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Abstract

We demonstrate a proof-of-concept sys-
tem that uses a shallow chunking-based
technique for knowledge extraction from
natural language text, in particular looking
at the task of story understanding. This
technique is extended with a reasoning
engine that borrows techniques from dy-
namic ontology refinement to discover the
semantic similarity of stories and to merge
them together.

1 Introduction

Many NLP applications would benefit from the
availability of broad-coverage knowledge extrac-
tion from natural language text. Despite some re-
cent advances in this direction (Bos et al., 2004), it
is still the case that it is hard to obtain deep seman-
tic analyses which are accurate enough to support
logical inference (Lev et al., 2004).

Our problem can be stated in abstract terms.
Given a formalism F for the semantic representa-
tion of natural language, such as first-order clauses
in predicate calculus, and a set of sentences S, give
a translation function T (S) → F . The goal of
such a translation would be to solve a problem
P (such as paraphrasing or question-answering)
where F allows P to be solved by some reason-
ing process, or else the domain exhibits a type of
structure easily represented in the formalism F .

If we accept that current parsing technology
cannot reliably combine accurate semantic anal-
ysis with robustness, then the question arises
whether ‘noisy’ semantics can be ameliorated us-
ing some other techniques. In this paper, we adopt
the hypothesis that methods drawn from dynamic
ontology refinement (McNeill et al., 2004) can in-
deed help with this task. In the limit, we would

like to be able to show that semantic content drawn
from a wide variety of sources can be compared
and merged to reveal the shared common ground.
However, in this paper we have limited ourselves
to a much more modest goal, namely merging and
comparing semantic content from a set of variants
of a single story.1

We obtained the variants by asking adults to
retell the story, based on hearing the original, or
reading it themselves. We have developed a sys-
tem that can take in any number of such stories
and produce a merged version of the stories. Our
re-tellers were instructed not to elaborate upon or
intentionally change the original and consequently
the stories are fairly similar, not just in meaning
but to an extent also in wording.

In the next two sections, we will first describe
how semantic clauses are extracted from text, and
second, how clauses obtained from different texts
are merged.

2 Extracting Clauses from Text

The method we have adopted for extracting first-
order clauses from text can be called ‘semantic
chunking.’ This seems an appropriate term for
two reasons. First, we use a syntactic chunker
to identify noun groups and verb groups (i.e. non-
recursive clusters of related words with a noun or
verb head respectively). Second, we use a cas-
cade of finite state rules to map from this shallow
syntactic structure into first-order clauses; this cas-
cade is conceptually very similar to the chunking
method pioneered by Abney’s Cass chunker (Ab-
ney, 1996).

The text processing framework we have used
draws heavily on a suite of XML tools developed

1We used a simplified version of Oscar Wilde’s fairy story
The Selfish Giant.
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for generic XML manipulation (LTXML (Thomp-
son et al., 1997)) as well as NLP-specific XML

tools (LT-TTT (Grover et al., 2000), LT-CHUNK

(Finch and Mikheev, 1997)). More recently, sig-
nificantly improved upgrades of these tools have
been developed, most notably the program lx-
transduce, which performs rule-based transduc-
tions of XML structures. We have used lxtransduce
both for the syntactic chunking (based on rule de-
veloped by Grover) and for construction of seman-
tic clauses.

The main steps in the processing pipeline are as
follows:

1. Words and sentences are tokenized.

2. The words are tagged for their part of speech
using the CandC tagger (Clark and Curran,
2004) and the Penn Treebank tagset.

3. Pronoun resolution is carried out using
the Glencova Pronoun Resolution algorithm
(Halpin et al., 2004), based on a series of
rules similar to the CogNIAC engine (Bald-
win, 1997), but without gender information-
based rules since this is not provided by the
Penn Treebank tagset.

4. The words are then reduced to their morpho-
logical stem (lemma) using Morpha (Minnen
et al., 2001).

5. The lxtransduce program is used to chunk the
sentence into verb groups and noun groups.

6. In an optional step, words are tagged as
Named Entities, using the CandC tagger
trained on MUC data.

7. The partially chunked sentences are selec-
tively mapped into semantic clauses in a se-
ries of steps, described in more detail below.

8. The XML representation of the clauses is con-
verted using an XSLT stylesheet into a more
conventional syntactic format for use by Pro-
log or other logic-based systems.

The output of the syntactic processing is an
XML file containing word elements which are
heavily annotated with attributes. Following
CoNLL BIO notation (Tjong et al., 2000), chunk
information is recorded at the word level. Heads
of noun groups and verb groups are assigned se-
mantic tags such as arg and rel respectively. In

addition, other semantically relevant forms such
as conjunction, negation, and prepositions are also
tagged. Most other input and syntactic infor-
mation is discarded at this stage. However, we
maintain a record through shared indices of which
terms belong to the same chunks. This is used, for
instance, to build coordinated arguments.

Regular expressions over the semantically
tagged elements are used to compose clauses, us-
ing the heuristic that an arg immediately preced-
ing a pred is the subject of the clause, while args
following the pred are complements. Since the
heads of verb groups are annotated for voice, we
can treat passive clauses appropriately, yielding a
representation that is equivalent to the active con-
gener. We also implement simple heuristics that
allow us to capture simple cases of control and
verb phrase ellipsis in many cases.

3 Knowledge Refinement and Merging

Once the clauses have been extracted from the
text, each story becomes a list of predicates, rep-
resenting verbs, each with a number of arguments
(possibly zero), representing nouns. Two stories
can thus be compared by considering how the
clauses from one story relate to the clauses from
another story. This is done both by considering
how the predicates (verbs) from one story relate to
those from another story and also by considering
the arguments (nouns) that these related predicates
connect. This allows us to consider not just the
similarity of the words used in the story but also,
to some extent, the structure of the sentences.

The aim of merging is to build up, initially, a
working merged story that includes all aspects of
each story so far; then, when all stories have been
merged, to refine the working merged story by re-
moving aspects of it that are considered to be pe-
ripheral to the main core. The output is a single
story in the same format as the inputs, and which
reflects common elements from across the set of
variants.

If text is represented in such clause form, then
the number of ways in which these clausal rep-
resentations of the story can differ is strictly lim-
ited. Clauses have only two attributes: predicates
and arguments. The predicates may find an exact
match, an inexact match or no match. If the predi-
cates find some kind of match, their arguments can
then be examined. Each of these will find an exact,
inexact, or no match with the corresponding ar-
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gument in the related predicate; additionally, their
ordering and number may be different. Thus it is
possible to create an exhaustive list of the possible
differences between clauses. We currently con-
sider only WordNet information concerning syn-
onyms, hypernyms and hyponyms when determin-
ing matches: we do not perform inference using
antonyms, for example, nor do we consider impli-
cation cases.

The techniques that are used in the merging
process were inspired by work on dynamic on-
tology refinement (McNeill et al., 2004), which
deals with the problem of reasoning failure caused
by small inconsistencies between largely similar
ontologies. This is achieved by analysing onto-
logical objects that were expected to, but do not,
match, and diagnosing and patching these mis-
matches through consideration of how they dif-
fer through reasoning. Examples of mismatches
that are common between similar ontologies are
changed names of predicates (often to sub- or
super-types), changed arity, and changed types of
arguments. These types of ontological mismatches
are currently handled by our system, since in the
domain of stories people often use different names
or different levels of description for things. The
application of these techniques for determining
differences and similarities between the story rep-
resentations therefore forms the basis of the merg-
ing process.

In order to merge a new story with the current
working merged story (WMS), the facts in the WMS

are examined one by one in an attempt to match
them to a fact in the story to be merged. Such a
match may be exact (the predicates and all their
arguments are identical), inexact (the predicates
have the same name but their arguments differ),
similar (the predicates are synonyms) or related
(the predicates are hyponyms or hypernyms). In-
formation about synonyms, hyponyms and hyper-
nyms is extracted from WordNet and used as the
type hierarchy for our refinement (see Section 5;
for an explanation of our usage of WordNet, see
the WordNet project (Miller, 1995) for general de-
tails). Another potential kind of match is where
the arguments match but no link can be found be-
tween the predicates; however, this is not consid-
ered in the current system. If a match of any kind
is found for a predicate from the WMS, the predi-
cate from the new story with which it matches is
appended to its entry in the WMS. Each entry in the

WMS is annotated with a score to indicate in how
many stories a match of some kind has been found
for it. For example, an entry in the WMS, ([1]
play(child)) may find an inexact match with
cavort(child) in a new story, to create an entry
of ([2] play(child), cavort(child)) in the
new WMS.

Once all the facts in the WMS have been exam-
ined and matched where possible, there will usu-
ally be some facts in the story to be merged that
have not been found as a match for anything in the
WMS. These should not be ignored; they have no
match with anything thus far, but it may be that
stories to be merged in future will find a match
with them. Thus, they are added to the merged
story with a score of 1. The initial merged story
is found by simply annotating the first story to be
merged so that each entry has a score of 1. It
is possible, but not necessary, to provide a range
value to the merging process, so that matches are
only sought in the given vicinity of the fact in the
WMS. If no range value is given, this is set to be ar-
bitrarily large so that all of the story to be merged
is examined.

Once all of the stories to be merged have been
examined, we have a complete WMS, which needs
to be processed to produce the merged output. A
threshold value is used to determine which of these
should be immediately discarded: anything with a
score less than the threshold. Those with a score
of more than or equal to the threshold must be pro-
cessed so that each is represented by a single fact,
rather than a list of different versions of the fact. If
all versions of the fact are identical, this single ver-
sion is the output. Otherwise, both a ‘canonical’
name and ‘canonical’ arguments for a fact must
be calculated. In the current system, a simple ap-
proach is taken to this. For the predicate, if there
is more than one version, then the most commonly
occurring one is chosen as the canonical represen-
tative. If there are two or more that are jointly the
most commonly occurring, then the most specific
of the names is chosen (i.e., the one that is lowest
in the class hierarchy). When choosing the argu-
ments for the merged predicate, any argument that
has a match in at least one other version of the
predicate is included. If the match is inexact —
i.e., the arguments are not of the same class, but
are of related classes — then the most specific of
the classes is chosen.
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4 Worked Example
We now work through a simplified example to il-
lustrate the merging process. Consider the follow-
ing three lists of facts, which are drawn from dif-
ferent retellings of our example story:

Story 1: come(child), play(garden),
visit(friend), forget(friend),
come(giant), yell(child)

Story 2: go(giant), visit(friend),
be(giant), come(child), play(garden)

Story 3: be(giant), come(giant),
play(garden),
bellow(child,anger,giant),
happy(giant)

The first WMS (working merged story) is pro-
duced by marking up the first story:
([1] come(child)),
([1] play(garden)),
([1] visit(friend)),
([1] forget(friend)),
([1] come(giant)),
([1] yell(child))

This is then merged with the second story. The
first fact of Story 1, come(child), matches exactly
with the fourth fact of the Story 2; the fifth fact
matches inexactly with the fourth fact of the Story
2, and so on. The resulting WMS is:
([2] come(child), come(child)),
([2] play(garden), play(garden)),
([2] visit(friend) visit(friend)),
([1] forget(friend)),
([1] come(giant)),
([1] yell(child)),
([1] come(giant)),
([1] go(giant)),
([1] be(giant))

This is then merged with Story 3 to produce:
([3] come(child), come(child),

come(giant)),
([3] play(garden), play(garden),

play(garden)),
([2] visit(friend) visit(friend)),
([1] forget(friend)),
([1] come(giant)),
([2] yell(child),

bellow(child,anger,giant)),
([1] come(giant)),
([1] go(giant)),
([2] be(giant), be(giant)),
([1] happy(giant))

We then proceed to merge all the automat-
ically extracted knowledge representations of
the three stories. To create the output merged
story, those predicates with a score of 1 are
ignored. The others are each merged to pro-
duce a single predicate. For example, ([3]
come(child), come(child), come(giant))
becomes come(child): giant does not match
with any other argument and is dropped. ([2]
yell(child), bellow(child,anger,giant))
becomes yell(child) because yell is a subclass
of bellow, and thus preferred, and child is the
only argument that has a match in both facts. Thus
the resulting merged story is:

come(child),
play(garden),
visit(friend),
yell(child),
be(giant)

It is clear from this example that our current ap-
proach is, at times, naive. For example, the deci-
sions about which arguments to include in output
facts, and how to order facts that are unmatched
in working merged stories could be made signifi-
cantly more effective. We view this current system
as a proof of concept that such an approach can
be useful; we certainly do not consider the system
to be complete approach to the problem. Further
work on the system would result in improved per-
formance.

5 Extracting Ontological Information
from WordNet

In order to perform some of the tasks involved in
merging and matching, it is necessary to have in-
formation about how words are related. We extract
this information from WordNet by getting the on-
tology refinement engine to call WordNet with a
word and retrieve both its synset (i.e., synomym
set) and its hyponyms and hypernyms. We col-
lect these for every sense of the word, since our
natural language pipeline currently does not in-
clude word-sense disambiguation. When it is nec-
essary during the merging process to obtain in-
formation about whether two words are related
(i.e., when two words do not match exactly), we
extract synonym and hyper/hyponym information
from WordNet for these words and examine it to
discover whether an exact match exists or not. We
treat synonyms as equivalent, and we treat hyper-
nym and hyponym synsets as the super- and sub-
type of a word respectively, and then traverse the
type hierarchy for exact matches. To avoid spu-
rious equivalence we use a bound to restrict the
search, and from our experience a bound of two
type-levels in either direction and a stop-list of
‘upper ontology’ types yields good results.

6 Related Work

This work breaks some new ground by being the
first to use dynamic refinement to compare and
merge information from natural language texts. In
general, recent work in natural language process-
ing has currently relied heavily on ‘purely statisti-
cal’ methods for tasks such as text similarity and
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summarization. However, there is also a rich log-
ical tradition in linguistic semantics, and work in
this vein can bring the two closer together.

Current work in story understanding is focus-
ing on the use of logical forms, yet these are not
extracted from text automatically (Mueller, 2003).
The natural language processing and story con-
version pipeline are improvements over a pipeline
that was shown to successfully compare stories in
a manner similar to a teacher (Halpin et al., 2004).

The merging task is a more logic-based ap-
proach than similar techniques like information
fusion used in multi-document summarization
(Barzilay et al., 1999). Our approach has some
features in common with (Wan and Dale, 2001),
however, we have chosen to focus exclusively on
merger at the semantic level, rather than trying to
also incorporate syntactic structure.

There has also been a revival in using weighted
logical forms in structured relational learning,
such as Markov Logic Networks (Domingos and
Kok, 2005), and this is related to the scoring
of facts used by the current system in merging
texts. As mentioned at the beginning of this paper,
the conversion of unrestricted text to some logi-
cal form has experienced a recent revival recently
(Bos et al., 2004). Although our approach deliber-
ately ignores much semantic detail, this may be
compensated for by increased robustness due to
the reliance on finite-state methods for semantic
translation and chunking.

7 Further Work

The work we have done thus far suggests many av-
enues for further work. One obvious improvement
would be to enable the system to deal with more
complex input, so that stories could be represented
with nested predicates and with a more complex
notion of time. Time can be conceived of ontologi-
cally in a number of differing manners with highly
differing properties, and relating these notions of
time to the extraction of tense (which the lxtrans-
duce-based chunker currently does automatically)
would be a fruitful task (Hayes, 1996). Making
decisions about what to include in a merged story
is currently done in a fairly naive manner. Fur-
ther research into what constituted a good merged
story and under what circumstances it is advanta-
geous to be sceptical or generous as to what should
be included in the merged story, would allow this
to become much more effective. Once the system

has been suitably improved, it should be tested on
a more complex domain, such as news stories. Fi-
nally, the primary benefit of the use of knowledge
representation is the possibility of using inference.
The current system could easily take advantage
of an external knowledge-base of domain-specific
facts and rules to aid refinement and merging.

We have not implemented a baseline for the sys-
tem using purely word-based statistical features,
such as reducing the words to the their morpho-
logical stem and then using WordNet synsets to
compare the stories without any predicate struc-
ture. This is because at this stage in development
the extraction of the correct clauses is itself the
goal of the task. If connected to larger system,
comparison with a purely statistical model would
be useful. However, we would hazard a guess that
in the domain of computational story understand-
ing, it is unlikely that purely statistical methods
would work well, since stories by their nature con-
sist of events involving the actions of characters in
a particular temporal order, and this type of struc-
tural complexity would seem to be best accounted
for by some structure-preserving features that at-
tempt to model and extract these events explicitly.

8 Conclusion

Although many questions remain unanswered,
the development of the current system demon-
strates that this kind of refinement-based approach
to matching and merging texts can be produce
promising results. Much could be done to im-
prove the effectiveness of both the clause extrac-
tion and the merging components of the system,
and the breadth of task that these techniques have
been tested on remains very narrow. Nevertheless,
this work represents a reasonably successful first
investigation of the problem, and we intend to use
it as the basis for further work.

References

Steven Abney. 1996. Partial parsing via finite-
state cascades. Natural Language Engineering,
2(4):337–344.

Breck Baldwin. 1997. CogNIAC: A High Precision
Pronoun Resolution Engine. In Operational Factors
in Practical, Robust Anaphora Resolution for Unre-
stricted Texts (ACL-97 workshop), pages 38–45.

R. Barzilay, K. McKeown, and M. Elhadad. 1999. In-
formation fusion in the context of multi-document
summarization. In In Proceedings of Association for

40 KRAQ06



Computational Linguistics, pages 550–557, Mary-
land.

Johan Bos, Stephen Clark, Mark Steedman, James Cur-
ran, and Julia Hockenmaier. 2004. Wide-coverage
semantic representations from a CCG parser. In In
Proceedings of the 20th International Conference
on Computational Linguistics (COLING ’04), pages
1240–1246, Geneva, Switzerland.

Stephen Clark and James Curran. 2004. Parsing the
WSJ using CCG and log-linear models. In Pro-
ceedings of the 42nd Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL 2004),
pages 104–111, Barcelona, Spain.

Pedro Domingos and Stanley Kok. 2005. Learning the
structure of Markov Logic Networks. In Proceed-
ings of the International Conference on Machine
Learning, pages 441–448, Bonn.

Steve Finch and Andrei Mikheev. 1997. A workbench
for finding structure in texts. In Walter Daelemans
and Miles Osborne, editors, Proceedings of the Fifth
Conference on Applied Natural Language Process-
ing (ANLP-97). Washington D.C.

Claire Grover, Colin Matheson, Andrei Mikheev, and
Marc Moens. 2000. LT TTT—a flexible tokenisa-
tion tool. In LREC 2000—Proceedings of the 2nd
International Conference on Language Resources
and Evaluation, pages 1147–1154.

Harry Halpin, Johanna Moore, and Judy Robertson.
2004. Automatic analysis of plot for story rewriting.
In Proceedings of Empirical Methods in Natural
Language Processing, pages 127–133, Barcelona,
Spain.

Pat Hayes. 1996. A catalog of temporal theories.
Technical Report UIUC-BI-AI-96-01, University of
Illinois.

Iddo Lev, Bill MacCartney, Christopher D. Manning,
and Roger Levy. 2004. Solving logic puzzles: From
robust processing to precise semantics. In 2nd Work-
shop on Text Meaning and Interpretation at ACL
2004, pages 9–16.

Fiona McNeill, Alan Bundy, and Chris Walton. 2004.
Facilitating agent communication through detecting,
diagnosing and refining ontological mismatch. In
Proceedings of the KR2004 Doctoral Consortium.
AAAI Technical Report.

George Miller. 1995. Wordnet: A lexical database for
english. Communications of the ACM, 11(38):39–
41.

Guido Minnen, John Carroll, and David Pearce. 2001.
Applied morphological processing of English. Nat-
ural Language Engineering, 7(3):207–203.

Erik T. Mueller. 2003. Story understanding through
multi-representation model construction. In Graeme
Hirst and Sergei Nirenburg, editors, Text Meaning:

Proceedings of the HLT-NAACL 2003 Workshop,
pages 46–53, East Stroudsburg, PA. Association for
Computational Linguistics.

Henry Thompson, Richard Tobin, David McKelvie,
and Chris Brew. 1997. LT XML: Software API and
toolkit for XML processing.

Erik F. Tjong, Kim Sang, and Sabine Buchholz.
2000. Introduction to the CoNLL-2000 shared task:
Chunking. In Proceedings of the Conference on
Natural Language Learning (CoNLL-2000). Lisbon,
Portugal.

Stephen Wan and Robert Dale. 2001. Merging sen-
tences using shallow semantic analysis: A first ex-
periment. In Proceedings of the 2001 Australasian
Natural Language Processing Workshop, Sydney,
April. Macquarie University.

41 KRAQ06


