who wish to conduct their own experi-

ments.

4.2 LARRI

LARRI (Bohus and Rudnicky, 2002a) is a multi-

modal system for support of maintenance and re-

pair activities for F/A-18 aircraft mechanics. The

system implements an Interactive Electronic Tech-

nical Manual.

LARRI integrates a graphical user interface for

easy visualization of dense technical information

(e.g., instructions, schematics, video-streams) with

a spoken dialog system that facilitates information

access and offers assistance throughout the execu-

tion of procedural tasks. The GUI is accessible via

a translucent head-worn display connected to a

wearable client computer. A rotary mouse (dial)

provides direct access to the GUI elements.

After an initial log-in phase, LARRI guides the

user through the selected task, which consists of a

sequence of steps containing instructions, option-

ally followed by verification questions. Basic steps

can include animations or short video sequences

that can be accessed by the user through the GUI

or through spoken commands. The user can also

take the initiative and access the documentation,

either via the GUI or by simple commands such as

“go to step 15” or “show me the figure”.

The Olympus architecture was easily adapted

for this mobile and multi-modal setting. The wear-

able computer hosts audio input and output clients,

as well as the graphical user interface. The Galaxy

hub architecture allows us to easily connect these

35

components to the rest of the system, which runs

on a separate server computer. The rotary-mouse

events from the GUI are rendered as semantic in-

puts and are sent to Helios which in turn forwards

the corresponding messages to the dialog manager.

4.3 TeamTalk

TeamTalk (Harris et al., 2005) is a multi-modal

interface that facilitates communication between a

human operator and a team of heterogeneous ro-

bots, and is designed for a multi-robot-assisted

treasure-hunt domain. The human operator uses

spoken language in concert with pen-gestures on a

shared live map to elicit support from teams of ro-

bots. This support comes in the forms of mapping

unexplored areas, searching explored areas for ob-

jects of interest, and leading the human to said ob-

jects. TeamTalk has been built as a fully functional

interface to real robots, including the Pioneer

P2DX and the Segway RMP. In addition, it can

interface with virtual robots within the high-

fidelity USARSim (Balakirsky et al., 2006) simula-

tion environment. TeamTalk constitutes an excel-

lent platform for multi-agent dialog research.

To build TeamTalk, we had to address two chal-

lenges to current architecture. The multi-

participant nature of the interaction required multi-

ple dialog managers; the live map with pen-

gestured references required a multi-modal integra-

tion. Again, the flexibility and transparency of the

Olympus framework allowed for relatively simple

solutions to both of these challenges. To accom-

modate multi-participant dialog, each robot in the

domain is associated with its own RavenClaw-

based dialog manager, but all robots share the

other Olympus components: speech recognition,

language understanding, language generation and

speech synthesis. To accommodate the live map

GUI, a Galaxy server was built in Java that could

send the user’s inputs to Helios and receive outputs

from RavenClaw.

5 Research

The Olympus framework, along with the systems

developed using it, provides a robust basis for re-

search in spoken language interfaces. In this sec-

tion, we briefly outline three current research

efforts supported by this architecture. Information

about other supported research can be found in

(RavenClaw-Olympus, 2007).

5.1 Error handling

A persistent and important problem in today’s spo-

ken language interfaces is their lack of robustness

when faced with understanding errors. This prob-

lem stems from current limitations in speech rec-

ognition, and appears across most domains and

interaction types. In the last three years, we con-

ducted research aimed at improving robustness in

spoken language interfaces by: (1) endowing them

with the ability to accurately detect errors, (2) de-

System name Domain / Description Genre

RoomLine
(Bohus and Rudnicky 2005)

telephone-based system that provides support for conference
room reservation and scheduling within the School of Com-
puter Science at CMU.

information access (mixed
initiative)

Let’s Go! Public
(Raux et al 2005)

telephone-based system that provides access to bus schedule
information in the greater Pittsburgh area.

information access
(system initiative)

LARRI
(Bohus and Rudnicky 2002)

multi-modal system that provides assistance to F/A-18 aircraft
personnel during maintenance tasks.

multi-modal task guidance
and procedure browsing

Intelligent Procedure
Assistant
(Aist et al 2002)

early prototype for a multi-modal system aimed at providing
guidance and support to the astronauts on the International
Space Station during the execution of procedural tasks and
checklists.

multi-modal task guidance
and procedure browsing

TeamTalk
(Harris et al 2005)

multi-participant spoken language command-and-control inter-
face for a team of robots in the treasure-hunt domain.

multi-participant command-
and-control

VERA
telephone-based taskable agent that can be instructed to de-
liver messages to a third party and make wake-up calls.

voice mail / message deliv-
ery

Madeleine text-based dialog system for medical diagnosis. diagnosis

ConQuest
(Bohus et al 2007)

telephone-based spoken dialog system that provides confer-
ence schedule information.

information access
(mixed-initiative)

RavenCalendar
(Stenchikova et al 2007).

multimodal dialog system for managing personal calendar
information, such as meetings, classes, appointments and
reminders (uses Google Calendar as a back-end)

information access and
scheduling

Table 1. Olympus-based spoken dialog systems (shaded cells indicate deployed systems)

36

veloping a rich repertoire of error recovery strate-

gies and (3) developing scalable, data-driven ap-

proaches for building error recovery policies
1
. Two

of the dialog systems from Table 1 (Let’s Go! and

RoomLine) have provided a realistic experimental

platform for investigating these issues and evaluat-

ing the proposed solutions.

With respect to error detection, we have devel-

oped tools for learning confidence annotation

models by integrating information from multiple

knowledge sources in the system (Bohus and Rud-

nicky, 2002b). Additionally, Bohus and Rudnicky

(2006) proposed a data-driven approach for con-

structing more accurate beliefs in spoken language

interfaces by integrating information across multi-

ple turns in the conversation. Experiments with the

RoomLine system showed that the proposed belief

updating models led to significant improvements

(equivalent with a 13.5% absolute reduction in

WER) in both the effectiveness and the efficiency

of the interaction.

With respect to error recovery strategies, we

have developed and evaluated a large set of strate-

gies for handling misunderstandings and non-

understandings (Bohus and Rudnicky, 2005). The

strategies are implemented in a task-decoupled

manner in the RavenClaw dialog management

framework.

Finally, in (Bohus et al., 2006) we have pro-

posed a novel online-learning based approach for

building error recovery policies over a large set

of non-understanding recovery strategies. An em-

pirical evaluation conducted in the context of the

Let’s Go! system showed that the proposed ap-

proach led to a 12.5% increase in the non-

understanding recovery rate; this improvement was

attained in a relatively short (10-day) time period.

The models, tools and strategies developed

throughout this research can and have been easily

reused in other Olympus-based systems.

5.2 Multi-participant conversation

Conversational interfaces are generally built for

one-on-one conversation. This has been a workable

assumption for telephone-based systems, and a

useful one for many single-purpose applications.

However this assumption will soon become

strained as a growing collection of always-

1 A policy specifies how the system should choose between

different recovery strategies at runtime.

available agents (e.g., personal trainers, pedestrian

guides, or calendar systems) and embodied agents

(e.g., appliances and robots) feature spoken lan-

guage interfaces. When there are multiple active

agents that wish to engage in spoken dialog, new

issues arise. On the input side, the agents need to

be able to identify the addressee of any given user

utterance. On the output side, the agents need to

address the problem of channel contention, i.e.,

multiple participants speaking over each other.

Two architectural solutions can be envisioned:

(1) the agents share a single interface that under-

stands multi-agent requirements, or (2) each agent

uses its own interface and handles multi-participant

behavior. Agents that provide different services

have different dialog requirements, and we believe

this makes a centralized interface problematic. Fur-

thermore, the second solution better fits human

communication behavior and therefore is likely to

be more natural and habitable.

TeamTalk is a conversational system that fol-

lows the second approach: each robot has its own

dialog manager. Processed user inputs are sent to

all dialog managers in the system; each dialog

manager decides based on a simple algorithm

(Harris et al., 2004) whether or not the current in-

put is addressed to it. If so, an action is taken. Oth-

erwise the input is ignored; it will be processed and

responded to by another robot. On the output side,

to address the channel contention problem, each

RavenClaw output message is augmented with in-

formation about the identity of the robot that gen-

erated it. The shared synthesis component queues

the messages and plays them back sequentially

with the corresponding voice.

We are currently looking into two additional

challenges related to multi-participant dialog. We

are interested in how to address groups and sub-

groups in addition to individuals of a group, and

we are also interested in how to cope with multiple

humans in addition to multiple agents. Some ex-

periments investigating solutions to both of these

issues have been conducted. Analysis of the results

and refinements of these methods are ongoing.

5.3 Timing and turn-taking

While a lot of research has focused on higher lev-

els of conversation such as natural language under-

standing and dialog planning, low-level inter-

actional phenomena such as turn-taking have not

37

received as much attention. As a result, current

systems either constrain the interaction to a rigid

one-speaker-at-a-time style or expose themselves

to interactional problems such as inappropriate

delays, spurious interruptions, or turn over-taking

(Raux et al., 2006). To a large extent, these issues

stem from the fact that in common dialog architec-

tures, including Olympus, the dialog manager

works asynchronously from the real world (i.e.,

utterances and actions that are planned are as-

sumed to be executed instantaneously). This means

that user barge-ins and backchannels are often in-

terpreted in an incorrect context, which leads to

confusion, unexpected user behavior and potential

dialog breakdowns. Additionally, dialog systems’

low-level interactional behavior is generally the

result of ad-hoc rules encoded in different compo-

nents that are not precisely coordinated.

In order to investigate and resolve these is-

sues, we are currently developing version 2 of the

Olympus framework. In addition to all the compo-

nents described in this paper, Olympus 2 features

an Interaction Manager which handles the precise

timing of events perceived from the real world

(e.g., user utterances) and of system actions (e.g.,

prompts). By providing an interface between the

actual conversation and the asynchronous dialog

manager, Olympus 2 allows a more reactive behav-

ior without sacrificing the powerful dialog man-

agement features offered by RavenClaw. Olympus

2 is designed so that current Olympus-based sys-

tems can be upgraded with minimal effort.

This novel architecture, initially deployed in

the Let’s Go system, will enable research on turn-

taking and other low-level conversational phenom-

ena. Investigations within the context of other ex-

isting systems, such as LARRI and TeamTalk, will

uncover novel challenges and research directions.

6 Discussion and conclusion

The primary goal of the Olympus framework is to

enable research that leads to technological and sci-

entific advances in spoken language interfaces.

Olympus is however by no means a singular ef-

fort. Several other toolkits for research and devel-

opment are available to the community. They

differ on a number of dimensions, such as objec-

tives, scientific underpinnings, as well as techno-

logical and implementation aspects. Several

toolkits, both commercial, e.g., TellMe, BeVocal,

and academic, e.g., Ariadne (2007), SpeechBuilder

(Glass et al., 2004), and the CSLU toolkit (Cole,

1999), are used for rapid development. Some, e.g.,

CSLU and SpeechBuilder, have also been used for

educational purposes. And yet others, such as

Olympus, GALATEEA (Kawamoto et al., 2002)

and DIPPER (Bos et al., 2003) are primarily used

for research. Different toolkits rely on different

theories and dialog representations: finite-state,

slot-filling, plan-based, information state-update.

Each toolkit balances tradeoffs between complex-

ity, ease-of-use, control, robustness, flexibility, etc.

We believe the strengths of the Olympus

framework lie not only in its current components,

but also in its open, transparent, and flexible na-

ture. As we have seen in the previous sections,

these characteristics have allowed us to develop

and deploy practical, real-world systems operating

in a broad spectrum of domains. Through these

systems, Olympus provides an excellent basis for

research on a wide variety of spoken dialog issues.

The modular construction promotes the transfer

and reuse of research contributions across systems.

While desirable, an in-depth understanding of

the differences between all these toolkits remains

an open question. We believe that an open ex-

change of experiences and resources across toolkits

will create a better understanding of the current

state-of-the-art, generate new ideas, and lead to

better systems for everyone. Towards this end, we

are making the Olympus framework, as well as a

number of systems and dialog corpora, freely

available to the community.

Acknowledgements

We would like to thank all those who have brought

contributions to the components underlying the

Olympus dialog system framework. Neither Olym-

pus nor the dialog systems discussed in this paper

would have been possible without their help. We

particularly wish to thank Alan W Black for his

continued support and advice. Work on Olympus

components and systems was supported in part by

DARPA, under contract NBCH-D-03-0010, Boe-

ing, under contract CMU-BA-GTA-1, and the US

National Science Foundation under grant number

0208835. Any opinions, findings, and conclusions

or recommendations expressed in this material are

those of the authors and do not necessarily reflect

the views of the funding agencies.

38

References

Aist, G., Dowding, J., Hockey, B.A., Rayner, M.,

Hieronymus, J., Bohus, D., Boven, B., Blaylock, N.,

Campana, E., Early, S., Gorrell, G., and Phan, S.,

2003. Talking through procedures: An intelligent

Space Station procedure assistant, in Proc. of EACL-

2003, Budapest, Hungary

Ariadne, 2007, The Ariadne web-site, as of January

2007, http://www.opendialog.org/.

Balakirsky, S., Scrapper, C., Carpin, S., and Lewis, M.

2006. UsarSim: providing a framework for multi-

robot performance evaluation, in Proc. of PerMIS.

Black, A. and Lenzo, K., 2000. Building Voices in the

Festival Speech System, http://festvox.org/bsv/, 2000.

Bohus, D., Grau Puerto, S., Huggins-Daines, D., Keri,

V., Krishna, G., Kumar, K., Raux, A., Tomko, S.,

2007. Conquest – an Open-Source Dialog System for

Conferences, in Proc. of HLT 2007, Rochester, USA.

Bohus, D., Langner, B., Raux, A., Black, A., Eskenazi,

M., Rudnicky, A. 2006. Online Supervised Learning

of Non-understanding Recovery Policies, in Proc. of

SLT-2006, Aruba.

Bohus, D., and Rudnicky, A. 2006. A K-hypotheses +

Other Belief Updating Model, in Proc. of the AAAI

Workshop on Statistical and Empirical Methods in

Spoken Dialogue Systems, 2006.

Bohus, D., and Rudnicky, A., 2005. Sorry I didn’t

Catch That: An Investigation of Non-understanding

Errors and Recovery Strategies, in Proc. of SIGdial-

2005, Lisbon, Portugal.

Bohus, D., and Rudnicky, A., 2003. RavenClaw: Dialog

Management Using Hierarchical Task Decomposi-

tion and an Expectation Agenda, in Proc. of Eu-

rospeech 2003, Geneva, Switzerland.

Bohus, D., and Rudnicky, A., 2002a. LARRI: A Lan-

guage-based Maintenance and Repair Assistant, in

Proc. of IDS-2002, Kloster Irsee, Germany.

Bohus, D., and Rudnicky, A., 2002b. Integrating Multi-

ple Knowledge Sources in the CMU Communicator

Dialog System, Technical Report CMU-CS-02-190.

Bos, J., Klein, E., Lemon, O., and Oka, T., 2003.

DIPPER: Description and Formalisation of an In-

formation-State Update Dialogue System Architec-

ture, in Proc. of SIGdial-2003, Sapporo, Japan

Cepstral, LLC, 2005. Swift
TM

: Small Footprint Text-to-

Speech Synthesizer, http://www.cepstral.com.

Cole, R., 1999. Tools for Research and Education in

Speech Science, in Proc. of the International Confer-

ence of Phonetic Sciences, San Francisco, USA.

Glass, J., Weinstein, E., Cyphers, S., Polifroni, J., 2004.

A Framework for Developing Conversational Inter-

faces, in Proc. of CADUI, Funchal, Portugal.

Harris, T. K., Banerjee, S., Rudnicky, A., Sison, J.

Bodine, K., and Black, A. 2004. A Research Platform

for Multi-Agent Dialogue Dynamics, in Proc. of The

IEEE International Workshop on Robotics and Hu-

man Interactive Communications, Kurashiki, Japan.

Harris, T. K., Banerjee, S., Rudnicky, A. 2005. Hetero-

genous Multi-Robot Dialogues for Search Tasks, in

AAAI Spring Symposium: Dialogical Robots, Palo

Alto, California.

Huang, X., Alleva, F., Hon, H.-W., Hwang, M.-Y., Lee,

K.-F. and Rosenfeld, R., 1992. The SPHINX-II

Speech Recognition System: an overview, in Com-

puter Speech and Language, 7(2), pp 137-148, 1992.

Kawamoto, S., Shimodaira, H., Nitta, T., Nishimoto,

T., Nakamura, S., Itou, K., Morishima, S., Yotsukura,

T., Kai, A., Lee, A., Yamashita, Y., Kobayashi, T.,

Tokuda, K., Hirose, K., Minematsu, N., Yamada, A.,

Den, Y., Utsuro, T., and Sagayama, S., 2002. Open-

source software for developing anthropomorphic

spoken dialog agent, in Proc. of PRICAI-02, Interna-

tional Workshop on Lifelike Animated Agents.

Raux, A., Langner, B., Bohus, D., Black, A., and Eske-

nazi, M. 2005, Let's Go Public! Taking a Spoken

Dialog System to the Real World, in Proc. of Inter-

speech 2005, Lisbon, Portugal.

Raux, A., Bohus, D., Langner, B., Black, A., and Eske-

nazi, M. 2006 Doing Research on a Deployed Spoken

Dialogue System: One Year of Let's Go! Experience,

in Proc. of Interspeech 2006, Pittsburgh, USA.

RavenClaw-Olympus web page, as of January 2007:

http://www.ravenclaw-olympus.org/.

Rudnicky, A., Thayer, E., Constantinides, P., Tchou, C.,

Shern, R., Lenzo, K., Xu W., and Oh, A., 1999. Cre-

ating natural dialogs in the Carnegie Mellon Com-

municator system, in Proc. of Eurospeech 1999.

Seneff, S., Hurley, E., Lau, R., Pao, C., Schmid, P., and

Zue V. 1998 Galaxy-II: A reference architecture for

conversational system development, in Proc. of

ICSLP98, Sydney, Australia.

Stenchikova, S., Mucha, B., Hoffman, S., Stent, A.,

2007. RavenCalendar: A Multimodal Dialog System

for Managing A Personal Calendar, in Proc. of HLT

2007, Rochester, USA.

Ward, W., and Issar, S., 1994. Recent improvements in

the CMU spoken language understanding system, in

Proc. of the ARPA Human Language Technology

Workshop, pages 213–216, Plainsboro, NJ.

39

Bridging the Gap: Academic and Industrial Research in Dialog Technologies Workshop Proceedings, pages 40–47,

NAACL-HLT, Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

40

41

42

43

44

45

46

47

Bridging the Gap: Academic and Industrial Research in Dialog Technologies Workshop Proceedings, pages 48–55,

NAACL-HLT, Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

Experiments on the France Telecom 3000 Voice Agency corpus: academic
research on an industrial spoken dialog system∗

Géraldine Damnati
France T́elécom R&D

TECH/SSTP/RVA
2 av. Pierre Marzin

22307 Lannion Cedex 07, France
geraldine.damnati@orange-ftgroup.com

Frédéric Béchet Renato De Mori
LIA

University of Avignon
AGROPARC, 339 ch. des Meinajaries

84911 Avignon Cedex 09, France
frederic.bechet,renato.demori

@univ-avignon.fr

Abstract

The recent advances in speech recognition
technologies, and the experience acquired
in the development of WEB or Interac-
tive Voice Response interfaces, have facil-
itated the integration of speech modules
in robust Spoken Dialog Systems (SDS),
leading to the deployment on a large scale
of speech-enabled services. With these
services it is possible to obtain very large
corpora of human-machine interactions by
collecting system logs. This new kinds of
systems and dialogue corpora offer new
opportunities for academic research while
raising two issues: How can academic re-
search take profit of the system logs of
deployed SDS in order to build thenext
generation of SDS, although the dialogues
collected have a dialogue flow constrained
by theprevious SDS generation? On the
other side, what immediate benefits can
academic research offer for the improve-
ment of deployed system? This paper ad-
dresses these aspects in the framework of
the deployed France Telecom 3000 Voice
Agency service.

∗This work is supported by the 6th Framework Research
Programme of the European Union (EU), Project LUNA,
IST contract no 33549. The authors would like to thank
the EU for the financial support. For more information
about the LUNA project, please visit the project home-page,
www.ist-luna.eu .

1 Introduction

Since the deployment on a very large scale of the
AT&T How May I Help You? (HMIHY) (Gorin et
al., 1997) service in 2000, Spoken Dialogue Sys-
tems (SDS) handling a very large number of calls are
now developed from an industrial point of view. Al-
though a lot of the remaining problems (robustness,
coverage, etc.) are still spoken language process-
ing research problems, the conception and the de-
ployment of such state-of-the-art systems mainly re-
quires knowledge in user interfaces.

The recent advances in speech recognition tech-
nologies, and the experience acquired in the devel-
opment of WEB or Interactive Voice Response inter-
faces have facilitated the integration of speech mod-
ules in robust SDS.

These new SDS can be deployed on a very large
scale, like the France Telecom 3000 Voice Agency
service considered in this study. With these services
it is possible to obtain very large corpora of human-
machine interactions by collecting system logs. The
main differences between these corpora and those
collected in the framework of evaluation programs
like the DARPA ATIS (Hemphill et al., 1990) or the
French Technolangue MEDIA (Bonneau-Maynard
et al., 2005) programs can be expressed through the
following dimensions:

• Size. There are virtually no limits in the
amount of speakers available or the time
needed for collecting the dialogues as thou-
sands of dialogues are automatically processed
every day and the system logs are stored.
Therefore Dialog processing becomes similar

48

to Broadcast News processing: the limit is not
in the amount of data available, but rather in the
amount of data that can be manually annotated.

• Speakers. Data are fromreal users. The speak-
ers are not professional ones or have no reward
for calling the system. Therefore their behav-
iors are not biased by the acquisition protocols.
Spontaneous speech and speech affects can be
observed.

• Complexity. The complexity of the services
widely deployed is necessarily limited in order
to guarantee robustness with a high automation
rate. Therefore the dialogues collected are of-
ten short dialogues.

• Semantic model. The semantic model of such
deployed system is task-oriented. The inter-
pretation of an utterance mostly consists in the
detection of application-specific entities. In an
application like the France Telecom 3000 Voice
Agency service this detection is performed by
hand-crafted specific knowledge.

The AT&T HMIHY corpus was the first large dia-
logue corpus, obtained from a deployed system, that
has the above mentioned characteristics. A service
like the France Telecom 3000 Voice Agency service
has been developed by a user interface development
lab. This new kind of systems and dialogue corpora
offer new opportunities for academic research that
can be summarized as follows:

• How can academic research take profit of the
system logs of deployed SDS in order to build
the next generation of SDS, although the di-
alogues collected have a dialogue flow con-
strained by theprevious SDS generation?

• On the other side, what immediate benefits can
academic research offer for the improvement
of deployed system, while waiting for thenext
SDS generation?

This paper addresses these aspects in the frame-
work of the deployed FT 3000 Voice Agency ser-
vice. Section 3 presents how the ASR process can
be modified in order to detect and reject Out-Of-
Domain utterances, leading to an improvement in

the understanding performance without modifying
the system. Section 4 shows how the FT 3000 cor-
pus can be used in order to build stochastic models
that are the basis of a new Spoken Language Un-
derstanding strategy, even if the current SLU system
used in the FT 3000 service is not stochastic. Sec-
tion 5 presents experimental results obtained on this
corpus justifying the need of a tighter integration be-
tween the ASR and the SLU models.

2 Description of the France Telecom 3000
Voice Agency corpus

The France Telecom 3000 (FT3000) Voice Agency
service, the first deployed vocal service at France
Telecom exploiting natural language technologies,
has been made available to the general public in Oc-
tober 2005. FT3000 service enables customers to
obtain information and purchase almost 30 differ-
ent services and access the management of their ser-
vices. The continuous speech recognition system re-
lies on a bigram language model. The interpretation
is achieved through theVerbateam two-steps seman-
tic analyzer. Verbateam includes a set of rules to
convert the sequence of words hypothesized by the
speech recognition engine into a sequence of con-
cepts and an inference process that outputs an inter-
pretation label from a sequence of concepts.

2.1 Specificities of interactions

Given the main functionalities of the application,
two types of dialogues can be distinguished. Some
users call FT 3000 to activate some services they
have already purchased. For such demands, users
are rerouted toward specific vocal services that are
dedicated to those particular tasks. In that case, the
FT3000 service can be seen as a unique automatic
frontal desk that efficiently redirects users. For such
dialogues the collected corpora only contain the in-
teraction prior to rerouting. It can be observed in that
case that users are rather familiar to the system and
are most of the time regular users. Hence, they are
more likely to use short utterances, sometimes just
keywords and the interaction is fast (between one or
two dialogue turns in order to be redirected to the
demanded specific service).

Such dialogues will be referred astransit dia-
logues and represent 80% of the calls to theFT3000

49

service. As for the 20% other dialogues, referred to
asother, the whole interaction is proceeded within
theFT3000 application. They concern users that are
more generally asking for information about a given
service or users that are willing to purchase a new
service. For these dialogues, the average utterance
length is higher, as well as the average number of
dialogue turns.

other transit
dialogues 350 467
utterances 1288 717
words 4141 1454
av. dialogue length 3.7 1.5
av. utterance length 3.2 2.0
OOV rate (%) 3.6 1.9
disfluency rate (%) 2.8 2.1

Table 1: Statistics on thetransit andother dialogues

As can be observed in table 1 the fact that users
are less familiar with the application in theother dia-
logues implies higher OOV rate and disfluency rate1.
An important issue when designing ASR and SLU
models for such applications that are dedicated to
the general public is to be able to handle both naive
users and familiar users. Models have to be robust
enough for new users to accept the service and in
the meantime they have to be efficient enough for
familiar users to keep on using it. This is the reason
why experimental results will be detailed on the two
corpora described in this section.

2.2 User behavior and OOD utterances

When dealing with real users corpora, one has to
take into account the occurrence of Out-Of-Domain
(OOD) utterances. Users that are familiar with a ser-
vice are likely to be efficient and to strictly answer
the system’s prompts. New users can have more di-
verse reactions and typically make more comments
about the system. By comments we refer to such
cases when a user can either be surprisedwhat am
I supposed to say now?, irritated I’ve already said
that or even insulting the system. A critical aspect
for other dialogues is the higher rate of comments
uttered by users. For thetransit dialogues this phe-
nomenon is much less frequent because users are fa-

1by disfluency we consider here false starts and filled pauses

miliar to the system and they know how to be effi-
cient and how to reach their goal. As shown in ta-
ble 2, 14.3% of theother dialogues contain at least
one OOD comment, representing an overall 10.6%
of utterances in these dialogues.

other transit
dialogues 350 467
utterances 1288 717
OOD comments 137 24
OOD rate (%) 10.6 3.3
dialogues with OOD (%) 14.3 3.6

Table 2: Occurrence of Out-Of-Domain comments
on thetransit andother dialogues

Some utterances are just comments and some con-
tain both useful information and comments. In the
next section, we propose to detect these OOD se-
quences and to take this phenomenon into account
in the global SLU strategy.

3 Handling Out-Of-Domain utterances

The general purpose of the proposed strategy is to
detect OOD utterances in a first step, before entering
the Spoken Language Understanding (SLU) mod-
ule. Indeed standard Language Models (LMs) ap-
plied to OOD utterances are likely to generate erro-
neous speech recognition outputs and more gener-
ally highly noisy word lattices from which it might
not be relevant and probably harmful to apply SLU
modules.

Furthermore, when designing a general interac-
tion model which aims at predicting dialogue states
as proposed in this paper, OOD utterances are as
harmful for state prediction as can be an out-of-
vocabulary word for the prediction of the next word
with an n-gram LM.

This is why we propose a new composite LM that
integrates two sub-LMs: one LM for transcribing in-
domain phrases, and one LM for detecting and delet-
ing OOD phrases. Finally the different SLU strate-
gies proposed in this paper are applied only to the
portions of signal labeled as in-domain utterances.

50

3.1 Composite Language Model for decoding
spontaneous speech

As a starting point, the comments have been manu-
ally annotated in the training data in order to easily
separate OOD comment segments from in-domain
ones. A specific bigram language model is trained
for these comment segments. The comment LM was
designed from a 765 words lexicon and trained on
1712 comment sequences.

This comment LM, calledLMOOD has been in-
tegrated in the general bigramLMG. Comment
sequences have been parsed in the training corpus
and replaced by aOOD tag. This tag is added to
the general LM vocabulary and bigram probabilities
P (OOD |w) and P (w| OOD) are trained along
with other bigram probabilities (following the prin-
ciple of a priori word classes). During the decoding
process, the general bigram LM probabilities and the
LMOOD bigram probabilities are combined.

3.2 Decision strategy

Given this composite LM, a decision strategy is ap-
plied to select those utterances for which the word
lattice will be processed by the SLU component.
This decision is made upon the one-best speech
recognition hypotheses and can be described as fol-
lows:

1. If the one-best ASR output is a singleOOD
tag, the utterance is simply rejected.

2. Else, if the one-best ASR output contains an
OOD tag along with other words, those words

are processed directly by the SLU component,
following the argument that the word lattice for
this utterance is likely to contain noisy infor-
mation.

3. Else (i.e. no OOD tag in the one-best ASR
output), the word-lattice is transmitted to fur-
ther SLU components.

It will be shown in the experimental section that
this pre-filtering step, in order to decide whether a
word lattice is worth being processed by the higher-
level SLU components, is an efficient way of pre-
venting concepts and interpretation hypothesis to be
decoded from an uninformative utterance.

3.3 Experimental setup and evaluation

The models presented are trained on a corpus col-
lected thanks to theFT3000 service. It contains real
dialogues from the deployed service. The results
presented are obtained on the test corpus described
in section 2.

The results were evaluated according to 3 crite-
ria: the Word Error Rate (WER), the Concept Error
Rate (CER) and the Interpretation Error Rate (IER).
The CER is related to the correct translation of an
utterance into a string of basic concepts. The IER is
related to the global interpretation of an utterance
in the context of the dialogue service considered.
Therefore this last measure is the most significant
one as it is directly linked to the performance of the
dialogue system.

IER all other transit
size 2005 717 1288
LM G 16.5 22.3 13.0
LM G + OOD 15.0 18.6 12.8

Table 3: Interpretation error rate according to the
Language Model

Table 3 presents the IER results obtained with the
strategystrat1 with 2 different LMs for obtaining
Ŵ : LM G which is the general word bigram model;
and LMG + OOD which is the LM with the OOD com-
ment model. As one can see, a very significant im-
provement, 3.7% absolute, is achieved on theother
dialogues, which are the ones containing most of
the comments. For thetransit dialogues a small im-
provement (0.2%) is also obtained.

4 Building stochastic SLU strategies

4.1 The FT3000 SLU module

The SLU component of theFT3000 service consid-
ered in this study contains two stages:

1. the first one translates a string of wordsW =
w1, . . . , wn into a string of elementary con-
ceptsC = c1, . . . , cl by means of hand-written
regular grammars;

2. the second stage is made of a set of about 1600
inference rules that take as input a string of con-
ceptsC and output a global interpretationγ of

51

a message. These rules are ordered and the
first match obtained by processing the concept
string is kept as the output interpretation.

These message interpretations are expressed by an
attribute/value pair representing a function in the vo-
cal service.

The models used in these two stages are manually
defined by the service designers and are not stochas-
tic. We are going now to present how we can use a
corpus obtained with such models in order to define
an SLU strategy based on stochastic processes.

4.2 Semantic knowledge representation

The actualFT3000 system includes semantic knowl-
edge represented by hand-written rules. These rules
can also be expressed in a logic form. For this rea-
son, some basic concepts are now described with the
purpose of showing how logic knowledge has been
integrated in a first probabilistic model and how it
can be used in a future version in which optimal poli-
cies can be applied.

The semantic knowledge of an application is a
knowledge base (KB) containing a set of logic for-
mulas. Formulas return truth and are constructed
using constants which represent objects and may be
typed,variables, functions which are mappings from
tuples of objects to objects andpredicates which
represent relations among objects. Aninterpretation
specifies which objects, functions and relations in
the domain are represented by which symbol. Basic
inference problem is to determine whetherKB |= F

which means that KB entails a formulaF .
In SLU, interpretations are carried on by binding

variables and instantiating objects based on ASR re-
sults and inferences performed in the KB. Hypothe-
ses about functions and instantiated objects are writ-
ten into a Short Term Memory (STM).

A user goal is represented by a conjunction of
predicates. As dialogue progresses, some predi-
cates are grounded by the detection of predicate tags,
property tags and values. Such a detection is made
by the interpretation component. Other predicates
are grounded as a result of inference. A user goalG

is asserted when all the atoms of its conjunction are
grounded and asserted true.

Grouping the predicates whose conjunction is the
premise for asserting a goalGi is a process that goes

through a sequence of states:S1(Gi), S2(Gi), . . .
Let Γi

k be the content of the STM used for as-
serting the predicates grounded at thek-th turn of a
dialogue. These predicates are part of the premise
for asserting thei-th goal.

LetGi be an instance of thei-th goal asserted after
grounding all the predicates in the premise.

Γi
k can be represented by a composition from a

partial hypothesisΓi
k− 1

available at turnk − 1, the
machine actionak−1 performed at turnk − 1 and
the semantic interpretationγi

k i.e.:

Γi
k = χ

(

γi
k, ak−1, Γ

i
k−1

)

Sk(Gi) is an information state that can lead to a
user’s goalGi andΓi

k is part of the premise for as-
sertingGi at turnk.

State probability can be written as follows:

P (Sk(Gi)|Yk) = P
(

Gi|Γ
i
k

)

P
(

Γi
k|Yk

)

(1)

whereP
(

Gi|Γ
i
k

)

is the probability thatGi is the
type of goal that corresponds to the user interac-
tion given the grounding predicates inΓi

k. Yk is the
acoustic features of the user’s utterance at turnk.

Probabilities of states can be used to define a be-
lief of the dialogue system.

A first model allowing multiple dialog state se-
quence hypothesis is proposed in (Damnati et al.,
2007). In this model each dialog state correspond
to a system state in the dialog automaton. In order
to deal with flexible dialog strategies and following
previous work (Williams and Young, 2007), a new
model based on a Partially Observable Markov De-
cision Process (POMDP) is currently studied.

If no dialog history is taken into account,
P

(

Γi
k|Y

)

comes down toP
(

γi
k|Y

)

, γi
k being a

semantic attribute/value pair produced by the Ver-
bateam interpretation rules.

The integration of this semantic decoding process
in the ASR process is presented in the next section.

5 Optimizing the ASR and SLU processes

With the stochastic models proposed in section 4,
different strategies can be built and optimized. We
are interested here in the integration of the ASR and
SLU processes. As already shown by previous stud-
ies (Wang et al., 2005), the traditional sequential ap-
proach that first looks for the best sequence of words

52

Ŵ before looking for the best interpretationγ̂ of an
utterance is sub-optimal. Performing SLU on a word
lattice output by the ASR module is an efficient way
of integrating the search for the best sequence of
words and the best interpretation. However there are
real-time issues in processing word lattices in SDS,
and therefore they are mainly used in research sys-
tems rather than deployed systems.

In section 3 a strategy is proposed for selecting
the utterances for which a word lattice is going to be
produced. We are going now to evaluate the gain in
performance that can be obtained thanks to an inte-
grated approach on these selected utterances.

5.1 Sequentialvs. integrated strategies

Two strategies are going to be evaluated. The first
one (strat1) is fully sequential: the best sequence of
wordŴ is first obtained with

Ŵ = argmax
W

P (W |Y)

Then the best sequence of conceptsĈ is obtained
with

Ĉ = argmax
C

P (C|Ŵ)

Finally the interpretation rules are applied tôC in
order to obtain the best interpretationγ̂.

The second strategy (strat2) is fully integrated:γ̂
is obtained by searching at the same time forŴ and
Ĉ andγ̂. In this case we have:

γ̂ = argmax
W,C,γ

P (γ|C)P (C|W)P (W |Y)

The stochastic models proposed are implemented
with a Finite State Machine (FSM) paradigm thanks
to the AT&T FSM toolkit (Mohri et al., 2002).

Following the approach described in (Raymond
et al., 2006), the SLU first stage is implemented by
means of a word-to-concept transducer that trans-
lates a word lattice into a concept lattice. This con-
cept lattice is rescored with a Language Model on
the concepts (also encoded as FSMs with the AT&T
GRM toolkit (Allauzen et al., 2003)).

The rule database of the SLU second stage is en-
coded as a transducer that takes as input concepts
and output semantic interpretationsγ. By applying
this transducer to an FSM representing a concept lat-
tice, we directly obtain a lattice of interpretations.

The SLU process is therefore made of the com-
position of the ASR word lattice, two transducers
(word-to-concepts and concept-to-interpretations)
and an FSM representing a Language Model on the
concepts. The concept LM is trained on theFT3000
corpus.

This strategy push forward the approach devel-
opped at AT&T in theHow May I Help You? (Gorin
et al., 1997) project by using richer semantic mod-
els than call-types and named-entities models. More
precisely, the 1600 Verbateam interpretation rules
used in this study constitute a rich knowledge base.
By integrating them into the search, thanks to the
FSM paradigm, we can jointly optimize the search
for the best sequence of words, basic concepts, and
full semantic interpretations.

For the strategystrat1 only the best path is kept in
the FSM corresponding to the word lattice, simulat-
ing a sequential approach. Forstrat2 the best inter-
pretationγ̂ is obtained on the whole concept lattice.

error WER CER IER
strat1 40.1 24.4 15.0
strat2 38.2 22.5 14.5

Table 4: Word Error Rate (WER), Concept Error
Rate (CER) and Interpretation Error Rate (IER) ac-
cording to the SLU strategy

The comparison among the two strategies is given
in table 4. As we can see a small improvement is ob-
tained for the interpretation error rate (IER) with the
integrated strategy (strat2). This gain is small; how-
ever it is interesting to look at the Oracle IER that
can be obtained on an n-best list of interpretations
produced by each strategy (the Oracle IER being the
lowest IER that can be obtained on an n-best list of
hypotheses with a perfect Oracle decision process).
This comparison is given in Figure 1. As one can
see a much lower Oracle IER can be achieved with
strat2. For example, with an n-best list of 5 interpre-
tations, the lowest IER is 7.4 forstrat1 and only 4.8
for strat2. This is very interesting for dialogue sys-
tems as the Dialog Manager can use dialogue con-
text information in order to filter such n-best lists.

53

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8 9 10

O
ra

cl
e

IE
R

size of the n-best list of interpretations

sequential search (strat1)
integrated search (strat2)

Figure 1: Oracle IER according to an n-best list of interpretations for strategiesstrat1 andstrat2

5.2 Optimizing WER, CER and IER

Table 4 also indicates that the improvements ob-
tained on the WER and CER dimensions don’t al-
ways lead to similar improvements in IER. This is
due to the fact that the improvements in WER and
CER are mostly due to a significant reduction in the
insertion rates of words and concepts. Because the
same weight is usually given to all kinds of errors
(insertions, substitutions and deletions), a decrease
in the overall error rate can be misleading as inter-
pretation strategies can deal more easily with inser-
tions than deletions or substitutions. Therefore the
reduction of the overall WER and CER measures is
not a reliable indicator of an increase of performance
of the whole SLU module.

level 1-best Oracle hyp.
WER 33.7 20.0
CER 21.2 9.7
IER 13.0 4.4

Table 5: Error rates on words, concepts and interpre-
tations for the 1-best hypothesis and for the Oracle
hypothesis of each level

These results have already been shown for WER
by previous studies like (Riccardi and Gorin, 1998)

IER
from word Oracle 9.8
from concept Oracle 7.5
interpretation Oracle 4.4

Table 6: IER obtained on Oracle hypotheses com-
puted at different levels.

or more recently (Wang et al., 2003). They are il-
lustrated by Table 5 and Table 6. The figures shown
in these tables were computed on the subset of utter-
ances that were passed to the SLU component. Ut-
terances for which an OOD has been detected are
discarded. In Table 5 are displayed the error rates
obtained on words, concepts and interpretations both
on the 1-best hypothesis and on the Oracle hypothe-
sis (the one with the lowest error rate in the lattice).
These Oracle error rates were obtained by looking
for the best hypothesis in the lattice obtained at the
corresponding level (e.g. looking for the best se-
quence of concepts in the concept lattice). As for Ta-
ble 6, the mentioned IER are the one obtained when
applying SLU to the Oracles hypotheses computed
for each level. As one can see the lowest IER (4.4)
is not obtained on the hypotheses with the lowest
WER (9.8) or CER (7.5).

54

6 Conclusion

This paper presents a study on theFT3000 corpus
collected from real users on a deployed general pub-
lic application. Two problematics are addressed:
How can such a corpus be helpful to carry on re-
search on advanced SLU methods eventhough it has
been collected from a more simple rule-based dia-
logue system? How can academic research trans-
late into short-term improvements for deployed ser-
vices? This paper proposes a strategy for integrating
advanced SLU components in deployed services.
This strategy consists in selecting the utterances for
which the advanced SLU components are going to
be applied. Section 3 presents such a strategy that
consists in filtering Out-Of-Domain utterances dur-
ing the ASR first pass, leading to significant im-
provement in the understanding performance.

For the SLU process applied to in-domain utter-
ances, an integrated approach is proposed that looks
simultaneously for the best sequence of words, con-
cepts and interpretations from the ASR word lat-
tices. Experiments presented in section 5 on real
data show the advantage of the integrated approach
towards the sequential approach. Finally, section 4
proposes a unified framework that enables to define
a dialogue state prediction model that can be applied
and trained on a corpus collected through an already
deployed service.

References

Cyril Allauzen, Mehryar Mohri, and Brian Roark. 2003.
Generalized algorithms for constructing statistical lan-
guage models. In41st Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL’03), Sap-
poro, Japan.

Helene Bonneau-Maynard, Sophie Rosset, Christelle Ay-
ache, Anne Kuhn, and Djamel Mostefa. 2005. Se-
mantic annotation of the french media dialog corpus.
In Proceedings of the European Conference on Speech
Communication and Technology (Eurospeech), Lis-
boa, Portugal.

Geraldine Damnati, Frederic Bechet, and Renato
De Mori. 2007. Spoken Language Understanding
strategies on the France Telecom 3000 voice agency
corpus. In Proceedings of the International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), Honolulu, USA.

A. L. Gorin, G. Riccardi, and J.H. Wright. 1997. How
May I Help You ? InSpeech Communication, vol-
ume 23, pages 113–127.

Charles T. Hemphill, John J. Godfrey, and George R.
Doddington. 1990. The ATIS spoken language sys-
tems pilot corpus. InProceedings of the workshop on
Speech and Natural Language, pages 96–101, Hidden
Valley, Pennsylvania.

Mehryar Mohri, Fernando Pereira, and Michael Ri-
ley. 2002. Weighted finite-state transducers in
speech recognition.Computer, Speech and Language,
16(1):69–88.

Christian Raymond, Frederic Bechet, Renato De Mori,
and Geraldine Damnati. 2006. On the use of finite
state transducers for semantic interpretation.Speech
Communication, 48,3-4:288–304.

Giuseppe Riccardi and Allen L. Gorin. 1998. Language
models for speech recognition and understanding. In
Proceedings of the International Conference on Spo-
ken Langage Processing (ICSLP), Sidney, Australia.

Ye-Yi Wang, A. Acero, and C. Chelba. 2003. Is word
error rate a good indicator for spoken language under-
standing accuracy? InAutomatic Speech Recognition
and Understanding workshop - ASRU’03, St. Thomas,
US-Virgin Islands.

Ye-Yi Wang, Li Deng, and Alex Acero. 2005. Spoken
language understanding. InSignal Processing Maga-
zine, IEEE, volume 22, pages 16–31.

Jason D. Williams and Steve Young. 2007. Partially ob-
servable markov decision processes for spoken dialog
systems. Computer, Speech and Language, 21:393–
422.

55

Bridging the Gap: Academic and Industrial Research in Dialog Technologies Workshop Proceedings, pages 56–63,

NAACL-HLT, Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

Experiences of an In-Service Wizard-of-Oz Data Collection
for the Deployment of a Call-Routing Application

Mats Wirén,¹ Robert Eklund,¹ Fredrik Engberg² and Johan Westermark²

¹Research and Development ²Customer Integrated Solutions
TeliaSonera TeliaSonera

SE–123 86 Farsta, Sweden SE–751 42 Uppsala, Sweden
firstname.lastname@teliasonera.com

Abstract
This paper describes our experiences of
collecting a corpus of 42,000 dialogues
for a call-routing application using a
Wizard-of-Oz approach. Contrary to
common practice in the industry, we did
not use the kind of automated application
that elicits some speech from the
customers and then sends all of them to
the same destination, such as the existing
touch-tone menu, without paying
attention to what they have said. Contrary
to the traditional Wizard-of-Oz paradigm,
our data-collection application was fully
integrated within an existing service,
replacing the existing touch-tone
navigation system with a simulated call-
routing system. Thus, the subjects were
real customers calling about real tasks,
and the wizards were service agents from
our customer care. We provide a detailed
exposition of the data collection as such
and the application used, and compare our
approach to methods previously used.

1 Background and introduction
Spoken-dialogue systems for applications such as
customer care increasingly use statistical language
models (SLMs) and statistically-based semantic
classification for recognition and analysis of
utterances. A critical step in designing and
deploying such a system is the initial data
collection, which must provide a corpus that is
both representative of the intended service and
sufficiently large for development, training and
evaluation.

For at least 20 years, Wizard-of-Oz methodology
has been regarded as a superior (though not
unproblematic) method of collecting high-quality,

machine-directed speech data in the absence of a
runnable application.1 Normally, these data will be
useful for several purposes such as guiding
dialogue design and training speech recognizers.
Still, the Wizard-of-Oz option is often dismissed in
favour of simpler methods on the ground that it
does not scale well in terms of cost and time (for
example, Di Fabbrizio et al. 2005). Consequently,
Wizard-of-Oz has typically been used for data
collections that are more limited in the number of
subjects involved or utterances collected. One
exception from this is the data collection for the
original AT&T “How May I Help You” system
(Gorin et al. 1997; Ammicht et al. 1999), which
comprised three batches of transactions with live
customers, each involving up to 12,000 utterances.
Other well-known instances are “Voyager” (Zue
et al. 1989) and the individual ATIS collections
(Hirschman et al. 1993) which involved up to a
hundred subjects or (again) up to 12,000
utterances.

While it is true that Wizard-of-Oz is a labour-
intensive method, the effort can often be motivated
on the ground that it enables significant design and
evaluation to be carried out before implementation,
thereby reducing the amount of re-design
necessary for the actual system. However, one
should also bear in mind the crucial advantage
brought about by the possibility in a production
environment of running the Wizard-of-Oz
collection in-service rather than in a closed lab
setting. As we shall discuss, the fact that real
customers with real problems are involved instead
of role-playing subjects with artificial tasks
circumvents the key methodological problem that
has been raised as an argument against Wizard-of-
Oz, namely, lack of realism.

1 For backgrounds on Wizard-of-Oz methodology, see Dahlbäck et al. (1993)

and Fraser & Gilbert (1991).

56

The aim of this paper is to describe our
experiences of running a Wizard-of-Oz collection
in a production environment with real customers,
with the double purpose of guiding dialogue design
and collecting a sufficient amount of data for the
first training of a speech recognizer. We also
review what other options there are for the initial
data collection and compare our Wizard-of-Oz
approach with those.

The rest of this paper is organized as follows:
Section 2 describes the call-routing problem and
our particular domain. Section 3 gives an overview
of the options for the initial data collection and the
major trade-offs involved in selecting a method.
Section 4 describes the application that was
developed for our Wizard-of-Oz data collection,
whereas Section 5 describes the actual data
collection, summary statistics for the collected data
and some experimental results obtained. Section 6
contains a discussion of our overall experiences.

2 The call-routing task and domain
Call routing is the task of directing a caller to a
service agent or a self-serve application based on
their description of the issue. Increasingly, speech-
enabled routing is replacing traditional touch-tone
menues whereby callers have to navigate to the
appropriate destinations.

The domain of interest in this paper is (the
entrance to) the TeliaSonera2 residential customer
care in Sweden, comprising the entire range of
services offered: fixed and mobile telephony,
broadband and modem-based Internet, IP
telephony, digital television, triple play, etc.
Around 14 million calls are handled annually, and
before the speech-enabled call-routing system was
launched in 2006, touch-tone navigation was used
throughout. The speech-enabled system involves
an SLM-based speech recognizer and a
statistically-based classifier.3 The task of the
classifier is to map a spoken utterance to an
application category which corresponds to a self-
serve application, (a queue to) a human agent, a
disambiguation category or a discourse category.
Whereas self-serve applications and service agents
are the desired goals to reach, disambiguation and
discourse categories correspond to intermediate
states in the routing dialogue. More specifically,

2 TeliaSonera (www.teliasonera.com) is the largest telco in the Scandinavian

–Baltic region.
3 The speech recognizer and classifier are delivered by Nuance

(www.nuance.com).

disambiguation categories correspond to cases
where the classifier has picked up some
information about the destination, but needs to
know more in order to route the call. Discourse
categories correspond to domain-independent
utterances such as greetings (“Hi, my name is John
Doe”), channel checks (“Hello?”) and meta
questions (“Who am I talking to?”). Altogether,
there are 124 application categories used by the
current classifier.

3 Options for initial data collection
Basically, there are three options for making the
initial data collection for a call-routing application:
to collect human–human dialogues in a call center,
to use an automated data-collection application, or
to use a Wizard-of-Oz approach. We shall now
describe each of these.
3.1 Human–human dialogues
The simplest possible approach to the initial data
collection is to record conversations between
service agents and customers in a call center. This
is an inexpensive method since it does not require
any data-collection application to be built. Also,
there is no customer impact. However, the data
obtained tend not to be sufficiently representative,
for two reasons: First, typically only a subset of the
services of a call center is carried out by human
agents, and hence many services will not be
covered. Second, the characteristics of human–
human conversations differ from those of human–
machine interaction. Still, this option has
sometimes been preferred on the grounds of
simplicity and lack of negative customer impact.
3.2 Automated applications
Due to the nature of the task, it is easy to put out a
fully automated mock-up system in a live service
that engages in the initial part of a call-routing
dialogue. Typically, such a system will play an
open prompt, record the customers’ speech, play
another prompt saying that the system did not
understand, again record the speech, and finally
direct all calls to a single destination, such as a
general-skills service agent or the entry to the
existing touch-tone menu. We estimate that a
system of this kind could be implemented and
integrated into a call center in about a person week.
An example of this approach is the AT&T “Ghost
Wizard” (referred to in Di Fabbrizio et al. 2005).

57

This basic approach can be improved upon by
detecting silences and touch-tone events, and in
these cases playing designated prompts that try to
get the caller on track. Furthermore, if data from
previous call-routing applications are available, it
is possible to use these to handle domain-
independent utterances. Such utterances
correspond to discourse categories as mentioned in
Section 2, and the idea then is to play prompts that
encourage the caller to describe the issue. A
description of such an approach is provided by Di
Fabbrizio et al. (2005).

A problem with the automated approach is that
customer impact can be quite negative, since the
application does not actually do anything except
for recording their speech (possibly through
several turns), and routing them to a “dummy”
destination where they will have to start over. Of
course, one way of avoiding this is to include a
human in the loop who listens to the customer’s
speech and then routes the call to the right
destination. Apparently, this is the approach of
Di Fabbrizio et al. (2005), which consequently is
not fully automated.

Apart from customer impact, the problem with an
automated system is that we do not learn the full
story about caller behaviour. In particular, since
typically only a minority of callers will state their
issue in an unambiguous way within the given few
turns, less information about the callers’ actual
issues will be obtained. In particular, for callers
who completely fail to speak or who give no
details about their issue, we will have no
possibility of finding out what they wanted and
why they failed. Furthermore, since the system
lacks the ability to respond intelligently to in-
domain utterances, no follow-up dialogue such as
disambiguation can be collected.

3.3 Wizard-of-Oz
Although Wizard-of-Oz is arguably the best
method for collecting machine-directed data in the
absence of a running application, it is not without
methodological problems. The basic critique has
always been aimed at the lack of realism (for
example, von Hahn 1986). In a thorough analysis,
Allwood & Haglund (1992) point out that in a
Wizard-of-Oz simulation, both the subjects and the
wizard(s) are playing roles, occupied and assigned.
The researcher acting as the wizard is occupying
the role of a researcher interested in obtaining “as

natural as possible” language and speech data,
while playing the role of the system. The subject,
on the other hand, is occupying the role of a
subject in a scientific study, and playing the role of
a client (or similar), communicating with a system
while carrying out tasks that are not genuine to the
subject, but given to them by the experiment leader
(who might be identical with the wizard).

It turns out, however, that a traditional Wizard-
of-Oz approach with made-up tasks according to a
scenario is anyway not an option when collecting
data for deploying a call-routing system. The
reason for this is that we want to learn not just how
callers express themselves, but also what kind of
tasks they have, which obviously rules out pre-
written scenarios. If the existing system uses
touch-tone navigation, usually not too much can be
ascertained about this, and trying to design a set of
tasks just by looking at the existing destinations
would miss the point.

By instead integrating a Wizard-of-Oz
application in an existing, live service, we can
circumvent the key methodological problems,
while addressing all the problems of the previously
described approaches and even obtaining some
independent advantages:

1. Since the callers’ experience will be like that of
the intended application, albeit with human
speech understanding, the customer impact will
be at least as good. In fact, it is even possible to
issue a kind of guarantee against maltreatment
of customers by instructing the wizards to take
over calls that become problematic (this is
further discussed in Section 4).

2. Since real customers are involved, no role-
playing from the point of view of the subjects
takes place, and hence the data become highly
realistic.

3. The fact that scenarios are superfluous—or
even run counter to the goal of the data
collection—means that the main source of
methodological problems disappears, and that
the data collection as such is considerably
simplified compared to traditional Wizard-of-
Oz.

4. By letting service agents be wizards, we move
away even further from role-playing, given that
the interaction metaphor in speech-enabled call
routing is natural-language dialogue with a
(general-skills) service agent.

58

5. Service agents possess the expertise necessary
for a call-routing wizard: they know when
additional information is required from the
caller, when a call is ready for routing, and
where to actually route the call. Hence, wizard
guidelines and training become less complex
than in traditional Wizard-of-Oz.4

6. Service agents have excellent skills in dealing
with customers. Hence, during the data
collection they will be able to provide valuable
feedback on dialogue and prompt design that
can be carried over to the intended application.

In spite of these advantages, Wizard-of-Oz appears
to have been used only very rarely for collecting
call-routing data. The sole such data collection that
we are aware of was made for the original AT&T
“How May I Help you” system (Gorin et al. 1997;
Ammicht et al. 1999). The one disadvantage of the
Wizard-of-Oz approach is that it is more laborious
than automated solutions, mainly because several
person months of wizard work is required. On the
other hand, as we have seen, it is still less laborious
than a traditional Wizard-of-Oz, since there are no
scenarios and since wizard guidelines can be kept
simple.

4 Data-collection application
Our data-collection application consists of two
parts: The first part is the Prompt Piano Client
(PPC), which is running on the service agent’s PC.
This is essentially a GUI with “keys”
corresponding to prerecorded prompts by which
the wizard interacts with the caller, thereby
simulating the intended system. The PPC interface
is shown in PLATE 1. The second part is the
Prompt Piano Server (PPS), which is an IVR
(interactive voice response) server with a Dialogic
telephony board, running Envox, Nuance and
Dialogic software. This handles playing of prompts
as well as recording of calls. Two kinds of
recordings are made: call logs (that is, the callers’
speech events as detected by the Nuance speech
recognizer) and complete dialogues (“open mic”).

To set up a data collection, the contact center
solution is modified so that a percentage of the
incoming calls to the customer care is diverted to
the PPS. The PPS in turn transfers each call to a
wizard (that is, to a PPC) using tromboning.

4 Furthermore, as a side effect, it is possible to facilitate the subsequent process

of manually tagging the data by keeping track of where each call is routed.

Allocation of the wizards is performed by the Telia
CallGuide contact center platform using skill-
based routing. Whenever a wizard answers a call,
two audio streams are established, one from the
customer to the wizard so that she can hear the
customer’s speech, and one from an audio source
in the PPS to the customer. An initial open prompt
is played automatically by the PPS, and the wizard
is then free to start playback of prompts. This is
realized by sending control messages from the PPC
to the audio source on the PPS via TCP/IP, while
listening to the customer throughout.

Depending on the caller’s response, different
things will happen: If the caller provides an
unambiguous description of the issue, the wizard
will transfer the call to the correct queue and end
the recording by pressing the “end / route
customer” button. This signals to the PPS that the
call should be released using the Explicit Call
Transfer (ECT) supplementary service, freeing the
two channels used for the tromboned call in the
PPS.

If, on the other hand, the caller does not provide
an unambiguous description of the issue, the
wizard will play a follow-up prompt aimed at
getting more information from the caller by
choosing from the buttons/prompts situated to the
right (fields II and III of the GUI; see Plate 1).
These parts of the GUI are fully configurable; the
number and layout of buttons as well as the names
of sound files for the corresponding prompts are
declared separately. (Declarations include
specifying whether the prompt associated with a
particular button allows barge-in or not.) Thus, it is
possible not just to vary individual prompts, but
also to simulate call-routing dialogues to various
depths by varying the number of buttons/prompts.

Apart from routing the call, a possible action of
the wizard is to enter into the call. This is realized
by establishing a two-way direct audio stream with
the customer, enabling the parties to talk to each
other. As pointed out in Section 3.3, one purpose
of this is to let wizards take over calls that are
problematic, thereby making sure that callers do
not get maltreated during the data collection and
reducing the risk that they hang up. A similar
functionality was available in the data-collection
application for AT&Ts “How May I Help You”
system (Walker et al. 2000).

59

PLATE 1: The Prompt Piano Client interface as configured towards the end of the data collection. The interface
is divided into three fields with buttons. I: The leftmost field provides caller information, like A-nr (the phone
number the customer is calling from) and Cid (the phone number the customer provides as reason for the call).
The wizard has two option buttons, Mina åtgärder (‘my actions’), at hand: the button Bryt in / Prata med
kund (‘barge-in/talk to client’) which is used for entering into the call, and the button Avsluta / Koppla kund
(‘end/route customer’) which is used to terminate the recording prior to routing the call to the appropriate
destination. (Both of these options are associated with prompts being played.) II: The second field, Kunden…
(‘the customer…’), contains buttons corresponding to renewed open prompts for the purpose of error-handling,
…är tyst (‘… is silent’), …trycker på knappar (‘uses the touch-tone keypad’), …ber om hjälp (‘asks for
help’), …avbryter (‘interrupts’), …pratar för länge (‘talks for too long’), …säger inget om ärendet (‘doesn’t
say anything about the reason for the call’), …är svår att uppfatta (‘is hard to understand’). III: The third field,
Jag undrar om det gäller… (‘I would like to know if it is about…’), contains buttons corresponding to
disambiguation prompts asking for additional information, e.g. whether the customer’s reason for the call is
about fixed (‘fast’) or mobile (‘mobilt’) telephony, broadband (‘bredband’) or something else. All buttons also
have hot-key possibilities for agents who prefer this over point-and-click.

With the exception of the initial open prompt, the
wizards have full control over when and in what
order prompts are played and actions are executed.
Thus, whereas an automated system will start
playing the next prompt after an end-of-speech
timeout typically within the range of 0.75–1.5
seconds, a wizard may decide to impose longer
delays if she considers that the caller has not yet
yielded the turn. On the other hand, the wizard
may also respond more rapidly. Thus, the problem
of response delays, which has sometimes had
distorting impact in Wizard-of-Oz simulations,
does not appear in our application (cf. Oviatt et al.
1992).

The PPS application was developed in the Envox
graphical scripting language, which makes it
possible to write event-driven applications

controlled from an external source such as the
PPC, and also supports Nuance call logging (for
recording customer utterances) and Dialogic
transaction recording (for recording entire
conversations between two parties, in this case the
customer and the PPS, or the customer and the
wizard).5 Design, implementation and testing of
the Prompt Piano (PPC and PPS) took four person
weeks.

The agents/wizards were involved in the
development from the very start to ensure that the
application (and in particular the GUI) was

5 VXML was not used since it appeared that real-time control of an IVR from

an external source would then have been more difficult to implement.
Furthermore, VXML browsers generally have no support for features such as
transaction recording during tromboned transfer and delayed invocation of the
ECT supplementary service in conjunction with call transfer. Hence, in a
VXML framework, additional components would be required to solve these
tasks.

60

optimized according to their needs and wishes. The
Prompt Piano GUI was reconfigured several times
during the course of the data collection, both for
the purpose of carrying out prompt-design
experiments and in response to (individual or
group) requests for changes by the agents/wizards.

5 Data collection
5.1 Overview
The purpose of the data collection was twofold: to
obtain speech data that could be used for initial
training of the speech recognizer, and to obtain
data that could be used to guide dialogue design of
the intended application. Thus, whereas the former
only involved caller responses to open prompts, the
latter required access to complete call-routing
dialogues, including error-handling and
disambiguation.

Organization. Ten wizards were used for the
data collection. Initially, one week was used for
training of the wizards and basic tuning of the
prompts. This process required four person weeks
(not all wizards were present all the time). After a
break of three weeks, the data collection then went
on for five weeks in a row, with the ten wizards
acquiring around 42,000 call-routing dialogues.
(This figure includes around 2,000 useable
dialogues that were collected during the initial
week.) This was more than had been anticipated,
and much more than the 25,000 that had been
projected as a minimum for training, tuning and
evaluation of the speech recognizer. Thus,
although 50 person weeks were used by the
wizards for the actual collection, 32 person weeks
would actually have been sufficient to reach the
minimum of 25,000 dialogues. On average, 195
dialogues were collected per working day per
wizard (mean values ranging from 117 dialogues
per day to 317 dialogues per day; record for a
wizard on a single day was 477).

Barge-in. Initially, barge-in was allowed for all
prompts. However, it turned out to be useful to
have one very short prompt with barge-in disabled,
just asking the caller to state the reason for the call.
The main usage of this was in cases where callers
were repeatedly barging in on the system to the
extent that the system could not get its message
through.

Utterance fragments. As a consequence of, on
the one hand, wizards having full control over
when and whether to start playing a prompt and, on

the other hand, the speech recognizer having a
fixed end-of-speech timeout, it would sometimes
happen that more than one sound file would be
recorded between two prompts in the Nuance call
logs. An example of this would be: “Eeh, I... I’m
wondering whether... can you tell me the pricing of
broadband subscriptions?”, where both of the two
silent pauses would trigger the end-of-speech
timeout. Although this constitutes a mismatch
between data collection and final system, in
practice this caused no problem: on the contrary,
the sound files were simply treated as separate
utterances for the purpose of training the speech
recognizer, which means that the most informative
fragment, typically at the end, was not lost. In
addition, these data are potentially very valuable
for research on turn-taking (in effect, intelligent
end-of-speech detection).

Wizards entering into calls. The event of
wizards taking over calls in order to sort out
problematic dialogues occurred on average in 5%
of the calls. The figure was initially a bit higher,
presumably because the wizards were less skillful
in using the prompts available, and because the
prompts were less well-developed. As a side-effect
of this, we have obtained potentially very valuable
data for error-handling, with both human–machine
and human–human data for the same callers and
issues (compare Walker et al., 2000).

Post-experimental interviews. We also used the
facility of letting wizards take over calls as a way
of conducting post-experimental interviews. This
was achieved by having wizards route the calls to
themselves and then handle the issue, whereupon
the wizard would ask the caller if they would
accept being interviewed. In this way, we were
able to assess customer satisfaction on the fly with
respect to the intended system and even getting
user feedback on specific design features already
during the data collection.

5.2 Experiments
Several design experiments were run during the
data collection. Here, we shall only very briefly
describe one of them, in which we compared two
styles of disambiguation prompts, one completely
open and one more directed. As can be seen in
TABLE 1, utterances following the open
disambiguation prompt are on average 3.6 times
longer than utterances following the directed
prompt.

61

Utterances and Words Disfluency Concepts Prompt
Utts Words Words

/Utts
Disfl Disfl

/Utts
Disfl

/Words
Concepts

In
Concepts

Out
DIFFs
Total

DIFFs
Change

DIFFS
/Utts

DIFFS
/Words

Directed 118 216 1.8 19 0.16 0.09 136 244 108 0 0.9 0.5

Open 121 791 6.5 72 0.6 0.09 144 248 122 18 1.01 0.15

TABLE 1. Summary statistics for the directed prompt (‘I need some additional information about the reason for
your call. Is it for example about an order, price information or support?’), and the open prompt (‘Could you please
tell me a little bit more about the reason for you call?’) prompts. Totals and ratios are given for utterances/words,
disfluencies and number of concepts acquired before the disambiguation prompt was played (“In”) and after the
customer had replied to the disambiguation prompt (“Out”). Also, ratios are given for number of concepts compared
to number of utterances and words, as well as totals and ratios for the differences (DIFFs) between concepts in and
concepts out, i.e., how many concepts you “win” by asking the disambiguation prompt.

Furthermore, in order to see to what extent
these prompts also made callers provide more
information, we manually tagged the transcribed
utterances with semantic categories. Following
the evaluation methodology suggested by Boye
& Wirén (2007, Section 5), we then computed
the difference with respect to “concepts” for
utterances immediately following and preceding
the two kinds of prompts.

Although the number of concepts gained is
only slightly higher6 for the open prompt (as a
function of concepts per utterance), there are
some palpable differences between the directed
and the open prompt. One, shown in TABLE 1, is
that there are no instances where an already
instantiated concept (e.g. fixedTelephony) is
changed to something else (e.g. broadband),
while this happens 18 times following the open
prompt. The other, not shown in TABLE 1, is
that, following the directed prompt, one never
“gains” more than one new concept, while there
are 26 instances following the open prompt
where the gain is two concepts, and even two
instances where the gain is three concepts
(which also means that one concept is changed).

Finally, when one analyses the syntactic
characteristics following the two different types
of prompts, there is an obvious shift from the
telegraphic “noun-only” responses that amount
to more than 70% of the directed prompt
responses, to the responses following the open
prompt, where 40% are complete sentences and
21% are noun phrases. Also, the syntax is more
varied following the open prompt.7

6 However, the difference is not statistically significant, either using a t test

(two-sampled, two-tailed: p=0.16 with equal variances assumed; p=0.158
equal variances not assumed) or Mann-Whitney U test (two-tailed:
p=0.288).

7 The distributions are, in descending order, for the directed prompt:
Noun=85, Sentence=11, Yes/No=8, Noun Phrase=8, no response=3,
Yes/No+Noun=2, Adverbial Phrase=1, Adjective Phrase=1; for the
open prompt: Sentence=49, Noun Phrase=26, Noun=24, Verb

6 Discussion
We claimed in Section 3.3 that by using an in-
service Wizard-of-Oz data collection, we have
been able to effectively overcome all problems
of the alternative methods discussed there. A
relevant question is then if there are any
remaining, independent problems of the
approach described here.

On the methodological side, there is clearly a
certain amount of role playing left in the sense
that service agents are acting as the system
(albeit a system whose interaction metaphor is a
service agent!). Interestingly, we noticed early
on that the agents sometimes failed in properly
simulating the intended system in one respect:
Since they would often grasp what the caller
wanted before he or she had finished speaking,
they would start playing the next prompt so
early that they were barging in on the caller.
Thus, in their willingness to provide quick
service, they were stepping outside of their
assigned role. However, they soon learnt to
avoid this, and it was never a problem except for
the first few days.

Apart from this, the main disadvantage of
Wizard-of-Oz collections clearly is the amount
of work involved compared to the other
methods. As we have seen, the Prompt Piano
design and implementation took four person
weeks, training of the wizards took another four
person weeks, and collection of 25,000
dialogues required 32 person weeks—hence
altogether 40 person weeks (although we
actually used 50 person weeks, since we went on
collecting more data). This could be compared
with possibly a single person week required for
the fully automated approach. The more

Phrase=11, Adjective Phrase=5, Adverbial Phrase=2, no response=2,
Yes/No=1, Interjection=1.

62

elaborate automated methods would come
somewhere in between, also depending on
whether a human agent is used for routing
callers or not.

In the TeliaSonera case, the main desiderata
favouring Wizard-of-Oz were highly
representative data, no negative customer impact
and need for early evaluation and design,
particularly because this was the first
deployment of natural-language call routing in
Scandinavia. In other words, it was decided to
accept a higher initial cost in return for reduced
costs downstream, due to higher quality and less
re-design of the implemented system.

It is impossible to quantify the downstream
savings made by choosing Wizard-of-Oz since
we have no baseline. However, one indication of
the quality of the data is the initial performance
of the classifier of the deployed system. (By
“initial”, we mean the period during which no
data from the live system had yet been used for
training or updating of the system.) In our case,
the initial accuracy was 75%, using 113
application categories. We regard this as a high
figure, also considering that it was achieved in
spite of several new products having been
introduced in the meantime that were not
covered by the speech recognizer. The initial
training of the speech recognizer and classifier
used 25,000 utterances. As a comparison, when
an additional 33,000 utterances (mostly from the
live system) had been used for training, the
accuracy increased to 85%.
Acknowledgements
Many colleagues have provided invaluable help
and support throughout this project. Here we can
only mention some of them: Johan Boye, Joakim
Gustafson, Linda Bell, Fredrik Byström, Robert
Sandberg, Erik Näslund, Erik Demmelmaier,
Viktoria Ahlbom, Inger Thall and Marco
Petroni. Last but not least we thank our skilled
wizards: Christina Carlson, Marie Hagdorn,
Gunilla Johannisson, Ana-Maria Loriente, Maria
Mellgren, Linda Norberg, Anne Tärk, Mikael
Wikner, Eva Wintse and Jeanette Öberg.

References
Allwood, Jens & Björn Haglund. 1992.

Communicative Activity Analysis of a Wizard of
Oz Experiment. Internal Report, PLUS ESPRIT
project P5254.

Ammicht, Egbert, Allen Gorin & Tirso Alonso. 1999.
Knowledge Collection For Natural Language
Spoken Dialog Systems. Proc. Eurospeech,
Budapest, Hungary, Volume 3, pp. 1375–1378.

Boye, Johan & Mats Wirén. 2007. Multi-slot
semantics for natural-language call routing
systems. Proc. Bridging the Gap: Academic and
Industrial Research in Dialog Technology.
NAACL Workshop, Rochester, New York, USA.

Dahlbäck, Nils, Arne Jönsson & Lars Ahrenberg,
Wizard of Oz Studies — Why and How. 1993.
Knowledge-Based Systems, vol. 6, no. 4, pp. 258–
266. Also in: Mark Maybury & Wolfgang
Wahlster (eds.). 1998. Readings in Intelligent
User Interfaces, Morgan Kaufmann.

Di Fabbrizio, Giuseppe, Gokhan Tur & Dilek
Hakkani-Tür. 2005. Automated Wizard-of-Oz for
Spoken Dialogue Systems. Proc. Interspeech,
Lisbon, Portugal, pp. 1857–1860.

Fraser, Norman M. & G. Nigel Gilbert. Simulating
speech systems. 1991. Computer Speech and
Language, vol. 5, pp. 81–99.

Gorin, A. L., G. Riccardi & J. H. Wright. 1997. How
may I help you? Speech Communication, vol. 23,
pp. 113–127.

von Hahn, Walther. 1986. Pragmatic considerations
in man–machine discourse. Proc. COLING, Bonn,
Germany, pp. 520–526.

Hirschman, L., M. Bates, D. Dahl, W. Fisher, J.
Garofolo, D. Pallett, K. Hunicke-Smith, P. Price,
A. Rudnicky & E. Tzoukermann. 1993. Multi-Site
Data Collection and Evaluation in Spoken
Language Understanding. Proc. ARPA Human
Language Technology, Princeton, New Jersey,
USA, pp. 19–24 .

Oviatt, Sharon, Philip Cohen, Martin Fong &
Michael Frank. 1992. A rapid semi-automatic
simulation technique for investigating interactive
speech and handwriting. Proc. ICSLP, Banff,
Alberta, Canada, pp. 1351–1354.

Walker, Marilyn, Irene Langkilde, Jerry Wright,
Allen Gorin & Diane Litman. 2000. Learning to
Predict Problematic Situations in a Spoken
Dialogue System: Experiments with How May I
Help You? Proc. North American Meeting of the
Association for Computational Linguistics
(NAACL), pp. 210–217.

Zue, Victor, Nancy Daly, James Glass, David
Goodine, Hong Leung, Michael Phillips, Joseph
Polifroni, Stephanie Seneff & Michael Soclof.
1989. The Collection and Preliminary Analysis of
a Spontaneous Speech Database. Proc. DARPA
Speech and Natural Language Workshop,
pp. 126–134.

63

Bridging the Gap: Academic and Industrial Research in Dialog Technologies Workshop Proceedings, pages 64–67,

NAACL-HLT, Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

64

65

66

67

Bridging the Gap: Academic and Industrial Research in Dialog Technologies Workshop Proceedings, pages 68–75,

NAACL-HLT, Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

Multi-slot semantics for natural-language call routing systems

Johan Boye and Mats Wirén

TeliaSonera R&D

Vitsandsgatan 9

SE-123 86 Farsta, Sweden

johan.boye@teliasonera.com, mats.wiren@teliasonera.com

Abstract

Statistical classification techniques for

natural-language call routing systems

have matured to the point where it is pos-

sible to distinguish between several hun-

dreds of semantic categories with an

accuracy that is sufficient for commercial

deployments. For category sets of this

size, the problem of maintaining consis-

tency among manually tagged utterances

becomes limiting, as lack of consistency

in the training data will degrade perform-

ance of the classifier. It is thus essential

that the set of categories be structured in a

way that alleviates this problem, and en-

ables consistency to be preserved as the

domain keeps changing. In this paper, we

describe our experiences of using a two-

level multi-slot semantics as a way of

meeting this problem. Furthermore, we

explore the ramifications of the approach

with respect to classification, evaluation

and dialogue design for call routing sys-

tems.

1 Introduction

Call routing is the task of directing callers to a ser-

vice agent or a self-service that can provide the

required assistance. To this end, touch-tone menus

are used in many call centers, but such menus are

notoriously difficult to navigate if the number of

destinations is large, resulting in many misdirected

calls and frustrated customers. Natural-language

call routing provides an approach to come to terms

with these problems. The caller gets the opportu-

nity to express her reasons for calling using her

own words, whereupon the caller’s utterance is

automatically categorized and routed.

This paper focuses on experiences obtained

from the deployment of a call-routing application

developed for the TeliaSonera residential customer

care.
1
 The application was launched in 2006, re-

placing a previous system based on touch-tone

menus. The customer care annually handles some

14 million requests and questions concerning a

wide range of products in fixed telephony, mobile

telephony, modem-connected Internet, broadband,

IP telephony and digital TV.

The crucial step in any call routing application is

classification, that is, the mapping of natural-

language utterances to categories that correspond

to routing destinations. Early systems used quite

small numbers of categories. For example, the

original “How May I Help You” system had 15

categories (Gorin et al. 1997), the system of Chu-

Carroll and Carpenter (1999) had 23 categories,

and Cox and Shahshahani (2001) had 32. Nowa-

days, it is possible to distinguish between several

hundreds of categories with high accuracy (see, for

example, Speech Technology Magazine 2004).

The TeliaSonera system currently distinguishes

between 123 categories with an accuracy of 85%

(using a speech recognizer and classifier developed

by Nuance
2
). Moreover, according to our experi-

ments the same classification technology can be

1 TeliaSonera (www.teliasonera.com) is the largest telecom operator in the

Nordic–Baltic region in Europe.
2 www.nuance.com.

68

used to distinguish between 1,500 categories with

80% accuracy.
3

For large category sets like these, the problem of

maintaining consistency among manually tagged

utterances becomes limiting, as lack of consistency

in the training data will degrade performance of the

classifier. The problem is exacerbated by the fact

that call-routing domains are always in a state of

flux: Self-services are being added, removed,

modified, split and merged. Organizational

changes and product development regularly call for

redefinitions of human expertise areas. All of these

changes must be accommodated in the category

set. Hence, it must be possible to update this set

efficiently and at short intervals.

To meet this problem, it is crucial that the set of

categories be structured in a way that facilitates the

task of manual tagging and enables consistency to

be preserved. However, in spite of the fact that the

size of category sets for call routing have increased

dramatically since the original “How May I Help

You” system, we are not aware of any papers that

systematically discuss how such large sets should

be structured in order to be efficiently maintain-

able. Rather, many papers in the call-routing litera-

ture consider the call routing problem as an

abstract classification task with atomic categories

at a single level of abstraction. Such atomic cate-

gories are typically taken to correspond to depart-

ments and self-services of the organization to

which the call center belongs. In a real-life imple-

mentation, the situation is often more complicated.

At TeliaSonera, we have adopted a two-level

multi-slot semantics as a way of maintaining

modularity and consistency of a large set of cate-

gories over time.

The aim of this paper is to share our experiences

of this by providing a detailed description of the

approach and its implications for classification,

dialogue design and evaluation. The rest of the pa-

per is organized as follows: Section 2 describes the

multi-slot category system. Sections 3–5 outline

consequences of the multi-slot semantics for dis-

ambiguation, classification and evaluation, respec-

tively. Section 6 concludes.

3 In both cases, the classifier was trained on 60,000 utterances.

2 What’s in a category?

2.1 Motivation

As pointed out above, call-routing domains are

always to some extent moving targets because of

constant changes with respect to products and or-

ganization. It would be cumbersome to manually

re-tag old data each time the category set is up-

dated. Retagging the training data for the statistical

classifier might introduce inconsistencies into the

training set and degrade classifier performance.

Thus, it is a good idea to define two sets of catego-

ries at different levels; one set of semantic catego-

ries reflecting the contents of the utterance, and

one set of application categories reflecting how the

call should be handled. These two sets of catego-

ries are related by means of a many-to-one map-

ping from the semantic domain to the application

domain. Figure 1 gives the general picture.

Figure 1: Mapping between semantic categories and

application categories.

The utterances in the training set for the auto-

matic classifier are manually categorized using

semantic categories. The automatic classifier can

be trained to work either in the semantic domain or

in the application domain (see further Section 4).

Semantic categories Application categories

69

2.2 Semantic categories

In the TeliaSonera system, semantic categories are

triples of the form

(family, intention, object)

where family is the general product family which

the call concerns (e.g. fixed telephony, mobile te-

lephony, broadband, etc.), intention represents the

nature of the request (e.g. order, want-info,

change-info, activate, want-support, report-error,

etc.), and object represents more specifically what

the call is about (e.g. particular names of products,

or concepts like “telephone number”, “SIM card”,

or “password”). Currently there are 10 families,

about 30 intentions, and about 170 objects that

span the semantic domain.

Some (in fact, the majority) of the possible tri-

ples are disallowed because they are nonsensical.

For instance, it is not meaningful to combine

“fixed telephony” in the family slot with “SIM

card” in the object slot. To cater for this, we have

defined a set of combination rules weeding out the

illegal combinations of values. These rules disal-

low about 80% of the possible combinations, leav-

ing about 10,000 permissible semantic triples. Of

these 10,000 triples, about 1,500 have actually

turned up in real data.

The three-slot structure of categories is very use-

ful when performing manual tagging of the train-

ing material for the statistical classifier. Although

there are 10,000 categories, the person performing

the tagging needs only to keep track of about 210

concepts (10 families + 30 intentions + 170 ob-

jects). In contrast, it is safe to say that an unstruc-

tured category system containing 10,000 atomic

categories would be quite impractical to use.

In addition, the combination rules can further al-

leviate the manual tagging task. It is straightfor-

ward to implement a tagging tool that allows the

human tagger to select a value for one semantic

slot, and then restrict the selection for the other

slots only to include the possible values. For ex-

ample, if “fixed telephony” is chosen for the family

slot, “SIM card” would not appear among the pos-

sible values for the object slot. This approach has

been successfully adopted in the project.

2.3 Application categories

There is one application category for each type of

action from the system. Actions come in two fla-

vors; either the call is routed (in the cases where

the caller has given sufficient information), or the

system asks a counter-question in order to extract

more information from the caller. That is, applica-

tion categories can be labeled either as routing

categories or disambiguation categories. For con-

venience, names of application categories are also

triples, chosen among the set of semantic triples

that map to that application category.

2.4 Information ordering

Each slot in a semantic triple can take the value

unknown, representing the absence of information.

For instance, the most accurate semantic category

for the caller utterance “Broadband”
4
 is (broad-

band, unknown, unknown), since nothing is known

about the intention of the caller or the specific

topic of the request. Thus, in the information order-

ing, “unknown” is situated below all other values.

There are also some intermediate values in the

information ordering. The value telephony repre-

sents “either fixed telephony or mobile telephony”,

and has been incorporated in the category set since

many callers tend not be explicit about this point.

In the same vein, internet represents “either broad-

band or modem-connected internet”, and billing

represents the disjunction of a whole range of bill-

ing objects, some of which can be handled by a

self-service and some can not.

Figure 2: Parts of the semantic information ordering.

The information ordering extends naturally to

triples. In particular, the triple (unknown, unknown,

4
 Many callers express themselves in this telegraphic fashion.

unknown

telephony internet

modemConnected broadband fixed mobile

70

unknown) represents complete absence of informa-

tion.

3 Disambiguation

The caller’s request might be ambiguous in one

sense or another, in which case the system will

need to perform disambiguation by asking a fol-

low-up question. This might either be a general

question encouraging the user to describe his re-

quest in greater detail, or a directed question of the

type “Would that be fixed telephony or mobile te-

lephony?”

Ambiguous utterances might be represented in

at least two fundamentally different ways. In vec-

tor-based approaches, routing destinations and in-

put utterances alike are represented by vectors in a

multi-dimensional space. An input utterance is

routed to a specific destination if the vector repre-

sentation of the utterance is close to that of the des-

tination. An ambiguous utterance is characterized

by the fact that the Euclidean distances from the

utterance vector to the n closest routing destination

vectors are roughly the same.

Chu-Carroll and Carpenter (1999) describe a

method of disambiguation, where disambiguation

questions are dynamically constructed on the basis

of an analysis of the differences among the closest

routing destination vectors. However, it is not clear

that the disambiguation questions produced by

their proposed method would make sense in all

possible situations. Furthermore, their method does

not take into account the fact that some ambiguities

tend to be more important and arise more often

than others. We think it is worthwhile to concen-

trate on these important cases (in terms of prompt

design, speech recognition grammar construction,

etc.), rather than trying to solve every conceivable

ambiguity, most of which would never appear in

real life.

As previously mentioned, in the TeliaSonera

system we have chosen another way of treating

ambiguities, namely that certain application cate-

gories are disambiguation categories; they repre-

sent foreseen, frequently occurring, ambiguous

input utterances. The three-slot structure of catego-

ries provides a handy way of identifying ambigu-

ous cases; they are represented by triples where

one or more slots are unknown, or where some slot

has an intermediate value, like telephony or inter-

net. Examples of such ambiguous utterances are

“broadband” (broadband-unknown-unknown) and

“I want to have a telephone subscription” (teleph-

ony-order-subscription). All categories that repre-

sent ambiguities have pre-prepared disambiguation

questions, speech recognition grammars, and dia-

logue logic to handle the replies from the callers.

Of course, there are still problematic cases

where an utterance can not be assigned any unique

category with any tolerable level of confidence,

neither a routing category nor a disambiguation

category. In those cases, the system simply re-

phrases the question: “Sorry, I didn’t quite under-

stand that. Could you please rephrase?”

4 Classification

4.1 Atomic vs. multi-slot classification

For the purpose of automatic classification of ut-

terances, there are at least two different views one

may adopt. In one view, the “atomic” view, the

three-slot structure of category names is considered

as merely a linguistic convention, convenient only

when manually tagging utterances (as discussed in

Section 2.1). When adopting this view, we still

regard the categories to be distinct atomic entities

as concerns automatic classification. For instance,

to the human eye it is obvious that two categories

like (internet, order, subscription) and (broadband,

order, subscription) are related, but the automatic

classifier just considers them to be any two catego-

ries, each with its separate set of training examples.

An alternative view, the “multi-slot view”, is to

see the category as actually consisting of three

slots, each of which should be assigned a value

independently. This means that a separate classifier

is needed for each of the three slots.

It is not clear which view is preferable. An ar-

gument in favor of the multi-slot view is the fol-

lowing: If some categories have the same value in

one slot, then these categories are semantically

related in some way. Most likely this semantic re-

lation is reflected by the use of common words and

phrases; for instance, expressions like “order” and

“get a new” presumably are indicative for all cate-

gories having the value order in the intention slot.

Therefore, classifying each slot separately would

be a way to take a priori semantic knowledge into

account.

 To this, proponents of the atomic view may re-

spond that such similarities between categories

71

would emerge anyway when using a single classi-

fier that decides the entire semantic triple in one go

(provided that enough training data is available). In

addition, if each slot is categorized separately, it is

not certain that the resulting three values would

constitute a permissible semantic triple (as men-

tioned in Section 2.1, about 80% of the possible

combinations are illegal). In contrast, if a single

classifier is used, the result will always be a legal

triple, since only legal triples appear in the training

material.

The statistical classifier actually used in the live

call routing system treats categories as atomic enti-

ties and, as mentioned in the introduction, it works

well. The encouraging numbers bear out that the

“atomic” view is viable when lots of data is at

hand. On the other hand, if training data is sparse,

one might consider using a hand-written, rule-

based classifier, and in these cases the multi-slot

view seems more natural.

4.2 Rule-based multi-slot classification

To obtain a baseline for the performance of the

statistical classifier used in the live system, we im-

plemented an alternative classifier that solves the

classification task using hand-written rules. Thus,

the purpose of this was to investigate the perform-

ance of a naïve classification method, and use that

for comparison with other methods. In addition,

the rule-based classifier provides an example of

how the multi-slot approach can support the inclu-

sion of human a priori domain knowledge into the

classification process.

The rule-based classifier has three kinds of

rules: Firstly, phrase-spotting rules associate a

word or a phrase with a value for a semantic slot

(i.e. a family, an intention, or an object). Rules of

the second kind are domain axioms that encode

invariant relationships, such as the fact that ob-

ject=SIMcard implies family=mobileTelephony.

Finally, rules of the third kind specify how seman-

tic values can be combined into a legal semantic

triple (these rules are also used for manual tagging,

as mentioned in Section 2.1). Each semantic value

is also (manually) given a score that reflects its

information content; a higher score means that the

value contains more information. For instance, the

value subscription has a lower information score

than have the names of specific subscription types

that TeliaSonera offers its customers.

The classifier works in three phases, which we

will demonstrate on a running example. In the first

phase, it applies the phrase-spotting rules to the

input sentence, returning a list of slot-value pairs.

For instance, the input sentence “I want to order a

new SIM card” would yield the list [inten-

tion=order, object=SIMcard], using rules trigger-

ing on the phrases “order” and “SIM card” in the

input sentence.

Secondly, the classifier adds semantic compo-

nents as a result of applying the domain axioms to

members of the list. Using the domain axiom men-

tioned above, the semantic component fam-

ily=mobileTelephony would be added to the list,

due to the presence of object=SIMcard. Thus, after

the two first phases, the intermediate result in this

example is [intention=order, object=SIMcard,

family=mobileTelephony].

In the final phase, semantic components are se-

lected from the list to form a semantic triple. In the

example, this step is straightforward since the list

contains exactly one value for each component,

and these values are combinable according to the

combination rules. The final result is:

(mobileTelephony, order, SIMcard)

In cases where the semantic values in the list are

not combinable (a situation often originating from

a speech recognition error), one or several values

have got to be relaxed to unknown. According to

our experiments, the best heuristic is to first relax

the object component and then the intention com-

ponent. For example, in the list [family = fixed-

Telephony, intention=order, object=SIMcard], the

first and third elements are not combinable; thus

this list yields the triple:

(fixedTelephony, order, unknown)

In the case where some slots are not filled in

with a value, the values of those slots are set to

unknown. Thus, the list [family=fixedTelephony,

intention=order] would also yield the semantic

triple above.

 Finally, consider the case where the input list

contains more than one value for one or several

slots. In this case, the algorithm picks the value

with the highest information content score. For

instance, consider the utterance “I want to have a

broadband subscription, this eh ADSL I’ve read

72

about”. After the first two phases, the algorithm

has found family=broadband, intention=order,

and two possible values for the object slot, namely

object=subscription and object=ADSL. Since the

latter has higher information score, the final result

is:

(broadband, order, ADSL)

The rule-based classifier was developed in about

five man-weeks, and contains some 3,000 hand-

written rules. When evaluated on a set of 2,300

utterances, it classified 67% of the utterances cor-

rectly. Thus, not surprisingly, its performance is

significantly below the statistical classifier used in

the deployed system. Still, the rule-based approach

might be a viable alternative in less complex do-

mains. It might also be usable for data collection

purposes in early prototypes of natural-language

call routing systems.

5 Evaluation of call-routing dialogues

5.1 Motivation

An important issue in the development of any dia-

logue system is the selection of an evaluation met-

ric to quantify performance improvements. In the

call-routing area, there have been many technical

papers specifically comparing the performance of

classifiers, using standard metrics such as accuracy

of the semantic categories obtained over a test cor-

pus (see e.g. Kuo and Lee, 2000, and Sarikaya et

al., 2005). Accuracy is then stated as a percentage

figure showing the degree of the categories that

have been completely correctly classified, given

that categories are atomic. There have also been

some design-oriented papers that try to assess the

effects of different prompt styles by looking at the

proportion of routable versus unroutable calls

given callers’ first utterances. Thus, both of these

strands of work base their evaluations on binary

divisions between correct/incorrect and rout-

able/unroutable, respectively. Furthermore, they

both constitute utterance-based metrics in the sense

that they focus on the outcome of a single system–

caller turn.

An excellent example of a design-oriented call-

routing paper is Williams and Witt (2004), which

among other things compares open and directed

prompt styles in the initial turn of the dialogue.

Williams and Witt divide callers’ responses into

Routable (if the utterance contained sufficient in-

formation for the call to be routed) or Failure (if

the utterance did not contain sufficient information

for routing). Depending on why a call is not rout-

able, Williams and Witt further subdivide instances

of Failure into three cases: Confusion (utterances

such as “Hello?” and “Is this a real person?”),

Agent (the caller requests to speak to a human

agent), and Unroutable (which corresponds to ut-

terances that need disambiguation). Thus, Williams

and Witt’s performance metric uses altogether four

labels. (In addition, they have three labels related

to non-speech events: silence, DTMF and hang-up.

Since such events are not handled by the classifier,

they fall outside of the scope of this paper.)

Although all of Williams’ and Witt’s measures

are needed in evaluating call-routing dialogue, the

field clearly needs more in-depth evaluation. In

particular, we need more fine-grained metrics in

order to probe more exactly to what extent Failure

actually means that the dialogue is off track. Fur-

thermore, given that call-routing dialogues typi-

cally consist of between one and (say) five turns,

we need not just utterance-based metrics, but also

dialogue-based metrics — in other words, being

able to evaluate the efficiency of an overall dia-

logue.

5.2 Utterance-based metrics

When assessing the performance of classification

methods, it is perfectly reasonable to use the binary

distinction correct/incorrect if only few categories

are used. In such a context it can be assumed that

different categories correspond to different de-

partments of the organization, and that a misclassi-

fication would lead the call being routed the wrong

way. However, with a richer category system, it is

important to realize that the classifier can be par-

tially correct. For instance, if the caller expresses

that he wants technical support for his broadband

connection, then the information that the purpose

of the call has something to do with broadband is

surely better than no information at all. If the sys-

tem obtains this information, it could ask a directed

follow-up question: OK broadband. Please tell me

if your call concerns an order, billing, deliveries,

support, error report, or something else, or some-

thing to that effect. Otherwise, the system can only

restate the original question.

73

In the field of task-oriented dialogue, several

evaluation metrics have been put forward that go

beyond a simple division into correct/incorrect. In

particular, concept accuracy (Boros et al. 1996) is

an attempt to find a semantic analogue of word

accuracy as used in speech recognition. Basically,

the idea is to compute the degree of correctness of

a semantic analysis based on a division of the rep-

resentation into subunits, and by taking into ac-

count insertions, deletions and replacements of

these subunits.

Making use of our multi-slot semantics, we can

take subunits to correspond to semantic slot values.

An insertion has occurred if the classifier spuri-

ously has added information to some slot value

(e.g. if the classifier outputs the value broadband

for the family slot, when the correct value is inter-

net or unknown). Conversely, a deletion has oc-

curred when semantic triple output from the

classifier contains a slot value which is situated

lower than the correct value in the information or-

dering (a part of which is depicted in Figure 2).

Finally, a replacement has occurred when the com-

puted slot value and the correct slot value are unre-

lated in the information ordering.

By using concept accuracy as an evaluation met-

ric for classifiers rather than the binary distinction

correct/incorrect, we can arrive at more informa-

tive assessments. This possibility is brought about

by the multi-slot structure of categories.

5.3 Dialogue-based metrics

In the literature, there have also been proposals for

dialogue-based metrics. In particular, Glass et al.

(2000) put forward two such metrics, query density

(QD) and concept efficiency (CE). Query density is

the mean number of new “concepts” introduced

per user query, assuming that each concept corre-

sponds to a slot–filler pair in the representation of

the query. For example, a request such as “I’d like

a flight from Stockholm to Madrid on Sunday af-

ternoon” would introduce three new concepts, cor-

responding to departure, destination and time.

Query density thus measures the rate at which the

user communicates content. In contrast, concept

efficiency measures the average number of turns it

takes for a concept to be successfully understood

by the system. Concept efficiency thus measures

the rate at which the system understands content.

Using the multi-slot semantics, we can adapt the

notions of query density and concept efficiency in

order to arrive at a more fine-grained performance

metric for call routing. The basic idea is to regard

every element in the semantic triple as one “con-

cept”. We can then obtain a measure of how in-

formation increases in the dialogue by computing

the difference between triples in each user utter-

ance, where “difference” means that the values of

two corresponding elements are not equal.

An example of computing query density is given

below. We assume that the value of the semantic

triple is initially (unknown, unknown, unknown).

System: Welcome to TeliaSonera. How may I help

you?
Caller: Fixed telephony.

 (fixedTelephony, unknown, unknown)
1 new concept

System: Could you tell me some more about what

you want to do?

Caller: I can’t use my broadband while I’m speak-

ing on the phone.(broadband, reportProb-

lem, lineOrPhone)
3 new concepts

Note that query density and concept efficiency

are both applicable on a per-utterance basis as well

as on the whole dialogue (or indeed arbitrary

stretches of the dialogue). To compute these meas-

ures for the whole dialogue, we simply compute

the mean number of new concepts introduced per

user utterance and the average number of turns it

takes for a concept to be successfully understood,

respectively.

The principal application of this methodology is

to measure the effectiveness of system utterances.

When using a fine-grained system of categories, it

is important that callers express themselves at a

suitable level of detail. Too verbose user utterances

are usually difficult to analyse, but too telegraphic

user utterances are not good either, as they most

often do not contain enough information to route

the call directly. Therefore it is very important to

design system utterances so as to make users give

suitably expressive descriptions of their reasons for

calling.

By using the query density metric it is possible

to asses the effectiveness (in the above sense) of

different alternative system utterances at various

points in the dialogue, most notably the first sys-

74

tem utterance. Again, this possibility is brought

about by the multi-slot structure of categories. It is

also possible to evaluate more general dialogue

strategies over longer stretches of dialogue (e.g.

the use of general follow-up questions like “Could

you please tell me some more about what you want

to do” as opposed to more directed questions like

“Please tell me if your call concerns an order, bill-

ing, deliveries, support, error report, or something

else”). By calculating the average query density

over a number of consecutive utterances, it is pos-

sible to compare the relative merits of different

such dialogue strategies.

We have not yet adopted this metric for evalua-

tion of dialogues from the live system. However,

elsewhere we have applied it to dialogues from the

initial Wizard-of-Oz data collection for the Telia-

Sonera call routing system (Wirén et al. 2007).

Here, we used it to compare two styles of disam-

biguation prompts, one completely open and one

more directed.

6 Concluding remarks

In the literature, the natural-language call routing

problem is often presented as the problem of clas-

sifying spoken utterances according to a set of

atomic categories. The hypothesis underlying this

paper is that this view is inadequate, and that there

is a need for a more structured semantics. We base

our claims on experiences gathered from the de-

velopment and deployment of the TeliaSonera call

center, for which we developed a multi-slot system

of categories.

A multi-slot semantics offers several advan-

tages. First of all, it makes the set of categories

manageable for human taggers, and provides a

means to break down the tagging task into sub-

tasks. Furthermore, we have shown how multi-slot

semantics for call-routing systems allows straight-

forward division of categories into routing catego-

ries and disambiguation categories, the possibility

of multi-slot categorization, and the use of more

fine-grained evaluation metrics like concept accu-

racy and query density.

Acknowledgements

This work has benefited greatly from discussions

on category systems and classification with Marco

Petroni, Linda Broström, Per-Olof Gällstedt, Alf

Bergstrand and Erik Demmelmaier, and we thank

them all. We would also like to thank Robert

Sandberg and Erik Näslund for their support of this

work.

References

Boros, M., Eckert, W., Gallwitz, F., Görz, G., Han-

rieder, G. and Niemann, H. (1996). Towards under-

standing spontaneous speech: Word accuracy vs.

concept accuracy. Proc. Fourth International Con-

ference on Spoken Language Processing (ICSLP),

pp. 1009–1012.

Chu-Carroll, J. and Carpenter, B. (1999) Vector-based

natural language call routing. Computational linguis-

tics, 25(3), pp. 361-388.

Cox, S. and Shahshahani, B. (2001). A comparison of

some different techniques for vector based call-

routing. Proc. Eurospeech, Aalborg, Denmark.

Glass, J., Polifroni, J., Seneff, S. and Zue, V. Data col-

lection and performance evaluation of spoken dia-

logue systems: The MIT experience. In Proc. Sixth

International Conference on Spoken Language Proc-

essing (ICSLP), Beijing, China.

Gorin, A., Riccardi, G., and Wright, J. (1997) How may

I help you?. Journal of Speech Communication, 23,

pp. 113-127.

Kuo, H-K J. and Lee, C-H. (2000) Discriminative train-

ing in natural language call routing. Proc. Sixth In-

ternational Conference on Spoken Language

Processing (ICSLP), Beijing, China.

Sarikaya, R, Kuo, H-K J., Goel, V. and Gao, Y. (2005)

Exploiting unlabeled data using multiple classifiers

for improved natural language call-routing. Proc. In-

terspeech, Lisbon, Portugal.

Speech Technology Magazine (2004) Q&A with Bell

Canada’s Belinda Banks, senior associate director,

customer care. Speech Technology Magazine, vol 9,

no 3.

Williams, Jason D. and Witt, Silke M. (2004). A com-

parison of dialog strategies for call routing. Interna-

tional Journal of Speech Technology 7(1), pp. 9–24.

Wirén, M., Eklund, R., Engberg, F. and Westermark, J.

(2007). Experiences of an in-service Wizard-of-Oz

data collection for the deployment of a call-routing

application. Proc. Bridging the gap: Academic and

industrial research in dialog technology. NAACL

workshop, Rochester, New York, USA.

75

Bridging the Gap: Academic and Industrial Research in Dialog Technologies Workshop Proceedings, pages 76–83,

NAACL-HLT, Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

Enhancing commercial grammar-based applications using robust
approaches to speech understanding

Matthieu H ébert
Network ASR R+D, Nuance Communications

1500, Université, Suite 935, Montréal, Québec, H3A 3T2,Canada
hebert@nuance.com

Abstract

This paper presents a series of measure-
ments of the accuracy of speech under-
standing when grammar-based or robust
approaches are used. The robust ap-
proaches considered here are based on sta-
tistical language models (SLMs) with the
interpretation being carried out by phrase-
spotting or robust parsing methods. We
propose a simple process to leverage ex-
isting grammarsand logged utterances
to upgrade grammar-based applications to
become more robust to out-of-coverage
inputs. All experiments herein are run
on data collected from deployed directed
dialog applications and show that SLM-
based techniques outperform grammar-
based ones without requiring any change
in the application logic.

1 Introduction

The bulk of the literature on spoken dialog systems
is based on the simple architecture in which the
input speech is processed by a statistical language
model-based recognizer (SLM-based recognizer) to
produce a word string. This word string is further
processed by a robust parser (Ward, 1990) or call
router (Gorin et al, 1997) to be converted in a se-
mantic interpretation. However, it is striking to see
that a large portion of deployed commercial appli-
cations do not follow this architecture and approach
the recognition/interpretation problem by relying on

hand-crafted rules (context-free grammars - CFGs).
The apparent reasons for this are the up-front cost
and additional delays of collecting domain-specific
utterances to properly train the SLM (not to men-
tion semantic tagging needed to train the call router)
(Hemphill et al, 1990; Knight et al, 2001; Gorin et
al, 1997). Choosing to use a grammar-based ap-
proach also makes the application predictable and
relatively easy to design. On the other hand, these
applications are usually very rigid: the users are al-
lowed only a finite set of ways to input their requests
and, by way of consequences, these applications suf-
fer from high out-of-grammar (OOG) rates or out-
of-coverage rates.

A few studies have been published compar-
ing grammar-based and SLM-based approaches to
speech understanding. In (Knight et al, 2001),
a comparison of grammar-based and robust ap-
proaches is presented for a user-initiative home au-
tomation application. The authors concluded that
it was relatively easy to use the corpus collected
during the course of the application development to
train a SLM which would perform better on out-
of-coverage utterances, while degrading the accu-
racy on in-coverage utterances. They also reported
that the SLM-based system showed slightly lower
word error rate but higher semantic error rate for
the users who know the application’s coverage. In
(Rayner et al, 2005), a rigorous test protocol is pre-
sented to compare grammar-based and robust ap-
proaches in the context of a medical translation sys-
tem. The paper highlights the difficulties to con-
struct a clean experimental set-up. Efforts are spent
to control thetraining set of both approaches to

76

have them align. Thetraining sets are defined as
the set of data available to build each system: for a
grammar-based system, it might be a series of sam-
ple dialogs. (ten Bosch, 2005) presents experiments
comparing grammar-based and SLM-based systems
for naı̈ve users and an expert user. They conclude
that the SLM-based system is most effective in re-
ducing the error rate for naı̈ve users. Recently (see
(Balakrishna et al, 2006)), a process was presented
to automatically build SLMs from a wide variety
of sources (in-service data, thesaurus, WordNet and
world-wide web). Results on data from commer-
cial speech applications presented therein echo ear-
lier results (Knight et al, 2001) while reducing the
effort to build interpretation rules.

Most of the above studies are not based on data
collected on deployed applications. One of the con-
clusions from previous work, based on the measured
fact that in-coverage accuracy of the grammar-based
systems was far better than the SLM one, was that
as people get more experience with the applications,
they will naturally learn its coverage and gravitate
towards it. While this can be an acceptable option
for some types of applications (when the user pop-
ulation tends to be experienced or captive), it cer-
tainly is not a possibility for large-scale commercial
applications that are targeted at the general public. A
few examples of such applications are public transit
schedules and fares information, self-help applica-
tions for utilities, banks, telecommunications busi-
ness, and etc. Steering application design and re-
search based on in-coverage accuracy is not suitable
for these types of applications because a large frac-
tion of the users are naı̈ves and tend to use more nat-
ural and unconstrained speech inputs.

This paper exploits techniques known since the
90’s (SLM with robust parsing, (Ward, 1990)) and
applies them to build robust speech understanding
into existing large scale directed dialog grammar-
based applications. This practical application of
(Ward, 1990; Knight et al, 2001; Rayner et al, 2005;
ten Bosch, 2005) is cast as an upgrade problem
which must obey the following constraints.

1. No change in the application logic and to the
voice user interface (VUI)

2. Roughly similar CPU consumption

3. Leverage existing grammars

4. Leverage existing transcribed utterances

5. Simple process that requires little manual inter-
vention

The first constraint dictates that, for each context,
the interpretation engines (from the current and up-
graded systems) must return the same semantics (i.e.
same set of slots).

The rest of this paper is organized as follows. The
next Section describes the applications from which
the data was collected, the experimental set-up and
the accuracy measures used. Section 3 describes
how the semantic truth is generated. The main re-
sults of the upgrade from grammar-based to SLM-
based recognition are presented in Section 4. The
target audience for this paper is composed of appli-
cation developers and researchers that are interested
in the robust information extraction from directed
dialog speech applications targeted at the general
public.

2 Applications, corpus and experimental
set-up

2.1 Application descriptions

As mentioned earlier, the data for this study was col-
lected on deployed commercial directed dialog ap-
plications. AppA is a self-help application in the in-
ternet service provider domain, while AppB is also
a self-help application in the public transportation
domain. Both applications are grammar-based di-
rected dialogs and receive a daily average of 50k
calls. We will concentrate on a subset of contexts
(dialog states) for each application as described in
Table 1. Themainmenu grammars (each application
has its ownmainmenu grammar) contain high-level
targets for the rest of the application and are active
once the initial prompt has been played. Thecom-
mand grammar contains universal commands like
“help”, “agent”, etc. Theorigin and destination
grammars contain a list of∼ 2500 cities and states
with the proper prefixes to discriminate origin and
destination.num type passenger accepts up to nine
passengers of types adults, children, seniors, etc.
Finally time is self explanatory. For each applica-
tion, the prompt directs the user to provide a specific

77

Context Description Active grammars Training Testing
sentences utts

AppA MainMenu Main menu mainmenu and 5000 5431
for the application commands (350) (642)

AppB MainMenu Main menu mainmenu and 5000 4039
for the application commands (19) (987)

AppB Origin Origin of travel origin, destination 5000 8818
and commands (20486) (529)

AppB Passenger Number and type num type passenger 1500 2312
of passenger and commands (32332) (66)

AppB Time Time of departure time and commands 1000 1149
(4102) (55)

Table 1: Description of studied contexts for each application. Note that the AppBOrigin context contains a
destination grammar: this is due to the fact that the same set of grammars was used in the AppBDestination
context (not studied here). “Training” contains the numberof training sentences drawn from the corpus and
used to train the SLMs. As mentioned in Sec. 2.3, in the case ofword SLMs, we also use sentences that are
covered by the grammars in each context as backoffs (see Sec.2). The number of unique sentences covered
by the grammars is in parenthesis in the “Training” column. The “Testing” column contains the number of
utterances in the test set. The number of those utterances that contain no speech (noise) is in parenthesis.

piece of information (directed dialog). Each gram-
mar fills a single slot with that information. The in-
formation contained in the utterance “two adults and
one child” (AppB Passenger context) would be col-
lapsed to fill thenum type passengerslot with the
value “Adult2 Child1”. From the application point
of view, each context can fill only a very limited set
of slots. To keep results as synthesized as possible,
unless otherwise stated, the results from all studied
contexts will be presented per application: as such
results from all contexts in AppB will be pooled to-
gether.

2.2 Corpus description

Table 1 presents the details of the corpus that we
have used for this study. As mentioned above the en-
tire corpora used for this study is drawn from com-
mercially deployed systems that are used by the gen-
eral public. The user population reflects realistic
usage (expert vs naı̈ve), noise conditions, handsets,
etc. The training utterances do not contain noise ut-
terances and is used primarily for SLM training (no
acoustic adaptation of the recognition models is per-
formed).

2.3 Experimental set-up description

The baseline system is the grammar-based system;
the recognizer uses, on a per-context basis, the gram-
mars listed in Table 1 in parallel. The SLM systems
studied all used the same interpretation engine: ro-
bust parsing with the grammars listed in Table 1 as
rules to fill slots. Note that this allows the applica-
tion logic to stay unchanged since the set of potential
slots returned within any given context is the same as
for the grammar-based systems (see first constraint
in Sec. 1). Adhering to this experimental set-up also
guarantees that improvements measured in the lab
will have a direct impact on the raw accuracy of the
deployed application.

We have considered two different SLM-based
systems in this study: standard SLM (wordSLM)
and class-based SLM (classSLM) (Jelinek, 1990;
Gillett and Ward, 1998). In the classSLM systems,
the classes are defined as the rules of the interpre-
tation engine (i.e. the grammars active for each
context as defined in Table 1). The SLMs are all
trained on a per-context basis (Xu and Rudnicky,
2000; Goel and Gopinath, 2006) as bi-grams with
Witten-Bell discounting. To insure that the word-
SLM system covered all sentences that the grammar-
based system does, we augmented the training set of

78

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2

C
A

-in

FA-total

CA-in/FA-total

grammar-based - automatic
grammar-based - human

wordSLM - automatic
 wordSLM - human 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Recall/Precision

grammar-based - automatic
grammar-based - human

wordSLM - automatic
 wordSLM - human

Figure 1: ROC curves for AppAMainMenu with the automatic or human-generated truth. In each the
grammar-based and SLM-based systems are compared.

the wordSLM (see Table 1) with the list of sentences
that are covered by the baseline grammar-based sys-
tem. This acts as a backoff in case a word or bi-
gram is not found in the training set (not to be con-
fused with bi-gram to uni-gram backoffs found in
standard SLM training). This is particularly helpful
when a little amount of data is available for training
the wordSLM (see Sec. 4.3).

2.4 Accuracy measures

Throughout this paper, we will use two sets of mea-
sures. This is motivated by the fact that applica-
tion developers are familiar with the concepts of cor-
rect/false acceptance at the utterance level. For in-
formation extraction (slot filling) from utterances,
these concepts are restrictive because an utterance
can be partly correct or wrong. In this case we pre-
fer a more relevant measure from the information re-
trieval field: precision and recall on a per-slot basis.
We use the following definitions.

• CA-in = #utts that had ALL slots correct (slot
name and value) / #utts that are in-coverage
(i.e. truth has at least a slot filled)

• FA-total = #utts that had at least one erroneous
slot (slot name or value) / total #utts

• Precision = #slot correct slots (slot name and
value) / #slots returned by system

• Recall = #slot correct slots (slot name and
value) / #slots potential slots (in truth)

Since applications use confidence extensively to
guide the course of dialogue, it is of limited interest
to study forced-choice accuracy (accuracy with no
rejection). Hence, we will present receiver operat-
ing characteristic (ROC) curves. The slot confidence
measure is based on redundancy of a slot/value pair
across the NBest list. For CA-in and FA-total, the
confidence is the average confidence of all slots
present in the utterance. Note that in the case where
each utterance only fills a single slot, CA-in = Re-
call.

3 Truth

Due to the large amount of data processed (see Table
1), semantic tagging by a human may not be avail-
able for all contexts (orthographic transcriptions are
available however). We need to resort to a more au-
tomatic way of generating the truth files while main-
taining a strong confidence in our measurements. To
this end, we need to ensure that any automatic way
of generating the truth will not bias the results to-
wards any of the systems.

The automatic truth can be generated by simply
using the robust parser (see Sec. 2.3) on the or-
thographic transcriptions which are fairly cheap to
acquire. This will generate a semantic interpreta-
tion for those utterances that contain fragments that

79

parse rules defined by the interpretation engine. The
human-generated truth is the result of semantically
tagging all utterances that didn’t yield a full parse
by one of the rules for the relevant context.

Figure 1 presents the ROC curves of human and
automatic truth generation for the grammar-based
and wordSLM systems. We can see that human se-
mantic tagging increases the accuracy substantially,
but this increase doesn’t seem to favor one system
over the other. We are thus led to believe that in our
case (very few well defined non-overlapping classes)
the automatic truth generation is sufficient. This
would not be the case, for example if for a given con-
text atime grammar andnumber were active classes.
Then, an utterance like “seven” might lead to an er-
roneous slot being automatically filled while a hu-
man tagger (who would have access to the entire di-
alog) would tag it correctly.

In our experiments, we will use the hu-
man semantically tagged truth when available
(AppA MainMenu and AppBOrigin). We have
checked that the conclusions of this paper are not
altered in any way if the automatic semantically
tagged truth had been used for these two contexts.

4 Results and analysis

4.1 Out-of-coverage analysis

Context (#utts) grammar- SLM-based
based

AppA MainMenu 1252 1086
AppB MainMenu 1287 1169
AppB Origin 1617 1161
AppB Passenger 492 414
AppB Time 327 309

Table 2: Number of utterances out-of-coverage for
each context.

Coverage is a function of the interpretation en-
gine. We can readily analyze the effect of going
from a grammar-based interpretation engine (gram-
mars in Table 1 are in parallel) to the robust ap-
proach (rules from grammars in Table 1 are used
in robust parsing). This is simply done by running
the interpretation engine on the orthographic tran-
scriptions. As expected, the coverage increased. Ta-
ble 2 shows the number of utterances that didn’t

fire any rule for each of the interpretation engines.
These include noise utterances as described in Table
1. If we remove the noise utterances, going from
the grammar-based interpretation to an SLM-based
one reduces the out-of-coverage by31%. This result
is interesting because the data was collected from
directed-dialog applications which should be heav-
ily guiding the users to the grammar-based system’s
coverage.

4.2 Results with recognizer

The main results of this paper are found in Fig-
ure 2. It presents for grammar-based, wordSLM
and classSLM systems the four measurements men-
tioned in Sec.2.4 for AppA and AppB. We have
managed, with proper Viterbi beam settings, to keep
in the increase in CPU (grammar-based system→
SLM-based system) between0% and24% relative.
We can see that the wordSLM is outperforming the
classSLM. The SLM-based systems outperform the
grammar-based systems substantially (∼ 30 − 50%

error rate reduction on most of the confidence do-
main). The only exception to this is the classSLM
in AppA: we will come back to this in Sec. 4.4.
This can be interpreted as a different conclusion than
those of (Knight et al, 2001; ten Bosch, 2005). The
discrepancy can be tied to the fact that the data we
are studying comes from a live deployment targeted
to the general public. In this case, we can make
the hypothesis that a large fraction of the popula-
tion is composed of naı̈ve users. As mentioned in
(ten Bosch, 2005), SLM-based systems perform bet-
ter than grammar-based ones on that cross-section of
the user population.

One might argue that the comparison between the
grammar-based and wordSLM systems is unfair be-
cause the wordSLM intrinsically records thea priori
probability that a user says a specific phrase while
the grammar-based system studied here didn’t ben-
efit from this information. In Sec. 4.4, we will ad-
dress this and show thata priori has a negligible ef-
fect in this context.

Note that these impressive results are surprisingly
easy to achieve. A simple process could be as fol-
lows. An application is developed using grammar-
based paradigm. After a limited deployment or pilot
with real users, a wordSLM is built from transcribed
(orthographic) data from the field. Then the recog-

80

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

C
A

-in

FA-total

CA-in/FA-total

grammar-based (73ms)
wordSLM (74ms)

classSLM (108ms)
 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Recall/Precision

grammar-based (73ms)
wordSLM (74ms)

classSLM (108ms)

AppA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

C
A

-in

FA-total

CA-in/FA-total

grammar-based (94ms)
wordSLM (117ms)
classSLM (113ms)

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Recall/Precision

grammar-based (94ms)
wordSLM (117ms)
classSLM (113ms)

AppB

Figure 2: ROC curves for AppA (top) and AppB (bottom). In parenthesis is the average time for the
recognition and interpretation.

nition and interpretation engines are upgraded. The
grammars built in the early stages of development
can largely be re-used as interpretation rules.

4.3 Amount of training data for SLM training

For the remaining Sections, we will use precision
and recall for simplicity. We will discuss an ex-
treme case where only a subset of 250 sentences
from the standard training set is used to train the
SLM. We have run experiments with two contexts:
AppA MainMenu and AppBOrigin. These con-
texts are useful because a) we have the human-
generated truth and b) they represent extremes in the

complexity of grammars (see Section 2). On one
hand, the grammars for AppAMainMenu can cover
a total of 350 unique sentences while AppBOrigin
can cover over 20k. As the amount of training
data for the SLMs is reduced from 5000 down to
250 sentences, the accuracy for AppAMainMenu
is only perceptibly degraded for the wordSLM and
classSLM systems on the entire confidence domain
(not shown here). On the other hand, in the case
of the more complex grammar (class), it is a dif-
ferent story which highlights a second regime. For
AppB Origin, the precision and recall curve is pre-
sented on Figure 3. In the case of classSLM (left),

81

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Recall/Precision

grammar-based
classSLM - 5000
classSLM - 250

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Recall/Precision

grammar-based
wordSLM - 5000
wordSLM - 250

wordSLM - 250 - no backoff

Figure 3: Precision and recall for the AppBOrigin context as the amount of training data for the SLMs is
reduced. On the left, classSLM systems are presented; on theright it is the wordSLM.

even with very little training data, the accuracy is
far better than the grammar-based system and only
slightly degraded by reducing the size of the training
set. In the case of wordSLM (right), we can still see
that the accuracy is better than the grammar-based
system (refer to “wordSLM - 250” on the graph),
but the reduction of training data has a much more
visible effect. If we remove the sentences that were
drawn from the grammar-based system’s coverage
(backoff - see Sec. 2.3), we can see that the drop in
accuracy is even more dramatic.

4.4 Coverage of interpretation rules and priors

As seen in Sec. 4.2, the classSLM results for AppA
are disappointing. They, however, shed some light
on two caveats of the robust approach described
here. The first caveat is the coverage of the interpre-
tation rules. As described in Sec. 2, the SLM-based
systems’ training sets and interpretation rules (gram-
mars from Table 1) were built in isolation. This can
have a dramatic effect: after error analysis of the
classSLM system’s results, we noticed a large frac-
tion of errors for which the recognized string was a
close (semantically identical) variant of a rule in the
interpretation engine (“cancellations” vs “cancella-
tion”). In response, we implemented a simple tool
to increase the coverage of the grammars (and hence
the coverage of the interpretation rules) using the list
of words seen in the training set. The criteria for se-

lection is based on common stem with a word in the
grammar.

The second caveat is based on fact that the
classSLM suffers from a lack of prior information
once the decoding process enters a specific class
since the grammars (class) do not contain priors.
The wordSLM benefits from the full prior informa-
tion all along the search. We have solved this by
training a small wordSLMwithin each grammar
(class): for each grammar, the training set for the
small wordSLM is composed of the set of fragments
from all utterances in the main training set that fire
that specific rule. Note that this represents a way
to have the grammar-based and SLM-based systems
share a commontraining set (Rayner et al, 2005).

In Figure 4, we show the effect of increasing the
coverage and adding priors in the grammars. The
first conclusion comes in comparing the grammar-
based results with and without increased coverage
(enhanced+priors in figure) and priors. We see that
the ROC curves are one on top of the other. The only
differences are: a) at low confidence where the en-
hanced+priors version shows better precision, and
b) the CPU consumption is greatly reduced (73ms
→ 52ms). When the enhanced+priors version of
the grammars (for classes and interpretation rules)
is used in the context of the classSLM system, we
can see that there is a huge improvement in the accu-
racy: this shows the importance of keeping the SLM

82

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Recall/Precision

gram.-based (73ms)
gram.-based - enhanced+priors (52ms)

classSLM (108ms)
classSLM - enhanced+priors (79ms)

Figure 4: ROC curves for AppA showing the ef-
fect of increasing the grammar coverage and adding
prior information in the grammars.

and interpretation rules in-sync. The final classSLM
ROC curve (Figure 4) is now comparable with its
wordSLM counter-part (Figure 2 upper right graph).

5 Conclusion

We have demonstrated in this paper that grammar-
based systems for commercially deployed directed
dialog applications targeted at the general public
can be improved substantially by using SLMs with
robust parsing. This conclusion is different than
(Rayner et al, 2005) and can be attributed to that fact
that the general public is likely composed of a large
portion of naı̈ve users. We have sketched a very sim-
ple process to upgrade an application from using a
grammar-based approach to a robust approach when
in-service data and interpretation rules (grammars)
are available. We have also shown that only a very
small amount of data is necessary to train the SLMs
(Knight et al, 2001). Class-based SLMs should be
favored in the case where the amount of training
data is low while word-based SLMs should be used
when enough training data is available. In the case
of non-overlapping classes, we have demonstrated
the soundness of automatically generated semantic
truth.

6 Acknowledgements

The author would like to acknowledge the helpful
discussions with M. Fanty, R. Tremblay, R. Lacou-
ture and K. Govindarajan during this project.

References

W. Ward. 1990. The CMU Air Travel Information Ser-
vice: Understanding spontaneous speech .Proc. of the
Speech and Natural Language Workshop, Hidden Val-
ley PA, pp. 127–129.

A.L. Gorin, B.A. Parker, R.M. Sachs and J.G. Wilpon.
1997. How may I help you?.Speech Communica-
tions, 23(1):113–127.

C. Hemphill, J. Godfrey and G. Doddington. 1990. The
ATIS spoken language systems and pilot corpus.Proc.
of the Speech and Natural Language Workshop, Hid-
den Valley PA, pp. 96–101.

S. Knight, G. Gorrell, M. Rayner, D. Milward, R. Koel-
ing and I. Lewin. 2001. Comparing grammar-based
and robust approaches to speech understanding: a case
study.Proc. of EuroSpeech.

M. Rayner, P. Bouillon, N. Chatzichrisafis, B.A. Hockey,
M. Santaholma, M. Starlander, H. Isahara, K. Kanzaki
and Y. Nakao. 2005. A methodology for comparing
grammar-based and robust approaches to speech un-
derstanding.Proc. of EuroSpeech.

L. ten Bosch. 2005. Improving out-of-coverage lan-
guage modelling in a multimodal dialogue system us-
ing small training sets.Proc. of EuroSpeech.

M. Balakrishna, C. Cerovic, D. Moldovan and E. Cave.
2006. Automatic generation of statistical language
models for interactive voice response applications.
Proc. of ICSLP.

J. Gillett and W. Ward. 1998. A language model com-
bining tri-grams and stochastic context-free grammars.
Proc. of ICSLP.

F. Jelinek. 1990. Readings in speech recognition, Edited
by A. Waibel and K.-F. Lee , pp. 450-506. Morgan
Kaufmann, Los Altos.

W. Xu and A. Rudnicky. 2000. Language modeling for
dialog system.Proc. of ICSLP.

V. Goel and R. Gopinath. 2006. On designing context
sensitive language models for spoken dialog systems.
Proc. of ICSLP.

83

Bridging the Gap: Academic and Industrial Research in Dialog Technologies Workshop Proceedings, pages 84–88,

NAACL-HLT, Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

WIRE: A Wearable Spoken Language Understanding
System for the Military

Helen Hastie Patrick Craven Michael Orr
Lockheed Martin Advanced Technology Laboratories

3 Executive Campus
Cherry Hill, NJ 08002

{hhastie, pcraven, morr}@atl.lmco.com

Abstract

In this paper, we present the WIRE system for
human intelligence reporting and discuss chal-
lenges of deploying spoken language under-
standing systems for the military, particularly
for dismounted warfighters. Using the
PARADISE evaluation paradigm, we show that
performance models derived using standard
metrics can account for 68% of the variance of
User Satisfaction. We discuss the implication of
these results and how the evaluation paradigm
may be modified for the military domain.

1 Introduction

Operation Iraqi Freedom has demonstrated the
need for improved communication, intelligence,
and information capturing by groups of dis-
mounted warfighters (soldiers and Marines) at the
company level and below. Current methods of col-
lecting intelligence are cumbersome, inefficient
and can endanger the safety of the collector. For
example, a dismounted warfighter who is collect-
ing intelligence may stop to take down notes, in-
cluding his location and time of report or
alternatively try to retain the information in mem-
ory. This information then has to be typed into a
report on return to base. The authors have devel-
oped a unique, hands-free solution by capturing
intelligence through spoken language understand-
ing technology called WIRE or Wearable Intelli-
gent Reporting Environment. Through WIRE,
users simply speak what they see, WIRE under-
stands the speech and automatically populates a

report. The report format we have adopted is a
SALUTE report which stands for the information
fields: Size, Activity, Location, Unit, Time and
Equipment. The military user is used to giving in-
formation in a structure way, therefore, informa-
tion entry is structured but the vocabulary is
reasonably varied, an example report is “Size is
three insurgents, Activity is transporting weapons.”
These reports are tagged by WIRE with GPS posi-
tion and time of filing. The report can be sent in
real-time over 802.11 or radio link or downloaded
on return to base and viewed on a C2 Interface.
WIRE will allow for increased amounts of digit-
ized intelligence that can be correlated in space and
time to predict adverse events. In addition, pre and
post-patrol briefings will be more efficient, accu-
rate and complete. Additionally, if reports are
transmitted in real time, they have the potential to
improve situational awareness in the field.

This paper discusses the challenges of taking
spoken language understanding technology out of
the laboratory and into the hands of dismounted
warfighters. We also discuss usability tests and
results from an initial test with Army Reservists.

2 System Overview

WIRE is a spoken language understanding system
that has a plug-and-play architecture (Figure 1)
that allows for easy technology refresh of the dif-
ferent components. These components pass events
to each other via an event bus. The speech is col-
lected by an audio server and passed to the Auto-
matic Speech Recognizer (ASR) server, which is
responsible for converting the audio waveform into
an N-best list. The Natural Language (NL) under

84

Figure 1. WIRE System Architecture

standing component executes a named-entity tag-
ger to tag and retain key text elements within the
each candidate N-best list element. The sets of
tagged entities are then parsed using a bottom-up
chart parser. The chart parser validates each named
entity tag sequence and generates a syntactic parse
tree. A heuristic is then applied to select the best
parse tree from the N-best list as the representative
spoken text. After a parse tree is selected, a seman-
tic parser is used to prune the parse tree and pro-
duce a semantic frame—a data structure that
represents the user's spoken text. The semantic
frame is then passed through a rule-based filter that
translates text as necessary for processing, e.g.,
converting text numbers to digits.

The semantic frame is then passed to the Dia-
logue Manager which decides what action to take
based on the most recent utterance and its context.
If the system is to speak a reply, the natural lan-
guage generation component generates a string of
text that is spoken by the Text-To-Speech engine
(TTS).

The WIRE spoken language understanding sys-
tem was fully developed by the authors with the
exception of the ASR, called Dynaspeak™, which
was developed by SRI International (Franco et al.,
2002) and the TTS engine from Loquendo S.p.A.
Grammars for the ASR and NL have to be written
for each new domain and report type.

In order for the system to adapt to the user’s en-
vironment, there are two modes of operation. In-
teractive mode explicitly confirms what the user
says and allows the user to ask the system to read
back certain fields or the whole report. Alterna-
tively, in stealth mode, the user simply speaks the
report and WIRE files it immediately. In both

cases, audio is recorded as a back-up for report
accuracy.

3 Challenges of Deployment to Dis-
mounted Warfighters

The goal of WIRE is to provide a means of report-
ing using an interface that is conceptually easy to
use through natural language. This is particularly
challenging given the fluid nature of war and the
constant emergence of new concepts such as dif-
ferent types of Improvised Explosive Devices
(IEDs) or groups of insurgents. Another challenge
is that each unit has its own idiosyncrasies, call
signs and manner of speaking. Because WIRE is a
limited-domain system and it is not possible to in-
corporate all of this variability, we found training
to be a key factor in user and system performance
and acceptance.

A new challenge that phone-based or desk-top
systems have yet to face is the need for a mobile
spoken language understanding system that can be
worn by the user. From a software perspective,
WIRE has to have a small footprint. From a hard-
ware perspective, the system has to be lightweight,
robust, and rugged and must integrate with existing
equipment. Wearable computing is constantly
evolving and eventually WIRE will be able to run
on a system as small as a button. We have also
been working with various companies to create a
USB noise-canceling microphone similar to what
the military user is accustomed to.

4 Experiment Design

Fifteen Army Reservists and three former Marines
participated in WIRE usability tests in a laboratory
environment. The Reservists predominately pro-
vide drill-instructor support for Army basic train-
ing groups. The session began with a brief
introduction to the WIRE system. Following that,
participants reviewed a series of self-paced training
slides. They then completed two sets of four sce-
narios, with one set completed in stealth mode and
the other in interactive mode. A total of 523 utter-
ances were collected. Participants were asked to
complete five-question surveys at the end of each
set of scenarios. For the regression model de-
scribed below, we averaged User Satisfaction
scores for both types of interaction modes.

85

We adopted the PARADISE evaluation method
(Walker et al., 1997). PARADISE is a “decision-
theoretic framework to specify the relative con-
tribution of various factors to a system’s overall
performance.” Figure 2 shows the PARADISE
model which defines system performance as a
weighted function of task-based success measures
and dialogue-based cost measures. Dialogue costs
are further divided into dialogue efficiency meas-
ures and qualitative measures. Weights are calcu-
lated by correlating User Satisfaction with
performance.

Figure 2. PARADISE Model (Walker et al., 1997)

The set of metrics that were collected are:

• Dialogue Efficiency Measures: User Turns,
Average Length of Utterance, Average Re-
sponse Latency and Platform.

• Dialogue Quality Measures: Word Accuracy.
• Task Success Measures: Report Accuracy,

Field Correctness for Size, Activity, Location,
Unit, Time and Equipment.

• User Satisfaction: Average of User Ex-
pertise, User Confidence, System Trust,
Task Ease, Future Use.

User Satisfaction is the average of responses from a
survey of five questions on a five-point Likert scale
with five being the highest rating. These questions in-
clude:

• Q1: I knew what I could say at any point

(User Expertise).
• Q2: I knew what I was doing at any point

in the dialog (User Confidence).
• Q3: I trusted that WIRE accurately cap-

tured my report information (System
Trust).

• Q4: I felt like I could create and file a re-
port quickly (Task Ease).

• Q5: I would recommend that this system
be fielded (Future Use).

These questions are modified from the more tra-
ditional User Satisfaction questions (Walker et al.,
2001) that include TTS Performance and Expected
Behavior. TTS Performance was substituted be-
cause the voice is of such a high quality that it
sounds just like a human; therefore, the question is
no longer relevant. Expected Behavior was substi-
tuted for this study because WIRE is mostly user
initiative for the reporting domain.

The Task Success metric was captured by Re-
port Accuracy. This was calculated by averaging
the correctness of each field over the number of
fields attempted. Field correctness was scored
manually as either 1 or 0, depending on whether
the report field was filled out completely correctly
based on user’s intent. Partial credit was not given.

Various platforms were used in the experiment,
including laptops, tablet PCs and wearable com-
puters. The Platform metric reflects the processing
power with 0 being the highest processing power
and 1 the less powerful wearable computers.

5 Experimental Results

We applied the PARADISE model using the met-
rics described above by performing multiple linear
regression using a backward coefficient selection
method that iteratively removes coefficients that do
not help prediction. The best model takes into ac-
count 68% of the variance of User Satisfaction
(p=.01). Table 1 gives the metrics in the model
with their coefficients and p values. Note that the
data set is quite small (N=18, df=17), which most
likely affected the results.

Table 1. Predictive Power and Significance of Metrics

Metric Standardized β
Coefficients p value

User Turns -0.633 0.01
Unit Field
Correctness

0.735 0.00

Platform -0.24 0.141

Results show an average User Satisfaction of 3.9

that is broken down into 4.09 for interactive mode
and 3.73 for stealth. The lowest medium user satis-
faction score was for System Trust (3.5), the high-
est for Task Ease (4.5).

86

Speech recognition word accuracy is 79%, how-
ever, Report Accuracy, which is after the speech
has been processed by the NL, is 84%. Individual
field correctness scores varied from 93% for Activ-
ity to 75% for Location. From previous tests, we
have found that word accuracy increases through
user training and experience up to 95%.

6 Interpretation and Discussion

These initial results show that the User Turns met-
ric is negatively predictive of User Satisfaction.
This is intuitive as the more user turns it takes to
complete a report the less satisfied the user.
(Walker et al., 2001) have similar findings for the
Communicator data where Task Duration is nega-
tively predictive of User Satisfaction in their model
(coefficient -0.15).

Secondly, Unit Field Correctness is predictive of
User Satisfaction. Given this model and the limited
data set, this metric may represent task completion
better than overall Report Accuracy. During the
test, the user can visually see the report before it is
sent. If there are mistakes then this too will affect
User Satisfaction. This is similar to findings by
(Walker et al., 2001) who found that Task Comple-
tion was positively predictive of User Satisfaction
(coefficient 0.45).

Finally, Platform is negatively predictive, in
other words: the higher the processing power
(scored 0) the higher the User Satisfaction and the
lower the processing power (scored 1) the lower
the User Satisfaction. Not surprisingly, users prefer
the system when it runs on a faster computer. This
means that the success of the system is likely de-
pendent on an advanced wearable computer. There
have been recent advances in this field since this
experiment. These systems are now available with
faster Intel processors and acceptable form factor
and battery life.

The User Satisfaction results show that areas of
improvement include increasing the trust in the
user (Q3). This challenge has been discussed pre-
viously for military applications in (Miksch et al.,
2004) and may reflect tentativeness of military
personnel to accept new technology. Trust in the
system can be improved by putting the system in
“interactive” mode, which explicitly confirms each
utterance and allows the user to have the system
read back the report before sending it. A Wilcoxon
signed-rank test (Z = 2.12, p < .05) indicated that

scores for this question were significantly higher
for interactive mode (M = 3.93) than stealth mode
(M=3.27).

Our current evaluation model uses User Satis-
faction as a response variable in line with previous
PARADISE evaluations (Walker et al., 2001).
However, User Satisfaction may not be the most
appropriate metric for military applications. Unlike
commercial applications, the goal of a military sys-
tem is not to please the user but rather to complete
a mission in a highly effective and safe manner.
Therefore, a metric such as mission effectiveness
may be more appropriate. Similarly, (Forbes-Riley
and Litman, 2006) use the domain-specific re-
sponse variable, of student learning in their evalua-
tion model.

An obvious extension to this study is to test in
more realistic environments where the users may
be experiencing stress in noisy environments. Ini-
tial studies have been performed whereby users are
physically exerted. These studies did not show a
degradation in performance. In addition, initial
tests outside in noisy and windy environments em-
phasize the need for a high quality noise canceling
microphone. Further, more extensive tests of this
type are needed.

In summary, we have presented the WIRE spo-
ken language understanding system for intelligence
reporting, and we have discussed initial evalua-
tions using the PARADISE methods. Through ad-
vances in spoken language understanding,
hardware and microphones, this technology will
soon transition out of the laboratory and into the
field to benefit warfighters and improve security in
conflict regions.

Acknowledgments

Thanks to the Army Reservist 1/417th Regt, 1st
BDE 98th Div (IT).

References
Forbes-Riley, K. and Litman, D.J. “Modeling User Sat-

isfaction and Student Learning in a Spoken Dialogue
Tutoring System with Generic, Tutoring, and User
Affect Parameters.” HLT-NAACL, 2006.

Franco, H., Zheng, J., Butzberger, J., Cesari, F., Frand-
sen, M., Arnold, J., Rao, R., Stolcke, A., and Abrash,
V. “Dynaspeak™: SRI International's scalable speech
recognizer for embedded and mobile systems.” HLT,
2002.

87

Miksch, D., Daniels, J.J., and Hastie, H. (2004). “Estab-
lishing Trust in a Deployed Spoken Language Sys-
tem for Military Domains.” In Proc. of AAAI
Workshop, 2004.

Walker, M.A., Litman, D., Kamm, C. and Abella, A.
“PARADISE: A Framework for Evaluating Spoken
Dialogue Agents.” ACL, 1997.

Walker, M.A., Passonneau, R., and Boland, J.E.
“Quantitative and Qualitative Evaluation of DARPA
Communicator Spoken Dialogue Systems.” ACL,
2001.

88

Bridging the Gap: Academic and Industrial Research in Dialog Technologies Workshop Proceedings, pages 89–96,

NAACL-HLT, Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

Different measurements metrics to evaluate a chatbot system

Bayan Abu Shawar

IT department
Arab Open University

[add]
b_shawar@arabou-jo.edu.jo

Eric Atwell
School of Computing
University of Leeds
LS2 9JT, Leeds-UK

eric@comp .leeds.ac.uk

Abstract

A chatbot is a software system, which can
interact or “chat” with a human user in
natural language such as English. For the
annual Loebner Prize contest, rival chat-
bots have been assessed in terms of ability
to fool a judge in a restricted chat session.
We are investigating methods to train and
adapt a chatbot to a specific user’s lan-
guage use or application, via a user-
supplied training corpus. We advocate
open-ended trials by real users, such as an
example Afrikaans chatbot for Afrikaans-
speaking researchers and students in
South Africa. This is evaluated in terms of
“glass box” dialogue efficiency metrics,
and “black box” dialogue quality metrics
and user satisfaction feedback. The other
examples presented in this paper are the
Qur'an and the FAQchat prototypes. Our
general conclusion is that evaluation
should be adapted to the application and
to user needs.

1 Introduction

“Before there were computers, we could distin-
guish persons from non-persons on the basis of an
ability to participate in conversations. But now, we
have hybrids operating between person and non
persons with whom we can talk in ordinary lan-
guage.” (Colby 1999a). Human machine conversa-
tion as a technology integrates different areas
where the core is the language, and the computa-
tional methodologies facilitate communication be-
tween users and computers using natural language.

A related term to machine conversation is the
chatbot, a conversational agent that interacts with

users turn by turn using natural language. Different
chatbots or human-computer dialogue systems
have been developed using text communication
such as Eliza (Weizenbaum 1966), PARRY (Colby
1999b), CONVERSE (Batacharia etc 1999),
ALICE1. Chatbots have been used in different do-
mains such as: customer service, education, web
site help, and for fun.

Different mechanisms are used to evaluate
Spoken Dialogue Systems (SLDs), ranging from
glass box evaluation that evaluates individual
components, to black box evaluation that evaluates
the system as a whole McTear (2002). For exam-
ple, glass box evaluation was applied on the
(Hirschman 1995) ARPA Spoken Language sys-
tem, and it shows that the error rate for sentence
understanding was much lower than that for sen-
tence recognition. On the other hand black box
evaluation evaluates the system as a whole based
on user satisfaction and acceptance. The black box
approach evaluates the performance of the system
in terms of achieving its task, the cost of achieving
the task in terms of time taken and number of
turns, and measures the quality of the interaction,
normally summarised by the term ‘user satisfac-
tion’, which indicates whether the user “ gets the
information s/he wants, is s/he comfortable with
the system, and gets the information within accept-
able elapsed time, etc.” (Maier et al 1996).

The Loebner prize2 competition has been used
to evaluate machine conversation chatbots. The
Loebner Prize is a Turing test, which evaluates the
ability of the machine to fool people that they are
talking to human. In essence, judges are allowed a
short chat (10 to 15 minutes) with each chatbot,
and asked to rank them in terms of “naturalness”.

ALICE (Abu Shawar and Atwell 2003) is the
Artificial Linguistic Internet Computer Entity, first

1 http://www.alicebot.org/
2 http://www.loebner.net/Prizef/loebner-prize.html

89

implemented by Wallace in 1995. ALICE knowl-
edge about English conversation patterns is stored
in AIML files. AIML, or Artificial Intelligence
Mark-up Language, is a derivative of Extensible
Mark-up Language (XML). It was developed by
Wallace and the Alicebot free software community
during 1995-2000 to enable people to input dia-
logue pattern knowledge into chatbots based on the
A.L.I.C.E. open-source software technology.

In this paper we present other methods to
evaluate the chatbot systems. ALICE chtabot sys-
tem was used for this purpose, where a Java pro-
gram has been developed to read from a corpus
and convert the text to the AIML format. The Cor-
pus of Spoken Afrikaans (Korpus Gesproke Afri-
kaans, KGA), the corpus of the holy book of Islam
(Qur’an), and the FAQ of the School of Computing
at University of Leeds3 were used to produce two
KGA prototype, the Qur’an prototype and the
FAQchat one consequently.

Section 2 presents Loebner Prize contest, sec-
tion 3 illustrates the ALICE/AIMLE architecture.
The evaluation techniques of the KGA prototype,
the Qur’an prototype, and the FAQchat prototype
are discussed in sections 4, 5, and 6 consequently.
The conclusion is presented in section 7.

2 The Loebner Prize Competition

The story began with the “imitation game” which
was presented in Alan Turing’s paper “Can Ma-
chine think?” (Turing 1950). The imitation game
has a human observer who tries to guess the sex of
two players, one of which is a man and the other is
a woman, but while screened from being able to
tell which is which by voice, or appearance. Turing
suggested putting a machine in the place of one of
the humans and essentially playing the same game.
If the observer can not tell which is the machine
and which is the human, this can be taken as strong
evidence that the machine can think.

Turing’s proposal provided the inspiration for
the Loebner Prize competition, which was an at-
tempt to implement the Turing test. The first con-
test organized by Dr. Robert Epstein was held on
1991, in Boston’s Computer Museum. In this in-
carnation the test was known as the Loebner con-
test, as Dr. Hugh Loebner pledged a $100,000
grand prize for the first computer program to pass

3 http://www.comp.leeds.ac.uk

the test. At the beginning it was decided to limit
the topic, in order to limit the amount of language
the contestant programs must be able to cope with,
and to limit the tenor. Ten agents were used, 6
were computer programs. Ten judges would con-
verse with the agents for fifteen minutes and rank
the terminals in order from the apparently least
human to most human. The computer with the
highest median rank wins that year’s prize. Joseph
Weintraub won the first, second and third Loebner
Prize in 1991, 1992, and 1993 for his chatbots, PC
Therapist, PC Professor, which discusses men ver-
sus women, and PC Politician, which discusses
Liberals versus Conservatives. In 1994 Thomas
Whalen (Whalen 2003) won the prize for his pro-
gram TIPS, which provides information on a par-
ticular topic. TIPS provides ways to store,
organize, and search the important parts of sen-
tences collected and analysed during system tests.

However there are sceptics who doubt the ef-
fectiveness of the Turing Test and/or the Loebner
Competition. Block, who thought that “the Turing
test is a sorely inadequate test of intelligence be-
cause it relies solely on the ability to fool people”;
and Shieber (1994), who argued that intelligence is
not determinable simply by surface behavior.
Shieber claimed the reason that Turing chose natu-
ral language as the behavioral definition of human
intelligence is “exactly its open-ended, free-
wheeling nature”, which was lost when the topic
was restricted during the Loebner Prize. Epstein
(1992) admitted that they have trouble with the
topic restriction, and they agreed “every fifth year
or so … we would hold an open-ended test - one
with no topic restriction.” They decided that the
winner of a restricted test would receive a small
cash prize while the one who wins the unrestricted
test would receive the full $100,000.

Loebner in his responses to these arguments be-
lieved that unrestricted test is simpler, less expen-
sive and the best way to conduct the Turing Test.
Loebner presented three goals when constructing
the Loebner Prize (Loebner 1994):

• “No one was doing anything about the
Turing Test, not AI.” The initial Loebner
Prize contest was the first time that the
Turing Test had ever been formally tried.

• Increasing the public understanding of AI
is a laudable goal of Loebner Prize. “I be-
lieve that this contest will advance AI and

90

serve as a tool to measure the state of the
art.”

• Performing a social experiment.

The first open-ended implementation of the
Turing Test was applied in the 1995 contest, and
the prize was granted to Weintraub for the fourth
time. For more details to see other winners over
years are found in the Loebner Webpage4.

In this paper, we advocate alternative evalua-
tion methods, more appropriate to practical infor-
mation systems applications. We have investigated
methods to train and adapt ALICE to a specific
user’s language use or application, via a user-
supplied training corpus. Our evaluation takes ac-
count of open-ended trials by real users, rather than
controlled 10-minute trials.

3 The ALICE/AIML chatbot architecture

AIML consists of data objects called AIML ob-
jects, which are made up of units called topics and
categories. The topic is an optional top-level ele-
ment; it has a name attribute and a set of categories
related to that topic. Categories are the basic units
of knowledge in AIML. Each category is a rule for
matching an input and converting to an output, and
consists of a pattern, which matches against the
user input, and a template, which is used in gener-
ating the Alice chatbot answer. The format struc-
ture of AIML is shown in figure 1.

< aiml version=”1.0” >
< topic name=” the topic” >

<category>
<pattern>PATTERN</pattern>
<that>THAT</that>
<template>Template</template>
</category>
 ..
 ..
</topic>
</aiml>
The <that> tag is optional and means that the cur-
rent pattern depends on a previous bot output.
Figure 1. AIML format

4 http://www.loebner.net/Prizef/loebner-prize.html

The AIML pattern is simple, consisting only of
words, spaces, and the wildcard symbols _ and *.
The words may consist of letters and numerals, but
no other characters. Words are separated by a sin-
gle space, and the wildcard characters function like
words. The pattern language is case invariant. The
idea of the pattern matching technique is based on
finding the best, longest, pattern match. Three
types of AIML categories are used: atomic cate-
gory, are those with patterns that do not have wild-
card symbols, _ and *; default categories are
those with patterns having wildcard symbols * or
_. The wildcard symbols match any input but can
differ in their alphabetical order. For example,
given input ‘hello robot’, if ALICE does not find a
category with exact matching atomic pattern, then
it will try to find a category with a default pattern;
The third type, recursive categories are those with
templates having <srai> and <sr> tags, which refer
to simply recursive artificial intelligence and sym-
bolic reduction. Recursive categories have many
applications: symbolic reduction that reduces com-
plex grammatical forms to simpler ones; divide
and conquer that splits an input into two or more
subparts, and combines the responses to each; and
dealing with synonyms by mapping different ways
of saying the same thing to the same reply.

The knowledge bases of almost all chatbots are
edited manually which restricts users to specific
languages and domains. We developed a Java pro-
gram to read a text from a machine readable text
(corpus) and convert it to AIML format. The chat-
bot-training-program was built to be general, the
generality in this respect implies, no restrictions on
specific language, domain, or structure. Different
languages were tested: English, Arabic, Afrikaans,
French, and Spanish. We also trained with a range
of different corpus genres and structures, includ-
ing: dialogue, monologue, and structured text
found in the Qur’an, and FAQ websites.

The chatbot-training-program is composed of
four phases as follows:

• Reading module which reads the dialogue
text from the basic corpus and inserts it
into a list.

• Text reprocessing module, where all cor-
pus and linguistic annotations such as
overlapping, fillers and others are filtered.

• Converter module, where the pre-
processed text is passed to the converter to
consider the first turn as a pattern and the

91

second as a template. All punctuation is
removed from the patterns, and the pat-
terns are transformed to upper case.

• Producing the AIML files by copying the
generated categories from the list to the
AIML file.

An example of a sequence of two utter-
ances from an English spoken corpus is:

<u who=F72PS002>
<s n="32"><w ITJ>Hello<c PUN>.
</u>
<u who=PS000>
<s n="33"><w ITJ>Hello <w NP0>Donald<c
PUN>.
</u>

After the reading and the text processing
phase, the text becomes:

F72PS002: Hello
PS000: Hello Donald

The corresponding AIML atomic category that
is generated from the converter modules looks like:
<category>
<pattern>HELLO</pattern>
<template>Hello Donald</template>
</category>

As a result different prototypes were developed,
in each prototype, different machine-learning tech-
niques were used and a new chatbot was tested.
The machine learning techniques ranged from a
primitive simple technique like single word match-
ing to more complicated ones like matching the
least frequent words. Building atomic categories
and comparing the input with all atomic patterns to
find a match is an instance based learning tech-
nique. However, the learning approach does not
stop at this level, but it improved the matching
process by using the most significant words (least
frequent word). This increases the ability of find-
ing a nearest match by extending the knowledge
base which is used during the matching process.
Three prototypes will be discussed in this paper as
listed below:

• The KGA prototype that is trained by a
corpus of spoken Afrikaans. In this proto-
type two learning approaches were
adopted. The first word and the most sig-
nificant word (least frequent word) ap-
proach;

• The Qur’an prototype that is trained by the
holy book of Islam (Qur’an): where in ad-
dition to the first word approach, two sig-
nificant word approaches (least frequent
words) were used, and the system was
adapted to deal with the Arabic language
and the non-conversational nature of
Qur’an as shown in section 5;

• The FAQchat prototype that is used in the
FAQ of the School of Computing at Uni-
versity of Leeds. The same learning tech-
niques were used, where the question
represents the pattern and the answer rep-
resents the template. Instead of chatting for
just 10 minutes as suggested by the Loeb-
ner Prize, we advocate alternative evalua-
tion methods more attuned to and
appropriate to practical information sys-
tems applications. Our evaluation takes ac-
count of open-ended trials by real users,
rather than artificial 10-minute trials as il-
lustrated in the following sections.

The aim of the different evaluations method-
ologies is as follows:

• Evaluate the success of the learning tech-
niques in giving answers, based on dia-
logue efficiency, quality and users’
satisfaction applied on the KGA.

• Evaluate the ability to use the chatbot as a
tool to access an information source, and a
useful application for this, which was ap-
plied on the Qur'an corpus.

• Evaluate the ability of using the chatbot as
an information retrieval system by com-
paring it with a search engine, which was
applied on FAQchat.

4 Evaluation of the KGA prototype

We developed two versions of the ALICE that
speaks Afrikaans language, Afrikaana that speaks
only Afrikaans and AVRA that speaks English and
Afrikaans; this was inspired by our observation
that the Korpus Gesproke Afrikaans actually in-
cludes some English, as Afrikaans speakers are
generally bilingual and “code-switch” comfortably.
We mounted prototypes of the chatbots on web-
sites using Pandorabot service5, and encouraged

5 http://www.pandorabots.com/pandora

92

open-ended testing and feedback from remote us-
ers in South Africa; this allowed us to refine the
system more effectively.

We adopted three evaluation metrics:
• Dialogue efficiency in terms of matching

type.
• Dialogue quality metrics based on re-

sponse type.
• Users' satisfaction assessment based on an

open-ended request for feedback.

4.1 Dialogue efficiency metric

We measured the efficiency of 4 sample dia-
logues in terms of atomic match, first word match,
most significant match, and no match. We wanted
to measure the efficiency of the adopted learning
mechanisms to see if they increase the ability to
find answers to general user input as shown in ta-
ble 1.

Matching Type D1 D2 D3 D4
Atomic 1 3 6 3
First word 9 15 23 4
Most significant 13 2 19 9
No match 0 1 3 1
Number of turns 23 21 51 17
Table 1. Response type frequency

The frequency of each type in each dialogue

generated between the user and the Afrikaans
chatbot was calculated; in Figure 2, these absolute
frequencies are normalised to relative probabilities.

No significant test was applied, this approach to
evaluation via dialogue efficiency metrics illus-
trates that the first word and the most significant
approach increase the ability to generate answers
to users and let the conversation continue.

Figure 2. Dialogue efficiency: Response Type
Relative Frequencies

4.2 Dialogue quality metric

In order to measure the quality of each re-
sponse, we wanted to classify responses according
to an independent human evaluation of “reason-
ableness”: reasonable reply, weird but understand-
able, or nonsensical reply. We gave the transcript
to an Afrikaans-speaking teacher and asked her to
mark each response according to these classes. The
number of turns in each dialogue and the frequen-
cies of each response type were estimated. Figure 3
shows the frequencies normalised to relative prob-
abilities of each of the three categories for each
sample dialogue. For this evaluator, it seems that
“nonsensical” responses are more likely than rea-
sonable or understandable but weird answers.

4.3 Users' satisfaction

The first prototypes were based only on literal
pattern matching against corpus utterances: we had
not implemented the first word approach and least-
frequent word approach to add “wildcard” default
categories. Our Afrikaans-speaking evaluators
found these first prototypes disappointing and frus-
trating: it turned out that few of their attempts at
conversation found exact matches in the training
corpus, so Afrikaana replied with a default “ja”
most of the time. However, expanding the AIML
pattern matching using the first-word and least-
frequent-word approaches yielded more favorable
feedback. Our evaluators found the conversations
less repetitive and more interesting. We measure
user satisfaction based on this kind of informal
user feed back.

Response Types

0.00
0.20
0.40
0.60
0.80
1.00

Dialog
ue

 1

Dialog
ue

 2

Dialog
ue

 3

Dialog
ue

 4

R
ep

et
io

n
(%

)

reasonable

Weird

Non sensical

Matching Types

0
0.2
0.4
0.6
0.8

Dial
og

u1

Dial
og

ue
 2

Dial
og

ue
 3

Dial
og

ue
 4

re
pe

tit
io

n
(%

) Atomic

First word

Most
significant
Match
nothing

Figure 3. The quality of the Dialogue: Response
type relative probabilities

93

5 Evaluation of the Qur'an prototype

In this prototype a parallel corpus of Eng-
lish/Arabic of the holy book of Islam was used, the
aim of the Qur’an prototype is to explore the prob-
lem of using the Arabic language and of using a
text which is not conversational in its nature like
the Qur’an. The Qur’an is composed of 114 soora
(chapters), and each soora is composed of different
number of verses. The same learning technique as
the KGA prototype were applied, where in this
case if an input was a whole verse, the response
will be the next verse of the same soora; or if an
input was a question or a statement, the output will
be all verses which seems appropriate based on the
significant word. To measure the quality of the
answers of the Qur’an chatbot version, the follow-
ing approach was applied:

1. Random sentences from Islamic sites were
selected and used as inputs of the Eng-
lish/Arabic version of the Qur’an.

2. The resulting transcripts which have 67
turns were given to 5 Muslims and 6 non-
Muslims students, who were asked to label
each turn in terms of:

• Related (R), in case the answer was correct
and in the same topic as the input.

• Partially related (PR), in case the answer
was not correct, but in the same topic.

• Not related (NR), in case the answer was
not correct and in a different topic.

Proportions of each label and each class of us-
ers (Muslims and non-Muslims) were calculated as
the total number over number of users times num-
ber of turns. Four out of the 67 turns returned no
answers, therefore actually 63 turns were used as
presented in figure 4.

In the transcripts used, more than half of the re-
sults were not related to their inputs. A small dif-
ference can be noticed between Muslims and non-
Muslims proportions. Approximately one half of
answers in the sample were not related from non-
Muslims’ point of view, whereas this figure is 58%
from the Muslims’ perspective. Explanation for
this includes:

• The different interpretation of the answers.
The Qur’an uses traditional Arabic lan-
guage, which is sometimes difficult to un-
derstand without knowing the meaning of
some words, and the historical story be-
hind each verse.

• The English translation of the Qur’an is
not enough to judge if the verse is related
or not, especially given that non-Muslims
do not have the background knowledge of
the Qur’an.

Using chatting to access the Qur’an looks like
the use of a standard Qur’an search tool. In fact it
is totally different; a searching tool usually
matches words not statements. For example, if the
input is: “How shall I pray?” using chatting: the
robot will give you all ayyas where the word
“pray” is found because it is the most significant
word. However, using a search tool6 will not give
you any match. If the input was just the word
“pray”, using chatting will give you the same an-
swer as the previous, and the searching tool will
provide all ayyas that have “pray” as a string or
substring, so words such as: ”praying, prayed, etc.”
will match.

Another important difference is that in the
search tool there is a link between any word and
the document it is in, but in the chatting system
there is a link just for the most significant words,
so if it happened that the input statement involves a
significant word(s), a match will be found, other-
wise the chatbot answer will be: “I have no answer
for that”.

Answer types

0%
10%
20%
30%
40%
50%
60%
70%

Related Partialy
Related

Not related

Answers

Pr
op

or
tio

n

Muslims
Non Muslims
Overall

Figure4. The Qur’an proportion of each answer
type denoted by users

6 Evaluation of the FAQchat prototype

To evaluate FAQchat, an interface was built,
which has a box to accept the user input, and a but-
ton to send this to the system. The outcomes ap-

6 http://www.islamicity.com/QuranSearch/

94

pear in two columns: one holds the FAQchat an-
swers, and the other holds the Google answers af-
ter filtering Google to the FAQ database only.
Google allows search to be restricted to a given
URL, but this still yields all matches from the
whole SoC website (http://www.comp.leeds.ac.uk)
so a Perl script was required to exclude matches
not from the FAQ sub-pages.

An evaluation sheet was prepared which con-
tains 15 information-seeking tasks or questions on
a range of different topics related to the FAQ data-
base. The tasks were suggested by a range of users
including SoC staff and research students to cover
the three possibilities where the FAQchat could
find a direct answer, links to more than one possi-
ble answer, and where the FAQchat could not find
any answer. In order not to restrict users to these
tasks, and not to be biased to specific topics, the
evaluation sheet included spaces for users to try 5
additional tasks or questions of their own choosing.
Users were free to decide exactly what input-string
to give to FAQchat to find an answer: they were
not required to type questions verbatim; users were
free to try more than once: if no appropriate an-
swer was found; users could reformulate the query.

The evaluation sheet was distributed among 21
members of the staff and students. Users were
asked to try using the system, and state whether
they were able to find answers using the FAQchat
responses, or using the Google responses; and
which of the two they preferred and why.

Twenty-one users tried the system; nine mem-
bers of the staff and the rest were postgraduates.
The analysis was tackled in two directions: the
preference and the number of matches found per
question and per user.

Which tool do you prefer?

0%

10%

20%

30%

40%

50%

60%

FAQchat Google

Tool

A
ve

ar
ge

 p
er

ce
nt

ag
e

nu
m

be
r Staff

Student
Total

6.1 Number of matches per question

The number of evaluators who managed to find
answers by FAQchat and Google was counted, for
each question.

Results in table 2 shows that 68% overall of our
sample of users managed to find answers using the
FAQchat while 46% found it by Google. Since
there is no specific format to ask the question,
there are cases where some users could find an-
swers while others could not. The success in find-
ing answers is based on the way the questions were
presented to FAQchat.

Users
/Tool

Mean of users find-
ing answers

Proportion of find-
ing answers

 FAQchat Google FAQchat Google
Staff 5.53 3.87 61% 43%
Student 8.8 5.87 73% 49%
Overall 14.3 9.73 68% 46%

Table 2: Proportion of users finding answers

Of the overall sample, the staff outcome shows

that 61% were able to find answers by FAQchat
where 73% of students managed to do so; students
were more successful than staff.

6.2 The preferred tool per each question
For each question, users were asked to state

which tool they preferred to use to find the answer.
The proportion of users who preferred each tool
was calculated. Results in figure 5 shows that 51%
of the staff, 41% of the students, and 47% overall
preferred using FAQchat against 11% who pre-
ferred the Google.

Figure5. Proportion of preferred tool

6.3 Number of matches and preference found
per user

The number of answers each user had found
was counted. The proportions found were the
same. The evaluation sheet ended with an open
section inviting general feedback. The following is
a summary of the feedback we obtained:

• Both staff and students preferred using the
FAQchat for two main reasons:

1. The ability to give direct answers some-
times while Google only gives links.

2. The number of links returned by the
FAQchat is less than those returned by
Google for some questions, which saves
time browsing/searching.

95

• Users who preferred Google justified their
preference for two reasons:

1. Prior familiarity with using Google.
2. FAQchat seemed harder to steer with care-

fully chosen keywords, but more often did
well on the first try. This happens because
FAQchat gives answers if the keyword
matches a significant word. The same will
occur if you reformulate the question and
the FAQchat matches the same word.
However Google may give different an-
swers in this case.

To test reliability of these results, the t=Test
were applied, the outcomes ensure the previous
results.

7 Conclusion

The Loebner Prize Competition has been used
to evaluate the ability of chatbots to fool people
that they are speaking to humans. Comparing the
dialogues generated from ALICE, which won the
Loebner Prize with real human dialogues, shows
that ALICE tries to use explicit dialogue-act lin-
guistic expressions more than usual to re enforce
the impression that users are speaking to human.

Our general conclusion is that we should NOT
adopt an evaluation methodology just because a
standard has been established, such as the Loebner
Prize evaluation methodology adopted by most
chatbot developers. Instead, evaluation should be
adapted to the application and to user needs. If the
chatbot is meant to be adapted to provide a specific
service for users, then the best evaluation is based
on whether it achieves that service or task

References
Abu Shawar B and Atwell E. 2003. Using dialogue

corpora to retrain a chatbot system. In Proceedings of
the Corpus Linguistics 2003 conference, Lancaster
University, UK, pp681-690.

Batacharia, B., Levy, D., Catizone R., Krotov A. and
Wilks, Y. 1999. CONVERSE: a conversational com-
panion. In Wilks, Y. (ed.), Machine Conversations.
Kluwer, Boston/Drdrecht/London, pp. 205-215.

Colby, K. 1999a. Comments on human-computer con-
versation. In Wilks, Y. (ed.), Machine Conversations.
Kluwer, Boston/Drdrecht/London, pp. 5-8.

Colby, K. 1999b. Human-computer conversation in a
cognitive therapy program. In Wilks, Y. (ed.), Ma-

chine Conversations. Kluwer, Bos-
ton/Drdrecht/London, pp. 9-19.

Epstein R. 1992. Can Machines Think?. AI magazine,
Vol 13, No. 2, pp80-95

Garner R. 1994. The idea of RED, [Online],
http://www.alma.gq.nu/docs/ideafred_garner.htm

Hirschman L. 1995. The Roles of language processing
in a spoken language interface. In Voice Communi-
cation Between Humans and Machines, D. Roe and J.
Wilpon (Eds), National Academy Press Washinton,
DC, pp217-237.

Hutchens, J. 1996. How to pass the Turing test by
cheating. [Onlin], http://ciips.ee.uwa.edu.au/Papers/,
1996

Hutchens, T., Alder, M. 1998. Introducing MegaHAL.
[Online],
http://cnts.uia.ac.be/conll98/pdf/271274hu.pdf

Loebner H. 1994. In Response to lessons from a re-
stricted Turing Test. [Online],
http://www.loebner.net/Prizef/In-response.html

Maier E, Mast M, and LuperFoy S. 1996. Overview.
In Elisabeth Maier, Marion Mast, and Susan Luper-
Foy (Eds), Dialogue Processing in Spoken Language
Systems, , Springer, Berlin, pp1-13.

McTear M. 2002. Spoken dialogue technology: ena-
bling the conversational user interface. ACM Com-
puting Surveys. Vol. 34, No. 1, pp. 90-169.

Shieber S. 1994. Lessons from a Restricted Turing
Test. Communications of the Association for Com-
puting Machinery, Vol 37, No. 6, pp70-78

Turing A. 1950. Computing Machinery and intelli-
gence. Mind 59, 236, 433-460.

Weizenbaum, J. 1966. ELIZA-A computer program
for the study of natural language communication be-
tween man and machine. Communications of the
ACM. Vol. 10, No. 8, pp. 36-45.

Whalen T. 2003. My experience with 1994 Loebner
competition, [Online],
http://hps.elte.hu/~gk/Loebner/story94.htm

96

Panel on Spoken Dialog Corpus Composition and Annotation for Research

Organizers:Giuseppe DiFabbrizio, Dilek Hakkani-Tür, Oliver Lemon, Mazin Gilbert, Alex Rudnicky

The goal of this forum is to provide researchers from variousinstitutes with the opportunity to comment
on a proposed NSF-sponsored data collection plan for a spoken dialog corpus. The corpus is to be
used for research in speech recognition, spoken language understanding, dialog management, machine
learning, and language generation. Currently, there exists a corpus with over 600 dialog interactions,
collected from users using the Discoh system (from the IEEE SLT 2006 workshop) and the Conquest
system (from ICSLP 2006) to obtain general information about conference services. These systems
were created as part of a joint collaboration between CMU, ATT, Edinburgh and ICSI.

The workshop panel will host a number of invited researcherswho have received a subset of the corpus
and annotation. An open discussion will be held to obtain comments from workshop participants to help
finalize the annotation guidelines. If you would like to provide feedback with respect to the annotation
plan and receive a sample of the dialog interactions then please send an email to info@discoh.org

97

Author Index

Abu Shawar, Bayan, 89

Acomb, Kate, 25

Atwell, Eric, 89

Bchet, Frdric, 48

Bloom, Jonathan, 25

Bohus, Dan, 32

Boye, Johan, 68

Craven, Patrick, 84

Damnati, Graldine, 48

Dayanidhi, Krishna, 25

De Mori, Renato, 48

Ehlen, Patrick, 17

Eklund, Robert, 56

Eskenazi, Maxine, 32

Gibbon, David, 17

Giorgino, Toni, 64

Harris, Thomas, 32

Hastie, Helen, 84

Hunter, Phillip, 25

Johnston, Michael, 17

Krogh, Peter, 25

Levin, Esther, 25

Liu, Zhu, 17

Matthieu, Hebert, 76

Orr, Michael, 84

Paek, Tim, 40

Pieraccini, Roberto, 25

Raux, Antoine, 32

Rojas, Lina, 64

Rudnicky, Alexander, 32

Schatzmann, Jost, 9

Thomson, Blaise, 9

Weilhammer, Karl, 9

Williams, Jason, 1

Wirn, Mats, 56

Wiren, Mats, 68

Ye, Hui, 9

Young, Steve, 9

99

	Program
	Applying POMDPs to Dialog Systems in the Troubleshooting Domain
	Training a real-world POMDP-based Dialog System
	The Multimodal Presentation Dashboard
	Technical Support Dialog Systems:Issues, Problems, and Solutions
	Olympus: an open-source framework for conversational spoken language interface research
	Toward Evaluation that Leads to Best Practices: Reconciling Dialog Evaluation in Research and Industry
	Experiments on the France Telecom 3000 Voice Agency corpus: academic research on an industrial spoken dialog system
	Experiences of an In-Service Wizard-of-Oz Data Collection for the Deployment of a Call-Routing Application
	AdaRTE: An Extensible and Adaptable Architecture for Dialog Systems
	Multi-slot semantics for natural-language call routing systems
	Enhancing commercial grammar-based applications using robust approaches to speech understanding
	WIRE: A Wearable Spoken Language Understanding System for the Military
	Different measurement metrics to evaluate a chatbot system

