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Preface

In the recent years, we have seen rapid adoption of dialog systems in commercial
applications. They range from telephone-based services, in-car interactive systems, to
online conversational service agents and talking characters in computer games. Open-
standard platforms such as VoiceXML have been adopted by the industry, and become
the driving force for the faster adoption of dialog applications.

The widespread dialog applications in industry setting pose challenge for researchers in
both industrial and academic worlds. Progress from academic world has not benefited the
real world applications to a satisfactory extent. The purpose of this one-day workshop is
to provide a forum to bring industrial and academic researchers together to share their
experiences and visions in the dialog technology development, and to identify topics that
are of interest to both camps.

There are total 13 papers accepted for presentation at this workshop, with 8 papers for
long presentation and 5 for short presentation. These papers are amost evenly divided
between the industry and academic communities. In addition, two panels on the related
dialog topics have been arranged during the workshop, with distinguished panelists of
various backgrounds from academic, industrial, and standardization communities.

We are pleased to the see some real convergence from both industry and academic side.
While academic researchers are proposing and building practical dialog systems,
industrial researchers are starting to implement sophisticated learning and uncertainty
modeling into their system. The scope of this workshop papers ranges from advanced
dialog systems for technical support, multi-modal methods, to POMDP modeling,
reinforcement learning and adaptabl e dialog architecture.

Finally, we would like to thank our program committee members for their work, and
thank the NAACL-HLT conference organizers for their timely support. Together, we
hope to foster and advance the state of art of dialog technologies.

Fuliang Weng -- Bosch Research
Ye-Yi Wang -- Microsoft Research
Gokan Tur -- SRI International
Junling Hu -- Bosch Research
Program Co-Chairs
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Applying POMDPsto Dialog Systemsin the Troubleshooting Domain

Jason D. Williams
AT&T Labs — Research
180 Park Ave, Building 103
Florham Park, NJ 07932
j dw@ esearch. att.com

Abstract

This paper reports on progress applying
partially observable Markov decision pro-
cesses (POMDPs) to a commercial dia-
log domain: troubleshooting. In the trou-
bleshooting domain, a spoken dialog sys-
tem helps a user to fix a product such as
a failed DSL connection. Past work has
argued that a POMDP is a principled ap-
proach to building spoken dialog systems
in the simpler slot-filling domain; this pa-
per explains how the POMDPs formula-
tion can be extended to the more complex
troubleshooting domain. Results from di-
alog simulation verify that a POMDP out-
performs a handcrafted baseline.

I ntroduction

Dialog models which explicitly model uncertainty
have been shown to significantly outperform base-
line models which do not, primarily because they
cope better with conflicting evidence introduced by
speech recognition errors (Roy et al., 2000; Zhang
et al., 2001; Williams and Young, 2007). However,
past work has been confined to slot-filling tasks and
has not tackled the troubleshooting domain. Con-
versely, dialog systems for troubleshooting in the
literature have not attempted to model uncertainty
directly (Grosz and Sidner, 1986; Lochbaum, 1998).

The contribution of this paper is to show how
to model a troubleshooting spoken dialog system
as a partially observable Markov decision process
(POMDP). We argue that past work in the gen-
eral troubleshooting literature represents simplifica-
tions or special cases of a POMDP, then we show
how a troubleshooting POMDP can be combined
with a dialog system POMDP to create a unified
framework that admits global optimization. Exper-
iments with simulated users show how the POMDP

In the troubleshooting domaira spoken dialog sys- formulation effectively balances diagnostic actions

tem (SDS) helps a user to restore a malfunctiort—such as a network test) with communicative ac-

ing product such as a DSL connection to a Wor_kfions (such as giving the user instructions), and how

ing state. Building dialog systems for this domalr}he POMDP formulation outperforms a hand-crafted
presents several new challenges. First, the user MB¥seline both in terms of efficiency and task comple-

make mistakes such as misinterpreting the meani 9n
of a status light or pressing the wrong button, so even

if no speech recognition errors are made, the user’s This paper is organized as follows. Section 2 re-
P 9 ' views POMDPs, the general troubleshooting prob-

response may pe ml_sleadl_ng. Next, m_addltlon toth m, and POMDP-based spoken dialog systems:
speech recognizer, input is also received from run-

nina network tests such as pinding the user's DSEection 3 explains how these two POMDPs can be
9 pinging combined to model a troubleshooting spoken dialog

modem. Input from both sources may contain er- . : ) .2
system; sections 4-5 present results from simulation;

rors, and a dialog system must cope with conflict- .
o . ._and section 6 concludes.

ing information from two channels. In sum, the dia-

log system never knows the true state of the produg Background

nor the user’s true actions, yet must still instruct the

user to successfully restore the product to a working POMDP is a model for control when there is un-

state. certainty in the effects of actions and in the state

1
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of the environment. Formally, a POMDR is de-
fined as a tuplg3 = (S, A, T,R,0,Z,~, by) where
S is a set of states describing the environment with
s € S; A is a set of actions € A which operate
on the environmentT defines a transition proba-
bility P(s|s,a); R defines the expected (immedi-
ate, real-valued) reward(s,a) € ®; O is a set
of observations € O which describe the state of Timestepn ' Timestep n+1

the environment;Z defines an observation proba-Figure 1: Influence diagram depiction of automated
bility P(o'|s’,a); v is a geometric discount factor troubleshooting. Round nodes represent random
0 < v < 1; andb is an initial belief state, defined variables, shaded nodes are unobservable and clear
below. nodes are observable. Arcs show conditional depen-
The POMDP operates as follows. At each timedence. Squares indicate actions, selected by the pol-
step, the environment is in some unobserved stai®y. Diamonds indicate real-valued rewards.
s. Sinces is not known exactly, aistribution over
possible states calledlzelief stateb is maintained

whereb(s) indicates the probability of being in a o _ _
particular states, with by denoting the initial belief ~ Formalizing this, a product has some hidden state

state. Based ob, a control algorithm (also called a . Which is usually decomposed into components
policy) selects an action, receives a reward, and ¢ = (€1,%2,...,%n). A control algorithm takes
the environment transitions to (unobserved) state actionan,, which changes the state ofaccording
wheres’ depends only om anda. The environment 0 P(z'[z,a;). The product then produces an ob-

then generates an observatigiwhich is dependent Servationy according toP(y'|z’, a,). Replacing
ons’ anda. At each time-steh is updated as cost with reward, the control algorithm receives re-

ward r(z, a,,,) and the goal is to find the sequence
W (s') = - P(|s,a) ZP(s’|s,a)b(s) ) of actions which maximizes the cumulative sum of
- reward. When viewed in this way, automated trou-
bleshooting can be readily viewed as a POMDP
wheren is a normalization constant (Kaelbling et(Shakeri et al., 1997). Figure 1 shows the automated
al., 1998). The process of maintainithgat each troubleshooting task as an influence diagram.

time step is calledelief monitoring The cumula- Although POMDPs are an elegant model for trou-
tive, infinite-horizon, discounted reward is called thebleshooting, they are also notoriously difficult to
return and writtenV” = 3%, y'r(s;, a;), wheres;  gptimize and much of the troubleshooting litera-
anda, indicate the state of the environment and the,re seeks appropriate constraints which render the
action taken at time, respectively. The goal of the gntimization tractable, such as assuming that each
control algorithm is to choose actions that maximizg.tjon affects at most one product state compo-
the expected retur&[V] givenb and the POMDP  nant that actions have deterministic effects, and that
parameterg’, and the process of searching for suchnere is only fault present (Heckerman et al., 1995).
a control algorithm is calledptimization More recently, advances in the POMDP literature

i have radically increased the scalability of optimiza-
2.1 Troubleshooting asa POMDP tion algorithms: for example, Poupart optimizes a
The goal of the general (non-dialog) problem of ausubstantial network troubleshooting problem cast as
tomated troubleshooting is for a control algorithm ta generic POMDP (Poupart and Boutilier, 2004).
fix a product by taking a sequence of diagnosis andiewing troubleshooting as a generic POMDP in-
repair actions. Different actions have different reliacreases the scope of admissible troubleshooting
bilities and different costs, and the aim is to find theasks, and as will be discussed in section 3, this view
sequence that minimizes the total cost. Since the aalso allows the uncertainty in the product state to be
tions are not completely reliable, the true state of thexplicitly modelled in a spoken dialog system.

product can’'t be known with certainty: for example,
an instrument may provide a faulty reading.
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2.2 Spoken dialog asa POMDP

Past work has argued that POMDPs represent a
cipled approach to modelling (non-troubleshooti
spoken dialog systems (Roy et al., 2000; Zhan
al., 2001; Williams and Young, 2007). The in
ition is that a user's goals and actions form the
observed state and the (possibly erroneous) .
result forms the observation. The SDS-PON
model (Williams and Young, 2007) formalizes t
by decomposing the POMDP state variabléento
three components;, = (sy, a,,d). The componer
sy gives theuser’s goal such as a complete tra
itinerary in a travel reservation task. The compor
a,, gives the most recemtser actionlcommunicative
intent), such as stating a place the user would lik
travel to. Finally the component records relevar
dialog history such as the grounding status of a <
None of these components is observable directl
the dialog system and the SDS-POMDP belief <
is formed of a distribution over these compone
b(sy,ay,d). The POMDP actior: corresponds t
the dialog system actiom,,, such as asking the us
where they want to go to. Finally, the POMDP «
servationo is set to(a,, c), wherea,, is the hypoth
esis of the user’s action (communicative intent)
vided by the speech recognition and understan
process, and is the confidence score. Figure
shows the SDS-POMDP model as an influence
agram, and also shows the conditional dependel
assumed in the SDS-POMDP model.

3 Troubleshooting SDS-POM DP model

In this section, we develop a statistical model «

troubleshooting dialog system. The formulation be
gins by taking the union of the state spaces of théu
dialog POMDP and the troubleshooting POMDP?
(Su, ay, d, ), and making two modifications. First,

Timestep n+1

Figure 2: SDS-POMDP model shown as an influ-
ence diagram. The dotted box refers to all of the
(hidden) POMDP state components.

ing, the combined POMDP state has components:
2

Next, the combined observation is formed of the
union of the observations from the dialog and trou-
bleshooting POMDPs:

5= (a%,z,a™, d).

~com

0= (au ? C’ y)' (3)

Finally, since the POMDP may choose only one ac-
tion at each time-step, the POMDP action is simply
Ay

Substituting eq. 2 into the POMDP
transition function P(s'|s,a) yields
P(al¥' 2/ aco™ d'|alf, x,ac", d,a,,) and s

decomposed as follows. First, it is assumed that
the user’s troubleshooting actief®’ depends only
on the system’s actiom,,, the previous product
statexz and the dialog historyl. Next, it is as-
sumed that the product stat¢ depends only on
the previous product state, and the most recent
user's and dialog system’s troubleshooting actions
s and a,,. Further, the user's communicative
ctiona$®™ depends only on the most recent user’s
troubleshooting action’*’, product state:’, dialog

u

it is assumed that the user's goal is known and history d and system action,,,. Finally, the dialog

constant (i.e., to fix the product), and as such do
not need to be included. Second, the user’s acti

a,, is decomposed into two components$ denotes

troubleshootingactions that are directed toward the?
product, such as turning a modem on or off, entering  P(a!s’ 2/, ac®™  d'|al®, z:, ac™
a user name or just observing the status lights; and P(a!'|z,d, a,,) - P(z'|x, am, al®’)-

aS?™ denotescommunicativeactions to the dialog

system such as saying “green” or “yes”. Reorder-

3

égstory component!’ is a function of the previous
OcH'ang historyd and the most recent user and dialog

system actions:t*’, ac°™, and a,,. With these

ssumptions, the combined transition function is:

d, am)

~
~

u U I

4
P(azom/‘d7 A, CLZS/,I'/)' ( )

P(d/|d7 amv at’U,S/7 ':17/7 aicLom,)



P(ac™ da°™") can be estimated from speech
recognition data or derived analytically. The re-
ward function can include distinct costs for differ-
ent diagnostic tests, dialog actions, and for success-
ful/lunsuccessful task completion. It is not specified

explicitly here since it depends on the application.

4 |llustration: DSL-1

To illustrate the general framework, we first created
Timestep n+1 a very simple troubleshooting spoken dialog system
called DSL-1. Table 1 shows the values for all of
Figure 3: Influence diagram of a troubleshootinghe variables. In DSL-1, the are just 2 possible prob-
spoken dialog system. lems: no-powerandno-network
The conditional probability tables composing the
model were handcrafted based on conversations
with troubleshooting experts and past experience

that the ASR hvoothesE ™’ and fid with spoken dialog systems. For example, the model
atthe ypothesig,”™" and confidence score of user’s troubleshooting action assumes that the

/ , wwom/
¢’ depend only on the user's sp.eechaifj’ and user performs the correct action wigh = 0.9,
that the result of the troubleshooting test (conducte&l

. oesn’'t understand with = 0.05, and performs an
by the dialog system)’ depends only on the state p=0.0 P

fih ducte’ and the dial term’s actian. - incorrect action withp = 0.05. The model of the
ot the product:” an € dialog system's actiar,. user's communicative action assumes that the user

P(asm™ o |ats’ o' alo™  d' ap,) = 5) provides correct (but possibly incomplete) informa-

Timestep n

Substituting  eq. 3 into the POMDP
observation function  P(d'|¢',a) yields
P(ase™ oy |at®’ o’ as™ . d' ap,). It is assumed

u u u

P(ag™, ai™) - Pylam, ') tion with p = 0.9, and remains silent with = 0.1.
An influence diagram of the model is shown in Fig- The model of the product was designed such that
ure 3. the user’'scheck-powerand check-networkactions

At runtime, a belief state (i.e., distribution) are always effective, but if power is restored there
is maintained over the POMDP state variablegnay still beno-networkwith p = 0.2.
b(als, x,ac°™, d). Based on this belief state the pol- The model of the speech recognition and under-
icy chooses an action,, and receives observation standing process uses a concept error rate of 30%,
(aco™ ' y'). The belief state is updated by apply-where errors are uniformly distributed, and no con-

ing Eq 1, and the cycle repeats. fidence scores are used. For example, when the

The user action models”(a*’|z,d,a,,) and user expresses the conceitok, it will be recog-
P(as™|d,an,al®’,x") indicate how users are nized correctly 70% of the time, and will be mis-
likely to respond in troubleshooting dialogs and camecognized asho-power 5% of the time, asno-
be estimated from annotated dialog data. The prodetwork5% of the time, etc. The model foy in-
uct modelsP (2’ |z, ap,,at®’) and P(y'|a,,2’) in- dicates how reliable theing action is, set with a
dicate how user and dialog system actions changg@rametep.,,.: for example ifp.,, = 0.1, the result
the state of the product and the reliability of testspf a ping test will be incorrect 10% of the time. In
and these can be estimated by interviewing domathe experiments below, the valuegf.,. is varied to
experts or by examining logs of product perfor€xplore how the POMDP policy trades off between
mance. As in the SDS-POMDP model, the dithepingaction and communicative actions.
alog history modelP(d'|d, a,,as®™  z’,al*") can The reward function provides-100 for taking
be handcrafted so as to incorporate features frothe end-callaction when the connection is working,
the dialog history which the dialog designer be-—100 for taking thedoneaction when the connec-
lieves are important, such as appropriateness or niben isn’'t working, and—1 for any communicative

tions of grounding. The ASR confusion modelor test action. The dialog continues until the dialog

4



Variable Values

ats {check-powercheck-networkobservedo-nothing dont-understanp
State x {all-ok, no-power no-network
Components d {start not-donedone}
asom {no-power no-network power-ok all-ok, silent didnt-understanyl
Observation — ag™™ (same set as”"™)
Components Yy {ping-ok no-responsg
Action A {ping, ask-working-ok req-check-powereq-check-networkend-call}

Table 1: Variable values in the DSL-1 simple troubleshaptxample.

system takes thdoneaction, at which point the di- >

alog is over. 02 1
91 4

41 Results 5w
3 901

The POMDP was optimized using a standard algc% 89 -
rithm from the literature (Spaan and Vlassis, 2005)¢ 8 |
. . _ . . < 87 |
This algorithm optimizes the policy at a discrete set o6 |
of belief points; as more points are added, the qual- 4 |
ity of the resulting policy improves at the expense ss
of more computation. We found that 300 belief g b° RSCUIC I S - L
points achieved asymptotic performance. A model Dy (ping error rate)
was constructed for values pf, ranging from0.0  rigure 4: Error rate of th@ing action vs. reward
to0.5; each model was optimized and then evaluateghined per dialog. As the error rate of thiag ac-
using 5000 simulated dialogs. tion is increased, performance declines until the er-

~ Results are shown in Figures 4 and 5. In eacfyy rate reaches 20%, at which point the system no
figure the x-axis is the accuracy of théng action:  |gnger uses thping action.

perr = 0% indicates that th@ing action is entirely . .
reliable andp,,, = 50% indicates that theing ac- not used at all. At this point the planning process has

tion returns useless noise. In Figure 4, the y_axigetermined that the ping action doesn't help produce

shows average return, and in Figure 5, the solid linBetter dialogs than just interacting with the caller,
shows the task completion rate and the dotted lirf@"d the performance from 20% to 50% is constant.

shows the average dialog length. The error bars in- TheS€ experiments confirm that, for a very sim-
dicate the 95% confidence interval. ple troubleshooting dialog system in simulation, the

As the error rate for thping action increases from POMDP approach is able to synthesize noisy infor-
0% to 20%, the average dialog length increases frofpation gained from communicative and test actions
5.1 turns to 6.5 turns, and the successful task corfito one unified belief while the underlying, hidden
pletion rate falls from 100.0% to 98.9%. These figProduct state is changing. This is an important re-
ures then remain broadly constant from 20% to 5098Ult because past work that has applied POMDPs
In other words, as errors in the ping action increasd? dialog systems has employed a single modality
dialogs become longer and occasionally the systeffommunicative actions), and have largely had fixed
fails to fix the connection. Inspecting the dia|ogper5|stent state. Even so, this illustration is much

transcripts showed that at,, = 0%, the policy too small to be of practical use, and relies entirely
relies on theping action to judge whether the con-©" hand-crafted models of the dynamics. In the next

nection is working. Asp.,, increases, the policy section a model of realistic scale is presented with
decreasingly employs theing diagnostic action in transition dynamics estimated from real conversa-

faVQr of the aSk'Work'ng'OkCO_mmun'Cf"‘tlve a_Ct'On The variations in performance between 20% and 50% are
until p.,» = 20%, at which point the ping action is due to sampling in the optimization algorithm.
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— 99.9% | user to turn the modem on, providing the correct
S N T 6.6 g,, username, checking whether any outages have been
€ 99.5% - = reported, and rebooting the upstream network inter-
& r62cog , . .
= st face. The user’s troubleshooting action gét con-
€ 99.1% 5.8 o . . .
s 8% sisted of 12 actions such as turning the modem on
% 98.7% 1 542 or off, opening the DSL configuration screen, enter-
© : . . .
= I ing a password, and attempting to surf to a website.
98.3% e e > The user’'s communicative action sé&”" consisted
FTFSE TP S S $E of 11 actions such as saying the color of a light (e.g.,
Per (PiNg error rate) “red” or “green”), yes and no, back-channel, silence,
‘ — Task completion rate - Average dialog length ‘ and an “out-of-grammar” action which accounts for

Figure 5: Error rate of theing action vs. success- USer speech which cannot be recognized.

ful task completion rate and average dialog length. The conditional probability tables for each of the_:
The lefty axis and the solid line show the task comProduct components were handcrafted based on in-
pletion rate, and the right axis and the dotted line terviews with DSL technicians and are almost all

show the average dialog length in number of turns detérministic.  For example, if the DSL modem
is powered on, the power light will always be on.
Next a subset of the agent/user telephone calls were
5 |llustration: DSL-2 transcribed and annotated with simple dialog acts,
and from these the two user models were estimated.
In this section we present a second POMDP-bas&moothing was applied so that the models allow for
troubleshooting dialog system called DSL-2 whichithe user to take any action at any point in the dia-
captures many of the properties of a real-worldog. Concept recognition errors were generated with
DSL troubleshooting task. Approximately 100 telep = 0.30, and confidence scores were drawn from
phone calls between (human) DSL support agent exponential distribution such that (at an equal er-
and customers were monitored, and the observationsr rate confidence threshold) about half of the con-
of these conversations guided creation of the diazept errors could be identified. The reward func-
log system, including typical problems, agent intion provides+100 for ending the dialog having cor-
structions, and user responses. The product sfaterectly identified (and if possible resolved) the root
was decomposed into 19 components which trackauses,—100 for ending the dialog with unidenti-
for example, whether there are any outages rdied or unresolved root causes, and for any other
ported, whether the DSL modem is switched on, andction. If a dialog ran for more than 100 turns, it was
whether the username has been entered correctlydansidered a failure and terminated.
the DSL configuration. Seven of these components We created a state-based dialog manager by hand
can cause the connection to fail: (1) router pow¢called HC) which broadly reflects the agents’ trou-
ered off or crashed, (2) an upstream network crashleshooting practices and which serves as our base-
(3) a service outage, (4-6) a wrong username, padsie. HC consisted of 19 dialog states, where each
word, or connection type entered in the DSL moderstate specified an actian,, to take (for example to
configuration, and (7) an unknown root cause whichsk the user to turn the modem on), and observations
can't be fixed by the dialog system. Some of thdérom the speech recognizé&f’™ or troubleshooting
problems can only be identified or fixed by the diatestsy may cause transitions between dialog states.
log system (such as a service outage or an upstreat® first asks the user to power cycle the modem,
network crash), and the rest only by the user (such &sen checks for outages and “resets” the upstream
a router being off or wrong username entered). Theetwork interface, then verifies that the username,
problems may occur in any combination: for exampassword, and network type are configured correctly
ple, there may be a service outage while the userén the router. After each step HC checks if the con-
password is entered incorrectly. The system actiomection is working by asking if the network light
set (A,,) consisted of 18 actions such as asking this green, pinging the modem, then asking the user

tional data.
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POMDP  HC | HC(0) transcripts found that the main source of failure for

CER| 30% 30% 0% HC(0) was exceeding 100 turns. In other words,

N 500 500 500 quantitatively, the POMDP is both more robust to

TCR| 96.1%  78.0% | 88.6% ASR errors and (independent of ASR errors) more
Length| 19.9 76.5 48.5 efficient.

Return| 73.3 813 | 43.8 The dialog transcripts were inspected to deter-

Hﬁine qualitatively how the POMDP attained better
erformance. An example is shown in Table 3. At
the start of the conversation, the belief (probability)
that the connection is working(allOk) is 56% and
to open a web browser; if any one of these tesige belief that the power to the DSL modem is on
fails, troubleshooting resumes, and if they all SUCp(pwrOn) is 98.0% (these are 2 of the 19 compo-
ceed then HC ends the dialog. If an outage is deents in the product state). As the dialog pro-
tected, HC says this and exits, and if the connectiogresses, belief monitoring updates these to account
still isn’t working at the end of the dialog then HCfor the evidence received. For example, the unsuc-
escalates the call to a (human) technician. In genergéssfulpingin S1 causep(allOk) to drop from 56%
when HC receives an unexpected answer or confg 14%. The belief monitoring process also natu-
dence score below the equal-error rate threshold, ri|ly makes use of indirect evidence — for example,
treats this as a likely speech recognition error angh U14 the user indicates the network light is “red”:
remains in the same dialog state. since the network light will only be on if the power
Next, optimization was performed as described ifp the DSL modem is on, this causes an increase in
(Williams et al., 2005). This technique takes as inthe belief that the power is on, from 99.1% to 99.8%.
put a POMDP model and a state-based dialog con- The key benefit of the POMDP approach is that
troller, and produces an improved dialog controllefpe dialog manager can exploit the belief state to
Space limitations prevent a full description here; thengke better progress in the face of low-confidence
intuition is that the algorithm uses the POMDP beqy even nonsensical replies, without sacrificing over-
lief state at runtime to “rewire” the dialog controller 5)| task completion. For example, in S1 through S9
to achieve an improvement in reward. Because thipe pOMDP policy differs from the baseline con-
optimization algorithm improves a standard stateyg|ier: the baseline controller would have ignored
based dialog controller (in this case the HC basgne |ower-confidence recognitions in U4 and U8, but
line), it provides an indication of the value of addingihe POMDP policy moves ahead. When the policy
the POMDP machinery. receives a nonsensical reply, for example in U6, it
reverts back to an earlier stage of the troubleshoot-
ing procedure it had previously skipped. This latter
First, 500 simulated dialogs were run with thepehavior ensures that omitting steps to move faster
POMDP, and then 500 simulated dialogs were ruthrough the procedure doesn't ultimately sacrifice
with the HC baseline controller. Finally, as a fur-task completion.
ther comparison, the ASR simulation was changed
so that no ASR errors were made, and HC wag Conclusions
run for 500 dialogs in this configuration, which we
call HC(0). Results are shown in Table 2. All of This paper has shown how a spoken dialog system
the observed differences are statistically significarfor troubleshooting can be cast as a POMDP. The
(p < 0.01). troubleshooting domain has important differences to
In the presence of speech recognition errors, thgast applications of the POMDP approach and the
POMDP produces dialogs which are significantlytwo illustrations provided in this paper support our
shorter and more successful than HC. Moreover, th@aim that, at least in dialog simulation, the advan-
POMDP, which faced ASR errors, also outperformgages of POMDPs apply to this domain.
HC(0), which did not. Examination of the dialog After finishing simulation experiments, we in-

Table 2: Results for the POMDP and hand-crafte
dialog managers. CER is concept error rate; TCR
task completion rate; Length is measured in turns.

5.1 Reaultsand discussion
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stalled DSL-2 into a real dialog system, and foundN Roy, J Pineau, and S Thrun. 2000. Spoken dialog
that belief monitoring runs slower than real-time. ma;”f_‘ge”;im for rt‘?bOtiC'T;'OEASSOIE'a“O” for Com-
We subsequently developed a method to addressPtationalinguis ics (ACL), Hong Kong

this, which we will report on separately in the fu-M Shakeri, KR Pattipati, V Raghavan, A Patterson-Hine,
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real users redundant systems. Technical Report NCC2-5123,
' NASA Ames.

MTJ Spaan and N Vlassis. 2005. Perseus: randomized
References point-based value iteration for POMDPSournal of

BJ Grosz and CL Sidner. 1986. Attention, intentions, Artificial Intelligence Researcl?4:195-220.

and the structure of discourseComputational Lin- 5p williams and SJ Young. 2007. Partially observable
guistics 12(3):175-204. markov decision processes for spoken dialog systems.
D Heckerman, JS Breese, and K Rommelse. 1995, Computer Speech and Languagé(2):393-422.

Decision-theoretic troubleshootingCommunications - .
of the ACM 38(3):49-57. JD Williams, P Poupart, and SJ Young. 2005. Partially

observable Markov decision processes with continu-
L Kaelbling, ML Littman, and AR Cassandra. 1998. ous observations for dialogue management.Ptac
Planning and acting in partially observable stochastic SIGdial Workshop on Discourse and Dialogue, Lis-
domains.Atrtificial Intelligence 101. bon

KE Lochbaum. 1998. A collaborative planning modelB Zhang, Q Cai, J Mao, and B Guo. 2001. Planning
of intentional structure. Computational Linguistics and acting under uncertainty: A new model for spoken
24(4):525-572. dialogue system. IfProc Conf on Uncertainty in Ar-

. tificial Intelligence (UAI), Seattle, Washingtppages
P Poupart and C Boutilier. 2004. VDCBPI: an ap- g572_579.

proximate scalable algorithm for large scale POMDPs.
In Proc Advances in Neural Information Processing
Systems 17 (NIPS), Vancouver, Cangplages 1081—

1088.
ID p(allok) p(pwrOn) Transcript
*S1 56% 98.0% I’m going to try pinging your DSL modem from here
S2 - - There was no response so it seems your connection isrking yet.
*S3 14% 96.1% Please turn the DSL modem on.
u4 - - ok [0k, 0.004]
*S5 30% 96.4% What color is the network light on the DSL modem?
U6 - - dontunderstandno, 0.052]
*S7 30% 93.8% Please turn the DSL modem on.
us - - dontunderstandok, 0.454]
*S9 31% 99.1% I’'m going to check if there are any outages tepojust a moment.
S10 - - There are no outages reported.
S11 39% 99.1% I’'m going to try resetting your connection frogne, just a moment.
S12 - - Ok, that has been done.
S13 48% 99.1%  What color is the network light on the DSL modem?
ul4 - - red [red, 0.678]
S15 3% 99.8% Please open the DSL configuration screen.

Table 3: Fragment of a conversation with the POMDP dialogagan Asterisks (*) indicate transitions
not in the baseline dialog managg(allOk) shows the probability that DSL connectivity is working and
p(pwrOn) shows the probability that the power to the DSL modem is ooomting to the POMDP belief
state. The simulated user's communicative actions are slmitalics, followed by the [concept,
confidence score] produced by the ASR simulation.
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Abstract

Partially Observable Markov Decision Pro-
cesses provide a principled way to model un-
certainty in dialogues. However, traditional al-
gorithms for optimising policies are intractable
except for cases with very few states. This pa-
per discusses a new approach to policy optimi-
sation based on grid-based Q-learning with a
summary of belief space. We also present a
technique for bootstrapping the system using
a novel agenda-based user model. An imple-
mentation of a policy trained using this system
was tested with human subjects in an extensive
trial. The policy gave highly competitive re-
sults, with a 90.6% task completion rate.

1 Introduction

Recent work on statistical models for dialogue systems
has argued that Partially Observable Markov Decision
Processes (POMDPs) provide a principled mathemati-
cal framework for modeling the uncertainty inherent in
human-machine dialogue (Young, 2006). Briefly speak-
ing, POMDPs extend the traditional (fully-observable)
Markov Decision Process (MDP) framework by main-
taining a belief state, ie. a probability distribution over
dialogue states. This enables the dialogue manager to
avoid and recover from recognition errors by sharing and
shifting probability mass between multiple hypotheses of
the current dialogue state. The framework also naturally
incorporates n-best lists of multiple recognition hypothe-
ses coming from the speech recogniser.

Due to the vast space of possible belief states, however,
the use of POMDPs for any practical system is far from
straightforward. Exact algorithms for solving POMDPs
do exist, but have been shown to be intractable except for
domains limited to a few states (Kaelbling et al., 1998).
In a practical dialogue system the minimum number of
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dialogue states is typically determined by the number of
possible user goals, and this number usually far exceeds
the limits of exact solution algorithms.

Approximate algorithms have been developed to over-
come the intractibility of exact algorithms but even the
most efficient of these techniques such as Point Based
Value Iteration (PBVI) cannot scale to the many thou-
sand states required by a statistical dialogue manager
(Williams, 2006; Pineau et al., 2003). Previous work
by Williams and Young (2006) on Composite Summary
Point Based Value Iteration (CSPBVI) has suggested the
use of a small summary space for each slot where PBVI
policy optimisation can be applied. This has shown to
give good results on synthetic data but remains untested
within real dialogue systems.

One potential problem with the CSPBVI technique is
that policy learning can only be performed offline, ie. at
design time, because policy training requires an existing
accurate model of user behaviour. In this paper, an alter-
native technique for online training based on Q-learning
is presented. Online training allows the system to adapt
to real users as new dialogues are recorded.

The learning algorithm presented here does not require
any model of user behaviour so initial dialogues may well
be incoherent. In fact, the system requires several thou-
sand dialogues before convergence to a suitable policy
begins. This means that in practice the model needs to
be bootstrapped via a user simulator. Further adapatation
can then be done with real users.

The paper is organised as follows. Section 2 provides
an introduction to the POMDP model and explains the
Summary POMDP framework that is used in the remain-
der of the paper. A new online method for policy opti-
misation is presented in Section 3 and a novel agenda-
based user model for bootstrapping the system is intro-
duced in Section 4. Section 5 discusses an evaluation of
a sample implementation built for a Tourist Information
System and tested with human subjects. The system per-

Bridging the Gap: Academic and Industrial Research in Dialog Technologies Workshop Proceedings, pages 9-16,
NAACL-HLT, Rochester, NY, April 2007. ©2007 Association for Computational Linguistics



formed competitively with 90.6% of tasks successfully
completed despite a mix of native and non-native speak-
ers. The paper concludes with a summary and some di-
rections for future work.

2 Background

2.1 POMDP Basics

A POMDRP is defined in much the same way as an MDP,
except that the states are not observable and instead have
to be estimated from observations. Formally, a POMDP
is a tuple {S,, Am, T, R, O, Z, X\, by } where:

e S,, is a set of machine states

e A,, is aset of actions that the machine may take

e O is a set of possible observations

e T defines the transition probability such that
T(Smy Qm,y Shy) = P(80,18ms am,)

e R defines the immediate reward obtained from tak-
ing a particular action in a particular state to be
T(Sm, Gm)

e / defines the probability of a particular observation
given the state and machine action P(0'|s.,,, a.,)

e )\ is a geometric discount factor 0 < A <1

e by is an initial belief state.

When the POMDP operates, it also makes use of a pol-
icy 7 : II(S) — A,, that chooses an action given a
point in belief space. Here TI(S) is the set of all possible
probability distributions over S,, (an |S,,| — 1 dimen-
sional simplex). 7(b) gives the action to take when the
POMDRP is in belief state b.

The sequence of events in the POMDP follows a cycle.
At each time step, the machine is in some unobserved
state s,, € S,,. Since the true state is unknown, the ma-
chine maintains a probability distribution over the states
b, which is called the belief state. Based on this belief
state and the policy 7 being followed, the system takes
an action a,, = w(b). The machine is rewarded with
7(Sm, @) and the state transtitions to a new unobserved
state s/, with probability T'(8,,, @m, s,,,). The machine
then receives an observation o’ € O, with probability de-
pendent only on the new state s/, and the machine action
am. The belief state is updated based on the events of
the turn and the cycle repeats. The belief state update is
computed as

V(s),) = k- P(0|s)am) Y P(sh,|am, sm)b(sm)
Sm ESm
ey

where k is a normalisation constant(Kaelbling et al.,
1998). Maintaining this belief state as the dialog evolves
is called belief monitoring.

Figure 1 shows a graphical representation of a POMDP
based dialogue system. When the user utters a user act a,,
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Figure 1: Training a POMDP with a simulated user

it is transmitted via speech to the dialogue system. From
the machine’s point of view, the speech acts as a noisy
channel so that the observation received, o, is not neces-
sarily the true dialogue act. Instead it typically describes
an n-best list of hypothesised user acts. Based on this, the
POMDP belief state is updated and a machine dialogue
act, a,y, is selected. As can be seen from the diagram, it
is quite trivial to replace a real user with a simulated one
so that training can be performed less laboriously.

Given a particular policy, the infinite horizon expected
reward as a function of belief state is called the value
function. It is calculated as:

V(b)) = > Ar(byamy) )
t=0

= Z}\t Z bt(sm)"'(smaam,t> (3)
t=0

=i SmESm
= TS bi(sm)r(sm (b)) @)
t=0 Sm€ESm

The goal of POMDP policy optimisation is to find the
policy that maximises the value function at every point b.
It can be shown that such a function always exists and is
both continuous and convex.

In the context of policy optimisation it is also useful
to define the concept of a Q function(Sutton and Barto,
1998). This is a function of both belief state b and action
an, and is simply the expected reward obtained by first
taking action a,, and then following the policy 7.

The Bellman Optimality Equation states that a policy
is optimal if and only if

m(b) = arg max Q" (a,b) 5

a€Smy,

2.2 The Summary POMDP

As discussed in the introduction, directly optimising
POMDPs for dialogue systems is completely impractical.
Instead, the belief state and actions are mapped down to a
summarised form where optimisation becomes tractable.
In this context, the original belief space and actions are
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Figure 2: The Summary POMDP framework

called master space and master actions, while the sum-
marised versions are called summary space and summary
actions.

Action selection in the full model would be a mapping
from a belief state b € TI(.S,,) to an action a,, € Ap,.
The summary POMDP splits this up as follows. The
model initially extends the standard POMDP with a set
of summary actions A,, and a mapping from summary
actions to master actions F'. This function should be al-
lowed access to the master belief space so that the sum-
mary can be as brief as possible (formally, F' : A,, x
I1(S,,) — Ap). Next, a summarising function f is
defined from master belief space II(S,,) to summary be-
lief space R*. Finally, a summary policy 7 is defined
as a mapping from summary space R* to summary ac-
tions A,,. A policy in master space is composed from
the above three functions by first mapping to summary
space via f, using policy 7 to find an appropriate sum-
mary action a,, and then obtaining a master action with
F'. The full process is shown graphically in Figure 2. Al-
gebraically the master policy is defined by:

m(b) = F(7(f (b)), b) (©6)

Further explanation of the Summary POMDP method
can be found in (Williams and Young, 2005). Note that
the formalism introduced above may be used for both the
summary methods previously used for dialogue systems
as well as belief compression techniques used in a more
general setting (Roy et al., 2005)

At the summary level, policies may not have enough
information to act truly optimally. Hence defining an op-
timal summary policy is not so obvious. If f is chosen
well, however, then one could hope that the optimal ac-
tion is dependent only on f(b). If this is true then a sum-
mary policy is called optimal when the following equa-
tion holds for every b such that f(b) = (x):

7(x) = arg max Q(F(a,b),b) (7)

acA,
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3 Summarised Q-learning

Q-learning is a technique for online learning traditionally
used in an MDP framework. It is an iterative Monte-Carlo
style algorithm where a sequence of sample dialogues are
used to estimate the Q functions for each state and ac-
tion. Inspired by grid-based methods, the summarised Q-
learning algorithm discretises summary space and uses
Q-learning on the resulting MDP-like grid.

Operation of the algorithm proceeds by simply engag-
ing the dialogue manager with either a real user or a user
model. At each point where the system must choose an
action, the master belief space is mapped down to the
summary level as described in Section 2.2. The nearest
summary point in the grid is found and the optimal sum-
mary action given by that point is chosen.

At the end of the dialogue, the discounted future re-
ward is known for each stage where a choice was taken.
This value is recorded along with the grid point where
the decision was made, and the action chosen. This is a
sample of the discounted future reward obtained by tak-
ing the particular action and then following the current
policy - i.e. the Q-function evaluated at this grid point.
If sufficient dialogues are done the mean of these values
will give a good estimate of the true Q-value.

In order to enable learning, an exploration paramater e
is selected so that a random summary act will be chosen
with probability e. After a batch of dialogues have been
completed, the estimates of the Q-functions are updated
with the new dialogue scores. The optimal action is then
chosen for each point p by

a, = argmax Q(a, p) ®)

The selection of which points to put into the grid is a
crucial part of the algorithm as one would like the most
accuracy at points that will be visited often. As a re-
sult, this algorithm uses a variable grid method (Brafman,
1997; Bonet, 2002). During operation, when a point is
reached that is further away from any other point than
some threshold paramater, the point is added to the grid.
This ensures that points are only included in the grid if
needed.

Grid-based methods are often criticised because they
do not scale well to large state spaces (Pineau et al.,
2003). However, when using the Summary POMDP
method the state space is reduced significantly before
the grid is applied. Although there are no convergence
guarantees for this method in the context of Summary
POMDPs, Q-learning does guarantee convergence to the
optimal policy for standard MDPs. As can be seen from
Figure 4, in practice the method does converge to a high
performing policy after several thousand dialogues.



4 Agenda-Based Simulation

4.1 User Simulation-Based Training

As described in the introduction to this paper, online
methods for training statistical dialogue managers allow
the dialogue policy to be adapted and improved at run-
time, ie. through interaction with real users. During the
initial development phase however, many thousand train-
ing dialogues are needed to bootstrap the dialogue policy,
and this is generally too time-consuming and expensive
to be done with real users.

A number of research groups (Levin et al., 2000;
Scheffler and Young, 2002; Pietquin and Dutoit, 2005;
Georgila et al., 2005; Rieser and Lemon, 2006) have thus
investigated the use of user simulation tools for training
the dialogue manager (DM). The simulation-based ap-
proach typically involves two steps. Firstly, a statistical
user model (such as an n-gram or a graphical model) is
trained on a limited amount of dialogue data. The model
is then used to simulate dialogues with the interactively
learning DM (see Schatzmann et al. (2006) for a liter-
ature review). Simulation is usually done at a semantic
dialogue act level to avoid having to reproduce the vari-
ety of user utterances at the word- or acoustic level.

The simulation-based approach assumes the presence
of a small corpus of suitably annotated in-domain dia-
logues (Lemon et al., 2006). For the experiments pre-
sented in this paper, no such data was available for train-
ing the user model. Hence, it was necessary to develop
a model which was simple enough for the model pa-
rameters to be handcrafted and yet capable of producing
user behaviour realistic enough for training a prototype
system. A similar approach has been previously taken
by (Levin et al., 2000; Pietquin and Dutoit, 2005) but
the performance of the learned dialogue policies was not
evaluated using real users.

4.2 User Simulation at a Semantic Level

Human-machine dialogue can be formalised on a seman-
tic level as a sequence of state transitions and dialogue
acts!. At any time ¢, the user is in a state s,,, takes ac-
tion a,,, transitions into the intermediate state s/, receives
machine action a,,, and transitions into the next state s’
where the cycle restarts.

Su =y — Sh = Uy — S — - ©))

Assuming a Markovian state representation, user be-
haviour can be decomposed into three models: P(a,|s,)
for action selection, P(s.,|a,, s,) for the state transition
into s}, and P(s!|a, s,,) for the transition into s..

'In this paper, the terms dialogue act and dialogue action
are used interchangeably. The notation act(a=x, b=y,...) is used
to represent a dialogue act of a given type act (such as inform
or request with items a = x, b = y, etc.
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4.3 Goal- and Agenda-Based State Representation

Inspired by agenda-based methods to dialogue manage-
ment (Wei and Rudnicky, 1999) the approach described
here factors the user state into an agenda A and a goal G.

sy =(A,G) and G = (C,R) (10)
During the course of the dialogue, the goal G ensures that
the user behaves in a consistent, goal-directed manner.
G consists of constraints C' which specify the required
venue, eg. a centrally located bar serving beer, and re-
quests R which specify the desired pieces of information,
eg. the name, address and phone number (cf. Fig. 3).

The user agenda A is a stack-like structure containing
the pending user dialogue acts that are needed to elicit
the information specified in the goal. At the start of the
dialogue a new goal is randomly generated using the sys-
tem database and the agenda is populated by converting
all goal constraints into inform acts and all goal requests
into request acts. A bye act is added at the bottom of the
agenda to close the dialogue.

As the dialogue progresses the agenda is dynamically
updated and acts are selected from the top of the agenda
to form user acts a,,. In response to incoming machine
acts a,,, new user acts are pushed onto the agenda and no
longer relevant ones are removed. The agenda thus serves
as a convenient way of tracking the progress of the dia-
logue as well as encoding the relevant dialogue history.
As can be seen in Fig. 3 (turns 1-3), user acts can also be
temporarily stored when actions of higher priority need
to be issued first, hence providing the simulator with a
simple model of user memory.

4.4 Action Selection

At any time during the dialogue, the updated agenda of
length N contains all dialogue acts the user intends to
convey to the system. Since the agenda is ordered ac-
cording to priority, with A[N] denoting the top and A[1]
denoting the bottom item, selecting the next user act sim-
plifies to popping n items off the top of the stack. Hence,
letting a,,[¢] denote the ith item in the user act a,,

ayli] ;= A[IN—n+i] Vie[l.n],1<n<N. (1)
and the action selection model becomes a Dirac delta
function

P(ay|su) = P(ay|A, G) = 6(ay, A[N—ntl..N]) (12)

where A[N — n + 1..N] is a Matlab-like shorthand no-
tation for the top n items on A and the random variable
n corresponds to the level of initiative taken by the sim-
ulated user. In a statistical model the probability distri-
bution over integer values for n should be conditioned on
A and learned from dialogue data. For the purposes of



type = bar
drinks = beer
area = central

name =
addr =
phone =

Ry =

Sys 0 Hello, how may I help you?

inform(type = bar)
inform(drinks = beer)
inform(area = central)
request(name)
request(addr)
request(phone)

L bye()

I’m looking for a fine beer bar.

Usr 1

Sys 1 Ok, a wine bar. What pricerange?

negate(drinks = beer)
inform(price = cheap)
inform(area = central)
request(name)
request(addr)
request(phone)

bye()

No, beer please!

Usr 2

Sys 2 You are looking for a beer bar, correct?

[ af firm)
inform(price = cheap)
inform(area = central)
request(name)
request(addr)
request(phone)
bye()

Yeah something cheap in the town centre.

Usr 3

Sys 3 Murphy’s on Main Square serves cheap beer.

[ request(phone)

A= bye()

Usr4
Sys 4

As
Usr 5

Ok, and what’s the phone number?
The number is 796 69 94.

[ bye() ]
Thanks, goodbye!

Figure 3: Sample dialogue and agenda sequence

bootstrapping the system, n can be assumed independent
of A and any distribution P(n) that places the majority
of its probability mass on small values of n can be used.

4.5 State Transition Model

The factorisation of s, into A and G can now be ap-
plied to the state transition models P(s/|ay,s,) and
P(s!am, s.,). Letting A’ denote the agenda after select-
ing a,, (as explained in the previous subsection) and using
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N’ = N — n to denote the size of A’, we have

A'li] = A[{] Viel[l.N']. (13)
Using this definition of A’ and assuming that the goal
remains constant when the user executes a,,, the first state
transition depending on a,, simplifies to

P(S’/LL|au78U) = P(AI’GI|G/U)A7 G)

S(A', A[L.N'))S(G, G). (14)

Using s, = (A, G), the chain rule of probability, and rea-
sonable conditional independence assumptions, the sec-
ond state transition based on a,,, can be decomposed into
goal update and agenda update modules:

P(sylam, s,,)

= P(A|am, A, G") P(G"|am,G'). (15)

agenda update goal update

When no restrictions are placed on A” and G, the space
of possible state transitions is vast. The model parame-
ter set is too large to be handcrafted and even substantial
amounts of training data would be insufficient to obtain
reliable estimates. It can however be assumed that A” is
derived from A’ and that G” is derived from G’ and that
in each case the transition entails only a limited number
of well-defined atomic operations.

4.6 Agenda Update Model

The agenda transition from A’ to A” can be viewed as a
sequence of push-operations in which dialogue acts are
added to the top of the agenda. In a second “clean-up”
step, duplicate dialogue acts, null() acts, and unnecessary
request() acts for already filled goal request slots must
be removed but this is a deterministic procedure so that it
can be excluded in the following derivation for simplicity.
Considering only the push-operations, the items 1 to N’
at the bottom of the agenda remain fixed and the update
model can be rewritten as follows:

P(A/l|am, A/,GH)

= P(A"[L.N")|am, A'[L.N",G")  (16)
P(A"[N'+1..N")|a, G")
S(A"[1..N'], A'[1..N]). (17

The first term on the RHS of Eq. 17 can now be further
simplified by assuming that every dialogue act item in
an, triggers one push-operation. This assumption can be
made without loss of generality, because it is possible to
push a null() act (which is later removed) or to push an
act with more than one item. The advantage of this as-
sumption is that the known number M of items in a,,



now determines the number of push-operations. Hence
N" = N’'+ M and
P(A"[N'+1..N"]|am,G")
= P(A"[N'+1..N'+M]|a,,[1..M],G") (18)
M
[T PA"IN+i]|amli], G")

i=1

19)

The expression in Eq. 19 shows that each item a,,[7] in
the system act triggers one push operation, and that this
operation is conditioned on the goal. This model is now
simple enough to be handcrafted using heuristics. For ex-
ample, the model parameters can be set so that when the
item x=y in a,,[i] violates the constraints in G”, one of
the following is pushed onto A”: negate(), inform(x=z),
deny(x=y, x=z), etc.

4.7 Goal Update Model

The goal update model P(G”|a,,, G’) describes how the
user constraints C” and requests R’ change with a given
machine action a,,. Assuming that R” is conditionally
independent of C’ given C"” it can be shown that

P(G" |am, G)
= P(R'|am, R',C")P(C"|am,R',C"). (20)

To restrict the space of transitions from R’ to R” it can
be assumed that each request slot (ag. addrphone,etc.) is
either filled using information in a,, or left unchanged.
One can further assume that the value of any slot depends
on its value at the previous time step, the value provided
by a,, and that the transition needs to be conditioned on
whether the information given in a,, matches the goal
constraints. Using R[k] to denote the k’th request slot we
can approximate

P(R”|am, R/7 O//)
= [ P(R"[K]|am, R'[k], M(am,C")). (21)

To simplify P(C"|am, R, C’) we assume that C"' is
derived from C’ by either adding a new constraint, set-
ting an existing constraint slot to a different value (eg.
drinks=dontcare), or by simply changing nothing. The
choice of transition does not need to be conditioned on
the full space of possible a,,, R’ and C’. Instead it can
be conditioned on simple boolean flags such as "Does a,,
ask for a slot in the constraint set?”, "Does a,, signal that
no item in the database matches the given constraints?”,
etc. The model parameter set is then sufficiently small for
handcrafted values to be assigned to the probabilities.

5 Evaluation
5.1 A scalable POMDP-based system

The summary Q-learning algorithm and agenda-based
user model were tested by implementing a POMDP-
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based dialogue system for a Tourist Information Domain.
Users are assumed to have arrived in a town unknown to
them and must find a bar, a hotel or a restaurant in the
town subject to some constraints (eg. a cheap, Chinese
restaurant in the centre of town). The town used was fic-
titious so that users could not know any of the venues.

The speech recognition was implemented using the
Application Toolkit for HTK (ATK) with a vocabulary
of about 2000 words. A simple keyword-spotting seman-
tic decoder was used to extract meaning representations
(dialogue acts) from the output of the recogniser. The di-
alogue manager is based on the Hidden Information State
(HIS) model (Young et al., 2007), which gives an effi-
cient way of implementing the belief state update in a
POMDP-based dialogue system.

In the implementation used for testing, the town in-
cluded approximately 40 possible venues. Eight different
variables are used by the system in deciding which venue
to recommend: type of venue; pricerange; area; proxim-
ity to a particular place; stars; drinks; food and music.
Additionally, the user could ask for the average price, the
phone number, the address or a comment on a particular
venue.

The model allows for a rich structure in possible user
goals via simple ontology rules. For example, venues
can only have a food concept if their type is restaurant.
Hence, one would expect that most information retrieval
type dialogues could be modeled in a similar manner.

5.2 System Training

The HIS manager factors the machine state of the
POMDRP into three parts: the user’s goal, the dialogue
state and the last machine act. An important feature of the
system is that indistinguishable user goals are grouped to-
gether into partitions. For example, if the user is trying
to obtain information about restaurants and has not men-
tioned what type of food they would like, then restaurants
will be grouped together regardless of the type of food
they serve. In the HIS model, a hypothesis refers to the
grouping of a partition with a dialog state.

The splitting of the machine state into separate hy-
potheses provides for a simple mapping to summary state
for the Q-learning algorithm, where only information
from the top two hypotheses is included. The summary
state used has five components: the probabilities of the
two most probable hypotheses along with three summary
features. These enumerate the possibilities for how many
database items fall into the partition, a summary of the
dialog state and the type of the last dialog act.

Rewards were given based on task completion and the
number of turns in the dialogue. The system was given 20
points for a successful dialogue and O for an unsuccessful
one. One point was subtracted for each dialogue turn.
This encourages the system to be sure of the user’s goal,



while penalising inefficient system behaviour.

Training was done using the agenda-based user model
described in Section 4. Initially, batches of 1000 dia-
logues were performed with no error-modeling, updating
Q-values and optimal actions at the end of each batch.
Figure 4 shows the average reward obtained from each
of these policies over 1000 sample dialogues. The pol-
icy score converged after approximately 25 000 dialogues
and reached an average score of around 14. This il-
lustrates that the Q-learning approach described above
does in fact converge in practice. Further training was
then done including simulated errors by changing random
concept words with a probability of 0.05.
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Figure 4: Training a POMDP system

5.3 User testing

The prototype dialogue system described above was eval-
uated as part of the EU FP6 Talk Project. No online learn-
ing was performed during the evaluation. 40 human sub-
jects took part, each of whom completed 4 dialogues. In
total, 160 dialogues were recorded, with 6452 turns and
21667 words. Subjects were selected to include a mix
of native and non-native speakers and the average Word-
Error-Rate was 29.8%.

The performance of the system was measured based
on the recommendation of a correct venue, ie. a venue
matching all constraints specified in the given task (all
tasks were designed to have exactly one solution). Based
on this definition, 145 out of 160 dialogues (90.6%) were
completed successfully, and the average number of turns
to completion was 5.59 (if no correct venue was offered
the full number of turns was counted). An extract from
an example dialogue is given as an illustration in Fig. 5.

6 Summary and Future Work

This paper has investigated a new online method for train-
ing areal-world POMDP-based dialogue system. A novel
agenda-based user simulation technique was also pre-
sented for bootstrapping the dialogue manager without
access to training data. Although there is no guarantee of
convergence, evaluation results suggest that in practice
the training algorithm does converge to a suitable policy.
The results also show that the learned policy works well
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Turn 1:

System:  Hello and welcome to our dialogue system!
Are you looking for a hotel, a restaurant
or a bar?

User: I’m looking for a five star hotel, preferably
in the East side of town, near the park

ASR: I’m looking for a five star hotel preferably
use side of town near the park

DA: request(hotel,stars=5,near=Park)

Turn 2:

System:  What part of town do you have in mind?
For example something in the centre of
town or in the north or on the riverside

User: In the East side of town

ASR: In the East side of town

DA: inform(area=east)

Turn 3:

System:  Did you say you are looking for a hotel
in the east part of town?

User: Yes

ASR: Yes

DA: affirm()

Turn 4:

System: The Royal Hotel is a great hotel in the
east part of town

User: I was wondering whether I could get the
telephone number for that town...
for that hotel?

ASR: was wondering about could get the
telephone number of the town for a hotel

DA: request(phone,hotel)

Turn 5:

System:  The Royal Hotel has 5 stars and is near
the Park

User: Could I have the phone number?

ASR: I have the phone number

DA: request (phone)

Turn 6:

System:  No problem the phone number of the Royal
Hotel is 7027003

Figure 5: Sample test dialogue along with most likely
output from the automatic speech recognition (ASR) and
decoded dialogue act (DA). The dialogue act format is
described in (Young et al., 2005).

for human users. Future work will focus on finding bet-
ter mappings to summary space, on training the simulated



user with recorded data and on investigating the effective-
ness of online training with real users.
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Abstract

The multimodal presentation dashboard al-
lows users to control and browse presenta-
tion content such as slides and diagrams
through a multimodal interface that sup-
ports speech and pen input. In addition to
control commands (e.g. “take me to slide
10"), the system allows multimodal search
over content collections. For example, if
the user says “get me a slide about internet
telephony,” the system will present a
ranked series of candidate slides that they
can then select among using voice, pen, or
a wireless remote. As presentations are
loaded, their content is analyzed and lan-
guage and understanding models are built
dynamically. This approach frees the user
from the constraints of linear order allow-
ing for a more dynamic and responsive
presentation style.

1 Introduction

Anthropologists have long informed us that the
way we work—whether reading, writing, or giving
a presentation—is tightly bound to the tools we
use. Web browsers and word processors changed
the way we read and write from linear to nonlinear
activities, though the linear approach to giving a
presentation to a roomful of people has evolved
little since the days of Mylar sheets and notecards,
thanks to presentation software that reinforces—or
even further entrenches—a linear bias in our no-
tion of what “giving a presentation” means to us.
While today’s presentations may be prettier and
flashier, the spontaneity once afforded by holding a
stack of easily re-arrangeable sheets has been lost.
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Instead, a question from the audience or a change
in plan at the podium results in a whizzing-by of
all the wrong slides as the presenter sweats through
an awkward silence while hammering an arrow
key to track down the right one. In theory there are
“search” functions that presenters could use to find
another slide in the same presentation, or even in
another presentation on the same machine, though
none of the authors of this paper has ever seen a
presenter do this. A likely reason is that these
search functions are designed for desktop ergo-

Bridging the Gap: Academic and Industrial Research in Dialog Technologies Workshop Proceedings, pages 17-24,
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nomics rather than for standing at a podium or
walking around the room, making them even more
disruptive to the flow of a presentation than frantic
arrow key hammering.

In some utopian future, we envision presenters
who are unhindered by limitations imposed by
their presentation tools, and who again possess, as
Avristotle counseled, “all available means of per-
suasion” at the tips of their fingers—or their
tongues. They enjoy freeform interactions with
their audiences, and benefit from random access to
their own content with no arrow hammering and no
disruption in flow. Their tools help to expand their
possible actions rather than limiting them. We are
hardly alone in this vision.

In that spirit, many tools have been developed of
late—both within and outside of research labs—
with the aim of helping people work more effec-
tively when they are involved in those assemblies
of minds of mutual interest we often call “meet-
ings.” Tools that capture the content of meetings,
perform semantic understanding, and provide a
browsable summary promise to free meeting par-
ticipants from the cognitive constraints of worrying
about trying to record and recall what happened
when a meeting takes place (e.g., Ehlen, Purver &
Niekrasz, 2007; Tucker & Whittaker, 2005).

Presentations are a kind of meeting, and several
presentation tools have also sought to free present-
ers from similar constraints. For example, many
off-the-shelf products provide speech interfaces to
presentation software. These often replace the lin-
ear arrow key with the voice, offering command-
based navigation along a one-dimensional vector
of slides by allowing a presenter to say “next slide
please” or “go to the last slide.”

A notable exception is the Jabberwocky inter-
face to PowerPoint (Franklin, Bradshaw &
Hammond, 1999; 2000), which aims to follow
along with a presenter’s talk—like a human assis-
tant might do—and switch to the appropriate slide
when the presenter seems to be talking about it.
Using a method similar to topic modeling, words
spoken by the presenter are compared to a prob-
ability distribution of words across slides. Jabber-
wocky changes to a different slide when a
sufficient probability mass has been reached to
justify the assumption that the speaker is now talk-
ing about a different slide from the one that’s al-
ready showing.
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A similar effort (Rogina & Schaaf, 2002) uses
words extracted from a presentation to augment a
class-based language model and attempt automatic
tracking of a presentation as it takes place. This
intelligent meeting room system then aligns the
presenter’s spoken words with parts of a presenta-
tion, hoping to determine when a presenter has
moved on to a new slide.

A major drawback of this “machine-initiative”
approach to presentation assistance is that a pre-
senter must speak enough words associated with a
new slide for a sufficient probability mass to be
reached before the slide is changed. The resulting
delay is likely to make an audience feel like the
presentation assistant is rather dim-witted. And any
errors that change slides before the presenter is
ready can be embarrassing and disruptive in front
of potentially important audiences.

So, in fashioning our own presentation control
interface, we chose to allow the presenter to retain
full initiative in changing slides, while offering a
smarter and more flexible way to navigate through
a presentation than the single degree of freedom
afforded by arrow keys that simply traverse a pre-
determined order. The result is the Multimodal
Presentation Dashboard, a presentation interface
that integrates command-based control with prob-
abilistic, content-based search. Our method starts
with a context-free grammar of speech commands,
but embeds a stochastic language model generated
from the presenter’s slide deck content so a pre-
senter can request any slide from the deck—or
even a large set of decks—just by asking for its
contents. Potentially ambiguous results are re-
solved multimodally, as we will explain.

2 Multimodal
presentations

interface for interactive

The presentation dashboard provides presenters
with the ability to control and adapt their presenta-
tions on the fly in the meeting room. In addition to
the traditional next/previous approach to navigat-
ing a deck of slides, they can access slides by posi-
tion in the active deck (e.g., “show slide 10” or
“last slide please”) or they can multimodally com-
bine voice commands with pen or remote control
to browse for slides by content, saying, for in-
stance, “show the slide on internet telephony,” and
then using the pen to select among a ranked list of
alternatives.



2.1  Setup configuration

Though the dashboard offers many setup configu-
rations, the preferred arrangement uses a single PC
with two displays (Figure 1). Here, the dashboard
is running on a tablet PC with a large monitor as a
second external display. On the tablet, the
dashboard Ul is visible only to the presenter. On
the external display, the audience sees the current
slide, as they would with a normal presentation.

The presenter can interact with the dashboard
using either the microphone onboard the tablet PC,
or, preferably, a wireless microphone. A wireless
remote functions as a presentation control, which
can be used to manually change slides in the tradi-
tional manner, and also provides a “push to talk”
button to tell the dashboard when to listen. A wire-
less microphone combined with the wireless pres-
entation control and voice selection mode (see
Section 2.3) allows a presenter to stroll around the
room or stage completely untethered.

2.2  Presenter Ul

The presenter’s primary control of the system is
through the presenter Ul, a graphical user interface
augmented with speech and pen input. The inter-
face has three main screens: a presentation panel
for controlling an ongoing presentation (Figure 2),
a loader panel for selecting a set of presentations to
load (Figure 4), and a control panel for adjusting
system settings and bundling shareable index and
grammar models. The user can select among the
panels using the tabs at the top left.
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Figure 2 The presentation panel
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The presentation panel has three distinct functional
areas from top to bottom. The first row shows the
current slide, along with thumbnails of the previ-
ous and next slides to provide context. The user
can navigate to the next or previous slide by click-
ing on these thumbnails. The next row shows a
scrolling list of search results from content-based
queries. The last row contains interaction informa-
tion. There is a click & speak button for activating
the speech recognizer and a feedback window that
displays recognized speech.

Some user commands are independent of the
content of slide decks, as with basic commands for
slide navigation:

- “next slide please”
- “go back”
- “last slide”

In practice, however, navigation to next and previ-
ous slides is much easier using buttons on the wire-
less control. The presenter can also ask for slides
by position number, allowing random access:

“take me to slide 10”
“slide 4 please”

But not many presenters can remember the posi-
tion numbers of some 40 or 50 slides, we’d guess,
so we added content-based search, a better method
of random access slide retrieval by simply saying
key words or phrases from the desired slide, e.g.:

- “slides about internet telephony”

- “get me the slide with the
system architecture”

- “2006 highlights”

- “budget plan, please”

When the presenter gives this kind of request, the
system identifies any slides that match the query
and displays them in a rank ordered list in the mid-
dle row of the presenter’s panel. The presenter can
then scroll through the list of thumbnails and click
one to display it to the audience.

This method of ambiguity resolution offers the
presenter some discretion in selecting the correct
slide to display from multiple search results, since
search results appear first on the presenter’s private
interface rather than being displayed to the audi-
ence. However, it requires the presenter to return to
the podium (or wherever the tablet is located) to
select the correct slide.



2.3 Voice selection mode

Alternatively, the presenter may sacrifice discre-
tion for mobility and use a “voice selection mode,”
which lets the presenter roam freely throughout the
auditorium while making and resolving content-
based queries in plain view of the audience. In this
mode, if a presenter issues a content-based query
(e.g., “shows slides about multimodal access”),
thumbnails of the slides returned by the query ap-
pear as a dynamically-generated interactive
“chooser” slide (Figure 3) in the main presentation
viewed by the audience. The presenter can then
select the desired slide by voice (e.g., “slide three™)
or by using the previous, next, and select controls
on the wireless remote. If more than six slides are
returned by the query, multiple chooser slides are
generated with six thumbnails to each slide, which
can be navigated with the remote.

While voice selection mode allows the presenter
greater mobility, it has the drawback of allowing
the audience to see thumbnails of every slide re-
turned by a content-based query, regardless of
whether the presenter intended for them to be seen.
Hence this mode is more risky, but also more im-
pressive!
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Figure 3 Chooser slide for voice selection mode
2.4  Compiling deck sets

Sometimes a presenter wishes to have access to
more than one presentation deck at a time, in order
to respond to unexpected questions or comments,
or to indulge in a whimsical tangent. We respond
to this wish by allowing the presenter to compile a
deck set, which is, quite simply, a user-defined
bundle of multiple presentations that can all be
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searched at once, with their slides available for
display when the user issues a query. In fact, this
option makes it easy for a presenter to follow spon-
taneous tangents by switching from one presenta-
tion to another, navigating through the alternate
deck for a while, and then returning to the original
presentation, all without ever walking to the po-
dium or disrupting the flow of a presentation by
stopping and searching through files.

Deck sets are compiled in the loader panel (Fig-
ure 4), which provides a graphical browser for se-
lecting a set of active decks from the file system.
When a deck set is chosen, the system builds ASR
and language understanding models and a retrieval
index for all the slides in the deck set. A compiled
deck set is also portable, with all of the grammar
and understanding model files stored in a single
archive that can be transferred via e-mail or thumb
drive and speedily loaded on another machine.

A common use of deck sets is to combine a
main presentation with a series of other slide decks
that provide background information and detail for
answering questions and expanding points, so the
presenter can adapt to the interests of the audience.
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Figure 4 The loader panel
3  Multimodal architecture

The Multimodal Presentation Dashboard uses an
underlying multimodal architecture that inherits
core components from the MATCH architecture
(Johnston et al 2002). The components communi-
cate through a central messaging facilitator and
include a speech recognition client, speech recog-
nition server (Goffin et al 2005), a natural lan-
guage understanding component (Johnston &
Bangalore 2005), an information retrieval engine,



and a graphical user interface client. The graphical
Ul runs in a web browser and controls PowerPoint
via its COM interface.

We first describe the compilation architecture,
which builds models and performs indexing when
the user selects a series of decks to activate. We
then describe the runtime architecture that operates
when the user gives a presentation using the sys-
tem. In Section 3.3, we provide more detail on the
slide indexing mechanism and in Section 3.4 we
describe a mechanism used to determine key-
phrases from the slide deck that are used on a drop
down menu and for determining relevancy.

3.1 Compilation architecture

In a sense, the presentation dashboard uses neither
static nor dynamic grammars; the grammars com-
piled with each deck set lie somewhere in-between
those two concepts. Command-based speech inter-
faces often fare best when they rely on the predict-
ability of a fixed, context-free grammar, while
interfaces that require broader vocabulary coverage
and a wider range of syntax are better off leverag-
ing the flexibility of stochastic language models.
To get the best of both worlds for our ASR model,
we use a context-free command “wrapper” to a
stochastic language model (c.f. Wang & Acero
2003). This is coupled to the understanding
mechanism using a transducer with a loop over the
content words extracted from the slides.

This combined grammar is best thought of as a
fixed, context-free template which contains an em-
bedded SLM of dynamic slide contents. Our
method allows a static background grammar and
understanding model to happily co-exist with a
dynamic grammar component which is compiled
on the fly when presentations are loaded, enabling
custom, content-based queries.

When a user designates a presentation deck set
and compiles it, the slides in the set are processed
to create the combined grammar by composing an
SLM training corpus based on the slide content.

First, a slide preprocessor extracts sentences, ti-
tles, and captions from each slide of each deck, and
normalizes the text by converting numerals and
symbols to strings, Unicode to ASCII, etc. These
content phrases are then used to compose (1) a
combined corpus to use for training an SLM for
speech recognition, and (2) a finite-state transducer
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to use for multimodal natural language understand-
ing (Johnston & Bangalore 2005).
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Figure 5 Compilation architecture

To create a combined corpus for the SLM, the con-
tent phrases extracted from slides are iterated over
and folded into a static template of corpus classes.
For instance, the template entry,

<POLITE> <SHOWCON> <CONTENT_PHRASE>

could generate the phrase “please show the slide
about <CONTENT_PHRASE>" for each content
phrase—as well as many others. These templates
are currently manually written but could poten-
tially be induced from data as it becomes available.

The content corpus is appended to a command
corpus of static command classes that generate
phrases like “next slide please” or “go back to the
last one.” Since the number of these command
phrases remains constant for every grammar while
the number of content phrases depends on how
many phrases are extracted from the deck set, a
weighting factor is needed to ensure the number of
examples of both content and command phrases is
balanced in the SLM training data. The resulting
combined corpus is used to build a stochastic lan-
guage model that can handle variations on com-
mands and slide content.

In parallel to the combined corpus, a stack of
slide content words is compiled for the finite state
understanding machine. Phrases extracted for the
combined corpus are represented as a terminal
_CWORD class. (Terminals for tapes in each gram-
mar class are separated by colons, in the format
speech:meaning, with empty transitions repre-



sented as €) For example, the phrase “internet
telephony” on a slide would appear in the under-
standing grammar like so:

_CWORD internet:internet
_CWORD telephony:telephony

These content word classes are then “looped” in
the FSM (Figure 6) into a flexible understanding
model of potential slide content results using only
a few grammar rules, like:

_CONTENT _CWORD _CONTENT
_CONTENT _CWORD

The SLM and the finite-state understanding ma-
chine now work together to extract plausible mean-
ings from dynamic and inexact speech queries.

CWORD

show:<show>  slides:e about:<content> CWORD e:</content></show>

CWORD e {vector, quantization, viterbi, search ...}

Figure 6 Understanding FSM

To provide an example of how this combined ap-
proach to understanding comes together in the run-
ning system, let’s say a presenter’s slide contains
the title “Report for Third Quarter” and she asks
for it by saying, “put up the third quarter report
slide.” Though she asks for the slide with language
that doesn’t match the phrase on the slide, our for-
giving stochastic model might return a speech re-
sult like, “put up third quarter report mine.” The
speech result is then mapped to the finite-state
grammar, which catches “third quarter report
mine” as a possible content phrase, and returns,
“third,quarter,report,mine” as a con-
tent-based meaning result. That result is then used
for information retrieval and ranking to determine
which slides best match the query (Section 3.3).

3.2 Runtime architecture

A primary goal of the presentation dashboard was
that it should run standalone on a single laptop. A
tablet PC works best for selecting slides with a
pen, though a mouse or touch screen can also be
used for input. We also developed a networked
version of the dashboard system where indexing,
compilation, speech recognition, and understand-
ing are all network services accessed over HTTP
and SIP, so any web browser-based client can log
in, upload a presentation, and present without in-
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stalling software aside from PowerPoint and a SIP
plug-in. However, our focus in this paper is on the
tablet PC standalone version.

Index Server (http)

—
Slide index

Multimodal Dashboard

Ul (Browser) HTTP

'E Commands X
— = Powerpoint
Je= Application
T Images
| FAcLITATOR |
¥ i Understanding
SPEECH | [ NLU Model
CLIENT
S——
ASR SERVER Model

Figure 7 Multimodal architecture

The multimodal user interface client is browser-
based, using dynamic HTML and Javascript. Inter-
net Explorer provides COM access to the Power-
Point object model, which reveals slide content and
controls the presentation. Speech recognition, un-
derstanding, and compilation components are ac-
cessed through a java-based facilitator via a socket
connection provided by an ActiveX control on the
client page (Figure 7). When the user presses or
taps the click & speak button, a message is sent to
the Speech client, which sends audio to the ASR
Server. The recognizer’s speech result is processed
by the NLU component using a finite-state trans-
ducer to translate from the input string to an XML
meaning representation. When the multimodal Ul
receives XML for simple commands like “first
slide” or “take me to slide ten,” it calls the appro-
priate function through the PowerPoint API. For
content-based search commands, an SQL query is
constructed and issued to the index server as an
HTTP query. When the results are returned, mul-
timodal thumbnail images of each slide appear in
the middle row of the Ul presenter panel. The user
can then review the choices and switch to the ap-
propriate slide by clicking on it—or, in voice se-
lection mode, by announcing or selecting a slide
shown in the dynamically-generated chooser slide.

The system uses a three stage strategy in search-
ing for slides. First it attempts an exact match by
looking for slides which have the words of the
query in the same order on the same slide in a sin-
gle phrase. If no exact matches are found, the sys-
tem backs off to an AND query and shows slides
which contain all of the words, in any order. If that




fails, the system resorts to an OR query and shows
slides which have any of the query terms.

3.3 Information retrieval

When the slide preprocessor extracts text from a
presentation, it retains the document structure as
much as possible and stores this in a set of hier-
archal XML documents. The structure includes
global document metadata such as creation date
and title, as well as more detailed data such as slide
titles. It also includes information about whether
the text was part of a bullet list or text box. With
this structure, queries can be executed against the
entire text or against specified textual attributes
(e.g. “show me the chart titled *project budget’”).

For small document collections, XPath queries
can search the entire collection with good response
time, providing a stateless search method. But as
the collection of presentation decks to be searched
grows, a traditional inverted index information re-
trieval system achieves better response times. We
use a full text retrieval system that employs stem-
ming, proximity search, and term weighting, and
supports either a simplified query syntax or SQL.
Global metadata can also constrain queries. Incre-
mental indexing ensures that new presentation
decks cause the index to update automatically
without being rebuilt from scratch.

3.4 Key phrase extraction

Key phrases and keywords are widely used for in-
dexing and retrieving documents in large data-
bases. For presentation slides, they can also help
rank a slide’s relevance to a query. We extract a
list of key phrases with importance scores for each
slide deck, and phrases from a set of decks are
merged and ranked based on their scores.

A popular approach to selecting keywords from
a document within a corpus is to find keywords
that frequently occur in one document but seldom
occur in others, based on term frequency-inverse
document frequency (TF-IDF). Our task is slightly
different, since we wish to choose key phrases for
a single document (the slide deck), independent of
other documents. So our approach uses term fre-
guency-inverse term probability (TF-ITP), which
expresses the probability of a term calculated over
a general language rather than a set of documents.
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Assuming a term Ty occurs tf, times in a docu-
ment, and its term probability is tpg, the TF-ITP of
Tk is defined as, wyy = tfi / tpx. This method can be
extended to assign an importance score to each
phrase. For a phrase Fy = {T; T, T3 ... Ty}, which
contains a sequence of N terms, assuming it ap-
pears ffy times in a document, its importance score,
ISy, is defined as,

L f,
=

1S, =

To extract a set of key phrases, we first segment
the document into sentences based on punctuation
and some heuristics. A Porter stemming algorithm
(Porter 1980) eliminates word variations, and
phrases up to N=4 terms long are extracted, remov-
ing any that start or end with noise words. An im-
portance score ranks each phrase, where term
probabilities are estimated from transcripts of 600
hours of broadcast news data. A term that is out of
the vocabulary with a term frequency of more than
2 is given a default term probability value, defined
as the minimum term probability in the vocabulary.
Phrases with high scores are chosen as key
phrases, eliminating any phrases that are contained
in other phrases with higher scores. For an overall
list of key phrases in a set of documents, we merge
individual key phrase lists and sum the importance
scores for key phrases that recur in different lists,
keeping the top 10 phrases.

4  Performance and future work

The dashboard is fully implemented, and has been
used by staff and management in our lab for inter-
nal presentations and talks. It can handle large
decks and collections (100s to 1000s of slides). A
tablet PC with a Pentium M 1.6Ghz processor and
1GB of RAM will compile a presentation of 50
slides—with ASR, understanding models, and
slide index—in under 30 seconds.

In ongoing work, we are conducting a usability
test of the system with users in the lab. Effective
evaluation of a tool of this kind is difficult without
fielding the system to a large number of users. An
ideal evaluation would measure how users fare
when giving their own presentations, responding to
natural changes in narrative flow and audience
questions. Such interaction is difficult to simulate
in a lab, and remains an active area of research.



We also hope to extend current retrieval meth-
ods to operate at the level of concepts, rather than
words and phrases, so a request to show “slides
about mortgages” might return a slide titled “home
loans.” Thesauri, gazetteers, and lexicons like
WordNet will help achieve this. Analyzing non-
textual elements like tables and charts could also
allow a user to say, “get the slide with the network
architecture diagram.” And, while we now use a
fixed lexicon of common abbreviations, an auto-
mated analysis based on web search and other
techniques could identify likely expansions.

5 Conclusion

Our goal with the multimodal presentation
dashboard was to create a meeting/presentation
assistance tool that would change how people be-
have, inspiring presenters to expand the methods
they use to interact with audiences and with their
own material. To this end, our dashboard runs on a
single laptop, leaves the initiative in the hands of
the presenter, and allows slides from multiple pres-
entations to be dynamically retrieved from any-
where in the room. OQur assistant requires no
“intelligent room”; only an intelligent presenter,
who may now offer the audience a presentation
that is as dynamic or as dull as imagination allows.
As Tufte (2006) reminds us in his analysis of
how PowerPoint presentations may have precipi-
tated the Columbia shuttle tragedy, the way infor-
mation is presented can have a profound—even
life-threatening—impact on the decisions we
make. With the multimodal presentation
dashboard, we hope to free future presenters from
that single, arrow-key dimension, offering access
to presentation slides and diagrams in any order,
using a diverse combination of modes. Presenters
can now pay more attention to the needs of their
audiences than to the rigid determinism of a fixed
presentation. Whether they will break free of the
linear presentation style imposed by current tech-
nology if given a chance remains to be seen.
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time there were no standards for developing dialog
Abstract systems, (VoiceXML 1.0 was published as a rec-
ommendation in year 2000) and thus the first gen-
The goal of this paper is to give a description eration dialog applications were implemented on
of the state of the art, the issues, the problems, proprietary platforms, typically evolutions of etxis
and the solutions related to industrial dialog ing touch-tone IVR (Interactive Voice Response)
systems for the automation of technical sup- architectures.
port. After a general description of the evolu-
tion of the spoken dialog industry, and the Since the early developments, spoken dialog sys-
challenges in the development of technical tems were implemented as a graph, caltat-
support applications, we will discuss two spe- flow. The nodes of the call-flow typically represent
cific problems through a series of experimental actions performed by the system and the arcs rep-
results. The first problem is the identification resent an enumeration of the possible outcomes.
of the call reason, osymptom from loosely Playing a prompt and interpreting the user re-
constrained user utterances. The second is the sponse through a speech recognition grammar is a
use of data for the experimental optimization typical action. Dialog modules (Barnard et al.,
of the Voice User Interface (VUI). 1999) were introduced in order to reduce the com-
plexity and increase reusability of call-flows. A
_ Dialog Module (or DM) is defined as a call-flow
1 Introduction object that encapsulates many of the interactions
needed for getting one piece of information from

Qe user, including retries, timeout handling, dis-

industry, in the mid 1990, we have been WitneSSiQ%nbiguation etc. Modern commercial dialog sys-
the evolution of at least three generations of SY®%ms use DI\}Is as their active call-flow nodes.
tems. What differentiates each generation is not

only the increase of complexity, but also the dif-|-
ferent architectures used. Table 1 p_rovu_jes a SUiHication of the application complexity. First gen
mary of the features that distinguish eac

: - _ ration applications showed a range of complexity
generation. The early first generation systems Wepe 5 te\y to tens of DMs, typically spanning a few
mostly informational, in that they would requir

: . €turns of interaction.
some information from the user, and would pro-

vide mform?tlo(? In Iretu:jn.dEx_ampIr(]as Of.ghosijs?'SThe dialog modality is another characterization of
tems, mostly developed during the mid and lalg, i aions. Early applications supported  strict

1990s, are package tracking, simple financial a@jracted dialog interaction, meaning that at each
plications, and flight status information. At the

Since the beginning of the telephony spoken dial

he number of DMs in a call-flow is generally an
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While the model behind the first and second gen-
erations of dialog applications can be described by
the form-filling paradigm, and the interaction fol-

lows a pre-determined simple script, the systems of

GENERATION
FIRST SECOND THIRD
Time Period 1994-2001 2000-2005 | 2004-today

Type of Ap- Transac- | Problem the third generation have raised to a qualitatively
plication Informational g(;’:]i'n go'g’t'gr%er different level of complexity. Problem solving ap-
| . . .
e Cgre, plications, like customer care, help desk, and-tech
Package Trading, Technical nical support, are characterized by a level of
Tracking, Train Res- | Support, i H i
Examples Flight Status | ervation Help Desk. compIeX|ty ranging in the th.ou_sands o.f DMs, for a
Static Dynamic number of turns of dynamic interaction that can
Architecture | Proprietary VoiceXML | VoiceXML reach into the dozens. As the sophistication of the
Complexity applications evolved, so did the system architec-
g\‘,\x;‘;ber S 100 1000 ture by moving the logic from the client
_ (VoiceXML browser, or voice-browser) to the
Interaction server (Pieraccini and Huerta, 2005). More and
Turns few 10 10-100 . .
directed + more system are toqlay _based on generic dlaI(_)g
natural application server which interprets a dialog speci-
language ; ; i o i i _
directed + | (SSLU) + fication described by a typlcally_ proprietary—
natural limited markup language and serve the voice-browser with
Interaction language | mixed initia- dynamically generated VoiceXML documents.
Modality directed (SSLV) tive

Finally, the interaction modality of the third gen-
eration systems is moving from the strictly direlcte
dialog application, to directed dialog, with some

turn the system wouldirect the user by proposing na_ltural_ '?‘_”g_uage. (SSLU) wrns, and some limited
a finite—and typically small—number of Choices_mlxed-lnltlatlve (i.e. the pos.S|b|I|ty for thc—_: ustry
That would also result in a limited grammar or Voghange the course of the dialog by making an un-

cabulary at each turn. solicited request).

Table 1: Evolution of spoken dialog systems.

The applications of the second generation Wer2e Technical Support Applications

typically transactional, in the sense that theylatouToday, automated technical support systems are
perfqrm a transaction on behalf of the user, "_kﬁmong the most complex types of dialog applica-
moving funds between bank accounts, tradingons, The advantage of automation is clear, espe-
stocks, or buying tickets. Most of those applicagja|ly for high-volume services like broadband-
tions were developed using the new standardgternet, entertainment (cable or satellite TV)d an
typically as cpllectlons of VoiceXML documents.te|ephony_ When something goes wrong with the
The complexity moved to the range of dozens Qfgyyice, the only choice for subscribers is to aall
dialog modules, spanning a number of turns of iRachnical support center. Unfortunately, staffing a
teractions of the order of ten or more. At the sam&|| center with enough agents trained to helpesolv
time, some of the applications started using a-teCBen the most common problems results in pro-
nology known as Statistical Spoken Language Utkipitive costs for the provider, even when out-
derstanding, or SSLU (Gorin et al.,, 1997, Chusgyrcing to less costly locations End users often
Carroll et al., 1999, Goel et al, 2005), for magpineyperience long waiting times and poor service
loosely constrained user utterances to a finite-nufom untrained agents. With the magnitude of the
ber of pre-defined semantic categories. airal  qajly increase in the number of subscribers oféhos
language modality—as opposed to directed diageryices, the situation with human agents is bound
log—was initially used mostly for call-routing, i.€ {5 worsen. Automation and self-service can, and
to route calls to the appropriate call center basgghes help reduce the burden constituted by the

on a more or less lengthy description of the reasgRyst frequent call reasons, and resort to human

for the call by the user. agents only for the most difficult and less common
problems.
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3 High Resolution SSLU
However, automating technical support is particu- o _
larly challenging for several reasons. Among themthe identification of the call reason—i.e. the prob
lem or the symptoms of the problem experienced
- Troubleshooting knowledge is not readilyby the caller—is one of the first phases of the in-
available in a form that can be used foteraction in a technical support application. There
automation. Most often it is based on th@re two possible design choices with today’s spo-
idiosyncratic experience of the individualken language technology:

agents.

- End users are typically in a somewhat - Directed dialog. A specific prompt enu-
emotionally altered state—something for merates all the possible reasons for a call,
which they paid and that is supposed to and the user would choose one of them.
work is broken. They want it repaired -  Natural Language: An open prompt asks
quickly by an expert human agent; they the user to describe the reason for the call.
don’t trust a machine can help them. The utterance will be automatically

- The description of the problem provided mapped to one of a number of possible calll
by the user can be imprecise, vague, or reasons using SSLU technology.

based on a model of the world that may be
incorrect (e.g. some users of internet carPirected dialog would be the preferred choice in
not tell their modem from their router).  terms of accuracy and cost of development. Unfor-
- It may be difficult to instruct non- tunately, in most technical support applicatiohs, t
technically savvy users on how to performnumber of call-reasons can be very large, and thus
a troubleshooting step (e.dgNow renew prompting the caller through a directed dialog
your IP addres3 or request technical in- menu would be impractical. Besides, even though
formation (e.gAre you using a Voice over @ long menu can be structured hierarchically as a
IP phone service? cascade of several shorter menus, the terms used
- Certain events cannot be controlled. Fotor indicating the different choices may be mis-
instance, the time it would take for a useleading or meaningless for some of the users (e.g.
to complete a troubleshooting step, like redo you have a problem with hardware, software, or
booting a PC, is often unpredictable. networking?. Natural language with SSLU is
- The acoustic environment may be chalgenerally the best choice for problem identifica-
lenging. Users may be asked to switciion.
their TV on, reboot their PC, or check the
cable connections. All these operations cak practice, users mostly don’t know what the ac-
cause noise that can trigger the speech rdgial problem with their service is (e.nodem is
ognizer and affect the course of the interwrongly configuredl but typically they describe
action. their observations—osymptoms-which are ob-
servable manifestations of the problem. and not the
On the other hand, one can leverage the automateblem itself (e.g. symptoncan’t connect to the
diagnosis or troubleshooting tools that are cuWeb,problem: modem wrongly configured). Cor-
rently used by human agent and improve the effiectly identifying the symptom expressed in natural
ciency of the interaction. For instance, if the IHanguage by users is the goal of the SSLU module.
address of the digital devices at the user premises
is available, one can ping them, verify their conSSLU provides a mapping between input utter-
nectivity, download new firmware, and performances and a set of pre-determined categories.
automated troubleshooting steps in the backgrourgSLU has been effectively used in the past to en-
without the intervention of the user. However, théble automatic call-routing. Typically call-routing
interplay between automated and interactive oppplications have a number of categories, of the
erations can raise the complexity of the applicaerder of a dozen or so, which are designed based
tions such as to require higher level developmern the differentroutesto which the IVR is sup-
abstractions and authoring tools. posed to dispatch the callers. So, generally, lin ca
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routing applications, the categories are known amdost node of the hierarchy, “TV Problem”, corre-
determined prior to any data collection. sponds to vague utterances such lahave a
problem with my TVor My cable TV does not
One could follow the same approach for the prolwork. The” Ordering” node represents requests of
lem identification SSLU, i.e. determine a numbethe typel have a problem with ordering a shpw
of a-priori problemcategories and then map a colwhich is still a somewhat vague request, since one
lection of trainingsymptonutterances to each onecan order “Pay-per-view” or “On-demand” events,
of them. There are several issues with this apnd they correspond to different processes and
proach. troubleshooting steps. Finally, at the most deataile
level of the hierarchy, for instance for the node
First, a complete set of categories—the prolfTV Problem-Ordering-On Demand-Error”, one
lems—may not be known prior to the acquisitioffinds utterances such a#ried to order a movie on
and analysis of a significant number of utterancedemand, but all | get is an error code on the TV.
Often the introduction of new home devices or ser-
vices (such as DVR, or HDTV) creates new prok TV Problem
lems and new symptoms that can be discover

only by analyzing large amounts of utterance datz — Ordering

. . On Demand
Then, as we noted above, the relationship betwe
the problems—or broad categories of problems- Erlror
and the manifestations (i.e. the symptoms) may n PIN
be obvious to the caller. Thus, confirming a broa |
category in response to a detailed symptom utte Other
ance may induce the user to deny it or to give Pay-per-view
verbose response (e.g. Callercannot get to the I
Web. System:| understand you have a problem | Erlror
with your modem configuration, is that right? I
Caller:Hmm...no. | said | cannot get to the Web. — No Picture :

Finally, caller descriptions have different degree |

of specificity (e.gl have a problem with my cable
servicevs. The picture on my TV is pixilated on all
channely. Thus, the categories should reflect
hierarchy of symptoms, from vague to specific
that need to be taken into proper account in tl
design of the interaction.

Figure 1: Excerpt from the hierarchical symp-
tom description in a cable TV technical support
application

. . the experimental results reported below, we
As a result fr_om t_h_e a_bove con5|derat|on§, SSL. ained and tested a hierarchically structured SSLU
for symptom identification needs to be designed

q f hehiah luti Ititud g for a cable TV troubleshooting application. A cor-
oraer _tq re ?"Ct thenigh-resolutionmultitude an us of 97,23autterances was collected from a de-
specificity hierarchy of symptoms that emerg

¢ h Ivsis of a | ity of Ut loyed application which used a simpler, non
rom the analysis of a farge quantity of UNCrancegse o chical, version of the SSLU. The utterances
Figure 1 shows an excerpt from the hierarchy

. 7 Wwere transcribed and initially annotated based on
symptoms for a cable TV trogbleshootmg applic AN initial set of symptoms. The annotation was car-
tion derived from the analysis of almost 100,00

it X in led out by creating aannotation guidedocument
utterance transcriptions. which includes, for each symptom, a detailed ver-

bal description, a few utterance examples, and

Each F“’de of _the tree partially represen_te_d by Figélevant keywords. Human annotators were in-
ure 1 is associated with a number of training YUeL i cted to label each utterance with the correct

ances fr(_)m USers descrlblng_ that partICUIa(fategory based on the annotation guide and their
symptom in their own words. For instance the top-
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work was monitored systematically by the systers.1
designer.

Confirmation Effectiveness

Accuracy is not the only measure to provide an
After a first initial annotation of the whole cogu assessment of how the symptom described by the
the annotation consistency was measured by coggller is effectively captured. Since the user re-
puting a cluster similarity distance between th&ponse needs to be confirmed based on the inter-
utterances corresponding to all possible pairs gfetation returned by the SSLU, the caller always
symptoms. When the consistency between a pairlefs the choice of accepting or denying the hy-
symptoms was below a given threshold, the clupothesis. If the confirmation prompts are not prop-
ters were analyzed, and actions taken by the d@fly designed, the user can erroneously deny
signer in order to improve the consistencyorrectly detected symptoms, or erroneously accept
including reassign utterances and, if necessaM/ong ones.
modifying the annotation guide. The whole process
was repeated a few times until a satisfactory dlob&he analysis reported below was carried out for a
inter-cluster distance was attained. deployed system for technical support of Internet

service. The full symptom identification interac-
Eventually we trained the SSLU on 79 symptom#ons following the initial open prompt was tran-
arranged on a hierarchy with a maximum depth skribed and annotated for 895 calls. The SSLU
3. Table 2 summarizes the results on an indeperitbed in this application consisted of 36 symptoms
ent test set of 10,332 utterances. The result shogiructured in a hierarchy with a maximum depth of
that at the end of the process, a satisfactoryhbat8. For each interaction we tracked the following
accuracy of 81.43% correct label assignment whavents:
attained for the utterances which were deemed to
be in-domain, which constituted 90.22% of the test -
corpus. Also, the system was able to correctly re- -
ject 24.56% of out-of-domain utterances. The
overall accuracy of the system was considered rea- rejection or timeout
sonable for the state of the art of commercial - response to the yes/no confirmation ques-
SSLUs based on current statistical classification tion)
algorithms. Improvement in the classification per- - successive responses to the confirmation
formance can result by better language models (i.e. question in case the recognizer rejected it
some of the errors are due to incorrect word recog- or timed out.
nition by the ASR) and better classifiers, which - Successive responses to the confirmation
need to take into account more features of the in- question in case the user denied, and a
coming utterances, such as word otdamd con- second best hypothesis was offered.
textual information.

the first user response to the open question
successive responses in case of re-
prompting because of speech recognition

Table 3 summarizes the results of this analysis.

Utterances 10332 | 100.00%

In domain 9322 | 90.22% The first row reports the number of calls for which
Correct in-domain 7501 | 81.43% the identified symptom was correct (as compared
Out of domain 1010 9.78% with human annotation) and confirmed by the
Correct rejection out-of- caller. The following rows are the number of calls
domain 249 |  24.65% where the identified symptom was wrong and the

caller still accepted it during confirmation, the
symptom was correct and the caller denied it, and
the symptom was wrong and denied, respectively.
Finally there were 57 calls where the caller did no
provide any confirmation (e.g. hung up, timed out,

Table 2: Accuracy results for Hierarchical
SSLU with 79 symptoms.

! Current commercial SSLU modules, as the one instigk
work described here, use statistical classifiesetanly on
bags of words. Thus the order of the words in ticerming
utterance is not taken into consideration.

ASR rejected the confirmation utterance even after
re-prompting, etc.), and 100 calls in which it was
not possible to collect the symptom (e.g. rejection



and when a global measure of performance is

Accepted correct | 535 | 59.8% available, one %an test different norl?—disruptive de
Accepted wrong | 118 | 13.2% sign hypotheses on the field, while the application
Denied correct 22 | 2.5% is running. We call this procesgperimental VUI
Denied wrong 63 7.0%

Unconfirmed 57 | 6.4% There have been, in the past, several studies aimed
No result 100 | 11.2% at using machine learning for the design of dialog
TOTAL 895 | 100.0% systems (Levin et al., 2000, Young 2002, Pietquin

_ _ et al, 2006). Unfortunately, the problem of fulkde

Table 3: Result of the confirmation analy-  sign of a system based uniquely on machine learn-
sis based on the results of 895 calls ing is a very difficult one, and cannot be fully

of first and second re-prompts, timeouts, etc.) IutiIized yet for commgrcial systems. Asimpler_and
both cases—ie. no confirmati(;n or no éymp.to ’SS ambitious goal is that of finding the optimal
collection at a.II.—the call continued with a differ—r.alaIlog strategy among a sm_a_ll numl_:)er of compet-

ing designs, where all the initial designs are work

e e e et o190, 3 easonably e (iaker 2000 Paclct al 2004,
ing result from this experiment is that the SSLLEHWIS 2006). Comparing competing designs re-

returned a correct symptom 59.8 + 2.5 = 62.3% ires carrying on an exploration based on random

. e . X election of each design at crucial points of the
the times (considering both in-domain and OUt'Odialog. Once a reward schema is defined, one can

domain }Jtterances), but the actual “perceived afise it for changing the exploration probabilityaso
curacy (i.e. when the user accepted the result) w ®maximize a function of the accumulated reward

higher,_ and precisely 59.8 + 13.2 = 73%. A Cleel:)‘ﬁrsing, for instance, one of the algorithms desdribe
analysis shows that for most of the wrongly ac.

cepted utterances the wrong symptom identified b9 (Sutton 1998).
the SSLU was still in the same hierarchical catgs
gory, but with different degree of specificity (e.g
Internet-Slow vs. vague Internet)

efining many different competing designs at sev-
eral points of the interaction is often impractical
and costly. Moreover, in a deployed commercial

The difference between the actual and perceiva plication, one needs to be careful about main-
R ining a reasonable user experience during explo-
accuracy of SSLU has implications for the overaﬁéf 9 P g exp

P F1h lication. O d build ation. Thus, the competing designs have to be
performance of the application. ©ne couid bul osen carefully and applied to portions of the dia
high performance SSLU.’ but a wrongly confirme g where the choice of the optimal design can
Symptom may put t_he dialog off course and resthake a significant difference for the reward meas-
in reduced automation, even though the percelv%gz in use
accuracy is higher. Confirmation of SSLU results '
is definitely an area where new research can pote

) : A the experiments described below we selected the
tially impact the performance of the whole system P

symptom identification as a point worth exploring.
in an internet technical support application We
then defined three prompting schemas

Voice User Interface (VUI) is typically considered

4 Experimental VUI

an art. VUI designers acquire their experience by - Schema A: the system plays an open
analyzing the effect of different prompts on the prompt

behavior of users, and can often predict whether a - Schema B: the system plays an open
new prompt can help, confuse, or expedite the in- prompt, and then provides some examples
teraction. Unfortunately, like all technologiesyrel of requests

ing on the anecdotal experience of the designer, in - Schema C: The system plays an open
VUI it is difficult to make fine adjustments to an prompt, and then suggests a command that
interface and predict the effect of competing simi- provides a list of choices.

lar designs before the application is actually de-
ployed. However, in large volume applications,
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The three schemas were implemented on a dadex tasks such as problem solving and technical

ployed system for limited time. There was 1/3upport.We then discussed general issues regarding

probability for each individual call to go throughthe effective development of a technical support

one of the above schemas. The target function chapplication. In particular we focused on two areas:

sen for optimization was the average automatidhe collection of the symptom from natural lan-

rate. guage expressions, and the experimental optimiza-

tion of the VUI strategy. In both cases we

Figure 2 shows the effect on the cumulated averadescribed how a detailed analysis of live data can

automation rate for each one of the competing dgreatly help optimize the overall performance.

sign. The exploration was carried out until the dif

ference in the automation rate among the thrée References
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Abstract

We introduce Olympus, a freely available
framework for research in conversational
interfaces. Olympus’ open, transparent,
flexible, modular and scalable nature fa-
cilitates the development of large-scale,
real-world systems, and enables research
leading to technological and scientific ad-
vances in conversational spoken language
interfaces. In this paper, we describe the
overall architecture, several systems
spanning different domains, and a number
of current research efforts supported by
Olympus.

1 Introduction

Spoken language interfaces developed in industrial
and academic settings differ in terms of goals, the
types of tasks and research questions addressed,
and the kinds of resources available.

In order to be economically viable, most indus-
try groups need to develop real-world applications
that serve large and varied customer populations.
As a result, they gain insight into the research
questions that are truly significant for current-
generation technologies. When needed, they are
able to focus large resources (typically unavailable
in academia) on addressing these questions. To
protect their investments, companies do not gener-
ally disseminate new technologies and results.

In contrast, academia pursues long-term scien-
tific research goals, which are not tied to immedi-
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ate economic returns or customer populations. As a
result, academic groups are free to explore a larger
variety of research questions, even with a high risk
of failure or a lack of immediate payoff. Academic
groups also engage in a more open exchange of
ideas and results. However, building spoken lan-
guage interfaces requires significant investments
that are sometimes beyond the reach of academic
researchers. As a consequence, research in acade-
mia is oftentimes conducted with toy systems and
skewed user populations. In turn, this raises ques-
tions about the validity of the results and hinders
the research impact.

In an effort to address this problem and facilitate
research on relevant, real-world questions, we have
developed Olympus, a freely available framework
for building and studying conversational spoken
language interfaces. The Olympus architecture,
described in Section 3, has its roots in the CMU
Communicator project (Rudnicky et al., 1999).
Based on that experience and subsequent projects,
we have engineered Olympus into an open, trans-
parent, flexible, modular, and scalable architecture.

To date, Olympus has been used to develop and
deploy a number of spoken language interfaces
spanning different domains and interaction types;
these systems are presented in Section 4. They are
currently supporting research on diverse aspects of
spoken language interaction. Section 5 discusses
three such efforts: error handling, multi-participant
conversation, and turn-taking.

We believe that Olympus and other similar tool-
kits, discussed in Section 6, are essential in order
to bridge the gap between industry and academia.
Such frameworks lower the cost of entry for re-

Bridging the Gap: Academic and Industrial Research in Dialog Technologies Workshop Proceedings, pages 3239,
NAACL-HLT, Rochester, NY, April 2007. ©2007 Association for Computational Linguistics



search on practical conversational interfaces. They
also promote technology transfer through the reuse
of components, and support direct comparisons
between systems and technologies.

2 Desired characteristics

While developing Olympus, we identified a num-
ber of characteristics that in our opinion are neces-
sary to effectively support and foster research. The
framework should be open, transparent, flexible,
modular, and scalable.

Open. Complete source code should be avail-
able for all the components so that researchers and
engineers can inspect and modify it towards their
ends. Ideally, source code should be free for both
research and commercial purposes and grow
through contributions from the user community.

Transparent / Analytic. Open source code
promotes transparency, but beyond that researchers
must be able to analyze the system’s behavior. To
this end, every component should provide detailed
accounts of their internal state. Furthermore, tools
for data visualization and analysis should be an
integral part of the framework.

Flexible. The framework should be able to ac-
commodate a wide range of applications and re-
search interests, and allow easy integration of new
technologies.

Modular / Reusable. Specific functions (e.g.
speech recognition, parsing) should be encapsu-
lated in components with rich and well-defined
interfaces, and an application-independent design.
This will promote reusability, and will lessen the
system development effort.

Scalable. While frameworks that rely on sim-
ple, well established approaches (e.g. finite-state
dialogs in VoiceXML) allow the development of
large-scale systems, this is usually not the case for
frameworks that provide the flexibility and trans-
parency needed for research. However, some re-
search questions are not apparent until one moves
from toy systems into large-scale applications. The
framework should strive to not compromise scal-
ability for the sake of flexibility or transparency.

3 Architecture

At the high level, a typical Olympus application
consists of a series of components connected in a
classical, pipeline architecture, as illustrated by the
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bold components in Figure 1. The audio signal for
the user utterance is captured and passed through a
speech recognition module that produces a recog-
nition hypothesis (e.g., two p.m.). The recognition
hypothesis is then forwarded to a language under-
standing component that extracts the relevant con-
cepts (e.g., [time=2p.m.]1), and then through a
confidence annotation module that assigns a confi-
dence score. Next, a dialog manager integrates this
semantic input into the current context, and pro-
duces the next action to be taken by the system in
the form of the semantic output (e.g., {request
end_time}). A language generation module pro-
duces the corresponding surface form, which is
subsequently passed to a speech synthesis module
and rendered as audio.

Galaxy communication infrastructure. While
the pipeline shown in bold in Figure 1 captures the
logical flow of information in the system, in prac-
tice the system components communicate via a
centralized message-passing infrastructure — Gal-
axy (Seneff et al., 1998). Each component is im-
plemented as a separate process that connects to a
traffic router — the Galaxy hub. The messages are
sent through the hub, which forwards them to the
appropriate destination. The routing logic is de-
scribed via a configuration script.

Speech recognition. Olympus uses the Sphinx
decoding engine (Huang et al., 1992). A recogni-
tion server captures the audio stream, forwards it to
a set of parallel recognition engines, and collects
the corresponding recognition results. The set of
best hypotheses (one from each engine) is then
forwarded to the language understanding compo-
nent. The recognition engines can also generate n-
best lists, but that process significantly slows down
the systems and has not been used live. Interfaces
to connect Sphinx-II and Sphinx-III engines, as
well as a DTMF (touch-tone) decoder to the recog-
nition server are currently available. The individual
recognition engines can use either n-gram- or
grammar-based language models. Dialog-state
specific as well as class-based language models are
supported, and tools for constructing language and
acoustic models from data are readily available.
Most of the Olympus systems described in the next
section use two gender-specific Sphinx-II recog-
nizers in parallel. Other parallel decoder configura-
tions can also be created and used.

Language understanding is performed by
Phoenix, a robust semantic parser (Ward and Issar,
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Figure 1. The Olympus dialog system reference architecture (a typical system)

1994). Phoenix uses a semantic grammar to parse
the incoming set of recognition hypotheses. This
grammar is assembled by concatenating a set of
reusable grammar rules that capture domain-
independent constructs like [Yes], [No], [Help],
[Repeat], and [Number], with a set of domain-
specific grammar rules authored by the system de-
veloper. For each recognition hypothesis the output
of the parser consists of a sequence of slots con-
taining the concepts extracted from the utterance.

Confidence annotation. From Phoenix, the set
of parsed hypotheses is passed to Helios, the con-
fidence annotation component. Helios uses features
from different knowledge sources in the system
(e.g., recognition, understanding, dialog) to com-
pute a confidence score for each hypothesis. This
score reflects the probability of correct understand-
ing, i.e. how much the system trusts that the cur-
rent semantic interpretation corresponds to the
user’s intention. The hypothesis with the highest
score is forwarded to the dialog manager.

Dialog management. Olympus uses the Raven-
Claw dialog management framework (Bohus and
Rudnicky, 2003). In a RavenClaw-based dialog
manager, the domain-specific dialog task is repre-
sented as a tree whose internal nodes capture the
hierarchical structure of the dialog, and whose
leaves encapsulate atomic dialog actions (e.g., ask-
ing a question, providing an answer, accessing a
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database). A domain-independent dialog engine
executes this dialog task, interprets the input in the
current dialog context and decides which action to
engage next. In the process, the dialog manager
may exchange information with other domain-
specific agents (e.g., application back-end, data-
base access, temporal reference resolution agent).

Language generation. The semantic output of
the dialog manager is sent to the Rosetta template-
based language generation component, which pro-
duces the corresponding surface form. Like the
Phoenix grammar, the language generation tem-
plates are assembled by concatenating a set of pre-
defined, domain-independent templates, with
manually authored task-specific templates.

Speech synthesis. The prompts are synthesized
by the Kalliope speech synthesis module. Kalliope
can be currently configured to use Festival (Black
and Lenzo, 2000), which is an open-source speech
synthesis system, or Cepstral Swift (Cepstral
2005), a commercial engine. Finally, Kalliope also
supports the SSML markup language.

Other components. The various components
briefly described above form the core of the Olym-
pus dialog system framework. Additional compo-
nents have been created throughout the
development of various systems, and, given the
modularity of the architecture, can be easily re-
used. These include a telephony component, a text



input-and-output interface, and a temporal refer-
ence resolution agent that translates complex date-
time expressions (including relative references,
holidays, etc.) into a canonical form. Recently, a
Jabber interface was implemented to support inter-
actions via the popular GoogleTalk internet mes-
saging system. A Skype speech client component
is also available.

Data Analysis. Last but not least, a variety of
tools for logging, data processing and data ana-
lytics are also available as part of the framework.
These tools have been used for a wide variety of
tasks ranging from system monitoring, to trends
analysis, to training of internal models.

A key characteristic shared by all the Olympus
components is the clear separation between do-
main-independent programs and domain-specific
resources. This decoupling promotes reuse and
lessens the system development effort. To build a
new system, one can focus simply on developing
resources (e.g., language model, grammar, dialog
task specification, generation templates) without
having to do any programming. On the other hand,
since all components are open-source, any part of
the system can be modified, for example to test
new algorithms or compare approaches.

4 Systems

To date, the Olympus framework has been used to
successfully build and deploy several spoken dia-
log systems spanning different domains and inter-
action types (see Table 1). Given the limited space,
we discuss only three of these systems in a bit
more detail: Let’s Go!, LARRI, and TeamTalk.
More information about the other systems can be
found in (RavenClaw-Olympus, 2007).

4.1 Let’s Go!

The Let’s Go! Bus Information System (Raux et al
2005; 2006) is a telephone-based spoken dialog
system that provides access to bus schedules. In-
teraction with the system starts with an open
prompt, followed by a system-directed phase
where the user is asked the missing information.
Each of the three or four pieces of information
provided (origin, destination, time of travel, and
optional bus route) is explicitly confirmed. The
system knows 12 bus routes, and about 1800 place
names.
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Originally developed as an in-lab research sys-
tem, Let’s Go! has been open to the general public
since March, 2005. Outside of business hours, calls
to the bus company are transferred to Let’s Go!,
providing a constant flow of genuine dialogs
(about 40 calls per weeknight and 70 per weekend
night). As of March, 2007, a corpus of about
30,000 calls to the system has been collected and
partially transcribed and annotated. In itself, this
publicly available corpus constitutes a unique re-
source for the community. In addition, the system
itself has been modified for research experiments
(e.g., Raux et al., 2005, Bohus et al., 2006). Be-
tween-system studies have been conducted by run-
ning several versions of the system in parallel and
picking one at random for every call. We have re-
cently opened this system to researchers from other
groups who wish to conduct their own experi-
ments.

4.2 LARRI

LARRI (Bohus and Rudnicky, 2002a) is a multi-
modal system for support of maintenance and re-
pair activities for F/A-18 aircraft mechanics. The
system implements an Interactive Electronic Tech-
nical Manual.

LARRI integrates a graphical user interface for
easy visualization of dense technical information
(e.g., instructions, schematics, video-streams) with
a spoken dialog system that facilitates information
access and offers assistance throughout the execu-
tion of procedural tasks. The GUI is accessible via
a translucent head-worn display connected to a
wearable client computer. A rotary mouse (dial)
provides direct access to the GUI elements.

After an initial log-in phase, LARRI guides the
user through the selected task, which consists of a
sequence of steps containing instructions, option-
ally followed by verification questions. Basic steps
can include animations or short video sequences
that can be accessed by the user through the GUI
or through spoken commands. The user can also
take the initiative and access the documentation,
either via the GUI or by simple commands such as
“go to step 157 or “show me the figure”.

The Olympus architecture was easily adapted
for this mobile and multi-modal setting. The wear-
able computer hosts audio input and output clients,
as well as the graphical user interface. The Galaxy
hub architecture allows us to easily connect these



System name

Domain / Description

Genre

RoomLine
(Bohus and Rudnicky 2005)

telephone-based system that provides support for conference
room reservation and scheduling within the School of Com-
puter Science at CMU.

information access (mixed
initiative)

Let's Go! Public
(Raux et al 2005)

telephone-based system that provides access to bus schedule
information in the greater Pitisburgh area.

information access
(system initiative)

LARRI
(Bohus and Rudnicky 2002)

multi-modal system that provides assistance to F/A-18 aircraft
personnel during maintenance tasks.

multi-modal task guidance
and procedure browsing

Intelligent Procedure

early prototype for a multi-modal system aimed at providing
guidance and support to the astronauts on the International

multi-modal task guidance

As,.5|stant Space Station during the execution of procedural tasks and and procedure browsing
(Aist et al 2002) .
checklists.
TeamTalk multi-participant spoken language command-and-control inter- | multi-participant command-
(Harris et al 2005) face for a team of robots in the treasure-hunt domain. and-control
telephone-based taskable agent that can be instructed to de- voice mail / message deliv-
VERA ) -
liver messages to a third party and make wake-up calls. ery
Madeleine text-based dialog system for medical diagnosis. diagnosis
ConQuest telephone-based spoken dialog system that provides confer- information access

(Bohus et al 2007)

ence schedule information.

(mixed-initiative)

RavenCalendar
(Stenchikova et al 2007).

multimodal dialog system for managing personal calendar
information, such as meetings, classes, appointments and
reminders (uses Google Calendar as a back-end)

information access and
scheduling

Table 1. Olympus-based spoken dialog systems (shaded cells indicate deployed systems)

components to the rest of the system, which runs
on a separate server computer. The rotary-mouse
events from the GUI are rendered as semantic in-
puts and are sent to Helios which in turn forwards
the corresponding messages to the dialog manager.

4.3 TeamTalk

TeamTalk (Harris et al., 2005) is a multi-modal
interface that facilitates communication between a
human operator and a team of heterogeneous ro-
bots, and is designed for a multi-robot-assisted
treasure-hunt domain. The human operator uses
spoken language in concert with pen-gestures on a
shared live map to elicit support from teams of ro-
bots. This support comes in the forms of mapping
unexplored areas, searching explored areas for ob-
jects of interest, and leading the human to said ob-
jects. TeamTalk has been built as a fully functional
interface to real robots, including the Pioneer
P2DX and the Segway RMP. In addition, it can
interface with virtual robots within the high-
fidelity USARSim (Balakirsky et al., 2006) simula-
tion environment. TeamTalk constitutes an excel-
lent platform for multi-agent dialog research.

To build TeamTalk, we had to address two chal-
lenges to current architecture. The multi-
participant nature of the interaction required multi-
ple dialog managers; the live map with pen-
gestured references required a multi-modal integra-
tion. Again, the flexibility and transparency of the
Olympus framework allowed for relatively simple
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solutions to both of these challenges. To accom-
modate multi-participant dialog, each robot in the
domain is associated with its own RavenClaw-
based dialog manager, but all robots share the
other Olympus components: speech recognition,
language understanding, language generation and
speech synthesis. To accommodate the live map
GUI, a Galaxy server was built in Java that could
send the user’s inputs to Helios and receive outputs
from RavenClaw.

5 Research

The Olympus framework, along with the systems
developed using it, provides a robust basis for re-
search in spoken language interfaces. In this sec-
tion, we briefly outline three current research
efforts supported by this architecture. Information
about other supported research can be found in
(RavenClaw-Olympus, 2007).

51 Error handling

A persistent and important problem in today’s spo-
ken language interfaces is their lack of robustness
when faced with understanding errors. This prob-
lem stems from current limitations in speech rec-
ognition, and appears across most domains and
interaction types. In the last three years, we con-
ducted research aimed at improving robustness in
spoken language interfaces by: (1) endowing them
with the ability to accurately detect errors, (2) de-



veloping a rich repertoire of error recovery strate-
gies and (3) developing scalable, data-driven ap-
proaches for building error recovery policies'. Two
of the dialog systems from Table 1 (Let’s Go! and
RoomlLine) have provided a realistic experimental
platform for investigating these issues and evaluat-
ing the proposed solutions.

With respect to error detection, we have devel-
oped tools for learning confidence annotation
models by integrating information from multiple
knowledge sources in the system (Bohus and Rud-
nicky, 2002b). Additionally, Bohus and Rudnicky
(2006) proposed a data-driven approach for con-
structing more accurate beliefs in spoken language
interfaces by integrating information across multi-
ple turns in the conversation. Experiments with the
RoomlLine system showed that the proposed belief
updating models led to significant improvements
(equivalent with a 13.5% absolute reduction in
WER) in both the effectiveness and the efficiency
of the interaction.

With respect to error recovery strategies, we
have developed and evaluated a large set of strate-
gies for handling misunderstandings and non-
understandings (Bohus and Rudnicky, 2005). The
strategies are implemented in a task-decoupled
manner in the RavenClaw dialog management
framework.

Finally, in (Bohus et al., 2006) we have pro-
posed a novel online-learning based approach for
building error recovery policies over a large set
of non-understanding recovery strategies. An em-
pirical evaluation conducted in the context of the
Let’s Go! system showed that the proposed ap-
proach led to a 12.5% increase in the non-
understanding recovery rate; this improvement was
attained in a relatively short (10-day) time period.

The models, tools and strategies developed
throughout this research can and have been easily
reused in other Olympus-based systems.

5.2 Multi-participant conversation

Conversational interfaces are generally built for
one-on-one conversation. This has been a workable
assumption for telephone-based systems, and a
useful one for many single-purpose applications.
However this assumption will soon become
strained as a growing collection of always-

! A policy specifies how the system should choose between
different recovery strategies at runtime.
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available agents (e.g., personal trainers, pedestrian
guides, or calendar systems) and embodied agents
(e.g., appliances and robots) feature spoken lan-
guage interfaces. When there are multiple active
agents that wish to engage in spoken dialog, new
issues arise. On the input side, the agents need to
be able to identify the addressee of any given user
utterance. On the output side, the agents need to
address the problem of channel contention, i.e.,
multiple participants speaking over each other.

Two architectural solutions can be envisioned:
(1) the agents share a single interface that under-
stands multi-agent requirements, or (2) each agent
uses its own interface and handles multi-participant
behavior. Agents that provide different services
have different dialog requirements, and we believe
this makes a centralized interface problematic. Fur-
thermore, the second solution better fits human
communication behavior and therefore is likely to
be more natural and habitable.

TeamTalk is a conversational system that fol-
lows the second approach: each robot has its own
dialog manager. Processed user inputs are sent to
all dialog managers in the system; each dialog
manager decides based on a simple algorithm
(Harris et al., 2004) whether or not the current in-
put is addressed to it. If so, an action is taken. Oth-
erwise the input is ignored; it will be processed and
responded to by another robot. On the output side,
to address the channel contention problem, each
RavenClaw output message is augmented with in-
formation about the identity of the robot that gen-
erated it. The shared synthesis component queues
the messages and plays them back sequentially
with the corresponding voice.

We are currently looking into two additional
challenges related to multi-participant dialog. We
are interested in how to address groups and sub-
groups in addition to individuals of a group, and
we are also interested in how to cope with multiple
humans in addition to multiple agents. Some ex-
periments investigating solutions to both of these
issues have been conducted. Analysis of the results
and refinements of these methods are ongoing.

53 Timing and turn-taking

While a lot of research has focused on higher lev-
els of conversation such as natural language under-
standing and dialog planning, low-level inter-
actional phenomena such as turn-taking have not



received as much attention. As a result, current
systems either constrain the interaction to a rigid
one-speaker-at-a-time style or expose themselves
to interactional problems such as inappropriate
delays, spurious interruptions, or turn over-taking
(Raux et al., 2006). To a large extent, these issues
stem from the fact that in common dialog architec-
tures, including Olympus, the dialog manager
works asynchronously from the real world (i.e.,
utterances and actions that are planned are as-
sumed to be executed instantaneously). This means
that user barge-ins and backchannels are often in-
terpreted in an incorrect context, which leads to
confusion, unexpected user behavior and potential
dialog breakdowns. Additionally, dialog systems’
low-level interactional behavior is generally the
result of ad-hoc rules encoded in different compo-
nents that are not precisely coordinated.

In order to investigate and resolve these is-
sues, we are currently developing version 2 of the
Olympus framework. In addition to all the compo-
nents described in this paper, Olympus 2 features
an Interaction Manager which handles the precise
timing of events perceived from the real world
(e.g., user utterances) and of system actions (e.g.,
prompts). By providing an interface between the
actual conversation and the asynchronous dialog
manager, Olympus 2 allows a more reactive behav-
ior without sacrificing the powerful dialog man-
agement features offered by RavenClaw. Olympus
2 is designed so that current Olympus-based sys-
tems can be upgraded with minimal effort.

This novel architecture, initially deployed in
the Let’s Go system, will enable research on turn-
taking and other low-level conversational phenom-
ena. Investigations within the context of other ex-
isting systems, such as LARRI and TeamTalk, will
uncover novel challenges and research directions.

6 Discussion and conclusion

The primary goal of the Olympus framework is to
enable research that leads to technological and sci-
entific advances in spoken language interfaces.
Olympus is however by no means a singular ef-
fort. Several other toolkits for research and devel-
opment are available to the community. They
differ on a number of dimensions, such as objec-
tives, scientific underpinnings, as well as techno-
logical and implementation aspects. Several
toolkits, both commercial, e.g., TellMe, BeVocal,
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and academic, e.g., Ariadne (2007), SpeechBuilder
(Glass et al., 2004), and the CSLU toolkit (Cole,
1999), are used for rapid development. Some, e.g.,
CSLU and SpeechBuilder, have also been used for
educational purposes. And yet others, such as
Olympus, GALATEEA (Kawamoto et al., 2002)
and DIPPER (Bos et al., 2003) are primarily used
for research. Different toolkits rely on different
theories and dialog representations: finite-state,
slot-filling, plan-based, information state-update.
Each toolkit balances tradeoffs between complex-
ity, ease-of-use, control, robustness, flexibility, etc.

We believe the strengths of the Olympus
framework lie not only in its current components,
but also in its open, transparent, and flexible na-
ture. As we have seen in the previous sections,
these characteristics have allowed us to develop
and deploy practical, real-world systems operating
in a broad spectrum of domains. Through these
systems, Olympus provides an excellent basis for
research on a wide variety of spoken dialog issues.
The modular construction promotes the transfer
and reuse of research contributions across systems.

While desirable, an in-depth understanding of
the differences between all these toolkits remains
an open question. We believe that an open ex-
change of experiences and resources across toolkits
will create a better understanding of the current
state-of-the-art, generate new ideas, and lead to
better systems for everyone. Towards this end, we
are making the Olympus framework, as well as a
number of systems and dialog corpora, freely
available to the community.

Acknowledgements

We would like to thank all those who have brought
contributions to the components underlying the
Olympus dialog system framework. Neither Olym-
pus nor the dialog systems discussed in this paper
would have been possible without their help. We
particularly wish to thank Alan W Black for his
continued support and advice. Work on Olympus
components and systems was supported in part by
DARPA, under contract NBCH-D-03-0010, Boe-
ing, under contract CMU-BA-GTA-1, and the US
National Science Foundation under grant number
0208835. Any opinions, findings, and conclusions
or recommendations expressed in this material are
those of the authors and do not necessarily reflect
the views of the funding agencies.



References

Aist, G., Dowding, J., Hockey, B.A., Rayner, M.,
Hieronymus, J., Bohus, D., Boven, B., Blaylock, N.,
Campana, E., Early, S., Gorrell, G., and Phan, S.,
2003. Talking through procedures: An intelligent
Space Station procedure assistant, in Proc. of EACL-
2003, Budapest, Hungary

Ariadne, 2007, The Ariadne web-site, as of January
2007, http://www.opendialog.org/.

Balakirsky, S., Scrapper, C., Carpin, S., and Lewis, M.
2006. UsarSim: providing a framework for multi-
robot performance evaluation, in Proc. of PerMIS.

Black, A. and Lenzo, K., 2000. Building Voices in the
Festival Speech System, http://festvox.org/bsv/, 2000.

Bohus, D., Grau Puerto, S., Huggins-Daines, D., Keri,
V., Krishna, G., Kumar, K., Raux, A., Tomko, S.,
2007. Conquest — an Open-Source Dialog System for
Conferences, in Proc. of HLT 2007, Rochester, USA.

Bohus, D., Langner, B., Raux, A., Black, A., Eskenazi,
M., Rudnicky, A. 2006. Online Supervised Learning
of Non-understanding Recovery Policies, in Proc. of
SLT-2006, Aruba.

Bohus, D., and Rudnicky, A. 2006. A K-hypotheses +
Other Belief Updating Model, in Proc. of the AAAI
Workshop on Statistical and Empirical Methods in
Spoken Dialogue Systems, 2006.

Bohus, D., and Rudnicky, A., 2005. Sorry I didn’t
Catch That: An Investigation of Non-understanding
Errors and Recovery Strategies, in Proc. of SIGdial-
2005, Lisbon, Portugal.

Bohus, D., and Rudnicky, A., 2003. RavenClaw: Dialog
Management Using Hierarchical Task Decomposi-
tion and an Expectation Agenda, in Proc. of Eu-
rospeech 2003, Geneva, Switzerland.

Bohus, D., and Rudnicky, A., 2002a. LARRI: A Lan-
guage-based Maintenance and Repair Assistant, in
Proc. of IDS-2002, Kloster Irsee, Germany.

Bohus, D., and Rudnicky, A., 2002b. Integrating Multi-
ple Knowledge Sources in the CMU Communicator
Dialog System, Technical Report CMU-CS-02-190.

Bos, J., Klein, E., Lemon, O., and Oka, T., 2003.
DIPPER: Description and Formalisation of an In-
formation-State Update Dialogue System Architec-
ture, in Proc. of SIGdial-2003, Sapporo, Japan

Cepstral, LLC, 2005. Swift™: Small Footprint Text-to-
Speech Synthesizer, http://www.cepstral.com.

Cole, R., 1999. Tools for Research and Education in
Speech Science, in Proc. of the International Confer-
ence of Phonetic Sciences, San Francisco, USA.

39

Glass, J., Weinstein, E., Cyphers, S., Polifroni, J., 2004.
A Framework for Developing Conversational Inter-
faces, in Proc. of CADUI, Funchal, Portugal.

Harris, T. K., Banerjee, S., Rudnicky, A., Sison, J.
Bodine, K., and Black, A. 2004. A Research Platform
for Multi-Agent Dialogue Dynamics, in Proc. of The
IEEE International Workshop on Robotics and Hu-
man Interactive Communications, Kurashiki, Japan.

Harris, T. K., Banerjee, S., Rudnicky, A. 2005. Hetero-
genous Multi-Robot Dialogues for Search Tasks, in
AAAI Spring Symposium: Dialogical Robots, Palo
Alto, California.

Huang, X., Alleva, F., Hon, H.-W., Hwang, M.-Y., Lee,
K.-F. and Rosenfeld, R., 1992. The SPHINX-II
Speech Recognition System: an overview, in Com-
puter Speech and Language, 7(2), pp 137-148, 1992.

Kawamoto, S., Shimodaira, H., Nitta, T., Nishimoto,
T., Nakamura, S., Itou, K., Morishima, S., Yotsukura,
T., Kai, A., Lee, A., Yamashita, Y., Kobayashi, T.,
Tokuda, K., Hirose, K., Minematsu, N., Yamada, A.,
Den, Y., Utsuro, T., and Sagayama, S., 2002. Open-
source software for developing anthropomorphic
spoken dialog agent, in Proc. of PRICAI-02, Interna-
tional Workshop on Lifelike Animated Agents.

Raux, A., Langner, B., Bohus, D., Black, A., and Eske-
nazi, M. 2005, Let's Go Public! Taking a Spoken
Dialog System to the Real World, in Proc. of Inter-
speech 2005, Lisbon, Portugal.

Raux, A., Bohus, D., Langner, B., Black, A., and Eske-
nazi, M. 2006 Doing Research on a Deployed Spoken
Dialogue System: One Year of Let's Go! Experience,
in Proc. of Interspeech 2006, Pittsburgh, USA.

RavenClaw-Olympus web page, as of January 2007:
http://www.ravenclaw-olympus.org/.

Rudnicky, A., Thayer, E., Constantinides, P., Tchou, C.,
Shern, R., Lenzo, K., Xu W, and Oh, A., 1999. Cre-
ating natural dialogs in the Carnegie Mellon Com-
municator system, in Proc. of Eurospeech 1999.

Seneff, S., Hurley, E., Lau, R., Pao, C., Schmid, P., and
Zue V. 1998 Galaxy-1I: A reference architecture for
conversational system development, in Proc. of
ICSLP98, Sydney, Australia.

Stenchikova, S., Mucha, B., Hoffman, S., Stent, A.,
2007. RavenCalendar: A Multimodal Dialog System
for Managing A Personal Calendar, in Proc. of HLT
2007, Rochester, USA.

Ward, W., and Issar, S., 1994. Recent improvements in
the CMU spoken language understanding system, in
Proc. of the ARPA Human Language Technology
Workshop, pages 213-216, Plainsboro, NJ.



Toward Evaluation that Leads to Best Practices:
Reconciling Dialog Evaluation in Research and Industry

Tim Paek

Microsoft Research
One Microsoft Way
Redmond, WA 98052

timpaek@microsoft.com

Abstract

Dialog evaluation is approached in differ-
ent ways by research and industry. While
researchers have sought commensurable
evaluation metrics that allow for compari-
son of disparate systems with varying
tasks and domains, industry engineers
have focused mostly on best practices and
delivering a return-on-investment to cus-
tomers. In this paper, we contend that the
problem of finding commensurable me-
trics also applies to commercial evalua-
tion, and critically survey four candidate
metrics for commensurability. Finally, in
light of the problems faced by the candi-
date metrics, we advocate a collaborative
agenda for dialog evaluation based on us-
ing statistical meta-analysis for empirical-
ly establishing best practices from any
evaluation metric.

1 Introduction

Since the beginning of speech recognition re-
search, which started more than 50 years ago,
people have dreamed of being able to talk to ma-
chines and appliances as if they were human.
What began in academic institutions and industry
laboratories gradually made its way into the mar-
ketplace around the mid 1990s with the commer-
cial introduction of voice user interfaces (VUI)
(Pieraccini & Lubensky, 2005). Most VUI appli-
cations were spoken dialogue systems for automat-
ing customer service tasks. Nowadays, hundreds
of commercial systems are being deployed by
companies each year, adhering to industry-wide
standards and protocols established to ensure the
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interoperability of components and vendors, such
as VoiceXML, CCXML, MRCP, etc. Unfortunate-
ly, as some researchers have pointed out (Pieracci-
ni & Huerta, 2005), dialog systems in industry
have been evolving on a parallel path with those in
academic research, where usability and cost have
been the primary goal of industry, and naturalness
of interaction and freedom of expression have been
the goal of research. Given that commercial sys-
tems are now beginning to embrace less-
constrained interaction models, a call has been
made for a “synergistic convergence” of architec-
tures, abstractions and methods from both com-
munities, lest research results become irrelevant to
industry practice (Pieraccini & Huerta, 2005).

It is under this motivation that we critically sur-
vey the field of dialog evaluation in research and
industry'. Dialog evaluation is a task common to
both communities, but it has been approached in
distinct ways. Research has exerted considerably
effort and attention to devising evaluation metrics
that allow for comparison of disparate systems
with varying tasks and domains. In industry, sys-
tem engineers generally do not gruel over what
metric is best-suited for comparison of disparate
systems. Because companies live and die by prac-
tical evaluation, what matters most is that they im-
prove their customers’ business; hence, beyond
measures that evince return-on-investment (ROI),
there is little focus on dialog evaluation metrics.

This paper endeavors to bridge the gap in under-
standing of dialog evaluation between academic
research and industry. We explore what research
and industry has to learn from each other, and how
working together can advance the goals of both
communities. We do this in three sections. In the
first section, we describe differences in the way

! Though lines are often blurred, by “research” we mean academic institutions
and industry laboratories whose focus is not immediate commercial gain.

Bridging the Gap: Academic and Industrial Research in Dialog Technologies Workshop Proceedings, pages 40-47,
NAACL-HLT, Rochester, NY, April 2007. ©2007 Association for Computational Linguistics



evaluation is pursued by both communities. In
particular, we discuss the academic search for
commensurable metrics that allow for comparison
of disparate systems. In considering evaluation in
industry, we expound on the drive for VUI best
practices. In the second section, we survey four
candidate metrics for commensurability. Irrespec-
tive of whether they achieve that purpose, they are
likely to be of practical interest to system engineers
in industry. Finally, in the last section, we propose
a collaborative agenda for dialog evaluation to ad-
vance the goals of both communities. In particular,
we advocate statistical meta-analysis for empirical-
ly establishing best practices from any dialog eval-
uation metric.

2 Differences in Approach

In research, dialog evaluation is considered a hard
problem. Several workshops and special issues of
journals have already been devoted to this topic.
On the other hand, in industry, dialog evaluation is
considered relatively straightforward. Any dialog
system worth the effort of deployment must ulti-
mately deliver ROI. That ROI may be in terms of
the cost savings accrued from automating what is
typically handled by human operators, such as in
call centers, or in terms of expanding the breadth
and depth of customer service that has typically
been privy to large enterprises. The focus in indus-
try has not been so much on how best to evaluate a
dialog system, but rather on how best to design
them. In short, industry tends to focus more on
best practices than on evaluation.

The difference in thinking cannot be fully attri-
buted to the difference in goals propounded earlier
(Pieraccini & Huerta, 2005); namely, that industry
generally pursues usability and cost-effectiveness,
whereas research pursues unconstrained spoken
interaction under the assumption that usability
would naturally follow. There is also a lack of un-
derstanding about what dialog evaluation in re-
search has to offer industry, and in particular, for
the kind of directed dialogs (which restrict what
users can say but generally improve usability) that
are common in commercial systems. In this sec-
tion, we explore why dialog evaluation is consi-
dered so challenging in the research community,
and demonstrate how many of the same issues that
researchers face are also applicable to VUI engi-
neers as well.

41

2.1 Commensurability Problem

Observing the success that both the speech recog-
nition and spoken language understanding com-
munities have enjoyed in advancing their
technologies by establishing a controlled, objective
and common evaluation framework (Pieraccini &
Lubensky, 2005), dialog researchers have sought a
similar evaluation framework for their work. This
framework could not only be used to gauge tech-
nological progress in the field but also allow for
the assessment of diverse systems of varying tasks
and domains. Unfortunately, the research commu-
nity has yet to agree upon such a framework. To
date, researchers operate under on a variety of dif-
ferent frameworks, and new evaluation metrics are
proposed all the time.

Part of the reason for this has to do with the
complexity of the evaluation task. On the one
hand, dialog systems are ultimately created for us-
ers, so usability factors such as satisfaction or like-
lihood of future use should be primary. On the
other hand, because usability factors are subjective,
they can be erratic and highly dependent on the
complex interplay of user interface attributes
(Kamm et al., 1999). So, designers have turned to
objective metrics such as task completion time or
dialog success rate (e.g., see Gibbon et al., 1998
for review). Due to the interactive nature of con-
versation however, these metrics do not always
correspond to the most effective user experience
(Hartikainen et al., 2004; Lamel et al., 2000). Ob-
jective evaluation of user experience can itself be
highly uncertain or non-existent (Dybkjaer &
Bernsen, 2001). Furthermore, in many cases, it is
just not clear how to apply an objective metric.
Even an ostensibly straightforward metric, such as
task success, can be difficult to ascertain. For ex-
ample, defining the “success” of a session with an
intelligent tutoring system is no easy task, and may
or may not have anything to do with student learn-
ing, depending on what constitutes the basis for
comparison (either a human or a keyboard system).

The choice of evaluation metric depends on the
purpose of the evaluation (Dybkjaer & Bernsen,
2001; Paek, 2001). Some researchers are more
interested in achieving human-human conversa-
tion-like qualities in their systems than others. Be-
cause researchers have different purposes, they
have developed a wide assortment of dialog evalu-
ation metrics. As mentioned earlier, metrics can be



subjective or objective, deriving from question-
naires or log files. They can vary in scale from the
utterance level to the overall dialog (Glass et al.,
2000). They can treat the system as a “black box”
and describe only its external behavior (Eckert at
al., 1998), or as a “glass box” and detail its internal
processing. If one metric fails to suffice, several
metrics can be combined (Walker et al., 1997).
Finally, if all else fails to suffice, then new metrics
can be developed.

Despite the diversity of metrics and purposes,
researchers have wanted to compare their dialog
systems against others. They have sought an eval-
uation metric or framework that could facilitate
comparative judgments. In philosophical terms,
they are seeking a measure of commensurability;
two quantities are commensurable if both can be
measured by the same units. But what units can
allow one dialog system to be compared against
another when they vary along so many different
dimensions, such as components, interface
attributes, domains and tasks? These different as-
pects can also interact with each other in highly
complex ways.

Commensurability is not only a problem for re-
search, but also for industry as well. Suppose that
a commercially deployed system adhering to VUI
best practices allows a customer to achieve a 90%
task completion rate and a savings of $500 million
dollars. Because the system consists of many arc-
hitectural and interface attributes that may interact
with one another, from the exact wording of the
prompts to the dialog management strategies em-
ployed, how can system engineers really know if
they found the optimal configuration? Perhaps
given a new set of dialog strategies, or slightly dif-
ferent prompt wording, task completion could be
significantly improved. The issue of commensura-
bility still applies because ideally engineers would
like to be able to say that the system they built,
with the configuration that they arrived at, is
somehow better than other systems that they, or
even their competitors, could have designed. Of
course, free market economics could be the judge,
and engineers who provide higher ROI might be
able to stake their claim on superiority. However,
the factors that play a role in making a dialog sys-
tem usable and efficacious can be multifaceted,
and may even reach beyond the choices of the de-
signer to the characteristics of the user population,
or user profile, and usage patterns (Frostad, 2003).
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2.2 Best Practices

System engineers in industry have implicitly dealt
with the issue of commensurability by relying on
VUI best practices. Best practices often emerge
through trial-and-error and the test of time, and
essentially serve as de facto industry standards
(Balentine & Morgan, 2001). The need for best
practices evolved from classical software engineer-
ing principles. Because system engineers were
responsible for the complete specification of sys-
tem behavior, they began applying software engi-
neering principles such as requirements gathering,
specification, design and coding, usability testing,
and post-deployment tuning to make sure that their
systems could scale into high-quality, commercial
grade solutions (Pieraccini & Huerta, 2005).
Along the way, engineers encountered problems,
and as they began to notice the same problems ap-
pearing over again, they began to devise best prac-
tices for the design and deployment of VUI
systems. As the industry has matured over the
years, best practices have been collected into books
(e.g., Balentine & Morgan, 2001; Cohen et al.,
2005), and many platform providers offer semi-
nars, training, and online resources for learning
best practices (e.g., Frostad, 2003).

It is important to note that best practices are not
the sole propriety of industry alone. Academic
researchers, who have been building a multitude of
systems under various government sponsored
projects, such as DISC and DISC-2, have also de-
veloped their own best practices (e.g., Lamel et al.,
2000; Dybkjaer & Bernsen, 2001).

Best practices often come in the form of practic-
al dos and don’ts. For example, for telephony-
based systems, almost all published literature in
industry and research recommends that prompts be
kept short and simple. Sometimes these practices,
such as this one for prompts, are validated either
directly or indirectly by experimental design. Var-
ious academic institutions have also pursued VUI
design experiments, and published their findings,
which often get cited in industry. For example,
both the Dialogue Engineering Project’ at CCRI,
University of Edinburgh and the Stanford CHIMe
Lab’ are well-known to industry (e.g., Nass &
Brave, 2005).

2 http://www.ccir.ed.ac.uk/doc/ccir_dialogues.htm

http://chime.stanford.edu/
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The problem with best practices is that they are
often not substantiated by rigorous experimental
design, which is why the previously mentioned
academic institutions have sought to conduct their
research. In the worst case, best practices are
based on the accumulated experience and intuition
of system engineers and consultants, which unfor-
tunately is prone to error and cannot be generalized
beyond their limited experience. This can result in
ostensibly contradictory recommendations. For
example, whereas one best practice may advocate
personifying the dialog system using the first per-
son singular, another may advocate adhering as
close as possible to a non-personified, touch-tone
model. In this particular case, the contradiction
stems from limited knowledge of the technologies
available at the time; the first was made with
HMIHY technology (reference) for mixed-
initiative interaction in mind, whereas the other
was not.

Even when best practices are based on experi-
mental studies, they cannot be automatically gene-
ralized beyond the conditions and assumptions of
the experimental design. Controlled experimental
design dictates that in order to find a significant
effect of a treatment, such as prompt wording or
gender of voice, other factors should be held con-
stant, such as the dialog flow of the system. When
those other factors change, the effect of the treat-
ment may change as well. Hence, results cannot
be automatically generalized as best practices
beyond their experimental settings. Furthermore,
as many of the studies themselves point out, they
are limited to the characteristics of their subject
population. In fact, a common industry best prac-
tice is to conduct pilot usability studies on the do-
main task to better understand the needs and usage
patterns of the expected user population (Balentine
& Morgan, 2001).

The point here is not to discourage the use of
best practices, but to highlight the need for rigor-
ous validation of them. Incommensurability poses
a problem for best practices because when dispa-
rate systems cannot be evaluated according to a
common framework, it is hard to generalize system
features or attributes into best practices. Ideally,
dialog evaluation should foster the development of
best practices.

3 Survey of Commensurable Metrics
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Figure 1. A graphical display of the gap between user
expectations and perceptions for the SERVQUAL me-
thod.

In the research literature, several dialog evaluation
metrics have been proposed which in some fashion
or another could allow for the comparison of dispa-
rate systems. In this section, we critically survey
four such metrics. Although other metrics might
qualify as well, these metrics were chosen because
they are likely to be of practical interest to system
engineers in industry, regardless of whether they
facilitate commensurability.

3.1 SERVQUAL

SERVQUAL is a SERVice QUALity evaluation
method developed by marketing academics and
applied to spoken dialogue systems by Hartikainen
et al. (2004). SERVQUAL consists of a question-
naire and methods of data analysis. The question-
naire* provides a subjective measure of the gap
between expectations and perceptions in five ser-
vice quality dimensions: tangibles, reliability, res-
ponsiveness, assurance and empathy. Once
questionnaire data is collected, two measures, a
Measure of Service Superiority (MSS = Perceived
level — Desired Level) and a Measure of Service
Adequacy (MSA = Perceived Level — Acceptable
Level), can be easily computed. Figure 1 shows
how these two measures can then be used to dis-
play a “zone of tolerance” for users (Hartikainen et
al., 2004). Graphical plots showing the relation-
ship between performance and importance are also
commonly used.

The SERQUAL method could be considered a
commensurable metric because it evaluates the
usability of dialog systems with respect to a com-
mon unit of measurement; namely, the gap be-
tween user expectations and perceptions. Even if
disparate systems engender different expectations
in users, perhaps because of dissimilar tasks and
domains, they can still be compared against each
with respect to how far off the reality of their per-
ceived performance is from user expectation.

* Accessible online at http://www.cs.uta.fi/hci/spi/SERQUAL/.
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Figure 2. Comparison of task completion rate between
two systems and a WOZ gold standard.

The primary problem with SERQUAL is that
user perceptions and expectations can be unstable
and easily susceptible to manipulation. For exam-
ple, in conducting numerous experiments on user
perception of speech interfaces, Nass and Brave
(2005) note: “Reminding people that they depend
on the interface for their success automatically
makes the computer seem more intelligent... labe-
ling a part of an interface as a specialist, conform-
ing to gender stereotypes, flattering the user, or
matching the user's personality also increases per-
ceived competence. Indeed, people are so suscept-
ible to manipulation that perceived intelligence is a
very weak predictor of actual intelligence” (p.152).
Without fully understanding the subtle factors that
can easily influence user perception, it is possible
to attribute service quality superiority to the wrong
factor. A final concern is that focusing on user
perceptions in evaluation may detract some from
working out more serious technical flaws.

Despite the problems with SERQUAL, it has a
strong tradition in marketing and may appeal to
those in industry who need to pitch the value of
their systems from a customer service standpoint.
Researchers and engineers alike can also benefit
from using SERVQUAL because it draws attention
to how user perceptions can thwart even well-
designed systems.

3.2 WOZ Gold Standard

Whereas SERQUAL measures the gap between
user expectations and perceptions, Paek (2001)
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advocates using human performance in Wizard-of-
0z (WOZ) experiments as a gold standard for ben-
chmarking systems. The idea is that once an eval-
uation metric (e.g., task completion) is selected, a
WOZ experiment can be conducted that compares
different treatments of interest (e.g., dialog repair
strategies) along varying levels of word-error rate.
The human wizards in these experiments never
hear users directly, but instead receive output me-
diated by the recognizer and/or spoken language
understanding unit. Although other researchers
have recommended similar WOZ setups (Stuttle et
al., 2004), the focus here is on quantifying the dif-
ference in performance between the system and a
human gold standard, and using that as a commen-
surable metric. For example, Figure 2 displays the
task completion rates of two dialog systems as well
as a human wizard. The performance of each sys-
tem is measured as the difference in density be-
tween that system and the WOZ. Notice that
depending on the interval of interest in word-error
rate, system A can be better than B and vice versa.
The difference in density between the WOZ per-
formance and the absolute upper-bound represents
the difficulty of the domain task for human wi-
zards, or the “benchmark complexity” (Paek,
2001).

Using human wizards as a gold standard allows
for the comparison of disparate systems. If the
difference between the performance of any system
and a human wizard is small, then that might sug-
gest that the system is performing very well for
that domain task, regardless of what that domain
task is itself. However, if the benchmark complex-
ity is also small, that would suggest that the system
may be performing well because the task is easy.

The major problem with using human wizards as
a gold standard is the effort required to conduct
WOZ experiments. It is not only time-consuming
and costly, but technically challenging to insert a
wizard into the right place in the processing of ut-
terances and to make sure that they can effectively
do their job. Once a wizard is in place, it can also
be difficult to obtain data points along a wide
range of word-error rates.

Despite these problems, having a human gold
standard naturally lends itself to optimization,
which is always of interest to industry. System
engineers can identify which components are con-
tributing the most to a performance metric by ex-
amining the density differences with and without



particular components. Furthermore, if customers
are willing to identify how much they might be
willing to pay to achieve various levels of perfor-
mance — i.e., if their utility functions are elicited,
then it is possible to calculate average marginal
costs by weighting density differences by their cor-
responding utilities (Paek, 2001).

3.3 SASSI

Noting the lack of psychometric validation of sub-
jective usability measures often used in evaluations
of spoken dialog systems, Hone & Graham (2000)
propose a questionnaire measure for the Subjective
Assessment of Speech System Interfaces (SASSI).
They identify four weaknesses of subjective evalu-
ation measures (e.g., questionnaire items), which
are worth repeating here. First, the content and
structure of these measures are for the most part
arbitrary and based on intuition. Second, measures
are not validated against other subjective or objec-
tive measures. This renders their construct validity
suspect; that is, it difficult to tell if they really
measure what they are intended to measure. Third,
these measures do not report their reliability, both
in terms of their test-retest stability across time, as
well as the internal consistency of a group of
measures for a particular construct. Finally, meas-
ures are commonly summed or averaged to obtain
an overall score when such an approach can only
be justified on the basis of evidence that all of the
measures really do assess the same construct
(Hone & Graham, 2000).

In order to build a psychometrically valid, relia-
ble and sensitive questionnaire, SASSI was devel-
oped by first taking questionnaire items from
established measures in the research literature, and
then having users respond to those items with re-
spect to four different speech applications. After
collecting the data, exploratory factor analysis was
conducted to find a set of theoretical constructs, or
“factors”. These factors are represented by a set of
questionnaire items which tend to be highly corre-
lated with each other. Six main factors in users’
perceptions of speech applications were identified:

e System Response Accuracy: User’s percep-
tions of the system as accurate and doing what
they expect.

e Likeability: User’s rating of the system as use-
ful, pleasant and friendly.
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e Cognitive Demand: The perceived amount of
effort needed to interact with the system and
feelings arising from this effort.

e Annoyance: User’s rating of the system as re-
petitive, boring, irritating and frustrating.

e Habitability: The extent to which users knew
what to do and what the system was doing.

e Speed: How quickly the system responded to
user inputs.

It is important to note that this factor analysis was
preliminary and did not benefit from multiple itera-
tions. Hence, only the first three factors had inter-
nal consistency reliabilities, as measured by
Cronbach’s alpha, of o >0.80, which is typically
required for widespread adoption.

Although the development of SASSI is definite-
ly a promising start for creating valid and reliable
subjective measures, it does not say much about
how system features, such as prompt wording, in-
fluence the six factors identified. In other words,
SASSI only tells system engineers what to measure
(which is an important contribution), not how to
design their systems. For that, statistical analyses
relating system features to SASSI measures are
needed. Nevertheless, the SASSI methodology
represents a valuable, principled way of determin-
ing common units of measurement for comparing
disparate systems. We return to this issue again in
Section 4.

34 PARADISE

Perhaps the best-known general framework in re-
search for dialog evaluation is PARADISE (PA-
RAdigm for Dialogue System Evaluation) (Walker
et al., 1997). PARADISE addresses three goals: 1)
to support the comparison of multiple systems on
the same domain task, 2) to provide a method for
developing predictive models of user satisfaction
as a function of system features, and 3) to provide
a technique for making generalizations across sys-
tems about which features impact usability (Walk-
er et al., 2000). Treating user satisfaction as the
primary objective function, PARADISE derives a
combined performance metric as a weighted linear
combination of task-success measures and dialog
costs, the latter consisting of two types: dialog ef-
ficiency metrics (e.g., elapsed time), and dialog
quality metrics (e.g., mean recognition score). De-



riving the metric simply involves model-building
using multivariate linear regression.

Although PARADISE is geared towards com-
paring systems that perform the same domain task,
it does provide a general framework for at least
comparing those systems. The problem is that
while PARADISE is a useful descriptive tool, its
power to generalize has been somewhat limited. In
pursuing the third goal of generalization — to figure
out what system features really matters to users,
PARADISE was applied to experimental data from
three different dialog systems (Walker et al, 2000).
Models trained on one system were then tested on
the other two systems. Results showed that the
models do indeed generalize well across the three
systems. However, the three features that consis-
tently appeared among the top predictive factors
were mean recognition score, whether users re-
ported that they had completed the task, and the
percentage of recognition rejections. Unfortunate-
ly, this is not the kind of insight that leads to best
practices, and most system engineers probably al-
ready knew that improving speech recognition and
task completion (either in absolute terms or by user
perception) would improve user satisfaction.

What is likely to be of practical interest to sys-
tem engineers in industry about PARADISE is the
usefulness of performing multivariate linear re-
gression to predict measures of interest based on
not only task success but measures of dialog effi-
ciency and dialog quality. Because most of the
PARADISE features can be automatically generat-
ed from data, apart from having users fill out a sa-
tisfaction surveys, it is of almost no cost to perform
a PARADISE analysis.

4 Evaluation That Leads to Best Practices

In the previous section, we critically surveyed four
dialog evaluation metrics that could be considered
candidates for commensurability. In light of the
problems faced by these metrics, in this Section,
we propose a collaborative agenda for dialog eval-
uation that fulfills the need in industry for best
practices and the research pursuit of generaliza-
tions. Before considering the proposal, however,
we reassess the value of commensurability.

4.1 Reassessing Commensurability

Although commensurability seems to be worth-
while, in looking closely at the desire to compare
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disparate systems of varying domains and tasks, it
is important to separate the question of, “How is
the dialog system doing relative to other systems?”
from “How can the dialog system do better?”
Answering the former question is truly a challeng-
ing task, and metrics like SERVQUAL and the
WOZ gold standard offer interesting solutions.
However, there is little to gain from answering this
question other than bragging rights. The latter
question of how to improve a dialog system is ul-
timately more beneficial to research, and does not
necessarily require finding a commensurable me-
tric.

In Section 2.1, we argued that commensurability
was a problem for industry because system engi-
neers would like to be able to say that the system
they built is somehow better than other systems
that they, or even their competitors, could have
designed. However, system engineers can still say
this without having to answer the question of how
their system is doing relative to others. If they
have established best practices for improving any
dimension of their system, they can be assured that
they have sought the optimal design.

The claim here is that the research community
can benefit from focusing less on the question of
relative performance and more on the question of
how to improve dialog systems. Instead of trying
to find commensurable metrics, we propose that
the field should seek empirical and experimental
evidence of factors that can improve any dialog
metric, such as SASSI, regardless of domain or
task. By doing so, the research community has
more chance to influence industry best practices.

4.2 Proposal

In order to answer the question of how best to im-
prove dialog systems, we propose pooling data
from both research and industry to conduct meta-
analyses. Meta-analysis, which is widely used in
biomedicine and behavioral sciences, is the statis-
tical analysis of a large collection of results from
individual studies for the purpose of integrating the
findings (Glass et al., 1981). By synthesizing re-
sults of related studies, the combined weight of
evidence can be applied.

Meta-analysis for improving dialog systems in-
volves three tasks: attribute identification, data
coding, and statistical analysis. Attribute identifi-
cation entails identifying all attributes of dialog



systems that may have any effect on an evaluation
metric of interest. For example, minute details
such as the gender of the voice output, average and
median word length of prompts, average latency to
respond, etc. may influence metrics like task com-
pletion time. Once attributes have been identified,
data pooled from research and industry can be
coded by them, and once the data has been coded,
it will not only be possible to conduct the kind of
psychometric validation and reliability testing of
metrics that distinguished SASSI, but also deter-
mine through correlation, regression and hypothe-
sis-testing what system attributes influence any
particular metric of interest, regardless of domain
or task. For example, suppose SASSI scores are
collected for a system. For each user interaction, a
data entry would consist of the SASSI score, any
other evaluation metrics of interest (e.g., task com-
pletion time), attributes of the system (e.g., gender
of voice) and system interaction (e.g., number of
confirmations used), and perhaps even attributes of
the user (e.g., age group). Now imagine that every
dialog system deployed provides this kind of data.
With this data, it would be possible to learn, for
instance, that prompts that flatter the user are con-
sistently correlated with high SASSI likeability
scores across all commercial and research systems.
This provides a basis for empirically establishing
best practices.

In order for this proposal to work, a large
amount of data is required. Because the number of
dialog systems built in research pales in compari-
son to the hundreds of systems that are commer-
cially deployed in industry each year, researchers
must work with system engineers to utilize the
same metrics (e.g., the same questionnaires) and to
code and pool data. While this task may seem
Herculean, the result is of equal benefit to both
research and industry: best practices for improving
dialog systems that are empirically established.

5 Conclusion & Future Work

In this paper, we have examined the different ways
in dialog evaluation is approached in research and
industry. We critically surveyed four dialog evalu-
ation metrics that could be considered candidates
for commensurability. In light of problems faced
by these metrics, and in reassessing the value of
commensurability, we proposed a collaborative
agenda for dialog evaluation based on using statis-
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tical meta-analysis for empirically establishing best
practices from any evaluation metric. A meta-
analysis is forthcoming as future work.
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Abstract

The recent advances in speech recognition
technologies, and the experience acquired
in the development of WEB or Interac-
tive Voice Response interfaces, have facil-
itated the integration of speech modules
in robust Spoken Dialog Systems (SDS),
leading to the deployment on a large scale
of speech-enabled services. With these
services it is possible to obtain very large
corpora of human-machine interactions by
collecting system logs. This new kinds of
systems and dialogue corpora offer new
opportunities for academic research while
raising two issues: How can academic re-
search take profit of the system logs of
deployed SDS in order to build thaext
generation of SDS, although the dialogues
collected have a dialogue flow constrained
by the previous SDS generation? On the
other side, what immediate benefits can
academic research offer for the improve-
ment of deployed system? This paper ad-
dresses these aspects in the framework of
the deployed France Telecom 3000 Voice
Agency service.
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1 Introduction

Since the deployment on a very large scale of the
AT&T How May | Help You? (HMIHY) (Gorin et

al., 1997) service in 2000, Spoken Dialogue Sys-
tems (SDS) handling a very large number of calls are
now developed from an industrial point of view. Al-
though a lot of the remaining problems (robustness,
coverage, etc.) are still spoken language process-
ing research problems, the conception and the de-
ployment of such state-of-the-art systems mainly re-
quires knowledge in user interfaces.

The recent advances in speech recognition tech-
nologies, and the experience acquired in the devel-
opment of WEB or Interactive Voice Response inter-
faces have facilitated the integration of speech mod-
ules in robust SDS.

These new SDS can be deployed on a very large
scale, like the France Telecom 3000 Voice Agency
service considered in this study. With these services
it is possible to obtain very large corpora of human-
machine interactions by collecting system logs. The
main differences between these corpora and those
collected in the framework of evaluation programs
like the DARPA ATIS (Hemphill et al., 1990) or the
French Technolangue MEDIA (Bonneau-Maynard
et al., 2005) programs can be expressed through the
following dimensions:

e Size. There are virtually no limits in the
amount of speakers available or the time

needed for collecting the dialogues as thou-
sands of dialogues are automatically processed
every day and the system logs are stored.
Therefore Dialog processing becomes similar

Programme of the European Union (EU), Project LUNA,
IST contract no 33549. The authors would like to thank
the EU for the financial support. For more information
about the LUNA project, please visit the project home-page,
www. i st -1 una. eu.

48

Bridging the Gap: Academic and Industrial Research in Dialog Technologies Workshop Proceedings, pages 4855,
NAACL-HLT, Rochester, NY, April 2007. ©2007 Association for Computational Linguistics



to Broadcast News processing: the limit is nothe understanding performance without modifying
in the amount of data available, but rather in théhe system. Section 4 shows how the FT 3000 cor-
amount of data that can be manually annotategus can be used in order to build stochastic models
that are the basis of a new Spoken Language Un-
» Speakers. Data are froreal users. The speak- ygrstanding strategy, even if the current SLU system
ers are not professional ones or have no rewagke in the FT 3000 service is not stochastic. Sec-
for calling the system. Therefore their behavyjon, 5 presents experimental results obtained on this

iors are not biased by the acquisition protocols,qryys justifying the need of a tighter integration be-
Spontaneous speech and speech affects canfigen the ASR and the SLU models.
observed.

2 Description of the France Telecom 3000

Complexity. The complexity of the services g
y P y plexity \Voice Agency corpus

widely deployed is necessarily limited in order

to guarantee robustness with a high automatiofhe France Telecom 300673000) Voice Agency

rate. Therefore the dialogues collected are Ofepyice, the first deployed vocal service at France
ten short dialogues. Telecom exploiting natural language technologies,
nas been made available to the general public in Oc-

e Semantic model. The semantic model of suc b . bl
deployed system is task-oriented. The interiob€r 2005. FT3000 service enables customers to

pretation of an utterance mostly consists in thcgbtaln information and purchase almost 30 differ-

detection of application-specific entities. In arent services and access the management of their ser-

application like the France Telecom 3000 Voice'I¢eS: The continuous speech recognition system re-

Agency service this detection is performed b)}ies on a bigram language model. The interpretation
hand-crafted specific knowledge is achieved through theerbateam two-steps seman-

tic analyzer. Verbateam includes a set of rules to
The AT&T HMIHY corpus was the first large dia- convert the sequence of words hypothesized by the
logue corpus, obtained from a deployed system, thapeech recognition engine into a sequence of con-
has the above mentioned characteristics. A servieepts and an inference process that outputs an inter-
like the France Telecom 3000 Voice Agency servic@retation label from a sequence of concepts.
has been developed by a user interface development
lab. This new kind of systems and dialogue corporg-1 ~Specificities of interactions
offer new opportunities for academic research thatjven the main functionalities of the application,
can be summarized as follows: two types of dialogues can be distinguished. Some
i i users call FT 3000 to activate some services they
* How can academic research t_ake profit of t_h?lave already purchased. For such demands, users
system logs of _deployed SDS in order to bwldare rerouted toward specific vocal services that are
the next generation of SDS, a_llthough the di- dedicated to those particular tasks. In that case, the
alogues coIIected_ have a d'a'og%*e flow CONET3000 service can be seen as a unique automatic
strained by therevious SDS generation? frontal desk that efficiently redirects users. For such

e On the other side, what immediate benefits caflialogues the collected corpora only contain the in-

academic research offer for the improvementteraCtion prior to rerouting. It can be observed in that
of deployed system, while waiting for thext ~ CaS€ that users are rather familiar to the system and

SDSgeneration? are most of the time regular users. Hence, they are
more likely to use short utterances, sometimes just
This paper addresses these aspects in the frank@ywords and the interaction is fast (between one or
work of the deployed FT 3000 Voice Agency seriwo dialogue turns in order to be redirected to the
vice. Section 3 presents how the ASR process calemanded specific service).
be modified in order to detect and reject Out-Of- Such dialogues will be referred dsansit dia-
Domain utterances, leading to an improvement ifogues and represent 80% of the calls to €000
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service. As for the 20% other dialogues, referred tmiliar to the system and they know how to be effi-
asother, the whole interaction is proceeded withincient and how to reach their goal. As shown in ta-
the FT3000 application. They concern users that aréle 2, 14.3% of thesther dialogues contain at least
more generally asking for information about a giverone OOD comment, representing an overall 10.6%
service or users that are willing to purchase a newaf utterances in these dialogues.

service. For these dialogues, the average utterance
length is higher, as well as the average number of

dial i other | transit
lalogue turns. # dialogues 350 | 467
other | transit # utterances 1288 | 717
# dialogues 350 467 # OOD comments 137 24
# utterances 1288 | 717 OOD rate (%) 106 | 33
#words 4141 | 1454 dialogues with OOD (%) 143 | 3.6
av. dialogue ITngthl g; ;g Table 2: Occurrence of Out-Of-Domain comments
av. utterance length 3. : on thetransit andother dialogues
OOV rate (%) 36 | 19

disfluency rate (%)| 2.8 2.1

Some utterances are just comments and some con-
tain both useful information and comments. In the
next section, we propose to detect these OOD se-
Eﬁlences and to take this phenomenon into account
in the global SLU strategy.

Table 1: Statistics on theansit andother dialogues

As can be observed in table 1 the fact that use
are less familiar with the application in tboéher dia-
logues implies higher OOV rate and disfluency tate
An important issue when designing ASR and SLU

models for such applications that are dedicated {9 Handling Out-Of-Domain utterances
the general public is to be able to handle both naive

users and familiar users. Models have to be robus _

enough for new users to accept the service and i e general purpose of the proposed strategy is to
the meantime they have to be efficient enough fd etect OOD utterances in a first step, before entering
e Spoken Language Understanding (SLU) mod-

familiar users to keep on using it. This is the reaso . Indeed dard L Models (LM

why experimental results will be detailed on the twdjl_e'd n g%Dstan ar angula_fel odels (LMs) ap-

corpora described in this section. plied to utteranc§§ are likely to generate erro-
neous speech recognition outputs and more gener-

2.2 User behavior and OOD utterances ally highly noisy word lattices from which it might
When dealing with real users corpora, one has 30t Pe relevant and probably harmful to apply SLU

take into account the occurrence of Out-Of-Domaifedules.

(OOD) utterances. Users that are familiar with a ser- Furthermore, when designing a general interac-
vice are likely to be efficient and to strictly answertion model which aims at predicting dialogue states
the system’s prompts. New users can have more dis proposed in this paper, OOD utterances are as
verse reactions and typically make more commentsarmful for state prediction as can be an out-of-
about the system. By comments we refer to suchocabulary word for the prediction of the next word
cases when a user can either be surprigeat am  with an n-gram LM.

| supposed to say now?, irritated I've already said This is why we propose a new composite LM that
that or even msultlng the s;_/stem. A critical aSpeqntegrates two sub-LMs: one LM for transcribing in-
for other dialogues is the higher rate of comment$y,main phrases, and one LM for detecting and delet-

uttered by users. For tieansit dialogues this phe- i,y 50D phrases. Finally the different SLU strate-
nomenon is much less frequent because users areéqae-s proposed in this paper are applied only to the

ny disfluency we consider here false starts and filled pausggortions of signal labeled as in-domain utterances.
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3.1 Composite Language Model for decoding 3.3 Experimental setup and evaluation

spontaneous speech The models presented are trained on a corpus col-

As a starting point, the comments have been manigcted thanks to thET3000 service. It contains real
ally annotated in the training data in order to easilglialogues from the deployed service. The results
separate OOD comment segments from in-domappresented are obtained on the test corpus described
ones. A specific bigram language model is traineth section 2.
for these comment segments. The comment LM was The results were evaluated according to 3 crite-
designed from a 765 words lexicon and trained oria: the Word Error Rate (WER), the Concept Error
1712 comment sequences. Rate (CER) and the Interpretation Error Rate (IER).
This comment LM, called.M/°°P has been in- The CER is related to the correct translation of an
tegrated in the general bigrafiM/¢. Comment utterance into a string of basic concepts. The IER is
sequences have been parsed in the training corpigated to the global interpretation of an utterance
and replaced by aOOD_ tag. This tag is added to in the context of the dialogue service considered.
the general LM vocabulary and bigram probabilitied herefore this last measure is the most significant
P(_O0D_|w) and P(w|-OOD_) are trained along one as it is directly linked to the performance of the
with other bigram probabilities (following the prin- dialogue system.
ciple ofa priori word classes). During the decoding

process, the general bigram LM probabilities and the IER all_| other | transit
LMOOP bigram probabilities are combined. Siz€ 2005| 717 | 1288

LMC 16.5| 22.3 13.0
3.2 Decision strategy LMG*OOD [ 150 | 18.6 | 12.8

Given this composite LM, a decision strategy is apTaple 3: Interpretation error rate according to the
plied to select those utterances for which the worglgnguage Model

lattice will be processed by the SLU component.

This decision is made upon the one-best speech

recognition hvootheses and can be described as fo _Table 3 presents the IER results obtained with the
| owsg yp s%rategystratl with 2 different LMs for obtaining

W: LM® which is the general word bigram model;
1. If the one-best ASR output is a singleop_ ~ and LM®* ®® which is the LM with the OOD com-
ment model. As one can see, a very significant im-
provement, 3.7% absolute, is achieved ondtier
2. Else, if the one-best ASR output contains aflialogues, which are the ones containing most of
_OO0D._ tag along with other words, those wordsthe comments. For thieansit dialogues a small im-
are processed directly by the SLU componengrovement (0.2%) is also obtained.
following the argument that the word lattice for
this utterance is likely to contain noisy infor-

mation. 4.1 The FT3000 SLU module

tag, the utterance is simply rejected.

4 Building stochastic SLU strategies

The SLU component of thET3000 service consid-

3. Else (i.e. naOOD._ tag in the one-best ASR ered in this study contains two stages:

output), the word-lattice is transmitted to fur-
ther SLU components. 1. the first one translates a string of words =
wi,...,w, iNto a string of elementary con-
ceptsC = ¢y, . .., ¢; by means of hand-written
regular grammars;

It will be shown in the experimental section that
this pre-filtering step, in order to decide whether a
word lattice is worth being processed by the higher-
level SLU components, is an efficient way of pre- 2. the second stage is made of a set of about 1600
venting concepts and interpretation hypothesis to be  inference rules that take as input a string of con-
decoded from an uninformative utterance. ceptsC and output a global interpretationof
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a message. These rules are ordered and ttieough a sequence of state:(G;), S2(Gi), - - -
first match obtained by processing the concept Let 1“}g be the content of the STM used for as-
string is kept as the output interpretation. serting the predicates grounded at khl turn of a
dialogue. These predicates are part of the premise
These message interpretations are expressed byfgPasserting thé-th goal.
attribute/value pair representing a function inthe vo- | et 3, be an instance of tHeth goal asserted after
cal service. grounding all the predicates in the premise.
The models used in these two Stages are manuallypi can be represented by a Composition from a
defined by the service designers and are not stochgsgrtial hypothesi§™; _, available at turrk — 1, the

tic. We are going now to present how we can use gachine action:,_; performed at tur — 1 and
corpus obtained with such models in order to defingye semantic interpretatior, i.e.:

an SLU strategy based on stochastic processes.
T} = X (Ve -1, Th1)
The actuaFT3000 system includes semantic knowI-Sk(qi) 'S an mforrr;gnon state that can lead to a
user’s goali; andI', is part of the premise for as-

edge represented by hand-written rules. These rUIggrtingGi at turnk.

can also be expressed in a logic form. For this rea- . . .
. : . State probability can be written as follows:

son, some basic concepts are now described with the

purpose of_shovylng how Io'g'lc.knowledge has begn P (SK(G)[Y3) = P (G,|T%) P (T4|V) (1)

integrated in a first probabilistic model and how it '

can be used in a future version in which optimal poliwhere P (G;|T'},) is the probability that?; is the

cies can be applied. type of goal that corresponds to the user interac-

The semantic knowledge of an application is dion given the grounding predicatesliiy. Yy is the
knowledge base (KB) containing a set of logic for- acoustic features of the user’s utterance at turn
mulas. Formulas return truth and are constructed Probabilities of states can be used to define a be-
using constants which represent objects and may Hef of the dialogue system.
typed variables, functionswhich are mappings from A first model allowing multiple dialog state se-
tuples of objects to objects anutedicates which ~guence hypothesis is proposed in (Damnati et al.,
represent relations among objects. iAterpretation  2007). In this model each dialog state correspond
specifies which objects, functions and relations it @ system state in the dialog automaton. In order
the domain are represented by which Symb0|_ Baslte deal with flexible dialog strategies and following
inference problemis to determine whethek B |= F© previous work (Williams and Young, 2007), a new
which means that KB entails a formula model based on a Partially Observable Markov De-

In SLU, interpretations are carried on by binding€ision Process (POMDP) is currently studied.
variables and instantiating objects based on ASR re- If no dialog history is taken into account,
sults and inferences performed in the KB. HypotheP (I';|Y) comes down toP (v;|Y'), ~ being a
ses about functions and instantiated objects are wrfiemantic attribute/value pair produced by the Ver-
ten into a Short Term Memory (STM). bateam interpretation rules.

A user goal is represented by a conjunction of The integration of this semantic decoding process
predicates. As dialogue progresses, some preémthe ASR process is presented in the next section.
cates are grounded by the detection of pre_dlcgte ta?, Optimizing the ASR and SLU processes
property tags and values. Such a detection is made
by the interpretation component. Other predicated/ith the stochastic models proposed in section 4,
are grounded as a result of inference. A user goal different strategies can be built and optimized. We
is asserted when all the atoms of its conjunction arare interested here in the integration of the ASR and
grounded and asserted true. SLU processes. As already shown by previous stud-

Grouping the predicates whose conjunction is thies (Wang et al., 2005), the traditional sequential ap-
premise for asserting a go@l is a process that goes proach that first looks for the best sequence of words

4.2 Semantic knowledge representation
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W before looking for the best interpretatigrof an The SLU process is therefore made of the com-
utterance is sub-optimal. Performing SLU on a worgbosition of the ASR word lattice, two transducers
lattice output by the ASR module is an efficient way(word-to-concepts and concept-to-interpretations)
of integrating the search for the best sequence ahd an FSM representing a Language Model on the
words and the best interpretation. However there ammncepts. The concept LM is trained on tHE3000
real-time issues in processing word lattices in SDSorpus.

and therefore they are mainly used in research sys-_l_his strategy push forward the approach devel-

tems rath_er than deployed_systems. ._gpped at AT&T in theHow May | Help You? (Gorin
In section 3 a strategy is proposed for selectlngt al., 1997) project by using richer semantic mod-

the utterances for which a word lattice is going to be -
els than call-types and named-entities models. More

roduced. We are going now to evaluate the gainin~ " . .
P going g recisely, the 1600 Verbateam interpretation rules

erformance that can be obtained thanks to an int8 o . i
P used in this study constitute a rich knowledge base.
grated approach on these selected utterances.

By integrating them into the search, thanks to the
5.1 Segquentialvs. integrated strategies FSM paradigm, we can jointly optimize the search
g?r the best sequence of words, basic concepts, and

Two strategies are going to be evaluated. The fir e s
full semantic interpretations.

one (st[atl) is fully sequential: the best sequence o
word W is first obtained with For the strateggtrat1 only the best path is kept in
the FSM corresponding to the word lattice, simulat-
ing a sequential approach. Fsrat2 the best inter-
pretatiory is obtained on the whole concept lattice.

W = argmaxP(W|Y)
%

Then the best sequence of conceftss obtained

with
C' = argmaxP(C|W) error | WER [ CER[ IER
¢ stratl | 40.1 | 24.4 | 15.0
Finally the interpretation rules are applied dbin strat2 | 38.2 | 22.5| 14.5

order to obtain the best interpretation

The second strateggt(at?) is fully integrated:4
is obtained by searching at the same timelféand
C and5. In this case we have:

Table 4: Word Error Rate (WER), Concept Error
Rate (CER) and Interpretation Error Rate (IER) ac-
cording to the SLU strategy

¥ = argmaxP(v|C) P(C|W)P(W[Y)
W,Cyy . L
The comparison among the two strategies is given
The stochastic models proposed are implementaédtable 4. As we can see a small improvement is ob-
with a Finite State Machine (FSM) paradigm thanksained for the interpretation error rate (IER) with the
to the AT&T FSM toolkit (Mohri et al., 2002). integrated strategysifat2). This gain is small; how-
Following the approach described in (Raymonetver it is interesting to look at the Oracle IER that
et al., 2006), the SLU first stage is implemented bgan be obtained on an n-best list of interpretations
means of a word-to-concept transducer that tranproduced by each strategy (the Oracle IER being the
lates a word lattice into a concept lattice. This conlowest IER that can be obtained on an n-best list of
cept lattice is rescored with a Language Model ohypotheses with a perfect Oracle decision process).
the concepts (also encoded as FSMs with the AT&This comparison is given in Figure 1. As one can
GRM toolkit (Allauzen et al., 2003)). see a much lower Oracle IER can be achieved with
The rule database of the SLU second stage is edrat2. For example, with an n-best list of 5 interpre-
coded as a transducer that takes as input concepasions, the lowest IER is 7.4 fatratl and only 4.8
and output semantic interpretatiofis By applying for strat2. This is very interesting for dialogue sys-
this transducer to an FSM representing a concept laems as the Dialog Manager can use dialogue con-
tice, we directly obtain a lattice of interpretations. text information in order to filter such n-best lists.
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10 ' ' J T . T T T T
] sequential search (stratl)—+—
integrated search (strat2)-—-—

Oracle IER
\l

1 2 3 4 5 6 7 8 9 10
size of the n-best list of interpretations

Figure 1: Oracle IER according to an n-best list of interpretations fategjresstratl andstrat2

5.2 Optimizing WER, CER and IER IER
from word Oracle 9.8
from concept Oracle | 7.5
interpretation Oracle | 4.4

Table 4 also indicates that the improvements ob-
tained on the WER and CER dimensions don't al-
ways lead to similar improvements in IER. This is
due to the fact that the improvements in WER angap|e 6: |ER obtained on Oracle hypotheses com-
CER are mostly due to a significant reduction in the, ;1aq at different levels.

insertion rates of words and concepts. Because the

same weight is usually given to all kinds of errors

(insertions, substitutions and deletions), a decrease

in the overall error rate can be misleading as inteler more recently (Wang et al., 2003). They are il-
pretation strategies can deal more easily with inselustrated by Table 5 and Table 6. The figures shown
tions than deletions or substitutions. Therefore thi these tables were computed on the subset of utter-
reduction of the overall WER and CER measures iances that were passed to the SLU component. Ut-
not a reliable indicator of an increase of performancterances for which an OOD has been detected are

of the whole SLU module. discarded. In Table 5 are displayed the error rates
obtained on words, concepts and interpretations both
level | 1-best | Oraclehyp. on the 1-best hypothesis and on the Oracle hypothe-
WER | 33.7 20.0 sis (the one with the lowest error rate in the lattice).
CER | 212 9.7 These Oracle error rates were obtained by looking
IER | 13.0 4.4 for the best hypothesis in the lattice obtained at the

Table 5: Error rates on words, concepts and interprgprrespondmg level (e.g. looking for the best se-

tations for the 1-best hypothesis and for the Oracig€nce of conc_epts In the concept lattice). .AS for Ta-
. ble 6, the mentioned IER are the one obtained when
hypothesis of each level

applying SLU to the Oracles hypotheses computed
for each level. As one can see the lowest IER (4.4)

These results have already been shown for WER not obtained on the hypotheses with the lowest
by previous studies like (Riccardi and Gorin, 1998WER (9.8) or CER (7.5).
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6 Conclusion A. L. Gorin, G. Riccardi, and J.H. Wright. 1997. How
May | Help You ? InSpeech Communication, vol-
This paper presents a study on #R€3000 corpus ume 23, pages 113-127.

collected from real users on a deployed general puP:'harles T. Hemphill, John J. Godfrey, and George R.

lic application. Two problematics are addressed: poddington. 1990. The ATIS spoken language sys-
How can such a corpus be helpful to carry on re- tems pilot corpus. IfProceedings of the workshop on

search on advanced SLU methods eventhough it hasSpeech and Natural Language, pages 96-101, Hidden
been collected from a more simple rule-based dia- Valley: Pennsylvania.

logue system? How can academic research trangehryar Mohri, Fernando Pereira, and Michael Ri-
late into short-term improvements for deployed ser- ley.  2002.  Weighted finite-state transducers in
vices? This paper proposes a strategy for integrating SPeech recognitionComputer, Speech and Language,

. Y 16(1):69-88.
advanced SLU components in deployed services.
This strategy consists in selecting the utterances f@hristian Raymond, Frederic Bechet, Renato De Mori,

which the advanced SLU Components are going to and Geraldine Damnati. 2006. On the use of finite

be applied. Section 3 presents such a strategy thatstate transducers for semantic interpretati®peech

L . Communication, 48,3-4:288-304.
consists in filtering Out-Of-Domain utterances dur-
ing the ASR first pass, leading to significant im-Giuseppe Riccardi and Allen L. Gorin. 1998. Language

rovement in the understandin rformance. models for speech recognition and understanding. In
provement in the understanding performance Proceedings of the International Conference on Spo-

For the SLU process applied to in-domain utter- ken | angage Processing (ICSLP), Sidney, Australia.
ances, an integrated approach is proposed that looks

simultaneously for the best sequence of words, corfé-Yi Wang, A. Acero, and C. Chelba. 2003. Is word

. . error rate a good indicator for spoken language under-
cepts and interpretations from the ASR word lat- standing accuracy? lAutomatic Speech Recognition

tices. Experiments presented in section 5 on real and Understanding workshop - ASRU’ 03, St. Thomas,
data show the advantage of the integrated approachUsS-Virgin Islands.

towards the sgquentlal approach. Finally, sectlor_l \‘}e-Yi Wang, Li Deng, and Alex Acero. 2005. Spoken
proposes a unified framework that enables to define language understanding. Sgnal Processing Maga-

a dialogue state prediction model that can be applied zine, IEEE, volume 22, pages 16-31.
and trained on a corpus collected through an alrea

. q]\éson D. Williams and Steve Young. 2007. Partially ob-
deployed service.

servable markov decision processes for spoken dialog
systems. Computer, Speech and Language, 21:393—
422.
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Abstract

This paper describes our experiences of
collecting a corpus of 42,000 dialogues
for a call-routing application using a
Wizard-of-Oz approach. Contrary to
common practice in the industry, we did
not use the kind of automated application
that elicits some speech from the
customers and then sends all of them to
the same destination, such as the existing
touch-tone  menu, without paying
attention to what they have said. Contrary
to the traditional Wizard-of-Oz paradigm,
our data-collection application was fully
integrated within an existing service,
replacing the  existing touch-tone
navigation system with a simulated call-
routing system. Thus, the subjects were
real customers calling about real tasks,
and the wizards were service agents from
our customer care. We provide a detailed
exposition of the data collection as such
and the application used, and compare our
approach to methods previously used.

1 Background and introduction

Spoken-dialogue systems for applications such as
customer care increasingly use statistical language
models (SLMs) and statistically-based semantic
classification for recognition and analysis of
utterances. A critical step in designing and
deploying such a system is the initial data
collection, which must provide a corpus that is
both representative of the intended service and
sufficiently large for development, training and
evaluation.

For at least 20 years, Wizard-of-Oz methodology
has been regarded as a superior (though not
unproblematic) method of collecting high-quality,
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machine-directed speech data in the absence of a
runnable application. Normally, these data will be
useful for several purposes such as guiding
dialogue design and training speech recognizers.
Still, the Wizard-of-Oz option is often dismissed in
favour of simpler methods on the ground that it
does not scale well in terms of cost and time (for
example, Di Fabbrizio et al. 2005). Consequently,
Wizard-of-Oz has typically been used for data
collections that are more limited in the number of
subjects involved or utterances collected. One
exception from this is the data collection for the
original AT&T “How May | Help You” system
(Gorin etal. 1997; Ammicht etal. 1999), which
comprised three batches of transactions with live
customers, each involving up to 12,000 utterances.
Other well-known instances are “Voyager” (Zue
etal. 1989) and the individual ATIS collections
(Hirschman etal. 1993) which involved up to a
hundred subjects or (again) up to 12,000
utterances.

While it is true that Wizard-of-Oz is a labour-
intensive method, the effort can often be motivated
on the ground that it enables significant design and
evaluation to be carried out before implementation,
thereby reducing the amount of re-design
necessary for the actual system. However, one
should also bear in mind the crucial advantage
brought about by the possibility in a production
environment of running the Wizard-of-Oz
collection in-service rather than in a closed lab
setting. As we shall discuss, the fact that real
customers with real problems are involved instead
of role-playing subjects with artificial tasks
circumvents the key methodological problem that
has been raised as an argument against Wizard-of-
Oz, namely, lack of realism.

' For backgrounds on Wizard-of-Oz methodology, see Dahlbéck et al. (1993)
and Fraser & Gilbert (1991).

Bridging the Gap: Academic and Industrial Research in Dialog Technologies Workshop Proceedings, pages 5663,
NAACL-HLT, Rochester, NY, April 2007. ©2007 Association for Computational Linguistics



The aim of this paper is to describe our
experiences of running a Wizard-of-Oz collection
in a production environment with real customers,
with the double purpose of guiding dialogue design
and collecting a sufficient amount of data for the
first training of a speech recognizer. We also
review what other options there are for the initial
data collection and compare our Wizard-of-Oz
approach with those.

The rest of this paper is organized as follows:
Section 2 describes the call-routing problem and
our particular domain. Section 3 gives an overview
of the options for the initial data collection and the
major trade-offs involved in selecting a method.
Section 4 describes the application that was
developed for our Wizard-of-Oz data collection,
whereas Section 5 describes the actual data
collection, summary statistics for the collected data
and some experimental results obtained. Section 6
contains a discussion of our overall experiences.

2  The call-routing task and domain

Call routing is the task of directing a caller to a
service agent or a self-serve application based on
their description of the issue. Increasingly, speech-
enabled routing is replacing traditional touch-tone
menues whereby callers have to navigate to the
appropriate destinations.

The domain of interest in this paper is (the
entrance to) the TeliaSonera® residential customer
care in Sweden, comprising the entire range of
services offered: fixed and mobile telephony,
broadband and modem-based Internet, IP
telephony, digital television, triple play, etc.
Around 14 million calls are handled annually, and
before the speech-enabled call-routing system was
launched in 2006, touch-tone navigation was used
throughout. The speech-enabled system involves
an SLM-based speech recognizer and a
statistically-based classifier.® The task of the
classifier is to map a spoken utterance to an
application category which corresponds to a self-
serve application, (a queue to) a human agent, a
disambiguation category or a discourse category.
Whereas self-serve applications and service agents
are the desired goals to reach, disambiguation and
discourse categories correspond to intermediate
states in the routing dialogue. More specifically,

2 TeliaSonera (www.teliasonera.com) is the largest telco in the Scandinavian
—Baltic region.

3 The speech recognizer and classifier are delivered by Nuance
(www.nuance.com).
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disambiguation categories correspond to cases
where the classifier has picked up some
information about the destination, but needs to
know more in order to route the call. Discourse
categories correspond to domain-independent
utterances such as greetings (“Hi, my name is John
Doe”), channel checks (“Hello?”) and meta
questions (“Who am 1 talking t0?”). Altogether,
there are 124 application categories used by the
current classifier.

3 Options for initial data collection

Basically, there are three options for making the
initial data collection for a call-routing application:
to collect human-human dialogues in a call center,
to use an automated data-collection application, or
to use a Wizard-of-Oz approach. We shall now
describe each of these.

3.1 Human-human dialogues

The simplest possible approach to the initial data
collection is to record conversations between
service agents and customers in a call center. This
is an inexpensive method since it does not require
any data-collection application to be built. Also,
there is no customer impact. However, the data
obtained tend not to be sufficiently representative,
for two reasons: First, typically only a subset of the
services of a call center is carried out by human
agents, and hence many services will not be
covered. Second, the characteristics of human—
human conversations differ from those of human-
machine interaction. Still, this option has
sometimes been preferred on the grounds of
simplicity and lack of negative customer impact.

3.2 Automated applications

Due to the nature of the task, it is easy to put out a
fully automated mock-up system in a live service
that engages in the initial part of a call-routing
dialogue. Typically, such a system will play an
open prompt, record the customers’ speech, play
another prompt saying that the system did not
understand, again record the speech, and finally
direct all calls to a single destination, such as a
general-skills service agent or the entry to the
existing touch-tone menu. We estimate that a
system of this kind could be implemented and
integrated into a call center in about a person week.
An example of this approach is the AT&T “Ghost
Wizard” (referred to in Di Fabbrizio et al. 2005).



This basic approach can be improved upon by
detecting silences and touch-tone events, and in
these cases playing designated prompts that try to
get the caller on track. Furthermore, if data from
previous call-routing applications are available, it
is possible to use these to handle domain-
independent  utterances. Such utterances
correspond to discourse categories as mentioned in
Section 2, and the idea then is to play prompts that
encourage the caller to describe the issue. A
description of such an approach is provided by Di
Fabbrizio et al. (2005).

A problem with the automated approach is that
customer impact can be quite negative, since the
application does not actually do anything except
for recording their speech (possibly through
several turns), and routing them to a “dummy”
destination where they will have to start over. Of
course, one way of avoiding this is to include a
human in the loop who listens to the customer’s
speech and then routes the call to the right
destination. Apparently, this is the approach of
Di Fabbrizio et al. (2005), which consequently is
not fully automated.

Apart from customer impact, the problem with an
automated system is that we do not learn the full
story about caller behaviour. In particular, since
typically only a minority of callers will state their
issue in an unambiguous way within the given few
turns, less information about the callers’ actual
issues will be obtained. In particular, for callers
who completely fail to speak or who give no
details about their issue, we will have no
possibility of finding out what they wanted and
why they failed. Furthermore, since the system
lacks the ability to respond intelligently to in-
domain utterances, no follow-up dialogue such as
disambiguation can be collected.

3.3 Wizard-of-Oz

Although Wizard-of-Oz is arguably the best
method for collecting machine-directed data in the
absence of a running application, it is not without
methodological problems. The basic critique has
always been aimed at the lack of realism (for
example, von Hahn 1986). In a thorough analysis,
Allwood & Haglund (1992) point out that in a
Wizard-of-Oz simulation, both the subjects and the
wizard(s) are playing roles, occupied and assigned.
The researcher acting as the wizard is occupying
the role of a researcher interested in obtaining “as
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natural as possible” language and speech data,
while playing the role of the system. The subject,
on the other hand, is occupying the role of a
subject in a scientific study, and playing the role of
a client (or similar), communicating with a system
while carrying out tasks that are not genuine to the
subject, but given to them by the experiment leader
(who might be identical with the wizard).

It turns out, however, that a traditional Wizard-
of-Oz approach with made-up tasks according to a
scenario is anyway not an option when collecting
data for deploying a call-routing system. The
reason for this is that we want to learn not just how
callers express themselves, but also what kind of
tasks they have, which obviously rules out pre-
written scenarios. If the existing system uses
touch-tone navigation, usually not too much can be
ascertained about this, and trying to design a set of
tasks just by looking at the existing destinations
would miss the point.

By instead integrating a Wizard-of-Oz
application in an existing, live service, we can
circumvent the key methodological problems,
while addressing all the problems of the previously
described approaches and even obtaining some
independent advantages:

1. Since the callers’ experience will be like that of
the intended application, albeit with human
speech understanding, the customer impact will
be at least as good. In fact, it is even possible to
issue a kind of guarantee against maltreatment
of customers by instructing the wizards to take
over calls that become problematic (this is
further discussed in Section 4).

2. Since real customers are involved, no role-
playing from the point of view of the subjects
takes place, and hence the data become highly
realistic.

3. The fact that scenarios are superfluous—or
even run counter to the goal of the data
collection—means that the main source of
methodological problems disappears, and that
the data collection as such is considerably
simplified compared to traditional Wizard-of-
Oz.

4. By letting service agents be wizards, we move
away even further from role-playing, given that
the interaction metaphor in speech-enabled call
routing is natural-language dialogue with a
(general-skills) service agent.



5. Service agents possess the expertise necessary
for a call-routing wizard: they know when
additional information is required from the
caller, when a call is ready for routing, and
where to actually route the call. Hence, wizard
guidelines and training become less complex
than in traditional Wizard-of-Oz."

6. Service agents have excellent skills in dealing
with customers. Hence, during the data
collection they will be able to provide valuable
feedback on dialogue and prompt design that
can be carried over to the intended application.

In spite of these advantages, Wizard-of-Oz appears
to have been used only very rarely for collecting
call-routing data. The sole such data collection that
we are aware of was made for the original AT&T
“How May | Help you” system (Gorin et al. 1997;
Ammicht et al. 1999). The one disadvantage of the
Wizard-of-Oz approach is that it is more laborious
than automated solutions, mainly because several
person months of wizard work is required. On the
other hand, as we have seen, it is still less laborious
than a traditional Wizard-of-Oz, since there are no
scenarios and since wizard guidelines can be kept
simple.

4  Data-collection application

Our data-collection application consists of two
parts: The first part is the Prompt Piano Client
(PPC), which is running on the service agent’s PC.
This is essentially a GUI with “keys”
corresponding to prerecorded prompts by which
the wizard interacts with the caller, thereby
simulating the intended system. The PPC interface
is shown in PLATE 1. The second part is the
Prompt Piano Server (PPS), which is an IVR
(interactive voice response) server with a Dialogic
telephony board, running Envox, Nuance and
Dialogic software. This handles playing of prompts
as well as recording of calls. Two kinds of
recordings are made: call logs (that is, the callers’
speech events as detected by the Nuance speech
recognizer) and complete dialogues (“open mic”).
To set up a data collection, the contact center
solution is modified so that a percentage of the
incoming calls to the customer care is diverted to
the PPS. The PPS in turn transfers each call to a
wizard (that is, to a PPC) using tromboning.

* Furthermore, as a side effect, it is possible to facilitate the subsequent process
of manually tagging the data by keeping track of where each call is routed.
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Allocation of the wizards is performed by the Telia
CallGuide contact center platform using skill-
based routing. Whenever a wizard answers a call,
two audio streams are established, one from the
customer to the wizard so that she can hear the
customer’s speech, and one from an audio source
in the PPS to the customer. An initial open prompt
is played automatically by the PPS, and the wizard
is then free to start playback of prompts. This is
realized by sending control messages from the PPC
to the audio source on the PPS via TCP/IP, while
listening to the customer throughout.

Depending on the caller’s response, different
things will happen: If the caller provides an
unambiguous description of the issue, the wizard
will transfer the call to the correct queue and end
the recording by pressing the “end / route
customer” button. This signals to the PPS that the
call should be released using the Explicit Call
Transfer (ECT) supplementary service, freeing the
two channels used for the tromboned call in the
PPS.

If, on the other hand, the caller does not provide
an unambiguous description of the issue, the
wizard will play a follow-up prompt aimed at
getting more information from the caller by
choosing from the buttons/prompts situated to the
right (fields 11 and Il of the GUI; see Plate 1).
These parts of the GUI are fully configurable; the
number and layout of buttons as well as the names
of sound files for the corresponding prompts are
declared  separately.  (Declarations include
specifying whether the prompt associated with a
particular button allows barge-in or not.) Thus, it is
possible not just to vary individual prompts, but
also to simulate call-routing dialogues to various
depths by varying the number of buttons/prompts.

Apart from routing the call, a possible action of
the wizard is to enter into the call. This is realized
by establishing a two-way direct audio stream with
the customer, enabling the parties to talk to each
other. As pointed out in Section 3.3, one purpose
of this is to let wizards take over calls that are
problematic, thereby making sure that callers do
not get maltreated during the data collection and
reducing the risk that they hang up. A similar
functionality was available in the data-collection
application for AT&Ts “How May | Help You”
system (Walker et al. 2000).
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PLATE 1: The Prompt Piano Client interface as configured towards the end of the data collection. The interface
is divided into three fields with buttons. I: The leftmost field provides caller information, like A-nr (the phone
number the customer is calling from) and Cid (the phone number the customer provides as reason for the call).
The wizard has two option buttons, Mina atgarder (‘my actions’), at hand: the button Bryt in / Prata med
kund (‘barge-in/talk to client’) which is used for entering into the call, and the button Avsluta / Koppla kund
(“‘end/route customer”) which is used to terminate the recording prior to routing the call to the appropriate
destination. (Both of these options are associated with prompts being played.) Il: The second field, Kunden...
(“the customer...”), contains buttons corresponding to renewed open prompts for the purpose of error-handling,
...ar tyst (“... is silent’), ...trycker pa knappar (‘uses the touch-tone keypad’), ...ber om hjalp (‘asks for
help’), ...avbryter (‘interrupts’), ...pratar for lange (“talks for too long’), ...sdger inget om &rendet (‘doesn’t
say anything about the reason for the call’), ...ar svar att uppfatta (‘is hard to understand’). 111: The third field,
Jag undrar om det galler... (‘I would like to know if it is about...”), contains buttons corresponding to
disambiguation prompts asking for additional information, e.g. whether the customer’s reason for the call is
about fixed (“fast’) or mobile (“‘mobilt’) telephony, broadband (‘bredband’) or something else. All buttons also
have hot-key possibilities for agents who prefer this over point-and-click.

With the exception of the initial open prompt, the
wizards have full control over when and in what
order prompts are played and actions are executed.
Thus, whereas an automated system will start
playing the next prompt after an end-of-speech
timeout typically within the range of 0.75-1.5
seconds, a wizard may decide to impose longer
delays if she considers that the caller has not yet
yielded the turn. On the other hand, the wizard
may also respond more rapidly. Thus, the problem
of response delays, which has sometimes had
distorting impact in Wizard-of-Oz simulations,
does not appear in our application (cf. Oviatt et al.
1992).

The PPS application was developed in the Envox
graphical scripting language, which makes it
possible to write event-driven applications
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controlled from an external source such as the
PPC, and also supports Nuance call logging (for
recording customer utterances) and Dialogic
transaction recording (for recording entire
conversations between two parties, in this case the
customer and the PPS, or the customer and the
wizard).® Design, implementation and testing of
the Prompt Piano (PPC and PPS) took four person
weeks.

The agents/wizards were involved in the
development from the very start to ensure that the
application (and in particular the GUI) was

5 VXML was not used since it appeared that real-time control of an IVR from
an external source would then have been more difficult to implement.
Furthermore, VXML browsers generally have no support for features such as
transaction recording during tromboned transfer and delayed invocation of the
ECT supplementary service in conjunction with call transfer. Hence, in a
VXML framework, additional components would be required to solve these
tasks.



optimized according to their needs and wishes. The
Prompt Piano GUI was reconfigured several times
during the course of the data collection, both for
the purpose of carrying out prompt-design
experiments and in response to (individual or
group) requests for changes by the agents/wizards.

5 Data collection

5.1 Overview

The purpose of the data collection was twofold: to
obtain speech data that could be used for initial
training of the speech recognizer, and to obtain
data that could be used to guide dialogue design of
the intended application. Thus, whereas the former
only involved caller responses to open prompts, the
latter required access to complete call-routing
dialogues, including error-handling and
disambiguation.

Organization. Ten wizards were used for the
data collection. Initially, one week was used for
training of the wizards and basic tuning of the
prompts. This process required four person weeks
(not all wizards were present all the time). After a
break of three weeks, the data collection then went
on for five weeks in a row, with the ten wizards
acquiring around 42,000 call-routing dialogues.
(This figure includes around 2,000 useable
dialogues that were collected during the initial
week.) This was more than had been anticipated,
and much more than the 25,000 that had been
projected as a minimum for training, tuning and
evaluation of the speech recognizer. Thus,
although 50 person weeks were used by the
wizards for the actual collection, 32 person weeks
would actually have been sufficient to reach the
minimum of 25,000 dialogues. On average, 195
dialogues were collected per working day per
wizard (mean values ranging from 117 dialogues
per day to 317 dialogues per day; record for a
wizard on a single day was 477).

Barge-in. Initially, barge-in was allowed for all
prompts. However, it turned out to be useful to
have one very short prompt with barge-in disabled,
just asking the caller to state the reason for the call.
The main usage of this was in cases where callers
were repeatedly barging in on the system to the
extent that the system could not get its message
through.

Utterance fragments. As a consequence of, on
the one hand, wizards having full control over
when and whether to start playing a prompt and, on
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the other hand, the speech recognizer having a
fixed end-of-speech timeout, it would sometimes
happen that more than one sound file would be
recorded between two prompts in the Nuance call
logs. An example of this would be: “Eeh, I... I'm
wondering whether... can you tell me the pricing of
broadband subscriptions?”, where both of the two
silent pauses would trigger the end-of-speech
timeout. Although this constitutes a mismatch
between data collection and final system, in
practice this caused no problem: on the contrary,
the sound files were simply treated as separate
utterances for the purpose of training the speech
recognizer, which means that the most informative
fragment, typically at the end, was not lost. In
addition, these data are potentially very valuable
for research on turn-taking (in effect, intelligent
end-of-speech detection).

Wizards entering into calls. The event of
wizards taking over calls in order to sort out
problematic dialogues occurred on average in 5%
of the calls. The figure was initially a bit higher,
presumably because the wizards were less skillful
in using the prompts available, and because the
prompts were less well-developed. As a side-effect
of this, we have obtained potentially very valuable
data for error-handling, with both human—machine
and human-human data for the same callers and
issues (compare Walker et al., 2000).

Post-experimental interviews. We also used the
facility of letting wizards take over calls as a way
of conducting post-experimental interviews. This
was achieved by having wizards route the calls to
themselves and then handle the issue, whereupon
the wizard would ask the caller if they would
accept being interviewed. In this way, we were
able to assess customer satisfaction on the fly with
respect to the intended system and even getting
user feedback on specific design features already
during the data collection.

5.2 Experiments

Several design experiments were run during the
data collection. Here, we shall only very briefly
describe one of them, in which we compared two
styles of disambiguation prompts, one completely
open and one more directed. As can be seen in
TABLE 1, utterances following the open
disambiguation prompt are on average 3.6 times
longer than utterances following the directed
prompt.



Prompt Utterances and Words Disfluency Concepts
Utts Words Words Disfl Disfl Disfl Concepts Concepts DIFFs DIFFs DIFFS DIFFS
/Utts /Utts /Words In Out Total Change /Utts /Words
Directed 118 216 1.8 19 0.16 0.09 136 244 108 0 0.9 0.5
Open 121 791 6.5 72 0.6 0.09 144 248 122 18 1.01 0.15

TABLE 1. Summary statistics for the directed prompt (‘I need some additional information about the reason for
your call. Is it for example about an order, price information or support?’), and the open prompt (‘Could you please
tell me a little bit more about the reason for you call?”) prompts. Totals and ratios are given for utterances/words,
disfluencies and number of concepts acquired before the disambiguation prompt was played (“In”) and after the
customer had replied to the disambiguation prompt (“Out”). Also, ratios are given for number of concepts compared
to number of utterances and words, as well as totals and ratios for the differences (DIFFs) between concepts in and
concepts out, i.e., how many concepts you “win” by asking the disambiguation prompt.

Furthermore, in order to see to what extent
these prompts also made callers provide more
information, we manually tagged the transcribed
utterances with semantic categories. Following
the evaluation methodology suggested by Boye
& Wirén (2007, Section 5), we then computed
the difference with respect to “concepts” for
utterances immediately following and preceding
the two kinds of prompts.

Although the number of concepts gained is
only slightly higher® for the open prompt (as a
function of concepts per utterance), there are
some palpable differences between the directed
and the open prompt. One, shown in TABLE 1, is
that there are no instances where an already
instantiated concept (e.g. fixedTelephony) is
changed to something else (e.g. broadband),
while this happens 18 times following the open
prompt. The other, not shown in TABLE 1, is
that, following the directed prompt, one never
“gains” more than one new concept, while there
are 26 instances following the open prompt
where the gain is two concepts, and even two
instances where the gain is three concepts
(which also means that one concept is changed).

Finally, when one analyses the syntactic
characteristics following the two different types
of prompts, there is an obvious shift from the
telegraphic “noun-only” responses that amount
to more than 70% of the directed prompt
responses, to the responses following the open
prompt, where 40% are complete sentences and
21% are noun phrases. Also, the syntax is more
varied following the open prompt.’

® However, the difference is not statistically significant, either using a t test

(two-sampled, two-tailed: p=0.16 with equal variances assumed; p=0.158
equal variances not assumed) or Mann-Whitney U test (two-tailed:
p=0.288).

The distributions are, in descending order, for the directed prompt:
Noun=85, Sentence=11, Yes/No=8, Noun Phrase=8, no response=3,
Yes/No+Noun=2, Adverbial Phrase=1, Adjective Phrase=1; for the
open prompt:  Sentence=49, Noun Phrase=26, Noun=24, Verb
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6 Discussion

We claimed in Section 3.3 that by using an in-
service Wizard-of-Oz data collection, we have
been able to effectively overcome all problems
of the alternative methods discussed there. A
relevant question is then if there are any
remaining, independent problems of the
approach described here.

On the methodological side, there is clearly a
certain amount of role playing left in the sense
that service agents are acting as the system
(albeit a system whose interaction metaphor is a
service agent!). Interestingly, we noticed early
on that the agents sometimes failed in properly
simulating the intended system in one respect:
Since they would often grasp what the caller
wanted before he or she had finished speaking,
they would start playing the next prompt so
early that they were barging in on the caller.
Thus, in their willingness to provide quick
service, they were stepping outside of their
assigned role. However, they soon learnt to
avoid this, and it was never a problem except for
the first few days.

Apart from this, the main disadvantage of
Wizard-of-Oz collections clearly is the amount
of work involved compared to the other
methods. As we have seen, the Prompt Piano
design and implementation took four person
weeks, training of the wizards took another four
person weeks, and collection of 25,000
dialogues required 32 person weeks—hence
altogether 40 person weeks (although we
actually used 50 person weeks, since we went on
collecting more data). This could be compared
with possibly a single person week required for
the fully automated approach. The more

Phrase=11, Adjective Phrase=5, Adverbial Phrase=2, no response=2,
Yes/No=1, Interjection=1.




elaborate automated methods would come
somewhere in between, also depending on
whether a human agent is used for routing
callers or not.

In the TeliaSonera case, the main desiderata
favouring Wizard-of-Oz were highly
representative data, no negative customer impact
and need for early evaluation and design,
particularly because this was the first
deployment of natural-language call routing in
Scandinavia. In other words, it was decided to
accept a higher initial cost in return for reduced
costs downstream, due to higher quality and less
re-design of the implemented system.

It is impossible to quantify the downstream
savings made by choosing Wizard-of-Oz since
we have no baseline. However, one indication of
the quality of the data is the initial performance
of the classifier of the deployed system. (By
“initial”, we mean the period during which no
data from the live system had yet been used for
training or updating of the system.) In our case,
the initial accuracy was 75%, using 113
application categories. We regard this as a high
figure, also considering that it was achieved in
spite of several new products having been
introduced in the meantime that were not
covered by the speech recognizer. The initial
training of the speech recognizer and classifier
used 25,000 utterances. As a comparison, when
an additional 33,000 utterances (mostly from the
live system) had been used for training, the
accuracy increased to 85%.
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Abstract

Dialog Systems have been proven use-
ful to provide the general public with ac-
cess to services via speech devices. In
this paper, we present AdaRTE, an Adapt-
able Dialog Architecture and Runtime En-
gine. AdaRTE uses dynamic Augmented
Transition Networks and enables the gen-
eration of different backend formats; for
instance, it supports VoiceXML genera-
tion to guarantee portability and standards
compliance. The scope of AdaRTE is to
provide a ground for deploying complex
adaptable dialogs such as those found in
the patient-care domain, and for experi-
menting with innovative speech solutions
including Natural Language Processing.
AdaRTE is an extensive architecture for
dialog representation and interpretation,
which helps developers to layout dialog
interactions through a high level formal-
ism whilst allowing the inclusion of voice
applications best-practices.

1 Introduction

Dialog technologies have been widely applied in dif-
ferent domains. Previous to Voice Browsers (VB),
proprietary technology was the response to vocal ap-
plications deployment. The speech systems adopted
either custom code, or proprietary dialog-manager
based solutions. Linear script, state transition net-
works and plan-based were among the available
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technologies for dialog management systems. Gen-
erally, the deployment of any of these techniques re-
quires heavily scripted solutions. On the other hand,
the multitude of dialog technology vendors naturally
resulted in a proliferation of incompatible languages
across vendors and platforms.

More recently, the advent of VoiceXML allows to
deploy dialog systems in a Web-based environment
(McGlashan et al., 2004). Its delivery contributed to
reduce the proliferation of incompatible dialog for-
malisms by offering one standard for voice appli-
cations. However, VoiceXML has inherent limita-
tions which are well analyzed in (Mittendorfer et
al., 2002), such as its declarative and static structure,
difficulty accessing remote resources (databases and
ontologies) and lack of means for efficient and heavy
computation. Furthermore, Voice XML does not al-
low an explicit visualization of the dialog flow be-
cause of its form-filling mechanism and, like web
based technologies, has to be generated by other
code dynamically.

Perhaps the strongest limit pointed out by the re-
search community is that VoiceXML does not di-
rectly support neither dynamic natural language un-
derstanding and generation, nor multimodality. As
a consequence, extensions to VoiceXML has been
proposed in literature: DialogXML was applied to
car telematics services; in this approach, the VB
was extended to support NLP KANTOO generated
grammars (Hataoka et al., 2004). Other VoiceXML-
generative approaches are presented in (Hamerich
et al., 2004) which follows a database-oriented ap-
proach, and (Di Fabbrizio and Lewis, 2004) which
is seemingly targeted towards customer care tasks

Bridging the Gap: Academic and Industrial Research in Dialog Technologies Workshop Proceedings, pages 64—67,
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with sophisticated call routing, rather than the struc-
tured enquiry data collection tasks found in chronic
patient management. We believe that a big effort
should still be done in adapting dialog systems best
practices (Balentine and Morgan, 2001), such as
confirmation strategy, adaptability, mixed initiative,
usable speech interfaces for users and graphical in-
terfaces for developers in VoiceXML-based frame-
works. Commonly, the process of deploying dialog
systems was complicated, costly, time demanding
and required speech technology experts. A leaner
development methodology is particularly necessary
when considering domains in which available re-
sources for development are limited; such a case is
that of the health care domain, in which voice appli-
cations have been used for several home-care inter-
ventions successfully. (Young et al., 2001; Giorgino
et al., 2004; Bickmore et al., 2000).

In this paper, we present an architecture devised
to overcome all these issues. Features were thought
to reduce dialog system development effort through
reuse, support for hierarchical network specification,
adaptable decision takers and best practices adop-
tion. We built AdaRTE, which implements these
features for dialog deployment, and we present re-
sults obtained through the partial prototyping of two
telephony-linked systems: the first inspired by the
Chronic Obstructive Pulmonary Disease (COPD)
care (Young et al., 2001), and the second by the
Homey dialog system for hypertensive patient home
management (Giorgino et al., 2004). Our effort
was mainly focused on health care dialogs systems,
since our solution is targeted at offering a standards-
compliant way of deploying dialog systems, whose
additional peculiarities are extensibility, support for
complex dialog flows and low-cost development.

2 AdaRTE Architecture

The architecture we propose (figure 1) is primarily
composed of a dialog interpreter, a runtime engine
and an interface media realizer for backends gener-
ation. A running system interacts with users which
can be grouped in three main role categories: Appli-
cation developers, patients and case managers, i.e.
case manager nurses.

The dialog flow and structure are represented in a
well-defined XML formalism (XML dialog descrip-

65

AdaRTE engine
Back-ends: inferface media realizers

Telephon VoiceXML i
posol v [ e | NLPRealizer
et C [ HTML debuggerj Animated Agents

'
' Resource
connector

i
@))) External Resources

Relational Databases

Legacy Patient Records

Objects |

\ &
Inferpreter Funcions | "erPreter I

/<subdef name="main"> ™\

<subdialog id="2" next="3" name="identification"/> f&script id ="2" next="3"> )
<if id="3" next="4" cond=""... "> <![CDATA[

<else next="5"/> 0

it function setPatientCode(pin) )

g v N N var conn = DBConnection.getConnection("iper”);
<subdialog id="4" next="6" name="FollowUpCall'/: var statement = conn.createStatement();
<subdialog id="5" next="6" name="dyspnea"/> var resultSet = statement.executeQuery("SELECT
<subdialog id="6" next="7" name="closing"/>

FROM ...
<catch event="dialog.finishCall" next="7"> WHERE cod_telefono like ™ + pin + "");
<start id ="1" next="2"/>

while (resultSet.next()) {
<script id="2" next="3" > ) -

<I[CDATA[ .. >
</script> Y=
<subdialog id="3" next="4" name="closing"/> \/script>

<end id="4"/>
</catch>
‘s/subdef> J

Figure 1: AdaRTE architecture block diagram

tion). To cooperate with standards-based speech
recognition software and respond to telephone-
originated events, AdaRTE acts as a web server,
generating VoiceXML or HTML code dynamically.
Prompts, questions and other elements are the nodes
(here named blocks) of an Augmented Transition
Network (ATN) that specifies the flow of the con-
versation. Blocks are represented in the description
by XML tags. When the system is started, the XML
dialog description is read by AdaRTE which main-
tains an internal representation of the dialog, and ex-
ecutes it when a call comes in. Consequently, it ac-
tivates the dialog blocks in sequence or according
to a specific criterion, constructs prompts, interprets
the answers returned by the caller through the voice
platform, and interacts with external resources as ap-
propriate.

Usually, an ATN is associated with a context and,
here, we call this structure subdialog. When a call is
setup, the main subdialog is retrieved and started;
in its turn, it can invoke other subdialogs, and so
forth. If the execution flow reaches the end of the
main subdialog, the call is terminated. Subdialogs
can also terminate unexpectedly if an exception oc-
curs, and, in this case, an exception handler is exe-
cuted.

In addition, we grant the application of best-
practices through the configuration of thresholds
and n-best lists confirmation strategy related to ques-



tions. Adaptability i.e. flexibility according to users
experience with the system, is reached by using con-
tainers. They are used for common tasks, in which
one of several subdialogs are selected according to a
specified policy such as randomly, in sequence, or-
dered by call number, according to any externally
defined schedule or a criterion based on reinforce-
ment learning techniques. Inclusion of procedural
code at user-level is essential for flexibility, interop-
erability, and ease of programming. AdaRTE allows
to embed snippets of code, which are written in the
ECMAScript standard language, into script blocks.
These user-written code is run in a separate execu-
tion environment with extensive facilities and stan-
dard libraries. This also enables access to external
resources, including databases, ontologies, or any
other commodity library, i.e a probabilistic-based li-
brary.

Currently, semantic recognition is implemented
either inside the engine itself or leveraging the
context-free grammar (CFG) formats offered by the
VB. However, we strongly believe in the necessity
of integrating a more elaborated semantic recogni-
tion solution by supporting NLP and more expres-
sive grammars. In addition, since the architecture of
AdaRTE is extensible, it would be possible to inte-
grate any other backend. For instance, we foresee
the adoption of multimodality through the genera-
tion of an enriched markup language which would
be understood by an external animation generator
module. Work is in progress toward these directions.

Differing from other VoiceXML-generative
frameworks, AdaRTE is oriented to the medical
domain, which requires adaptable dialogs with
complex structures. Also, it offers a new level
of flexibility to developers by allowing external
resources access inside script blocks. Moreover,
the high level dialog description is intuitive, thus
simple dialogs could be implemented by not expert
authors. Finally, AdaRTE was thought to be a
standard-compliant architecture for incremental
adoption of voice formalisms, i.e. lexicalized
grammar-based NLPs.

3 Results

Currently, the AdaRTE framework is operative. It
has been beta-tested with two realistic health care
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dialog systems, derived by actual systems deployed
and validated in the previous years. The first one is
based on a prototype based on the TLC-COPD di-
alog deployed by the Boston MISU group and oth-
ers (Young et al., 2001). For this specific example,
we used Tellme Studio' as VSP. This pilot’s deploy-
ment demanded less than two weeks of man effort.
The fulfilled activities were database schema defi-
nition and data preparation together with the dialog
deployment. This dialog is executed in English lan-
guage and uses keypad touch-tone (DTMF) interac-
tion.

The second test case is the partial reimplementa-
tion of the Homey dialog system. Homey had been
deployed for the management of hypertensive pa-
tients (Giorgino et al., 2004). The system included
an extensive Electronic Health Records system with
storage of personal data and profiles, in order to sup-
port dialog adaptability. Reengineering part of the
Homey proprietary dialog manager to the AdaRTE
architecture took approximately three weeks. The
development of this prototype involved the follow-
ing activities: VSP evaluation, database definition
and grammars and dialog deployment. Unlike the
TLC-COPD pilot, this system uses speech rather
than DTMF input. We built grammars by using the
Nuance GSL language and SRGS grammar formats.
The language of the dialog is Italian and the dia-
log was deployed by using Voxpilot as VSP?. The
expressiveness of the dialog formalism yielded an
important reduction of time invested in developing
both prototypes whilst facilitating component reuse
in each dialog.

4 Future enhancements

A large body of research on the optimization of spo-
ken interfaces is available (Walker et al., 1997).
Some of the results of the research have been con-
densed into best practices (Balentine and Morgan,
2001). For example, more complex confirmation
strategies with respect to simple “yes/no” answers
should be adopted. Inclusion of such techniques into
custom-developed systems is complex. A big advan-
tage in using the interpretable and high-level dialog
representation language proposed in this work is that

!'Tellme Studio. https:/studio.tellme.com/
2VoxBuilder. http://www.voxbuilder.com/



such “dialog practices” can be incorporated seam-
lessly into the underlying dialog interpretation logic,
removing the burden from the dialog developer.

Currently, we have a strong commitment on the
integration of a more elaborated semantic interpreta-
tion mechanism by integrating AdaRTE with a NLP
application that supports more expressive grammars.
In this way, not only recognition does not depend on
the grammars supported by VBs, but also more natu-
ral dialogs will be supported, so patients perception
of the dialogs will improve. In addition, a multi-
modal extension of AdaRTE through the implemen-
tation of a facial expressions and gestures realizer
should be considered for future research as well as
the extension of automated discourse planning facil-
ities.

5 Conclusion

We have presented an architecture for next-
generation dialog representation and interpretation
and built an engine for dialog deployment. AdaRTE
supports high-level dialog representations whilst
implicity takes care of aspects and best practices
that are non considered in the current voice and
multimodal standards i.e VoiceXML. It supports
VoiceXML to communicate to VBs as one of
the interpretation and generation backends. We
have reengineered two health-care dialog proto-
types, chosen as real world test cases, by using the
novel architecture and showed that dialog develop-
ment time is remarkably optimized with respect to
customized coding.

The AdaRTE system is motivated not only as a
reliable platform for dialog deployment, but also
as a framework for incorporating advanced features
of speech recognizers, including increased support
to adaptability, natural language understanding and
generation, and multimodality.
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Abstract

Statistical classification techniques for
natural-language call routing systems
have matured to the point where it is pos-
sible to distinguish between several hun-
dreds of semantic categories with an
accuracy that is sufficient for commercial
deployments. For category sets of this
size, the problem of maintaining consis-
tency among manually tagged utterances
becomes limiting, as lack of consistency
in the training data will degrade perform-
ance of the classifier. It is thus essential
that the set of categories be structured in a
way that alleviates this problem, and en-
ables consistency to be preserved as the
domain keeps changing. In this paper, we
describe our experiences of using a two-
level multi-slot semantics as a way of
meeting this problem. Furthermore, we
explore the ramifications of the approach
with respect to classification, evaluation
and dialogue design for call routing sys-
tems.

1 Introduction

Call routing is the task of directing callers to a ser-
vice agent or a self-service that can provide the
required assistance. To this end, touch-tone menus
are used in many call centers, but such menus are
notoriously difficult to navigate if the number of
destinations is large, resulting in many misdirected
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calls and frustrated customers. Natural-language
call routing provides an approach to come to terms
with these problems. The caller gets the opportu-
nity to express her reasons for calling using her
own words, whereupon the caller’s utterance is
automatically categorized and routed.

This paper focuses on experiences obtained
from the deployment of a call-routing application
developed for the TeliaSonera residential customer
care.! The application was launched in 2006, re-
placing a previous system based on touch-tone
menus. The customer care annually handles some
14 million requests and questions concerning a
wide range of products in fixed telephony, mobile
telephony, modem-connected Internet, broadband,
IP telephony and digital TV.

The crucial step in any call routing application is
classification, that is, the mapping of natural-
language utterances to categories that correspond
to routing destinations. Early systems used quite
small numbers of categories. For example, the
original “How May I Help You” system had 15
categories (Gorin et al. 1997), the system of Chu-
Carroll and Carpenter (1999) had 23 categories,
and Cox and Shahshahani (2001) had 32. Nowa-
days, it is possible to distinguish between several
hundreds of categories with high accuracy (see, for
example, Speech Technology Magazine 2004).
The TeliaSonera system currently distinguishes
between 123 categories with an accuracy of 85%
(using a speech recognizer and classifier developed
by Nuance?®). Moreover, according to our experi-
ments the same classification technology can be

TeliaSonera (www.teliasonera.com) is the largest telecom operator in the
Nordic—Baltic region in Europe.
> www.nuance.com.

Bridging the Gap: Academic and Industrial Research in Dialog Technologies Workshop Proceedings, pages 6875,
NAACL-HLT, Rochester, NY, April 2007. ©2007 Association for Computational Linguistics



used to distinguish between 1,500 categories with
80% accuracy.’

For large category sets like these, the problem of
maintaining consistency among manually tagged
utterances becomes limiting, as lack of consistency
in the training data will degrade performance of the
classifier. The problem is exacerbated by the fact
that call-routing domains are always in a state of
flux: Self-services are being added, removed,
modified, split and merged. Organizational
changes and product development regularly call for
redefinitions of human expertise areas. All of these
changes must be accommodated in the category
set. Hence, it must be possible to update this set
efficiently and at short intervals.

To meet this problem, it is crucial that the set of
categories be structured in a way that facilitates the
task of manual tagging and enables consistency to
be preserved. However, in spite of the fact that the
size of category sets for call routing have increased
dramatically since the original “How May I Help
You” system, we are not aware of any papers that
systematically discuss how such large sets should
be structured in order to be efficiently maintain-
able. Rather, many papers in the call-routing litera-
ture consider the call routing problem as an
abstract classification task with atomic categories
at a single level of abstraction. Such atomic cate-
gories are typically taken to correspond to depart-
ments and self-services of the organization to
which the call center belongs. In a real-life imple-
mentation, the situation is often more complicated.
At TeliaSonera, we have adopted a two-level
multi-slot semantics as a way of maintaining
modularity and consistency of a large set of cate-
gories over time.

The aim of this paper is to share our experiences
of this by providing a detailed description of the
approach and its implications for classification,
dialogue design and evaluation. The rest of the pa-
per is organized as follows: Section 2 describes the
multi-slot category system. Sections 3-5 outline
consequences of the multi-slot semantics for dis-
ambiguation, classification and evaluation, respec-
tively. Section 6 concludes.

3 In both cases, the classifier was trained on 60,000 utterances.

69

2  What’s in a category?
2.1 Motivation

As pointed out above, call-routing domains are
always to some extent moving targets because of
constant changes with respect to products and or-
ganization. It would be cumbersome to manually
re-tag old data each time the category set is up-
dated. Retagging the training data for the statistical
classifier might introduce inconsistencies into the
training set and degrade classifier performance.
Thus, it is a good idea to define two sets of catego-
ries at different levels; one set of semantic catego-
ries reflecting the contents of the utterance, and
one set of application categories reflecting how the
call should be handled. These two sets of catego-
ries are related by means of a many-to-one map-
ping from the semantic domain to the application
domain. Figure 1 gives the general picture.

Semantic categories Application categories
Figure 1: Mapping between semantic categories and

application categories.

The utterances in the training set for the auto-
matic classifier are manually categorized using
semantic categories. The automatic classifier can
be trained to work either in the semantic domain or
in the application domain (see further Section 4).



2.2  Semantic categories

In the TeliaSonera system, semantic categories are
triples of the form

( family, intention, object)

where family is the general product family which
the call concerns (e.g. fixed telephony, mobile te-
lephony, broadband, etc.), intention represents the
nature of the request (e.g. order, want-info,
change-info, activate, want-support, report-error,
etc.), and object represents more specifically what
the call is about (e.g. particular names of products,
or concepts like “telephone number”, “SIM card”,
or “password”). Currently there are 10 families,
about 30 intentions, and about 170 objects that
span the semantic domain.

Some (in fact, the majority) of the possible tri-
ples are disallowed because they are nonsensical.
For instance, it is not meaningful to combine
“fixed telephony” in the family slot with “SIM
card” in the object slot. To cater for this, we have
defined a set of combination rules weeding out the
illegal combinations of values. These rules disal-
low about 80% of the possible combinations, leav-
ing about 10,000 permissible semantic triples. Of
these 10,000 triples, about 1,500 have actually
turned up in real data.

The three-slot structure of categories is very use-
ful when performing manual tagging of the train-
ing material for the statistical classifier. Although
there are 10,000 categories, the person performing
the tagging needs only to keep track of about 210
concepts (10 families + 30 intentions + 170 ob-
jects). In contrast, it is safe to say that an unstruc-
tured category system containing 10,000 atomic
categories would be quite impractical to use.

In addition, the combination rules can further al-
leviate the manual tagging task. It is straightfor-
ward to implement a tagging tool that allows the
human tagger to select a value for one semantic
slot, and then restrict the selection for the other
slots only to include the possible values. For ex-
ample, if “fixed telephony” is chosen for the family
slot, “SIM card” would not appear among the pos-
sible values for the object slot. This approach has
been successfully adopted in the project.
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2.3 Application categories

There is one application category for each type of
action from the system. Actions come in two fla-
vors; either the call is routed (in the cases where
the caller has given sufficient information), or the
system asks a counter-question in order to extract
more information from the caller. That is, applica-
tion categories can be labeled either as routing
categories or disambiguation categories. For con-
venience, names of application categories are also
triples, chosen among the set of semantic triples
that map to that application category.

2.4 Information ordering

Each slot in a semantic triple can take the value
unknown, representing the absence of information.
For instance, the most accurate semantic category
for the caller utterance “Broadband™ is (broad-
band, unknown, unknown), since nothing is known
about the intention of the caller or the specific
topic of the request. Thus, in the information order-
ing, “unknown” is situated below all other values.

There are also some intermediate values in the
information ordering. The value telephony repre-
sents “either fixed telephony or mobile telephony”,
and has been incorporated in the category set since
many callers tend not be explicit about this point.
In the same vein, internet represents “either broad-
band or modem-connected internet”, and billing
represents the disjunction of a whole range of bill-
ing objects, some of which can be handled by a
self-service and some can not.

broadband modemConnected

NSNS

telephony internet

~_

unknown

mobile fixed

Figure 2: Parts of the semantic information ordering.

The information ordering extends naturally to
triples. In particular, the triple (unknown, unknown,

4 Many callers express themselves in this telegraphic fashion.



unknown) represents complete absence of informa-
tion.

3 Disambiguation

The caller’s request might be ambiguous in one
sense or another, in which case the system will
need to perform disambiguation by asking a fol-
low-up question. This might either be a general
question encouraging the user to describe his re-
quest in greater detail, or a directed question of the
type “Would that be fixed telephony or mobile te-
lephony?”

Ambiguous utterances might be represented in
at least two fundamentally different ways. In vec-
tor-based approaches, routing destinations and in-
put utterances alike are represented by vectors in a
multi-dimensional space. An input utterance is
routed to a specific destination if the vector repre-
sentation of the utterance is close to that of the des-
tination. An ambiguous utterance is characterized
by the fact that the Euclidean distances from the
utterance vector to the n closest routing destination
vectors are roughly the same.

Chu-Carroll and Carpenter (1999) describe a
method of disambiguation, where disambiguation
questions are dynamically constructed on the basis
of an analysis of the differences among the closest
routing destination vectors. However, it is not clear
that the disambiguation questions produced by
their proposed method would make sense in all
possible situations. Furthermore, their method does
not take into account the fact that some ambiguities
tend to be more important and arise more often
than others. We think it is worthwhile to concen-
trate on these important cases (in terms of prompt
design, speech recognition grammar construction,
etc.), rather than trying to solve every conceivable
ambiguity, most of which would never appear in
real life.

As previously mentioned, in the TeliaSonera
system we have chosen another way of treating
ambiguities, namely that certain application cate-
gories are disambiguation categories; they repre-
sent foreseen, frequently occurring, ambiguous
input utterances. The three-slot structure of catego-
ries provides a handy way of identifying ambigu-
ous cases; they are represented by triples where
one or more slots are unknown, or where some slot
has an intermediate value, like felephony or inter-
net. Examples of such ambiguous utterances are
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“pbroadband” (broadband-unknown-unknown) and
“I want to have a telephone subscription” (teleph-
ony-order-subscription). All categories that repre-
sent ambiguities have pre-prepared disambiguation
questions, speech recognition grammars, and dia-
logue logic to handle the replies from the callers.

Of course, there are still problematic cases
where an utterance can not be assigned any unique
category with any tolerable level of confidence,
neither a routing category nor a disambiguation
category. In those cases, the system simply re-
phrases the question: “Sorry, I didn’t quite under-
stand that. Could you please rephrase?”

4 Classification
4.1 Atomic vs. multi-slot classification

For the purpose of automatic classification of ut-
terances, there are at least two different views one
may adopt. In one view, the “atomic” view, the
three-slot structure of category names is considered
as merely a linguistic convention, convenient only
when manually tagging utterances (as discussed in
Section 2.1). When adopting this view, we still
regard the categories to be distinct atomic entities
as concerns automatic classification. For instance,
to the human eye it is obvious that two categories
like (internet, order, subscription) and (broadband,
order, subscription) are related, but the automatic
classifier just considers them to be any two catego-
ries, each with its separate set of training examples.

An alternative view, the “multi-slot view”, is to
see the category as actually consisting of three
slots, each of which should be assigned a value
independently. This means that a separate classifier
is needed for each of the three slots.

It is not clear which view is preferable. An ar-
gument in favor of the multi-slot view is the fol-
lowing: If some categories have the same value in
one slot, then these categories are semantically
related in some way. Most likely this semantic re-
lation is reflected by the use of common words and
phrases; for instance, expressions like “order” and
“get a new” presumably are indicative for all cate-
gories having the value order in the intention slot.
Therefore, classifying each slot separately would
be a way to take a priori semantic knowledge into
account.

To this, proponents of the atomic view may re-
spond that such similarities between categories



would emerge anyway when using a single classi-
fier that decides the entire semantic triple in one go
(provided that enough training data is available). In
addition, if each slot is categorized separately, it is
not certain that the resulting three values would
constitute a permissible semantic triple (as men-
tioned in Section 2.1, about 80% of the possible
combinations are illegal). In contrast, if a single
classifier is used, the result will always be a legal
triple, since only legal triples appear in the training
material.

The statistical classifier actually used in the live
call routing system treats categories as atomic enti-
ties and, as mentioned in the introduction, it works
well. The encouraging numbers bear out that the
“atomic” view is viable when lots of data is at
hand. On the other hand, if training data is sparse,
one might consider using a hand-written, rule-
based classifier, and in these cases the multi-slot
view seems more natural.

4.2 Rule-based multi-slot classification

To obtain a baseline for the performance of the
statistical classifier used in the live system, we im-
plemented an alternative classifier that solves the
classification task using hand-written rules. Thus,
the purpose of this was to investigate the perform-
ance of a naive classification method, and use that
for comparison with other methods. In addition,
the rule-based classifier provides an example of
how the multi-slot approach can support the inclu-
sion of human a priori domain knowledge into the
classification process.

The rule-based classifier has three kinds of
rules: Firstly, phrase-spotting rules associate a
word or a phrase with a value for a semantic slot
(i.e. a family, an intention, or an object). Rules of
the second kind are domain axioms that encode
invariant relationships, such as the fact that ob-
ject=SIMcard implies family=mobileTelephony.
Finally, rules of the third kind specify how seman-
tic values can be combined into a legal semantic
triple (these rules are also used for manual tagging,
as mentioned in Section 2.1). Each semantic value
is also (manually) given a score that reflects its
information content; a higher score means that the
value contains more information. For instance, the
value subscription has a lower information score
than have the names of specific subscription types
that TeliaSonera offers its customers.
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The classifier works in three phases, which we
will demonstrate on a running example. In the first
phase, it applies the phrase-spotting rules to the
input sentence, returning a list of slot-value pairs.
For instance, the input sentence “I want to order a
new SIM card” would yield the list [ infen-
tion=order, object=SIMcard ], using rules trigger-
ing on the phrases “order” and “SIM card” in the
input sentence.

Secondly, the classifier adds semantic compo-
nents as a result of applying the domain axioms to
members of the list. Using the domain axiom men-
tioned above, the semantic component fam-
ily=mobileTelephony would be added to the list,
due to the presence of object=SIMcard. Thus, after
the two first phases, the intermediate result in this
example is [intention=order, object=SIMcard,
family=mobileTelephony].

In the final phase, semantic components are se-
lected from the list to form a semantic triple. In the
example, this step is straightforward since the list
contains exactly one value for each component,
and these values are combinable according to the
combination rules. The final result is:

( mobileTelephony, order, SIMcard )

In cases where the semantic values in the list are
not combinable (a situation often originating from
a speech recognition error), one or several values
have got to be relaxed to unknown. According to
our experiments, the best heuristic is to first relax
the object component and then the intention com-
ponent. For example, in the list [family = fixed-
Telephony, intention=order, object=SIMcard), the
first and third elements are not combinable; thus
this list yields the triple:

(fixedTelephony, order, unknown )

In the case where some slots are not filled in
with a value, the values of those slots are set to
unknown. Thus, the list [ family=fixedTelephony,
intention=order | would also yield the semantic
triple above.

Finally, consider the case where the input list
contains more than one value for one or several
slots. In this case, the algorithm picks the value
with the highest information content score. For
instance, consider the utterance “I want to have a
broadband subscription, this eh ADSL I’ve read



about”. After the first two phases, the algorithm
has found family=broadband, intention=order,
and two possible values for the object slot, namely
object=subscription and object=ADSL. Since the
latter has higher information score, the final result
is:

( broadband, order, ADSL )

The rule-based classifier was developed in about
five man-weeks, and contains some 3,000 hand-
written rules. When evaluated on a set of 2,300
utterances, it classified 67% of the utterances cor-
rectly. Thus, not surprisingly, its performance is
significantly below the statistical classifier used in
the deployed system. Still, the rule-based approach
might be a viable alternative in less complex do-
mains. It might also be usable for data collection
purposes in early prototypes of natural-language
call routing systems.

S Evaluation of call-routing dialogues
5.1 Motivation

An important issue in the development of any dia-
logue system is the selection of an evaluation met-
ric to quantify performance improvements. In the
call-routing area, there have been many technical
papers specifically comparing the performance of
classifiers, using standard metrics such as accuracy
of the semantic categories obtained over a test cor-
pus (see e.g. Kuo and Lee, 2000, and Sarikaya et
al., 2005). Accuracy is then stated as a percentage
figure showing the degree of the categories that
have been completely correctly classified, given
that categories are atomic. There have also been
some design-oriented papers that try to assess the
effects of different prompt styles by looking at the
proportion of routable versus unroutable calls
given callers’ first utterances. Thus, both of these
strands of work base their evaluations on binary
divisions between correct/incorrect and rout-
able/unroutable, respectively. Furthermore, they
both constitute utterance-based metrics in the sense
that they focus on the outcome of a single system—
caller turn.

An excellent example of a design-oriented call-
routing paper is Williams and Witt (2004), which
among other things compares open and directed
prompt styles in the initial turn of the dialogue.
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Williams and Witt divide callers’ responses into
Routable (if the utterance contained sufficient in-
formation for the call to be routed) or Failure (if
the utterance did not contain sufficient information
for routing). Depending on why a call is not rout-
able, Williams and Witt further subdivide instances
of Failure into three cases: Confusion (utterances
such as “Hello?” and “Is this a real person?”),
Agent (the caller requests to speak to a human
agent), and Unroutable (which corresponds to ut-
terances that need disambiguation). Thus, Williams
and Witt’s performance metric uses altogether four
labels. (In addition, they have three labels related
to non-speech events: silence, DTMF and hang-up.
Since such events are not handled by the classifier,
they fall outside of the scope of this paper.)

Although all of Williams’ and Witt’s measures
are needed in evaluating call-routing dialogue, the
field clearly needs more in-depth evaluation. In
particular, we need more fine-grained metrics in
order to probe more exactly to what extent Failure
actually means that the dialogue is off track. Fur-
thermore, given that call-routing dialogues typi-
cally consist of between one and (say) five turns,
we need not just utterance-based metrics, but also
dialogue-based metrics — in other words, being
able to evaluate the efficiency of an overall dia-
logue.

5.2 Utterance-based metrics

When assessing the performance of classification
methods, it is perfectly reasonable to use the binary
distinction correct/incorrect if only few categories
are used. In such a context it can be assumed that
different categories correspond to different de-
partments of the organization, and that a misclassi-
fication would lead the call being routed the wrong
way. However, with a richer category system, it is
important to realize that the classifier can be par-
tially correct. For instance, if the caller expresses
that he wants technical support for his broadband
connection, then the information that the purpose
of the call has something to do with broadband is
surely better than no information at all. If the sys-
tem obtains this information, it could ask a directed
follow-up question: OK broadband. Please tell me
if your call concerns an order, billing, deliveries,
support, error report, or something else, or some-
thing to that effect. Otherwise, the system can only
restate the original question.



In the field of task-oriented dialogue, several
evaluation metrics have been put forward that go
beyond a simple division into correct/incorrect. In
particular, concept accuracy (Boros et al. 1996) is
an attempt to find a semantic analogue of word
accuracy as used in speech recognition. Basically,
the idea is to compute the degree of correctness of
a semantic analysis based on a division of the rep-
resentation into subunits, and by taking into ac-
count insertions, deletions and replacements of
these subunits.

Making use of our multi-slot semantics, we can
take subunits to correspond to semantic slot values.
An insertion has occurred if the classifier spuri-
ously has added information to some slot value
(e.g. if the classifier outputs the value broadband
for the family slot, when the correct value is inter-
net or unknown). Conversely, a deletion has oc-
curred when semantic triple output from the
classifier contains a slot value which is situated
lower than the correct value in the information or-
dering (a part of which is depicted in Figure 2).
Finally, a replacement has occurred when the com-
puted slot value and the correct slot value are unre-
lated in the information ordering.

By using concept accuracy as an evaluation met-
ric for classifiers rather than the binary distinction
correct/incorrect, we can arrive at more informa-
tive assessments. This possibility is brought about
by the multi-slot structure of categories.

5.3 Dialogue-based metrics

In the literature, there have also been proposals for
dialogue-based metrics. In particular, Glass et al.
(2000) put forward two such metrics, query density
(OD) and concept efficiency (CE). Query density is
the mean number of new “concepts” introduced
per user query, assuming that each concept corre-
sponds to a slot—filler pair in the representation of
the query. For example, a request such as “I"d like
a flight from Stockholm to Madrid on Sunday af-
ternoon” would introduce three new concepts, cor-
responding to departure, destination and time.
Query density thus measures the rate at which the
user communicates content. In contrast, concept
efficiency measures the average number of turns it
takes for a concept to be successfully understood
by the system. Concept efficiency thus measures
the rate at which the system understands content.
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Using the multi-slot semantics, we can adapt the
notions of query density and concept efficiency in
order to arrive at a more fine-grained performance
metric for call routing. The basic idea is to regard
every element in the semantic triple as one “con-
cept”. We can then obtain a measure of how in-
formation increases in the dialogue by computing
the difference between triples in each user utter-
ance, where “difference” means that the values of
two corresponding elements are not equal.

An example of computing query density is given
below. We assume that the value of the semantic
triple is initially (unknown, unknown, unknown).

System: Welcome to TeliaSonera. How may I help
you?
Caller: Fixed telephony.
(fixedTelephony, unknown, unknown)
1 new concept
System: Could you tell me some more about what
you want to do?
Caller: I can’t use my broadband while I'm speak-
ing on the phone.(broadband, reportProb-
lem, lineOrPhone)
3 new concepts

Note that query density and concept efficiency
are both applicable on a per-utterance basis as well
as on the whole dialogue (or indeed arbitrary
stretches of the dialogue). To compute these meas-
ures for the whole dialogue, we simply compute
the mean number of new concepts introduced per
user utterance and the average number of turns it
takes for a concept to be successfully understood,
respectively.

The principal application of this methodology is
to measure the effectiveness of system utterances.
When using a fine-grained system of categories, it
is important that callers express themselves at a
suitable level of detail. Too verbose user utterances
are usually difficult to analyse, but too telegraphic
user utterances are not good either, as they most
often do not contain enough information to route
the call directly. Therefore it is very important to
design system utterances so as to make users give
suitably expressive descriptions of their reasons for
calling.

By using the query density metric it is possible
to asses the effectiveness (in the above sense) of
different alternative system utterances at various
points in the dialogue, most notably the first sys-



tem utterance. Again, this possibility is brought
about by the multi-slot structure of categories. It is
also possible to evaluate more general dialogue
strategies over longer stretches of dialogue (e.g.
the use of general follow-up questions like “Could
you please tell me some more about what you want
to do” as opposed to more directed questions like
“Please tell me if your call concerns an order, bill-
ing, deliveries, support, error report, or something
else”). By calculating the average query density
over a number of consecutive utterances, it is pos-
sible to compare the relative merits of different
such dialogue strategies.

We have not yet adopted this metric for evalua-
tion of dialogues from the live system. However,
elsewhere we have applied it to dialogues from the
initial Wizard-of-Oz data collection for the Telia-
Sonera call routing system (Wirén et al. 2007).
Here, we used it to compare two styles of disam-
biguation prompts, one completely open and one
more directed.

6 Concluding remarks

In the literature, the natural-language call routing
problem is often presented as the problem of clas-
sifying spoken utterances according to a set of
atomic categories. The hypothesis underlying this
paper is that this view is inadequate, and that there
is a need for a more structured semantics. We base
our claims on experiences gathered from the de-
velopment and deployment of the TeliaSonera call
center, for which we developed a multi-slot system
of categories.

A multi-slot semantics offers several advan-
tages. First of all, it makes the set of categories
manageable for human taggers, and provides a
means to break down the tagging task into sub-
tasks. Furthermore, we have shown how multi-slot
semantics for call-routing systems allows straight-
forward division of categories into routing catego-
ries and disambiguation categories, the possibility
of multi-slot categorization, and the use of more
fine-grained evaluation metrics like concept accu-
racy and query density.
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Abstract

This paper presents a series of measure-
ments of the accuracy of speech under-
standing when grammar-based or robust
approaches are used. The robust ap-
proaches considered here are based on sta-
tistical language models (SLMs) with the
interpretation being carried out by phrase-
spotting or robust parsing methods. We
propose a simple process to leverage ex-
isting grammarsand logged utterances
to upgrade grammar-based applications to
become more robust to out-of-coverage
inputs. All experiments herein are run
on data collected from deployed directed
dialog applications and show that SLM-
based techniques outperform grammar-
based ones without requiring any change
in the application logic.

hand-crafted rules (context-free grammars - CFGSs).
The apparent reasons for this are the up-front cost
and additional delays of collecting domain-specific
utterances to properly train the SLM (not to men-
tion semantic tagging needed to train the call router)
(Hemphill et al, 1990; Knight et al, 2001; Gorin et
al, 1997). Choosing to use a grammar-based ap-
proach also makes the application predictable and
relatively easy to design. On the other hand, these
applications are usually very rigid: the users are al-
lowed only a finite set of ways to input their requests
and, by way of consequences, these applications suf-
fer from high out-of-grammar (OOG) rates or out-
of-coverage rates.

A few studies have been published compar-
ing grammar-based and SLM-based approaches to
speech understanding. In (Knight et al, 2001),
a comparison of grammar-based and robust ap-
proaches is presented for a user-initiative home au-
tomation application. The authors concluded that
it was relatively easy to use the corpus collected

during the course of the application development to
train a SLM which would perform better on out-
The bulk of the literature on spoken dialog systemsf-coverage utterances, while degrading the accu-
is based on the simple architecture in which theacy on in-coverage utterances. They also reported
input speech is processed by a statistical languagjgat the SLM-based system showed slightly lower
model-based recognizer (SLM-based recognizer) tword error rate but higher semantic error rate for
produce a word string. This word string is furtherthe users who know the application’s coverage. In
processed by a robust parser (Ward, 1990) or cglRayner et al, 2005), a rigorous test protocol is pre-
router (Gorin et al, 1997) to be converted in a sesented to compare grammar-based and robust ap-
mantic interpretation. However, it is striking to segproaches in the context of a medical translation sys-
that a large portion of deployed commercial applitem. The paper highlights the difficulties to con-
cations do not follow this architecture and approachktruct a clean experimental set-up. Efforts are spent
the recognition/interpretation problem by relying orto control thetraining set of both approaches to

1 Introduction
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have them align. Theraining sets are defined as 3. Leverage existing grammars

the set of data available to build each system: for a o .

ple dlalggs. (ten Bosch, 2005) presents experlments5. Simple process that requires little manual inter-
comparing grammar-based and SLM-based systems vention

for naive users and an expert user. They conclude

that. the SLM-based system is most effective in rethe first constraint dictates that, for each context,
ducing the error rate for naive users. Recently (s&fe interpretation engines (from the current and up-

(Balakrishna et al, 2006)), a process was presentggaded systems) must return the same semantics (i.e.
to automatically build SLMs from a wide variety same set of slots).

of sources (in-service data, thesaurus, WordNet andTe rest of this paper is organized as follows. The

world-wide web). Results on data from commernext Section describes the applications from which
cial speech applications presented therein echo eghe data was collected, the experimental set-up and
lier results (Knight et al, 2001) while reducing thethe accuracy measures used. Section 3 describes
effort to build interpretation rules. how the semantic truth is generated. The main re-
Most of the above studies are not based on dagyits of the upgrade from grammar-based to SLM-
collected on deployed applications. One of the corpased recognition are presented in Section 4. The
clusions from previous work, based on the measureglrget audience for this paper is composed of appli-
fact that in-coverage accuracy of the grammar-basegtion developers and researchers that are interested
systems was far better than the SLM one, was th@ the robust information extraction from directed

as people get more experience with the applicationgialog speech applications targeted at the general
they will naturally learn its coverage and gravitateyyplic.

towards it. While this can be an acceptable option
for some types of applications (when the user po2 Applications, corpus and experimental
ulation tends to be experienced or captive), it cer- set-up
tainly is not a possibility for large-scale commercial o o
applications that are targeted at the general public. 1 APPlication descriptions
few examples of such applications are public transis mentioned eatrlier, the data for this study was col-
schedules and fares information, self-help applicdected on deployed commercial directed dialog ap-
tions for utilities, banks, telecommunications busiplications. AppA is a self-help application in the in-
ness, and etc. Steering application design and rternet service provider domain, while AppB is also
search based on in-coverage accuracy is not suitalsleself-help application in the public transportation
for these types of applications because a large fradomain. Both applications are grammar-based di-
tion of the users are naives and tend to use more n#gcted dialogs and receive a daily average of 50k
ural and unconstrained speech inputs. calls. We will concentrate on a subset of contexts
This paper exploits techniques known since thédialog states) for each application as described in
90’s (SLM with robust parsing, (Ward, 1990)) andTable 1. Themainmenu grammars (each application
applies them to build robust speech understandirfags its ownmainmenu grammar) contain high-level
into existing large scale directed dialog grammartargets for the rest of the application and are active
based applications. This practical application ofnce the initial prompt has been played. Tdoen
(Ward, 1990; Knight et al, 2001; Rayner et al, 2005fmand grammar contains universal commands like
ten Bosch, 2005) is cast as an upgrade problefelp”, “agent”, etc. Theorigin and destination
which must obey the following constraints. grammars contain a list of 2500 cities and states
with the proper prefixes to discriminate origin and
1. No change in the application logic and to thedestination.num_type_passenger accepts up to nine
voice user interface (VUI) passengers of types adults, children, seniors, etc.
Finally time is self explanatory. For each applica-
2. Roughly similar CPU consumption tion, the prompt directs the user to provide a specific
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Context Description Active grammars | Training | Testing
sentences utts
AppA_MainMenu || Main menu mainmenu and 5000 5431
for the application commands (350) (642)
AppB_MainMenu || Main menu mainmenu and 5000 4039
for the application commands (29) (987)
AppB_Origin Origin of travel origin, destination 5000 8818
and commands | (20486) | (529)
AppB_Passenger || Number and type | num.type passenger 1500 2312
of passenger and commands | (32332) (66)
AppB_Time Time of departure| time and commands 1000 1149
(4102) (55)

Table 1: Description of studied contexts for each applicatNote that the AppBOrigin context contains a
destination grammar: this is due to the fact that the same set of gramnessiged in the AppBestination
context (not studied here). “Training” contains the numtifdraining sentences drawn from the corpus and
used to train the SLMs. As mentioned in Sec. 2.3, in the casead SLMs, we also use sentences that are
covered by the grammars in each context as backoffs (se@pdthe number of unique sentences covered
by the grammars is in parenthesis in the “Training” columhe TTesting” column contains the number of
utterances in the test set. The number of those utteranaesdahtain no speech (noise) is in parenthesis.

piece of information (directed dialog). Each gram2.3 Experimental set-up description
mar fills a single slot with that information. The in- . .
. . . p he baseline system is the grammar-based system;
formation contained in the utterance “two adults an . .
the recognizer uses, on a per-context basis, the gram-

one child” (AppB.Passenger context) would be col- . . .
lapsed to ﬁ(” tpr:Oenum_typeg_lpassenger)slot with the Mars listed in Table 1 in parallel. The SLM systems

value “Adult2 Child1”. From the application point studied all used the same interpretation engine: ro-

of view, each context can fill only a very limited setbuSt parsing with the grammars listed in Table 1 as

: . rules to fill slots. Note that this allows the applica-
of slots. To keep results as synthesized as possible, . . .
téion logic to stay unchanged since the set of potential

unless otherwise stated, the results from all studie - . .
. L ots returned within any given context is the same as
contexts will be presented per application: as sucf1

: . or the grammar-based systems (see first constraint
results from all contexts in AppB will be pooled to-. . ; .
gether, in Sec. 1). Adhering to this experimental set-up also

guarantees that improvements measured in the lab
will have a direct impact on the raw accuracy of the
deployed application.

We have considered two different SLM-based
systems in this study: standard SLM (wordSLM)
Table 1 presents the details of the corpus that wend class-based SLM (classSLM) (Jelinek, 1990;
have used for this study. As mentioned above the efillett and Ward, 1998). In the classSLM systems,
tire corpora used for this study is drawn from comihe classes are defined as the rules of the interpre-
mercially deployed systems that are used by the getation engine (i.e. the grammars active for each
eral public. The user population reflects realisticontext as defined in Table 1). The SLMs are all
usage (expert vs naive), noise conditions, handsetsained on a per-context basis (Xu and Rudnicky,
etc. The training utterances do not contain noise u000; Goel and Gopinath, 2006) as bi-grams with
terances and is used primarily for SLM training (ndWitten-Bell discounting. To insure that the word-
acoustic adaptation of the recognition models is pe6LM system covered all sentences that the grammar-
formed). based system does, we augmented the training set of

2.2 Corpus description
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Figure 1: ROC curves for AppMainMenu with the automatic or human-generated truth. Ichehe
grammar-based and SLM-based systems are compared.

the wordSLM (see Table 1) with the list of sentences e Recall = #slot correct slots (slot name and
that are covered by the baseline grammar-based sys- value) / #slots potential slots (in truth)

tem. This acts as a backoff in case a word or bi- gjnce applications use confidence extensively to
gram is not found in the training set (not to be conyjige the course of dialogue, it is of limited interest
fused with bi-gram to uni-gram backoffs found iny, gtdy forced-choice accuracy (accuracy with no
standard SLM training). This is particularly helprIrejection). Hence, we will present receiver operat-
when a little amount of data is available for traininging characteristic (ROC) curves. The slot confidence
the wordSLM (see Sec. 4.3). measure is based on redundancy of a slot/value pair
across the NBest list. For CA-in and FA-total, the
confidence is the average confidence of all slots
Throughout this paper, we will use two sets of meapresent in the utterance. Note that in the case where

sures. This is motivated by the fact that applicagach utterance only fills a single slot, CA-in = Re-
tion developers are familiar with the concepts of corgg)|.

rect/false acceptance at the utterance level. For in-
formation extraction (slot filling) from utterances,3 Truth

these concepts are restrictive because an utterangge 1 the |arge amount of data processed (see Table
can be partly correct or wrong. In thls_ case we prel), semantic tagging by a human may not be avail-
fer a more relevant measure from the information respe ¢ ail contexts (orthographic transcriptions are
trieval field: precision and recall on a per-slot basis, ilapje however). We need to resort to a more au-
We use the following definitions. tomatic way of generating the truth files while main-

e CA-in = #utts that had ALL slots correct (SlOt ta!nlng a strong confidence in our measurements. To

name and value) / #utts that are in—coveragg:cIS end, \/t\(e n‘tahe d tto tinSl'JITe tr][att)_any([r? utomal'ilc }[/vay
(i.e. truth has at least a slot filled) ot generating the truth witt not bias the resufts to-

wards any of the systems.

o FA-total = #utts that had at least one erroneous The automatic truth can be generated by simply

slot (slot name or value) / total #utts using the robust parser (see Sec. 2.3) on the or-
thographic transcriptions which are fairly cheap to

e Precision = #slot correct slots (slot name an@cquire. This will generate a semantic interpreta-
value) / #slots returned by system tion for those utterances that contain fragments that

2.4 Accuracy measures
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parse rules defined by the interpretation engine. THie any rule for each of the interpretation engines.
human-generated truth is the result of semanticallyhese include noise utterances as described in Table
tagging all utterances that didn't yield a full parsel. If we remove the noise utterances, going from
by one of the rules for the relevant context. the grammar-based interpretation to an SLM-based

Figure 1 presents the ROC curves of human amhe reduces the out-of-coveragediys. This result
automatic truth generation for the grammar-based interesting because the data was collected from
and wordSLM systems. We can see that human sdirected-dialog applications which should be heav-
mantic tagging increases the accuracy substantialify guiding the users to the grammar-based system’s
but this increase doesn’t seem to favor one systenoverage.
over the other. We are thus led to believe that in our ) )
case (very few well defined non-overlapping classeéy2 Results with recognizer
the automatic truth generation is sufficient. ThisSThe main results of this paper are found in Fig-
would not be the case, for example if for a given conure 2. It presents for grammar-based, wordSLM
text atime grammar andgiumber were active classes. and classSLM systems the four measurements men-
Then, an utterance like “seven” might lead to an ettioned in Sec.2.4 for AppA and AppB. We have
roneous slot being automatically filled while a huimanaged, with proper Viterbi beam settings, to keep
man tagger (who would have access to the entire dia the increase in CPU (grammar-based system
alog) would tag it correctly. SLM-based system) betwe&¥ and24% relative.

In our experiments, we will use the hu-We can see that the wordSLM is outperforming the
man semantically tagged truth when availablelassSLM. The SLM-based systems outperform the
(AppA_MainMenu and AppBOrigin). We have grammar-based systems substantially30 — 50%
checked that the conclusions of this paper are netror rate reduction on most of the confidence do-
altered in any way if the automatic semanticallymain). The only exception to this is the classSLM
tagged truth had been used for these two contextsin AppA: we will come back to this in Sec. 4.4.

_ This can be interpreted as a different conclusion than

4 Results and analysis those of (Knight et al, 2001; ten Bosch, 2005). The
4.1 Out-of-coverage analysis discrepancy can be tied to the fact that the data we
are studying comes from a live deployment targeted

Context (#utts) grammar-|] SLM-based to the general public. In this case, we can make

based the hypothesis that a large fraction of the popula-

- tion is composed of naive users. As mentioned in
ﬁppg_k/l/l:ilr?ll\\/lﬂsgﬂ 1;23 1228 (ten Bosch, 2005), SLM-based systems perform bet-
PbB- — ter than grammar-based ones on that cross-section of

AppB_Origin 1617 1161 the user population.

AppB_P.assenger 492 414 One might argue that the comparison between the
AppB_Time 327 309 grammar-based and wordSLM systems is unfair be-

Table 2: Number of utterances out-of-coverage forause the wordSLM intrinsically records tagriori
each context. probability that a user says a specific phrase while

the grammar-based system studied here didn't ben-

Coverage is a function of the interpretation enefit from this information. In Sec. 4.4, we will ad-
gine. We can readily analyze the effect of goinglress this and show thatpriori has a negligible ef-
from a grammar-based interpretation engine (granfect in this context.
mars in Table 1 are in parallel) to the robust ap- Note that these impressive results are surprisingly
proach (rules from grammars in Table 1 are useedasy to achieve. A simple process could be as fol-
in robust parsing). This is simply done by runningows. An application is developed using grammar-
the interpretation engine on the orthographic trarbased paradigm. After a limited deployment or pilot
scriptions. As expected, the coverage increased. Taith real users, a wordSLM is built from transcribed
ble 2 shows the number of utterances that didntiorthographic) data from the field. Then the recog-

80



CA-in/EA-total Recall/Precision

1l ———————
0.95 r
. 09 r
_ 06} §
'Z(T) 'g 0.85 r
04 |/ a
/ 0.8
0.2y grammar-based (73ms) - 1 0.75 grammar-based (73ms) ----- - E
wordSLM (74ms) wordSLM (74ms)
0 . classSLM (108ms) == 07 _classSLM (108ms) ----#--- .
0 005 01 015 0.2 025 03 0.35 0 0.2 0.4 0.6 0.8 1
FA-total Recall
AppA
CA-in/EA-total Recall/Precision
1 ————— T T
1 T T T T T L T
0.95
09
<
c 3
< 'g 0.85
© &
0.8
0.2 grammar-based (94ms) ------- i 0.75 r  grammar-based (94ms) ----- - -
wordSLM (117ms) wordSLM (117ms) :
0 . classSLM (113ms) - 0.7 ClassSLM (113ms) - .
0O 005 01 015 0.2 025 03 0.35 0 0.2 0.4 0.6 0.8 1
FA-total Recall
AppB

Figure 2. ROC curves for AppA (top) and AppB (bottom). In palesis is the average time for the
recognition and interpretation.

nition and interpretation engines are upgraded. Theomplexity of grammars (see Section 2). On one
grammars built in the early stages of developmeritand, the grammars for AppMainMenu can cover
can largely be re-used as interpretation rules. a total of 350 unique sentences while ApgBigin
can cover over 20k. As the amount of training
4.3 Amount of training data for SLM training data for the SLMs is reduced from 5000 down to

For the remaining Sections, we will use precisior?>0 sentences, the accuracy for AppRinMenu
and recall for simplicity. We will discuss an ex-is only perceptibly degraded for the wordSLM and
treme case where only a subset of 250 sentenc@@ssSLM systems on the entire confidence domain
from the standard training set is used to train théot shown here). On the other hand, in the case
SLM. We have run experiments with two contextsOf the more complex grammar (class), it is a dif-
AppA_MainMenu and AppBOrigin. These con- ferent story which highlights a second regime. For
texts are useful because a) we have the humafippB-Origin, the precision and recall curve is pre-
generated truth and b) they represent extremes in thented on Figure 3. In the case of classSLM (left),
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Figure 3: Precision and recall for the ApgBrigin context as the amount of training data for the SLMs is
reduced. On the left, classSLM systems are presented; aigtttét is the wordSLM.

even with very little training data, the accuracy idection is based on common stem with a word in the
far better than the grammar-based system and onyammar.

slightly degraded by reducing the size of the training The second caveat is based on fact that the
set. In the case of wordSLM (right), we can still segassSLM suffers from a lack of prior information
that the accuracy is better than the grammar-bas@gce the decoding process enters a specific class
system (refer to “wordSLM - 250" on the graph),since the grammars (class) do not contain priors.
but the reduction of training data has a much morgne wordSLM benefits from the full prior informa-
visible effect. If we remove the sentences that wergg g along the search. We have solved this by
drawn from the grammar-based system’s coveraggyining a small wordSLMwithin each grammar
(backoff - see Sec. 2.3), we can see that the drop {glass): for each grammar, the training set for the
accuracy is even more dramatic. small wordSLM is composed of the set of fragments
from all utterances in the main training set that fire
4.4 Coverage of interpretation rules and priors  that specific rule. Note that this represents a way

As seen in Sec. 4.2, the classSLM results for AppAC have the grammar-based and SLM-based systems
are disappointing. They, however, shed some ligiihare a commotraining set (Rayner et al, 2005).

on two caveats of the robust approach described In Figure 4, we show the effect of increasing the
here. The first caveat is the coverage of the interpreoverage and adding priors in the grammars. The
tation rules. As described in Sec. 2, the SLM-basefirst conclusion comes in comparing the grammar-
systems’ training sets and interpretation rules (granibased results with and without increased coverage
mars from Table 1) were built in isolation. This can(enhanced+priors in figure) and priors. We see that
have a dramatic effect: after error analysis of théhe ROC curves are one on top of the other. The only
classSLM system’s results, we noticed a large fradifferences are: a) at low confidence where the en-
tion of errors for which the recognized string was danced+priors version shows better precision, and
close (semantically identical) variant of a rule in theb) the CPU consumption is greatly reduced (73ms
interpretation engine (“cancellations” vs “cancella— 52ms). When the enhanced+priors version of
tion”). In response, we implemented a simple toothe grammars (for classes and interpretation rules)
to increase the coverage of the grammars (and heniseused in the context of the classSLM system, we
the coverage of the interpretation rules) using the listan see that there is a huge improvement in the accu-
of words seen in the training set. The criteria for seracy: this shows the importance of keeping the SLM

82



Recall/Precision 6 Acknowledgements

TN The author would like to acknowledge the helpful
0.95 discussions with M. Fanty, R. Tremblay, R. Lacou-
ture and K. Govindarajan during this project.
0.9 t
c
S
2]
5 085 References
. 08 b W. Ward. 1990. The CMU Air Travel Information Ser-
' g vice: Understanding spontaneous speekloc. of the
0.75 [gram.-based - enh gr:ggnd;%artisoerg 572nm13 Tl Speech and Natural Language Workshop, Hidden Val-
' | ' X classSLM (108ms) —— i ley PA, pp. 127-129.
LM - 1 7 ......... .. i .
0.7 class3 enhanced+priors (79ms) A.L. Gorin, B.A. Parker, R.M. Sachs and J.G. Wilpon.
0 0.2 04 0.6 0.8 1 1997. How may | help you? Speech Communica-

Recall tions, 23(1):113-127.

; . . _C. Hemphill, J. Godfrey and G. Doddington. 1990. The
Flgure.4. RO_C curves for AppA showing the ef_ ATIS spoken language systems and pilot corprrsc.
fect of increasing the grammar coverage and adding f the Speech and Natural Language Workshop, Hid-

prior information in the grammars. den Valley PA, pp. 96-101.

S. Knight, G. Gorrell, M. Rayner, D. Milward, R. Koel-
ing and I. Lewin. 2001. Comparing grammar-based

and interpretation rules in-sync. The final classSLM and robust approaches to speech understanding: a case
ROC curve (Figure 4) is now comparable with its Study-Proc. of EuroSpeech.

wordSLM counter-part (Figure 2 upper right graph) M. Rayner, P. Bouillon, N. Chatzichrisafis, B.A. Hockey,
M. Santaholma, M. Starlander, H. Isahara, K. Kanzaki
and Y. Nakao. 2005. A methodology for comparing
) grammar-based and robust approaches to speech un-
5 Conclusion derstandingProc. of EuroSpeech.

L. ten Bosch. 2005. Improving out-of-coverage lan-
We have demonstrated in this paper that grammar- guage modelling in a multimodal dialogue system us-
based systems for commercially deployed directed N9 Small training setsroc. of EuroSpeech.
dialog applications targeted at the general publiw. Balakrishna, C. Cerovic, D. Moldovan and E. Cave.
can be improved substantially by using SLMs with 2006. Automatic generation of statistical language
robust parsing. This conclusion is different than g‘r%ge('jlfcosrl_gterac“"e voice response applications.
(Rayner et al, 2005) and can be attributed to that fact ' '
that the general public is likely composed of a largd. Gillett and W. Ward. 1998. A language model com-
portion of naive users. We have sketched a very sim- bining tri-grams and stochastic context-free grammars.
ple process to upgrade an application from using a Fr¢ Of ICSLP.
grammar-based approach to a robust approach whenjelinek. 1990. Readings in speech recognition, Edited
in-service data and interpretation rules (grammars) by A. Waibel and K.-F. Lee , pp. 450-506. Morgan
are available. We have also shown that only a very Kaufmann, Los Altos.
small amount of data is necessary to train the SLM#. xu and A. Rudnicky. 2000. Language modeling for
(Knight et al, 2001). Class-based SLMs should be dialog systemProc. of ICSLP.
favorgd n the' case where the amount of trainin . Goel and R. Gopinath. 2006. On designing context
data is low while word-based SLMs should be used gensitive language models for spoken dialog systems.
when enough training data is available. In the case Proc. of ICSLP.
of non-overlapping classes, we have demonstrated
the soundness of automatically generated semantic
truth.

83



WIRE: A Wearable Spoken Language Understanding
System for the Military

Helen Hastie

Patrick Craven

Michael Orr

Lockheed Martin Advanced Technology Laboratories
3 Executive Campus
Cherry Hill, NJ 08002

{hhastie, pcraven,

Abstract

In this paper, we present the WIRE system for
human intelligence reporting and discuss chal-
lenges of deploying spoken language under-
standing systems for the military, particularly
for dismounted warfighters. Using the
PARADISE evaluation paradigm, we show that
performance models derived using standard
metrics can account for 68% of the variance of
User Satisfaction. We discuss the implication of
these results and how the evaluation paradigm
may be modified for the military domain.

1 Introduction

Operation Iraqi Freedom has demonstrated the
need for improved communication, intelligence,
and information capturing by groups of dis-
mounted warfighters (soldiers and Marines) at the
company level and below. Current methods of col-
lecting intelligence are cumbersome, inefficient
and can endanger the safety of the collector. For
example, a dismounted warfighter who is collect-
ing intelligence may stop to take down notes, in-
cluding his location and time of report or
alternatively try to retain the information in mem-
ory. This information then has to be typed into a
report on return to base. The authors have devel-
oped a unique, hands-free solution by capturing
intelligence through spoken language understand-
ing technology called WIRE or Wearable Intelli-
gent Reporting Environment. Through WIRE,
users simply speak what they see, WIRE under-
stands the speech and automatically populates a
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report. The report format we have adopted is a
SALUTE report which stands for the information
fields: Size, Activity, Location, Unit, Time and
Equipment. The military user is used to giving in-
formation in a structure way, therefore, informa-
tion entry is structured but the vocabulary is
reasonably varied, an example report is “Size is
three insurgents, Activity is transporting weapons.”
These reports are tagged by WIRE with GPS posi-
tion and time of filing. The report can be sent in
real-time over 802.11 or radio link or downloaded
on return to base and viewed on a C2 Interface.
WIRE will allow for increased amounts of digit-
ized intelligence that can be correlated in space and
time to predict adverse events. In addition, pre and
post-patrol briefings will be more efficient, accu-
rate and complete. Additionally, if reports are
transmitted in real time, they have the potential to
improve situational awareness in the field.

This paper discusses the challenges of taking
spoken language understanding technology out of
the laboratory and into the hands of dismounted
warfighters. We also discuss usability tests and
results from an initial test with Army Reservists.

2 System Overview

WIRE is a spoken language understanding system
that has a plug-and-play architecture (Figure 1)
that allows for easy technology refresh of the dif-
ferent components. These components pass events
to each other via an event bus. The speech is col-
lected by an audio server and passed to the Auto-
matic Speech Recognizer (ASR) server, which is
responsible for converting the audio waveform into
an N-best list. The Natural Language (NL) under
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Figure 1. WIRE System Architecture

standing component executes a named-entity tag-
ger to tag and retain key text elements within the
each candidate N-best list element. The sets of
tagged entities are then parsed using a bottom-up
chart parser. The chart parser validates each named
entity tag sequence and generates a syntactic parse
tree. A heuristic is then applied to select the best
parse tree from the N-best list as the representative
spoken text. After a parse tree is selected, a seman-
tic parser is used to prune the parse tree and pro-
duce a semantic frame—a data structure that
represents the user's spoken text. The semantic
frame is then passed through a rule-based filter that
translates text as necessary for processing, e.g.,
converting text numbers to digits.

The semantic frame is then passed to the Dia-
logue Manager which decides what action to take
based on the most recent utterance and its context.
If the system is to speak a reply, the natural lan-
guage generation component generates a string of
text that is spoken by the Text-To-Speech engine
(TTS).

The WIRE spoken language understanding sys-
tem was fully developed by the authors with the
exception of the ASR, called Dynaspeak™, which
was developed by SRI International (Franco et al.,
2002) and the TTS engine from Loquendo S.p.A.
Grammars for the ASR and NL have to be written
for each new domain and report type.

In order for the system to adapt to the user’s en-
vironment, there are two modes of operation. /n-
teractive mode explicitly confirms what the user
says and allows the user to ask the system to read
back certain fields or the whole report. Alterna-
tively, in stealth mode, the user simply speaks the
report and WIRE files it immediately. In both

85

cases, audio is recorded as a back-up for report
accuracy.

3 Challenges of Deployment to Dis-
mounted Warfighters

The goal of WIRE is to provide a means of report-
ing using an interface that is conceptually easy to
use through natural language. This is particularly
challenging given the fluid nature of war and the
constant emergence of new concepts such as dif-
ferent types of Improvised Explosive Devices
(IEDs) or groups of insurgents. Another challenge
is that each unit has its own idiosyncrasies, call
signs and manner of speaking. Because WIRE is a
limited-domain system and it is not possible to in-
corporate all of this variability, we found training
to be a key factor in user and system performance
and acceptance.

A new challenge that phone-based or desk-top
systems have yet to face is the need for a mobile
spoken language understanding system that can be
worn by the user. From a software perspective,
WIRE has to have a small footprint. From a hard-
ware perspective, the system has to be lightweight,
robust, and rugged and must integrate with existing
equipment. Wearable computing is constantly
evolving and eventually WIRE will be able to run
on a system as small as a button. We have also
been working with various companies to create a
USB noise-canceling microphone similar to what
the military user is accustomed to.

4 Experiment Design

Fifteen Army Reservists and three former Marines
participated in WIRE usability tests in a laboratory
environment. The Reservists predominately pro-
vide drill-instructor support for Army basic train-
ing groups. The session began with a brief
introduction to the WIRE system. Following that,
participants reviewed a series of self-paced training
slides. They then completed two sets of four sce-
narios, with one set completed in stealth mode and
the other in interactive mode. A total of 523 utter-
ances were collected. Participants were asked to
complete five-question surveys at the end of each
set of scenarios. For the regression model de-
scribed below, we averaged User Satisfaction
scores for both types of interaction modes.



We adopted the PARADISE evaluation method
(Walker et al., 1997). PARADISE is a “decision-
theoretic framework to specify the relative con-
tribution of various factors to a system’s overall
performance.” Figure 2 shows the PARADISE
model which defines system performance as a
weighted function of task-based success measures
and dialogue-based cost measures. Dialogue costs
are further divided into dialogue efficiency meas-
ures and qualitative measures. Weights are calcu-
lated by correlating User Satisfaction with
performance.

MAXIMIZE USER
SATISFACTION

PN

MINIMIZE
COSTS

MAXTMIZE
TASK
SUCCESS

EFFICIENCY
MEASURES

Figure 2. PARADISE Model (Walker et al., 1997)

QUALITATIVE
MEASURES

The set of metrics that were collected are:

* Dialogue Efficiency Measures: User Turns,
Average Length of Utterance, Average Re-
sponse Latency and Platform.

* Dialogue Quality Measures: Word Accuracy.

* Task Success Measures: Report Accuracy,
Field Correctness for Size, Activity, Location,
Unit, Time and Equipment.

+ User Satisfaction: Average of User Ex-
pertise, User Confidence, System Trust,
Task Ease, Future Use.

User Satisfaction is the average of responses from a
survey of five questions on a five-point Likert scale
with five being the highest rating. These questions in-
clude:

* QI1: I knew what I could say at any point
(User Expertise).

*  Q2: I knew what I was doing at any point
in the dialog (User Confidence).

*  Q3: I trusted that WIRE accurately cap-
tured my report information (System
Trust).

*  Q4:1 felt like I could create and file a re-
port quickly (Task Ease).
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*  Q5: I would recommend that this system
be fielded (Future Use).

These questions are modified from the more tra-
ditional User Satisfaction questions (Walker et al.,
2001) that include TTS Performance and Expected
Behavior. TTS Performance was substituted be-
cause the voice is of such a high quality that it
sounds just like a human; therefore, the question is
no longer relevant. Expected Behavior was substi-
tuted for this study because WIRE is mostly user
initiative for the reporting domain.

The Task Success metric was captured by Re-
port Accuracy. This was calculated by averaging
the correctness of each field over the number of
fields attempted. Field correctness was scored
manually as either 1 or 0, depending on whether
the report field was filled out completely correctly
based on user’s intent. Partial credit was not given.

Various platforms were used in the experiment,
including laptops, tablet PCs and wearable com-
puters. The Platform metric reflects the processing
power with 0 being the highest processing power
and 1 the less powerful wearable computers.

5 Experimental Results

We applied the PARADISE model using the met-
rics described above by performing multiple linear
regression using a backward coefficient selection
method that iteratively removes coefficients that do
not help prediction. The best model takes into ac-
count 68% of the variance of User Satisfaction
(p=.01). Table 1 gives the metrics in the model
with their coefficients and p values. Note that the
data set is quite small (N=18, df=17), which most
likely affected the results.

Table 1. Predictive Power and Significance of Metrics

. Standardized
Metric Coefficients B p value
User Turns -0.633 0.01
Unit Field 0.735 0.00
Correctness
Platform -0.24 0.141

Results show an average User Satisfaction of 3.9
that is broken down into 4.09 for interactive mode
and 3.73 for stealth. The lowest medium user satis-
faction score was for System Trust (3.5), the high-
est for Task Ease (4.5).



Speech recognition word accuracy is 79%, how-
ever, Report Accuracy, which is after the speech
has been processed by the NL, is 84%. Individual
field correctness scores varied from 93% for Activ-
ity to 75% for Location. From previous tests, we
have found that word accuracy increases through
user training and experience up to 95%.

6 Interpretation and Discussion

These initial results show that the User Turns met-
ric is negatively predictive of User Satisfaction.
This is intuitive as the more user turns it takes to
complete a report the less satisfied the user.
(Walker et al., 2001) have similar findings for the
Communicator data where Task Duration is nega-
tively predictive of User Satisfaction in their model
(coefficient -0.15).

Secondly, Unit Field Correctness is predictive of
User Satisfaction. Given this model and the limited
data set, this metric may represent task completion
better than overall Report Accuracy. During the
test, the user can visually see the report before it is
sent. If there are mistakes then this too will affect
User Satisfaction. This is similar to findings by
(Walker et al., 2001) who found that Task Comple-
tion was positively predictive of User Satisfaction
(coefficient 0.45).

Finally, Platform is negatively predictive, in
other words: the higher the processing power
(scored 0) the higher the User Satisfaction and the
lower the processing power (scored 1) the lower
the User Satisfaction. Not surprisingly, users prefer
the system when it runs on a faster computer. This
means that the success of the system is likely de-
pendent on an advanced wearable computer. There
have been recent advances in this field since this
experiment. These systems are now available with
faster Intel processors and acceptable form factor
and battery life.

The User Satisfaction results show that areas of
improvement include increasing the trust in the
user (Q3). This challenge has been discussed pre-
viously for military applications in (Miksch et al.,
2004) and may reflect tentativeness of military
personnel to accept new technology. Trust in the
system can be improved by putting the system in
“interactive” mode, which explicitly confirms each
utterance and allows the user to have the system
read back the report before sending it. A Wilcoxon
signed-rank test (Z = 2.12, p < .05) indicated that
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scores for this question were significantly higher
for interactive mode (M = 3.93) than stealth mode
(M=3.27).

Our current evaluation model uses User Satis-
faction as a response variable in line with previous
PARADISE evaluations (Walker et al., 2001).
However, User Satisfaction may not be the most
appropriate metric for military applications. Unlike
commercial applications, the goal of a military sys-
tem is not to please the user but rather to complete
a mission in a highly effective and safe manner.
Therefore, a metric such as mission effectiveness
may be more appropriate. Similarly, (Forbes-Riley
and Litman, 2006) use the domain-specific re-
sponse variable, of student learning in their evalua-
tion model.

An obvious extension to this study is to test in
more realistic environments where the users may
be experiencing stress in noisy environments. Ini-
tial studies have been performed whereby users are
physically exerted. These studies did not show a
degradation in performance. In addition, initial
tests outside in noisy and windy environments em-
phasize the need for a high quality noise canceling
microphone. Further, more extensive tests of this
type are needed.

In summary, we have presented the WIRE spo-
ken language understanding system for intelligence
reporting, and we have discussed initial evalua-
tions using the PARADISE methods. Through ad-
vances in spoken language understanding,
hardware and microphones, this technology will
soon transition out of the laboratory and into the
field to benefit warfighters and improve security in
conflict regions.
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Abstract

A chatbot is a software system, which can
interact or “chat” with a human user in
natural language such as English. For the
annual Loebner Prize contest, rival chat-
bots have been assessed in terms of ability
to fool a judge in a restricted chat session.
We are investigating methods to train and
adapt a chatbot to a specific user’s lan-
guage use or application, via a user-
supplied training corpus. We advocate
open-ended trials by real users, such as an
example Afrikaans chatbot for Afrikaans-
speaking researchers and students in
South Africa. This is evaluated in terms of
“glass box” dialogue efficiency metrics,
and “black box™ dialogue quality metrics
and user satisfaction feedback. The other
examples presented in this paper are the
Qur'an and the FAQchat prototypes. Our
general conclusion is that evaluation
should be adapted to the application and
to user needs.

1 Introduction

“Before there were computers, we could distin-
guish persons from non-persons on the basis of an
ability to participate in conversations. But now, we
have hybrids operating between person and non
persons with whom we can talk in ordinary lan-
guage.” (Colby 1999a). Human machine conversa-
tion as a technology integrates different areas
where the core is the language, and the computa-
tional methodologies facilitate communication be-
tween users and computers using natural language.

A related term to machine conversation is the
chatbot, a conversational agent that interacts with
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users turn by turn using natural language. Different
chatbots or human-computer dialogue systems
have been developed using text communication
such as Eliza (Weizenbaum 1966), PARRY (Colby
1999b), CONVERSE (Batacharia etc 1999),
ALICE!. Chatbots have been used in different do-
mains such as: customer service, education, web
site help, and for fun.

Different mechanisms are used to evaluate
Spoken Dialogue Systems (SLDs), ranging from
glass box evaluation that evaluates individual
components, to black box evaluation that evaluates
the system as a whole McTear (2002). For exam-
ple, glass box evaluation was applied on the
(Hirschman 1995) ARPA Spoken Language sys-
tem, and it shows that the error rate for sentence
understanding was much lower than that for sen-
tence recognition. On the other hand black box
evaluation evaluates the system as a whole based
on user satisfaction and acceptance. The black box
approach evaluates the performance of the system
in terms of achieving its task, the cost of achieving
the task in terms of time taken and number of
turns, and measures the quality of the interaction,
normally summarised by the term ‘user satisfac-
tion’, which indicates whether the user “ gets the
information s/he wants, is s/he comfortable with
the system, and gets the information within accept-
able elapsed time, etc.” (Maier et al 1996).

The Loebner prize? competition has been used
to evaluate machine conversation chatbots. The
Loebner Prize is a Turing test, which evaluates the
ability of the machine to fool people that they are
talking to human. In essence, judges are allowed a
short chat (10 to 15 minutes) with each chatbot,
and asked to rank them in terms of “naturalness”.

ALICE (Abu Shawar and Atwell 2003) is the
Acrtificial Linguistic Internet Computer Entity, first

L http://www.alicebot.org/
2 http://www.loebner.net/Prizef/loebner-prize.html
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implemented by Wallace in 1995. ALICE knowl-
edge about English conversation patterns is stored
in AIML files. AIML, or Artificial Intelligence
Mark-up Language, is a derivative of Extensible
Mark-up Language (XML). It was developed by
Wallace and the Alicebot free software community
during 1995-2000 to enable people to input dia-
logue pattern knowledge into chatbots based on the
A.L.I.C.E. open-source software technology.

In this paper we present other methods to
evaluate the chatbot systems. ALICE chtabot sys-
tem was used for this purpose, where a Java pro-
gram has been developed to read from a corpus
and convert the text to the AIML format. The Cor-
pus of Spoken Afrikaans (Korpus Gesproke Afri-
kaans, KGA), the corpus of the holy book of Islam
(Qur’an), and the FAQ of the School of Computing
at University of Leeds® were used to produce two
KGA prototype, the Qur’an prototype and the
FAQchat one consequently.

Section 2 presents Loebner Prize contest, sec-
tion 3 illustrates the ALICE/AIMLE architecture.
The evaluation techniques of the KGA prototype,
the Qur’an prototype, and the FAQchat prototype
are discussed in sections 4, 5, and 6 consequently.
The conclusion is presented in section 7.

2 The Loebner Prize Competition

The story began with the “imitation game” which
was presented in Alan Turing’s paper “Can Ma-
chine think?” (Turing 1950). The imitation game
has a human observer who tries to guess the sex of
two players, one of which is a man and the other is
a woman, but while screened from being able to
tell which is which by voice, or appearance. Turing
suggested putting a machine in the place of one of
the humans and essentially playing the same game.
If the observer can not tell which is the machine
and which is the human, this can be taken as strong
evidence that the machine can think.

Turing’s proposal provided the inspiration for
the Loebner Prize competition, which was an at-
tempt to implement the Turing test. The first con-
test organized by Dr. Robert Epstein was held on
1991, in Boston’s Computer Museum. In this in-
carnation the test was known as the Loebner con-
test, as Dr. Hugh Loebner pledged a $100,000
grand prize for the first computer program to pass

% http://www.comp.leeds.ac.uk
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the test. At the beginning it was decided to limit
the topic, in order to limit the amount of language
the contestant programs must be able to cope with,
and to limit the tenor. Ten agents were used, 6
were computer programs. Ten judges would con-
verse with the agents for fifteen minutes and rank
the terminals in order from the apparently least
human to most human. The computer with the
highest median rank wins that year’s prize. Joseph
Weintraub won the first, second and third Loebner
Prize in 1991, 1992, and 1993 for his chatbots, PC
Therapist, PC Professor, which discusses men ver-
sus women, and PC Politician, which discusses
Liberals versus Conservatives. In 1994 Thomas
Whalen (Whalen 2003) won the prize for his pro-
gram TIPS, which provides information on a par-
ticular topic. TIPS provides ways to store,
organize, and search the important parts of sen-
tences collected and analysed during system tests.
However there are sceptics who doubt the ef-
fectiveness of the Turing Test and/or the Loebner
Competition. Block, who thought that “the Turing
test is a sorely inadequate test of intelligence be-
cause it relies solely on the ability to fool people”;
and Shieber (1994), who argued that intelligence is
not determinable simply by surface behavior.
Shieber claimed the reason that Turing chose natu-
ral language as the behavioral definition of human
intelligence is “exactly its open-ended, free-
wheeling nature”, which was lost when the topic
was restricted during the Loebner Prize. Epstein
(1992) admitted that they have trouble with the
topic restriction, and they agreed “every fifth year
or so ... we would hold an open-ended test - one
with no topic restriction.” They decided that the
winner of a restricted test would receive a small
cash prize while the one who wins the unrestricted
test would receive the full $100,000.
Loebner in his responses to these arguments be-
lieved that unrestricted test is simpler, less expen-
sive and the best way to conduct the Turing Test.
Loebner presented three goals when constructing
the Loebner Prize (Loebner 1994):
e “No one was doing anything about the
Turing Test, not AL” The initial Loebner
Prize contest was the first time that the
Turing Test had ever been formally tried.

e Increasing the public understanding of Al
is a laudable goal of Loebner Prize. “I be-
lieve that this contest will advance Al and



serve as a tool to measure the state of the
art.”

e Performing a social experiment.

The first open-ended implementation of the
Turing Test was applied in the 1995 contest, and
the prize was granted to Weintraub for the fourth
time. For more details to see other winners over
years are found in the Loebner Webpage*.

In this paper, we advocate alternative evalua-
tion methods, more appropriate to practical infor-
mation systems applications. We have investigated
methods to train and adapt ALICE to a specific
user’s language use or application, via a user-
supplied training corpus. Our evaluation takes ac-
count of open-ended trials by real users, rather than
controlled 10-minute trials.

3 The ALICE/AIML chatbot architecture

AIML consists of data objects called AIML ob-
jects, which are made up of units called topics and
categories. The topic is an optional top-level ele-
ment; it has a name attribute and a set of categories
related to that topic. Categories are the basic units
of knowledge in AIML. Each category is a rule for
matching an input and converting to an output, and
consists of a pattern, which matches against the
user input, and a template, which is used in gener-
ating the Alice chatbot answer. The format struc-
ture of AIML is shown in figure 1.

< aiml version="1.0" >
< topic name="the topic” >

<category>
<pattern>PATTERN</pattern>
<that>THAT</that>
<template>Template</template>
</category>

</topic>

</aiml>

The <that> tag is optional and means that the cur-
rent pattern depends on a previous bot output.

Figure 1. AIML format

* http://ww.loebner.net/Prizef/loebner-prize.html
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The AIML pattern is simple, consisting only of
words, spaces, and the wildcard symbols _ and *.
The words may consist of letters and humerals, but
no other characters. Words are separated by a sin-
gle space, and the wildcard characters function like
words. The pattern language is case invariant. The
idea of the pattern matching technique is based on
finding the best, longest, pattern match. Three
types of AIML categories are used: atomic cate-
gory, are those with patterns that do not have wild-
card symbols, _and *; default categories are
those with patterns having wildcard symbols * or
_. The wildcard symbols match any input but can
differ in their alphabetical order. For example,
given input ‘hello robot’, if ALICE does not find a
category with exact matching atomic pattern, then
it will try to find a category with a default pattern;
The third type, recursive categories are those with
templates having <srai> and <sr> tags, which refer
to simply recursive artificial intelligence and sym-
bolic reduction. Recursive categories have many
applications: symbolic reduction that reduces com-
plex grammatical forms to simpler ones; divide
and conquer that splits an input into two or more
subparts, and combines the responses to each; and
dealing with synonyms by mapping different ways
of saying the same thing to the same reply.

The knowledge bases of almost all chatbots are
edited manually which restricts users to specific
languages and domains. We developed a Java pro-
gram to read a text from a machine readable text
(corpus) and convert it to AIML format. The chat-
bot-training-program was built to be general, the
generality in this respect implies, no restrictions on
specific language, domain, or structure. Different
languages were tested: English, Arabic, Afrikaans,
French, and Spanish. We also trained with a range
of different corpus genres and structures, includ-
ing: dialogue, monologue, and structured text
found in the Qur’an, and FAQ websites.

The chatbot-training-program is composed of
four phases as follows:

e Reading module which reads the dialogue
text from the basic corpus and inserts it
into a list.

e Text reprocessing module, where all cor-
pus and linguistic annotations such as
overlapping, fillers and others are filtered.

e Converter module, where the pre-
processed text is passed to the converter to
consider the first turn as a pattern and the



second as a template. All punctuation is
removed from the patterns, and the pat-
terns are transformed to upper case.
e Producing the AIML files by copying the
generated categories from the list to the
AIML file.
An example of a sequence of two utter-
ances from an English spoken corpus is:

<u who=F72PS002>
<s n="32"><w ITJ>Hello<c PUN>.
</u>
<u who=PS000>
<s n="33"><w
PUN>.
</u>

After the reading and the text processing
phase, the text becomes:

ITI>Hello <w NPO0>Donald<c

F72PS002: Hello
PS000: Hello Donald

The corresponding AIML atomic category that
is generated from the converter modules looks like:
<category>
<pattern>HELLO</pattern>
<template>Hello Donald</template>
</category>

As a result different prototypes were developed,
in each prototype, different machine-learning tech-
niques were used and a new chatbot was tested.
The machine learning techniques ranged from a
primitive simple technique like single word match-
ing to more complicated ones like matching the
least frequent words. Building atomic categories
and comparing the input with all atomic patterns to
find a match is an instance based learning tech-
nigue. However, the learning approach does not
stop at this level, but it improved the matching
process by using the most significant words (least
frequent word). This increases the ability of find-
ing a nearest match by extending the knowledge
base which is used during the matching process.
Three prototypes will be discussed in this paper as
listed below:

o The KGA prototype that is trained by a
corpus of spoken Afrikaans. In this proto-
type two learning approaches were
adopted. The first word and the most sig-
nificant word (least frequent word) ap-
proach;
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e The Qur’an prototype that is trained by the
holy book of Islam (Qur’an): where in ad-
dition to the first word approach, two sig-
nificant word approaches (least frequent
words) were used, and the system was
adapted to deal with the Arabic language
and the non-conversational nature of
Qur’an as shown in section 5;

e The FAQchat prototype that is used in the
FAQ of the School of Computing at Uni-
versity of Leeds. The same learning tech-
niques were used, where the question
represents the pattern and the answer rep-
resents the template. Instead of chatting for
just 10 minutes as suggested by the Loeb-
ner Prize, we advocate alternative evalua-
tion methods more attuned to and
appropriate to practical information sys-
tems applications. Our evaluation takes ac-
count of open-ended trials by real users,
rather than artificial 10-minute trials as il-
lustrated in the following sections.

The aim of the different evaluations method-

ologies is as follows:

e Evaluate the success of the learning tech-
nigues in giving answers, based on dia-
logue efficiency, quality and users’
satisfaction applied on the KGA.

e Evaluate the ability to use the chatbot as a
tool to access an information source, and a
useful application for this, which was ap-
plied on the Qur'an corpus.

e Evaluate the ability of using the chatbot as
an information retrieval system by com-
paring it with a search engine, which was
applied on FAQchat.

4  Evaluation of the KGA prototype

We developed two versions of the ALICE that
speaks Afrikaans language, Afrikaana that speaks
only Afrikaans and AVRA that speaks English and
Afrikaans; this was inspired by our observation
that the Korpus Gesproke Afrikaans actually in-
cludes some English, as Afrikaans speakers are
generally bilingual and “code-switch” comfortably.
We mounted prototypes of the chatbots on web-
sites using Pandorabot service®, and encouraged

> http://www.pandorabots.com/pandora



open-ended testing and feedback from remote us-
ers in South Africa; this allowed us to refine the
system more effectively.
We adopted three evaluation metrics:
e Dialogue efficiency in terms of matching
type.
e Dialogue quality metrics based on re-
sponse type.
e Users' satisfaction assessment based on an
open-ended request for feedback.

4.1 Dialogue efficiency metric

We measured the efficiency of 4 sample dia-
logues in terms of atomic match, first word match,
most significant match, and no match. We wanted
to measure the efficiency of the adopted learning
mechanisms to see if they increase the ability to
find answers to general user input as shown in ta-
ble 1.

Matching Type D1 | D2 | D3 | D4

Atomic 1 3 6 3
First word 9 15 23 | 4
Most significant | 13 2 19 |9
No match 0 1 3 1

Number ofturns | 23 |21 |51 |17
Table 1. Response type frequency

The frequency of each type in each dialogue
generated between the user and the Afrikaans
chatbot was calculated; in Figure 2, these absolute
frequencies are normalised to relative probabilities.

No significant test was applied, this approach to
evaluation via dialogue efficiency metrics illus-
trates that the first word and the most significant
approach increase the ability to generate answers
to users and let the conversation continue.

Matching Types
g 08 A —&— Atomic
= 06
£ 04 % —— First word
8 02 N
R ‘ : —A— Most
significant
o& S i &e’b Qozb‘ —>— Match
S
<><Z> &° 0\‘90 o@o nothing

Figure 2. Dialogue efficiency: Response Type
Relative Frequencies
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4.2 Dialogue quality metric

In order to measure the quality of each re-
sponse, we wanted to classify responses according
to an independent human evaluation of “reason-
ableness”: reasonable reply, weird but understand-
able, or nonsensical reply. We gave the transcript
to an Afrikaans-speaking teacher and asked her to
mark each response according to these classes. The
number of turns in each dialogue and the frequen-
cies of each response type were estimated. Figure 3
shows the frequencies normalised to relative prob-
abilities of each of the three categories for each
sample dialogue. For this evaluator, it seems that
“nonsensical” responses are more likely than rea-
sonable or understandable but weird answers.

4.3 Users' satisfaction

The first prototypes were based only on literal
pattern matching against corpus utterances: we had
not implemented the first word approach and least-
frequent word approach to add “wildcard” default
categories. Our Afrikaans-speaking evaluators
found these first prototypes disappointing and frus-
trating: it turned out that few of their attempts at
conversation found exact matches in the training
corpus, so Afrikaana replied with a default “ja”
most of the time. However, expanding the AIML
pattern matching using the first-word and least-
frequent-word approaches yielded more favorable
feedback. Our evaluators found the conversations
less repetitive and more interesting. We measure
user satisfaction based on this kind of informal
user feed back.

Response Types
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Figure 3. The quality of the Dialogue: Response
type relative probabilities



5 Evaluation of the Qur'an prototype

In this prototype a parallel corpus of Eng-
lish/Arabic of the holy book of Islam was used, the
aim of the Qur’an prototype is to explore the prob-
lem of using the Arabic language and of using a
text which is not conversational in its nature like
the Qur’an. The Qur’an is composed of 114 soora
(chapters), and each soora is composed of different
number of verses. The same learning technique as
the KGA prototype were applied, where in this
case if an input was a whole verse, the response
will be the next verse of the same soora; or if an
input was a question or a statement, the output will
be all verses which seems appropriate based on the
significant word. To measure the quality of the
answers of the Qur’an chatbot version, the follow-
ing approach was applied:

1. Random sentences from Islamic sites were
selected and used as inputs of the Eng-
lish/Arabic version of the Qur’an.

2. The resulting transcripts which have 67
turns were given to 5 Muslims and 6 non-
Muslims students, who were asked to label
each turn in terms of:

o Related (R), in case the answer was correct
and in the same topic as the input.

o Partially related (PR), in case the answer
was not correct, but in the same topic.

o Not related (NR), in case the answer was
not correct and in a different topic.

Proportions of each label and each class of us-
ers (Muslims and non-Muslims) were calculated as
the total number over number of users times num-
ber of turns. Four out of the 67 turns returned no
answers, therefore actually 63 turns were used as
presented in figure 4.

In the transcripts used, more than half of the re-
sults were not related to their inputs. A small dif-
ference can be noticed between Muslims and non-
Muslims proportions. Approximately one half of
answers in the sample were not related from non-
Muslims’ point of view, whereas this figure is 58%
from the Muslims’ perspective. Explanation for
this includes:

e The different interpretation of the answers.
The Qur’an uses traditional Arabic lan-
guage, which is sometimes difficult to un-
derstand without knowing the meaning of
some words, and the historical story be-
hind each verse.
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e The English translation of the Qur’an is
not enough to judge if the verse is related
or not, especially given that non-Muslims
do not have the background knowledge of
the Qur’an.

Using chatting to access the Qur’an looks like
the use of a standard Qur’an search tool. In fact it
is totally different; a searching tool usually
matches words not statements. For example, if the
input is: “How shall | pray?” using chatting: the
robot will give you all ayyas where the word
“pray” is found because it is the most significant
word. However, using a search tool® will not give
you any match. If the input was just the word
“pray”, using chatting will give you the same an-
swer as the previous, and the searching tool will
provide all ayyas that have “pray” as a string or
substring, so words such as: "praying, prayed, etc.”
will match.

Another important difference is that in the
search tool there is a link between any word and
the document it is in, but in the chatting system
there is a link just for the most significant words,
so if it happened that the input statement involves a
significant word(s), a match will be found, other-
wise the chatbot answer will be: “I have no answer
for that”.

Answer types
70%
60%
= 50% _
2 40% O Muslims
g 30% = E1 Non Muslims
£ 20% _ﬁ 0 Overal
10% W ﬁ
0%
Related Partialy Not related
Related
Answers

Figure4. The Qur’an proportion of each answer
type denoted by users

6 Evaluation of the FAQchat prototype

To evaluate FAQchat, an interface was built,
which has a box to accept the user input, and a but-
ton to send this to the system. The outcomes ap-

® http://www.islamicity.com/QuranSearch/



pear in two columns: one holds the FAQchat an-
swers, and the other holds the Google answers af-
ter filtering Google to the FAQ database only.
Google allows search to be restricted to a given
URL, but this still yields all matches from the
whole SoC website (http://www.comp.leeds.ac.uk)
so a Perl script was required to exclude matches
not from the FAQ sub-pages.

An evaluation sheet was prepared which con-
tains 15 information-seeking tasks or questions on
a range of different topics related to the FAQ data-
base. The tasks were suggested by a range of users
including SoC staff and research students to cover
the three possibilities where the FAQchat could
find a direct answer, links to more than one possi-
ble answer, and where the FAQchat could not find
any answer. In order not to restrict users to these
tasks, and not to be biased to specific topics, the
evaluation sheet included spaces for users to try 5
additional tasks or questions of their own choosing.
Users were free to decide exactly what input-string
to give to FAQchat to find an answer: they were
not required to type questions verbatim; users were
free to try more than once: if no appropriate an-
swer was found; users could reformulate the query.

The evaluation sheet was distributed among 21
members of the staff and students. Users were
asked to try using the system, and state whether
they were able to find answers using the FAQchat
responses, or using the Google responses; and
which of the two they preferred and why.

Twenty-one users tried the system; nine mem-
bers of the staff and the rest were postgraduates.
The analysis was tackled in two directions: the
preference and the number of matches found per
guestion and per user.

6.1 Number of matches per question

The number of evaluators who managed to find
answers by FAQchat and Google was counted, for
each question.

Results in table 2 shows that 68% overall of our
sample of users managed to find answers using the
FAQchat while 46% found it by Google. Since
there is no specific format to ask the question,
there are cases where some users could find an-
swers while others could not. The success in find-
ing answers is based on the way the questions were
presented to FAQchat.
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Users | Mean of users find- | Proportion of find-
/Tool ing answers ing answers
FAQchat | Google | FAQchat | Google
Staff 5.53 3.87 61% 43%
Student | 8.8 5.87 73% 49%
Overall | 14.3 9.73 68% 46%

Table 2: Proportion of users finding answers

Of the overall sample, the staff outcome shows
that 61% were able to find answers by FAQchat
where 73% of students managed to do so; students
were more successful than staff.

6.2 The preferred tool per each question

For each question, users were asked to state
which tool they preferred to use to find the answer.
The proportion of users who preferred each tool
was calculated. Results in figure 5 shows that 51%
of the staff, 41% of the students, and 47% overall
preferred using FAQchat against 11% who pre-
ferred the Google.

Which tool do you prefer?

60%

50% -

5 40% O Staff
£ 30% @ Student
2 20% O Total

0% T

FAQchat

Avearge percentage

Google

Tool

Figure5. Proportion of preferred tool

6.3 Number of matches and preference found
per user

The number of answers each user had found

was counted. The proportions found were the
same. The evaluation sheet ended with an open
section inviting general feedback. The following is
a summary of the feedback we obtained:

o Both staff and students preferred using the
FAQchat for two main reasons:

1. The ability to give direct answers some-
times while Google only gives links.

2. The number of links returned by the
FAQchat is less than those returned by
Google for some questions, which saves
time browsing/searching.




e Users who preferred Google justified their
preference for two reasons:
Prior familiarity with using Google.

2. FAQchat seemed harder to steer with care-
fully chosen keywords, but more often did
well on the first try. This happens because
FAQchat gives answers if the keyword
matches a significant word. The same will
occur if you reformulate the question and
the FAQchat matches the same word.
However Google may give different an-
swers in this case.

To test reliability of these results, the t=Test

were applied, the outcomes ensure the previous
results.

=

7 Conclusion

The Loebner Prize Competition has been used
to evaluate the ability of chatbots to fool people
that they are speaking to humans. Comparing the
dialogues generated from ALICE, which won the
Loebner Prize with real human dialogues, shows
that ALICE tries to use explicit dialogue-act lin-
guistic expressions more than usual to re enforce
the impression that users are speaking to human.

Our general conclusion is that we should NOT
adopt an evaluation methodology just because a
standard has been established, such as the Loebner
Prize evaluation methodology adopted by most
chatbot developers. Instead, evaluation should be
adapted to the application and to user needs. If the
chatbot is meant to be adapted to provide a specific
service for users, then the best evaluation is based
on whether it achieves that service or task
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Panel on Spoken Dialog Corpus Composition and Annotation for Research

OrganizersGiuseppe DiFabbrizio, Dilek Hakkani-Tur, Oliver Lemonakin Gilbert, Alex Rudnicky

The goal of this forum is to provide researchers from variogstutes with the opportunity to comment
on a proposed NSF-sponsored data collection plan for a spadiéog corpus. The corpus is to be
used for research in speech recognition, spoken languatgsianding, dialog management, machine
learning, and language generation. Currently, there erisiorpus with over 600 dialog interactions,
collected from users using the Discoh system (from the IEEE 206 workshop) and the Conquest
system (from ICSLP 2006) to obtain general information dlwmnference services. These systems
were created as part of a joint collaboration between CMUI,Adinburgh and ICSI.

The workshop panel will host a number of invited researchérs have received a subset of the corpus
and annotation. An open discussion will be held to obtainmemts from workshop participantsto help
finalize the annotation guidelines. If you would like to pide feedback with respect to the annotation
plan and receive a sample of the dialog interactions theasplsend an email to info@discoh.org
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